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Abstract

The reliable response to weak biological signals requires that they be amplified with fidelity. In E. coli, the flagellar motors
that control swimming can switch direction in response to very small changes in the concentration of the signaling protein
CheY-P, but how this works is not well understood. A recently proposed allosteric model based on cooperative
conformational spread in a ring of identical protomers seems promising as it is able to qualitatively reproduce switching,
locked state behavior and Hill coefficient values measured for the rotary motor. In this paper we undertook a
comprehensive simulation study to analyze the behavior of this model in detail and made predictions on three
experimentally observable quantities: switch time distribution, locked state interval distribution, Hill coefficient of the switch
response. We parameterized the model using experimental measurements, finding excellent agreement with published
data on motor behavior. Analysis of the simulated switching dynamics revealed a mechanism for chemotactic
ultrasensitivity, in which cooperativity is indispensable for realizing both coherent switching and effective amplification.
These results showed how cells can combine elements of analog and digital control to produce switches that are
simultaneously sensitive and reliable.
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Introduction

Bacterial chemotaxis enables the cell to move towards favorable

environments. This sensing ability relies closely on collective

coordination of several operation modules in the signal transduction

pathway (reviewed in [1][2]). The first component of this system is

responsible for detecting environmental signals and converting

them into intracellular signals. At the surface of the cell, detection of

attractants and repellents is mediated by a series of chemoreceptors

in the cytoplasmic membrane, the methyl-accepting chemotaxis

proteins (MCPs). The second component is the intracellular

chemotactic pathway, which processes extracellular signal and

converts it into one that is used to determine the behavior of the

bacterial flagellar motors: the concentration of the soluble

cytoplasmic protein CheY. Binding of repellents induces phosphor-

ylation of CheY, whereas binding of attractants results in CheY

dephosphorylation. At the end of the chemotactic pathway lies the

final component of the system – the motor block – which changes its

switching bias in response to changes in CheY-P (phosphorylated

CheY) concentration. On a typical E. coli cell surface, there are 4–5

functioning bacterial flagellar motors. When most of the motors on

the membrane spin counterclockwise (CCW), flagellar filaments

form a bundle and propel the cell steadily forward; if a few motors

(can be as few as one) spin clockwise (CW), flagellar filaments

fly apart and the cell tumbles. Therefore the cell repeats a

‘run’-‘tumble’-‘run’ pattern to perform a biased random walk for

chemotaxis in a low Reynolds number world [3].

The essential feature of the motor that allows effective

chemotaxis is its ability to switch direction quickly and reliably

in response to small changes in environmental conditions. Previous

studies have revealed that the motor switching responds ultra-

sensitively to changes in intracellular CheY-P concentration: a

high concentration of CheY-P in the cytoplasm of the cell

stimulates more CW rotation, while a low concentration of CheY-

P results in more CCW rotation. In WT E. coli, the cytoplasmic

concentration of CheY-P is around 3 mM and the flagellar motors

show stochastic reversals of rotation every second or so [4]. A small

change in CheY-P concentration up or down disrupts this equili-

brium and produces a large shift toward either CW or CCW

rotation. The sensitivity coefficient for the change in rotational

bias (time spent in CCW vs. CW) as a function of CheY-P

concentration (the Hill coefficient) is ,10 at the most sensitive part

of the region of operation [5].

How the flagellar motor accomplishes this switching behavior is

not fully understood, partly because structural data are difficult to

obtain. It is known that CheY-P molecules interact with a ring-

shaped assembly of about 34 identical FliM protein subunits and

this unit is believed to be responsible for determining the direction

of rotation [6][7]. For several decades, a series of models have

attempted to explain the dynamic behavior of the motor switch
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and identify the underlying kinetic mechanisms that control

the steady state behavior of motor switches [8][9]. Tu and

Grinstein [10] used a theoretical argument to suggest that in a

dynamical two-state (CW and CCW) model, temporal changes

in CheY-P concentration drive the switching behavior of the

motor at long time scales and produces a power-law distribution

for the durations of the CCW states. Bialek et al. [11] used the

bacterial motor as a model system to evaluate the noise limita-

tion of intracellular signaling, concluding that the motor switch

operates close to the theoretical limit imposed by diffusive

counting noise.

A key test for any model of motor switching is the ability to

explain how small changes in extracellular concentration are

converted into large changes in motor output. To explain this

ultrasensitivity, the possibility of cooperative binding of CheY-P to

the FliM subunits of the motor switch complex has been suggested

[12]. However, studies focused on this binding step [13][14] have

determined a Hill coefficient of ,1 for it, which eliminates the

possibility that the amplification is driven by cooperative CheY-P

binding to the motor and suggests that a separate, post-binding

step within the switch complex is responsible. Duke et al. [15]

described a stochastic allosteric model that qualitatively reproduc-

es the ultrasensitive switching and locked state behavior of the

motors assuming energetic coupling between neighbor units on the

FliM ring inspired by the classic Ising phase transition theory. In

particular, this model can reproduce the Hill coefficient of the

switch, the nonlinear dependence of rotational bias on CheY-P

concentration and the equilibrium between the CW and CCW

locked states. The model was based on two assumptions: (a) each

subunit of the ring can exist in one of two conformations: CCW

and CW state and undergoes a conformational change catalyzed

by the binding of CheY-P and (b) a coupling between neighboring

subunits favors a coherent configuration and this leads to the

propagation of conformational changes along the ring.

Author Summary

Bacteria swim to find nutrients or to avoid toxins. Their
swimming is powered by the rotation of flagella (hair-like
structures) that act as propellers. Each flagellum is driven
by a rotary molecular engine (the bacterial flagellar motor)
that can rotate in either a counterclockwise or clockwise
direction and switches between the two directions are
frequent and rapid. Although the motor has been studied
in detail, we do not understand how it is able to reliably
switch direction – a critical function that gives bacteria the
ability to steer. In this paper we examined a mathematical
model describing how a potential gearbox in the motor
might work inside a ring of identical proteins. We
compared the output of this model with experimental
data on switching speed and other measures of motor
function, finding excellent agreement. This is an exciting
finding not only because the operation of the motor itself
is important, but also because protein complexes play an
important and ubiquitous role in cellular signal transduc-
tion and therefore, ‘‘conformational spread’’ may be a
widespread mechanism for signal propagation in biology.

Figure 1. Free energy diagram for the conformational spread model a) symmectric case: the free energy of conformational change
is 6EA. The free energy of CheY-P binding is dependent on the CheY-P concentration as shown, with EC = 2ln(c/c0.5). If EC.0, the inactive state
becomes more highly populated and hence CW bias ,0.5, while EC,0 similarly implies CW bias .0.5. b) asymmetric case: the free energy of
conformational change is 6EA

0 when a protomer is unliganded and 6EA
1 when it is liganded. c) coupling energy EJ between neighboring protomers.

doi:10.1371/journal.pcbi.1002523.g001

Flagellar Motor Switch by Conformational Spread
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Table 1. Model predictions about motor switching time, locked state time, and Hill coefficient with parameters EA
0, EA

1 and EJ

ranging across 0.5 kBT#EA
0#1.5 kBT , 0.5 kBT#EA

1#1.5 kBT , and 3.5 kBT#EJ#4.5 kBT.

EA
0 EA

1 EJ

Mean Locked State
time (s)

Mean Switch
Time (ms)

Locked state /
Switch time ratio Hill coefficient

0.5 0.5 3.5 0.14 12.03 11.59 5.85

0.5 0.75 3.5 0.20 15.46 13.10 6.74

0.5 1 3.5 0.29 20.10 14.41 7.81

0.5 1.25 3.5 0.39 26.24 14.91 7.93

0.5 1.5 3.5 0.52 33.50 15.44 8.51

0.75 0.5 3.5 0.20 15.43 12.70 6.93

0.75 0.75 3.5 0.33 22.91 14.18 8.82

0.75 1 3.5 0.50 34.59 14.42 9.65

0.75 1.25 3.5 0.74 49.96 14.87 10.44

0.75 1.5 3.5 1.05 70.95 14.85 11.02

1 0.5 3.5 0.26 19.92 13.26 7.50

1 0.75 3.5 0.49 33.54 14.67 9.42

1 1 3.5 0.79 53.67 14.75 11.00

1 1.25 3.5 1.24 84.93 14.55 12.34

1 1.5 3.5 1.68 126.10 13.31 12.60

1.25 0.5 3.5 0.34 24.99 13.61 8.03

1.25 0.75 3.5 0.67 47.57 14.09 10.37

1.25 1 3.5 1.18 82.97 14.28 12.17

1.25 1.25 3.5 1.79 136.45 13.11 12.91

1.25 1.5 3.5 2.40 196.82 12.22 13.68

1.5 0.5 3.5 0.42 30.84 13.52 8.46

1.5 0.75 3.5 0.86 62.97 13.67 10.92

1.5 1 3.5 1.56 114.94 13.55 12.71

1.5 1.25 3.5 2.43 188.54 12.89 13.98

1.5 1.5 3.5 3.48 269.46 12.93 14.49

0.5 0.5 3.75 0.22 12.56 17.13 6.57

0.5 0.75 3.75 0.31 16.17 19.37 7.75

0.5 1 3.75 0.44 20.82 21.13 8.51

0.5 1.25 3.75 0.59 27.03 21.93 8.92

0.5 1.5 3.75 0.78 35.54 21.95 8.93

0.75 0.5 3.75 0.30 16.28 18.64 7.80

0.75 0.75 3.75 0.50 24.08 20.87 9.76

0.75 1 3.75 0.78 36.42 21.30 10.60

0.75 1.25 3.75 1.11 51.74 21.51 11.59

0.75 1.5 3.75 1.54 71.87 21.44 11.70

1 0.5 3.75 0.41 20.38 19.91 8.54

1 0.75 3.75 0.73 34.65 21.10 10.82

1 1 3.75 1.22 57.97 21.00 12.55

1 1.25 3.75 1.84 88.26 20.89 13.91

1 1.5 3.75 2.61 130.34 20.05 14.34

1.25 0.5 3.75 0.52 26.50 19.63 9.19

1.25 0.75 3.75 1.02 48.57 21.04 12.00

1.25 1 3.75 1.77 85.60 20.68 13.62

1.25 1.25 3.75 2.63 136.31 19.32 14.65

1.25 1.5 3.75 3.88 199.85 19.40 16.06

1.5 0.5 3.75 0.64 32.20 19.83 9.38

1.5 0.75 3.75 1.31 66.24 19.73 12.05

1.5 1 3.75 2.27 114.87 19.80 14.28

Flagellar Motor Switch by Conformational Spread

PLoS Computational Biology | www.ploscompbiol.org 3 May 2012 | Volume 8 | Issue 5 | e1002523



Table 1. Cont.

EA
0 EA

1 EJ

Mean Locked State
time (s)

Mean Switch
Time (ms)

Locked state /
Switch time ratio Hill coefficient

1.5 1.25 3.75 3.70 193.35 19.16 15.69

1.5 1.5 3.75 5.26 279.81 18.78 16.05

0.5 0.5 4 0.33 12.73 26.26 7.16

0.5 0.75 4 0.49 16.72 29.56 8.48

0.5 1 4 0.70 21.56 32.50 9.28

0.5 1.25 4 0.95 28.07 33.76 9.65

0.5 1.5 4 1.21 35.53 34.12 9.81

0.75 0.5 4 0.46 16.75 27.71 8.60

0.75 0.75 4 0.78 25.13 30.93 10.38

0.75 1 4 1.23 37.11 33.09 11.47

0.75 1.25 4 1.76 53.77 32.79 12.87

0.75 1.5 4 2.38 77.16 30.82 13.11

1 0.5 4 0.63 21.44 29.40 9.36

1 0.75 4 1.16 35.94 32.38 11.94

1 1 4 1.91 59.82 31.88 13.35

1 1.25 4 2.93 92.14 31.76 14.84

1 1.5 4 4.14 132.32 31.28 15.67

1.25 0.5 4 0.79 27.10 29.11 10.08

1.25 0.75 4 1.64 51.49 31.91 12.87

1.25 1 4 2.64 88.80 29.77 14.70

1.25 1.25 4 4.24 140.88 30.10 16.14

1.25 1.5 4 6.15 205.06 29.98 16.44

1.5 0.5 4 1.00 33.51 29.80 10.22

1.5 0.75 4 2.18 67.85 32.11 13.43

1.5 1 4 3.64 119.57 30.41 15.36

1.5 1.25 4 5.60 194.46 28.81 16.82

1.5 1.5 4 8.26 295.79 27.92 18.89

0.5 0.5 4.25 0.55 12.97 42.29 7.47

0.5 0.75 4.25 0.79 17.08 46.10 8.92

0.5 1 4.25 1.09 21.74 50.10 9.65

0.5 1.25 4.25 1.51 28.51 53.01 10.19

0.5 1.5 4.25 1.93 37.39 51.68 10.49

0.75 0.5 4.25 0.74 16.79 44.27 8.91

0.75 0.75 4.25 1.25 25.80 48.34 11.03

0.75 1 4.25 1.92 39.11 49.00 12.32

0.75 1.25 4.25 2.78 55.11 50.48 12.99

0.75 1.5 4.25 3.76 76.61 49.08 14.14

1 0.5 4.25 1.02 22.03 46.22 9.62

1 0.75 4.25 1.81 37.06 48.73 12.23

1 1 4.25 3.09 63.37 48.83 14.45

1 1.25 4.25 4.89 96.96 50.47 15.50

1 1.5 4.25 6.69 140.42 47.62 16.00

1.25 0.5 4.25 1.30 27.52 47.20 10.55

1.25 0.75 4.25 2.54 52.73 48.11 13.31

1.25 1 4.25 4.35 95.35 45.64 15.27

1.25 1.25 4.25 6.87 152.84 44.98 17.62

1.25 1.5 4.25 9.71 216.86 44.79 18.81

1.5 0.5 4.25 1.58 34.53 45.73 10.94

1.5 0.75 4.25 3.32 68.00 48.78 14.00

1.5 1 4.25 5.98 125.94 47.48 16.22

Flagellar Motor Switch by Conformational Spread
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Although this model is able to qualitatively reproduce the

equilibrium behavior of the motor switch, further work is needed

to test its ability to reproduce the dynamics of the switching

behavior. Here we investigated in detail the behavior of the

conformational spread switching model and its ability to repro-

duce measurements of locked state intervals, the Hill coefficient

and other measures of motor dynamics. We then performed a

parameter space search to identify the parameters required to best

match experimental findings and make further predictions.

Methods

Our Monte Carlo model is based on the approach of Duke et al.

[15] and our previous work [16], which we briefly describe here.

In addition, we make it more general by extending the assumption

of symmetry in their original model to include asymmetric cases.

The centerpiece of the model is a multi-protein complex or

oligomer (to simulate the FliM ring), the individual protomers of

which are identical to one another and arranged in a closed ring of

size 34. The interface between adjoining ring units represents

domains at the boundary between proteins in a biological multi-

protein complex. Each protomer can at any time be in either an

active (here denoted A and shaded dark in Figure 1a) or inactive

(here denoted I and left unshaded in Figure 1a) state, leading to

CW and CCW rotation state, respectively. Each protomer can also

be bound (here denoted B) or not bound (here denoted N) to a

single CheY-P molecule. Then each protomer can make transitions

between four possible states, AB«AN«IN«IB«AB. The model

assumes that each protomer can flip reversibly between the two

mechanical conformations (CW and CCW) and ligand binding/

unbinding changes its chemical conformations, all of which together

contribute to a free energy diagram shown in Figure 1a. To

reproduce high sensitivity, the model further assumed a coupling

energy between the mechanical conformations of adjacent proto-

mers, which favors alike conformations between neighbors, but that

the rate constant for CheY-P binding to a protomer is affected only

by the conformation of the protomer itself.

In the original model of Duke et al. [15], it is assumed that the

free energy of the active state, relative to that of the inactive state,

changes from +EA to 2EA when a protomer binds ligand, for

simplicity (Figure 1a). In our model, to make it more general, we

introduce two separate energy differences between the active and

inactive states: EA
0 when a protomer is unliganded and EA

1 when it

is liganded (Figure 1b).

Under the assumption of energy symmetry, the free energy

change associated with CheY-P binding can be modeled as

Table 1. Cont.

EA
0 EA

1 EJ

Mean Locked State
time (s)

Mean Switch
Time (ms)

Locked state /
Switch time ratio Hill coefficient

1.5 1.25 4.25 9.05 199.17 45.46 18.36

1.5 1.5 4.25 13.10 293.22 44.68 18.96

0.5 0.5 4.5 0.87 13.55 64.10 7.75

0.5 0.75 4.5 1.26 17.34 72.56 9.24

0.5 1 4.5 1.78 23.17 76.80 10.06

0.5 1.25 4.5 2.42 29.00 83.59 10.57

0.5 1.5 4.5 3.19 38.71 82.51 11.52

0.75 0.5 4.5 1.22 17.45 69.70 9.38

0.75 0.75 4.5 2.12 26.46 80.13 11.45

0.75 1 4.5 3.20 38.81 82.45 12.63

0.75 1.25 4.5 4.73 56.85 83.24 13.63

0.75 1.5 4.5 6.56 79.96 82.08 14.17

1 0.5 4.5 1.67 22.14 75.36 10.39

1 0.75 4.5 3.04 37.58 80.94 13.03

1 1 4.5 4.95 62.47 79.28 14.86

1 1.25 4.5 7.46 99.65 74.84 16.36

1 1.5 4.5 10.14 138.80 73.05 17.31

1.25 0.5 4.5 2.12 27.77 76.34 10.88

1.25 0.75 4.5 4.19 54.35 77.05 14.04

1.25 1 4.5 7.47 101.29 73.75 16.34

1.25 1.25 4.5 11.61 149.58 77.62 17.20

1.25 1.5 4.5 14.87 215.64 68.97 19.58

1.5 0.5 4.5 2.61 34.56 75.58 11.24

1.5 0.75 4.5 5.48 70.02 78.22 14.52

1.5 1 4.5 9.68 131.07 73.82 17.09

1.5 1.25 4.5 15.37 208.46 73.72 19.58

1.5 1.5 4.5 22.49 322.65 69.71 20.63

doi:10.1371/journal.pcbi.1002523.t001
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DG(N?B)~EC+EA~{ ln ( c
c0:5

)+EA, where c0:5 is the CheY-

P concentration required for neutral bias. In the asymmetric case,

we use the same definition of EC , however, c~c0:5 does not lead

to neutral bias since E0
A=E1

A. In later calculations, we use a

numerical method to search for c0.5(asymmetric) as a function of

c0:5. Finally, the model includes a cooperative energy term (EJ,

here called cooperativity) so that the free energy of a protomer is

lowered by EJ for each neighbor that is in the same state

(Figure 1c). This interaction is crucial because it leads to the

stochastic creation of semi-stable ‘domains’: regions of the ring

whose constituents are either all in the active or all in the inactive

state. These domains can then either (a) shrink and disappear,

returning the ring to its previous coherent state or (b) grow to

encompass the entire ring, a state in which it will remain until

another stochastically growing domain of the opposite type will

lead to another ring switch.

Given all these energy combinations, a protomer can make

transitions between all possible states at rate constants describing

mechanical conformational changes by:

kI?A~va exp (
la

kBT
DG(I?A))

kA?I~va exp (
la{1

kBT
DG(I?A))

DG(I?A) is the sum of the free energy changes associated with

changes in activity and interaction. The fundamental flipping

frequency, va, was set as 104 s21, a typical rate of protein

conformational change and consistent with previous modeling of

the switch complex [15]. Lacking information about la, the

parameter that specifies the degree to which changes in the free

energy affect forwards as opposed to backward rate constants, an

intermediate value of la = 0.5 was selected.

The free energy associated with CheY-P binding depends only

on the conformation of the protomer bound, not on adjacent

protomers. So the rate constants describing chemical conforma-

tional changes are:

kN?B~
c

c0:5
vb exp (

lb

kBT
DG(N?B))

kB?N~vb exp (
lb{1

kBT
DG(N?B))

where c is the concentration of CheY-P, c0.5 is the concentration of

ligand at which protomers of the ring are 50% occupied on

average under the symmetry assumption. vb is the characteristic

binding rate and DG(NRB) is the free energy associated with

CheY-P binding. A value of vb = 10 s21 was selected based on the

experimentally determined CheY-P binding rate [17], and

consistent with previous modeling of the switch complex

[15][16], and lb = 0 such that the binding rate is independent of

protomer conformation. In the case of asymmetric EA, the CheY-P

concentration corresponding to neutral bias can only be solved

numerically.

We use custom written C++ code to generate a Monte-Carlo

simulation of the conformational spread model [16] (including

cases of both symmetric and asymmetric energy). At the beginning

of each simulation, each protomer on the ring is set to active and

with CheY-P bound. Later on, each protomer n of the ring is

assigned two transition times, An and Bn, at which it will undergo a

conformational change associated with (A) change between CCW

and CW state and (B) CheY-P molecule binds on or off. The

program progresses iteratively by locating the event in the [A1,

A2……A34, B1, B2……B34] array with the earliest execution time,

and after change its state accordingly (either mechanical state or

chemical state), new transition time An and Bn of that protomer is

updated by t2t0 = 2ln(rand)/k, where k is the rate constant for the

next transition, t0 is the simulation time when the calculation is

made and rand is a random number generated in the interval 0 to 1

[18]. If the transition was associated with a change in mechanical

conformation of that protomer, then transition times An+1 and

An21 for the two adjacent protomers are also recalculated (for a

closed ring of protomers, we defined An+1 for n = 34 to be A1 and

Figure 2. Snapshots of ring activities with different model
parameters. a) Ring activity with symbols showing mechanical and
chemical conformations of each protomer and multiple quasi-stable
domains. b) Typical ring state images for EA = 0 (top), EJ = 0 (middle) and
EA = 1kBT, EJ = 4kBT (bottom).
doi:10.1371/journal.pcbi.1002523.g002

Flagellar Motor Switch by Conformational Spread
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An21 for n = 1 to be A34). The activity of all protomers on the ring

is recorded at integer number MDt, where Dt = 0.1 ms as the

output sampling time interval and M goes up to 50,000,000. The

algorithm continues to update protomer activities on the ring until

the simulation time exceeds a specified maximum. Following Duke

et al. [15], we assume that switching in the bacterial motor is

controlled by the C-ring in the motor complex, which contains 34

copies of the protein FliM and therefore set n = 34 in our model

unless otherwise stated.

In our model we have in total 4 free parameters: EA
0, EA

1, EJ, c.

The CheY-P concentration c is expressed in the unit of c0.5 and

when we change it we see the ring operate at different bias and

therefore the response curve can be plotted. In the following

sections, when we make predictions about ring switching time,

switching interval etc., we searched the parameter space EA
0, EA

1

and EJ across the ranges 0.5 kBT#EA
0#1.5 kBT , 0.5

kBT#EA
1#1.5 kBT , and 3.5 kBT#EJ#4.5 kBT (shown in

Table 1), but for each parameter set, we only present results at

neutral bias for simplicity.

Results

Random patterns and domains on the ring
A typical screenshot of the ring with multiple domains, labeled

with a symbol legend, is shown in Figure 2a. We simulated the

qualitative behavior of the ring for a few carefully chosen special

cases under the symmetry assumption. Typical screenshots of the

ring representing different regimes in the parameter space are

shown in Figure 2b.

If the activation energy is zero (EA = 0, Figure 2b, top row),

growing domains can only form at random through cooperativity

between neighbors, but are unstable and unable to grow

sufficiently quickly to encompass the ring because any one of

their constituent protomers has a high probability of flipping.

When the cooperativity energy becomes high, a coherent ring

conformation starts to emerge as the coupling between neighbor-

ing protomers is sufficiently strong to lock the whole ring in one

conformation. However, as the activation energy is zero, the

switch complex loses its ability to respond to ligand concentration

Figure 3. Activity of the ring at high cooperativity and low activation energy. Top: number of active protomers, showing locked state
behaviour (0 and 34 protomers, respectively) and rapid switching. Middle: number of protomers with bound ligand; note that this corresponds
closely to the number of active protomers (top panel). Bottom: the number of individual domains (of the opposite state to the current locked state);
there are almost never more than two domains, even during switching events. Switching events are often, but not always, associated with two
domains fusing.
doi:10.1371/journal.pcbi.1002523.g003
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changes and switching between coherent inactive and coherent

active states can be very slow.

In the absence of cooperativity (EJ = 0, Figure 2b, middle row),

the ring displays random salt-and-pepper patterns reflecting the

underlying stochasticity of the ligand binding and unbinding

process. When the activation energy becomes high, absolute

coupling between chemical conformation and mechanical confor-

mation starts to emerge, and the protomers exist in inactive form

only when there is no ligand bound and change to active form once

ligand binds. In this case, a coherent active conformation of the ring

only exists when there are 34 ligands bound to the ring and for a

coherent inactive conformation of the ring we find 0 ligand bound.

When cooperativity and activation energy are both present at

appropriate magnitudes (EA = 1 kBT, EJ = 4 kBT as discussed in

reference [15], Figure 2b, bottom row), the ring spends most of its

time locked in either a coherent inactive or active conformation,

with transitions between the two (switches) accomplished rapidly

by means of a spreading domain. In order to achieve both ring

stability and coherent switching, cooperativity is needed to ensure

the presence and growth of domains, and activation energy is

needed to stabilize these domains by ligand binding. In this energy

regime of the model parameter space, the conformational spread

model best simulate the performance of the flagellar motor

switching responding to external signals.

Ring activity, locked states and switching.

We simulated the behavior of the 34-protomer ring with the

method introduced earlier and EA
0 = EA

1 = 1 kBT, EJ = 4 kBT. A

typical result is shown in Figure 3. The top panel is a time series of

the number of active ring protomers (34 active protomers

correspond to the CW state and 0 to CCW in our convention).

The middle panel shows the number of protomers with bound

ligand. This graph matches that of the locked states (i.e. the two fit

on top of each other if superimposed) along both axes: ligand

binding makes the active state more favorable and the active state

binds ligand more strongly and the two effects cooperate to

produce locked state and switching behavior.

The bottom panel shows the number of independent domains

(see Figure 2a for an illustration of typical domain formation present

on the ring at any time). Domains appear within a locked CCW or

CW state because of stochastic flipping events in protomers and

their growth is driven by ligand binding and unbinding and

protomer-protomer cooperativity. The domains are transient

features of the ring’s behavior. They can either (a) disappear or

(b) grow (alone or by fusing with nearby domains) to encompass the

whole ring, with these latter events corresponding to switches and

occurring very rarely: ,1% of domains lead to a switch. We find

that at the parameter values identified by Duke et al. [15], the

number of independent domains almost never exceed 6 (and that

such a ring state only exists ,0.0279% of the time). The vast

majority of the time, the ring either contains one domain (coherent

state, 83.77% of the time) or contains two domains (15.34% of the

time). Four domains are present 0.8685% of the time.

The model reproduces the sensitivity of the rotary motor
In addition to being able to reproduce the locked coherent state

on the ring and fast switching behavior, a separate key test of the

Figure 4. Distributions of times spent in the locked CCW and CW states. (a) Distributions of the locked state interval at a bias of 0.5
(EA

0 = EA
1 = 1 kBT, EJ = 4kBT). Exponential fitting to the histogram is shown overlaid by the black line. (b) Distributions of the locked state intervals at

different bias values (0.2, 0.5, 0.8). Lines are exponential fit on a log-linear axes, while the fitting of CW, CCW times are shown in blue and grey,
respectively.
doi:10.1371/journal.pcbi.1002523.g004
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conformational spread model is its ability to reproduce the

relationship between changes in CheY-P concentration and motor

bias. The Hill coefficient (the maximum sensitivity of the switch) is

defined in this case using the relation:

Y~1{
1

1z c=c0:5ð Þh

where Y is the CW bias, h is the Hill coefficient, c is the

concentration of the CheY-P and c0.5 is the concentration required

for neutral bias (in the case of asymmetric model, replace c0.5 to

c0.5(asymmetric)). Here we estimated the Hill coefficient by fitting a

linear equation to a plot of log[Y/(12Y)] against log(c/c0.5), with

the slope of this line corresponding to h. For each parameter set, its

characteristic Hill curve can be generated by long time simulation

with varying c, and plot CW bias of the simulated trace as a

function of c.

The sensitivity of ring activity to changes in ligand concentra-

tion depends more strongly on the activation energy and

considerably less on the cooperativity. A lower sensitivity can be

brought about by a lower activation energy or by a lower

cooperativity, with the activation energy having the dominating

influence. However, with a 34 protomer ring, the cooperativity

can be no less than the critical cooperativity required for coherent

switching to occur, i.e. EJ.3.5 kBT [15]. In table 1, we present the

Hill coefficient calculated for parameters EA
0, EA

1 and EJ across

Figure 5. Histograms of switch times for low (0.2), middle (0.5) and high (0.8) CW bias. The histograms follow gamma distributions with
means of ,58–61 ms and standard deviations of ,54–58 ms.
doi:10.1371/journal.pcbi.1002523.g005
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the ranges 0.5 kBT#EA
0#1.5 kBT , 0.5 kBT#EA

1#1.5 kBT , and

3.5 kBT#EJ#4.5 kBT. We see that the experimentally determined

Hill coefficient ,10 can be reproduced by a large parameter sets.

Distributions of locked state intervals
The behavioral features of the ring can be further characterized

by the distributions of (a) the times spent in the two locked states

and (b) the times required for both CCWRCW and CWRCCW

switches. Here we used simulated ring state data to obtain the

theoretical length of the locked state intervals predicted by the

model. Because we have direct access to the fundamental

protomer states, filtering and threshold algorithms are not needed

to identify the intervals (and switches, respectively). Because

transitions between the two locked states are not instantaneous, we

needed an unambiguous way to define CCW and CW intervals,

respectively. We defined such an interval as the time (in simulation

steps) between when the ring enters a fully locked state (0 or 34

active protomers, respectively) and when it next enters the other

fully locked state (i.e. 34 or 0 active protomers, respectively).

Distributions of locked state intervals obtained from simulation

traces (EA
0 = EA

1 = 1 kBT and EJ = 4 kBT at neutral bias) equivalent

to 30000 seconds of real time are shown in Figure 4 (a). To make a

comparison, the log-linear plot of the distributions at low (0.2) and

high (0.8) CW biases are also shown in Figure 4(b). Least-squares

fitting of exponential curves to the simulation data are shown

overlaid. We see that the locked state distribution follows an

exponential distribution. In table 1, we presented the mean locked

state interval values calculated for parameter EA
0, EA

1 and EJ

across the ranges 0.5 kBT#EA
0#1.5 kBT , 0.5 kBT#EA

1#1.5 kBT ,

and 3.5 kBT#EJ#4.5 kBT. Within the parameter range of our

simulation, the minimum value of mean locked state time is 0.13 s

and the maximum value is 22.17 s (shown in Table 1). The mean

locked state time increases when the energy of activation or

cooperativity is increased, with the activation energy EA having the

dominant influence.

Distributions of switch times
The essential feature of interest of the model proposed by Duke

et al. [15] is that the ring can simultaneously achieve very rapid

switches and very stable locked states. This qualitatively matches

what is observed in the rotary motors of flagellar bacteria such as

E. coli, which can rotate at hundreds of RPM stably for a long

period but switch direction quickly (on the order of ms) and

stochastically. Distinct from the classic MWC model, which

requires coherent switches to happen instantaneously, in our

model switches occur by a mechanism of conformational spread.

We defined a switch time as the time (in simulation steps) between

when the ring leaves a fully locked state (0 or 34 active protomers,

respectively) and when it next enters the other fully locked state

(i.e. 34 or 0 active protomers, respectively).

We simulated the behavior of the ring at the optimal activation

energy and cooperativity values identified earlier (EA
0 = EA

1 = 1

kBT, EJ = 4 kBT) for different values of bias. The empirical

distributions thus determined are shown in Figure 5.

Figure 6. Power spectra showing a Lorentzian profile at different values of bias, consistent with one single nucleation growing to
encompass the ring during a switch.
doi:10.1371/journal.pcbi.1002523.g006
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Table 2. Model predictions about motor switching time, locked state time, and Hill coefficient with parameters EA
0, EA

1 and EJ

ranging across 0.55 kBT#EA
0#0.95 kBT , 0.55 kBT#EA

1#0.95 kBT , and 4.05 kBT#EJ#4.25 kBT.

EA
0 EA

1 EJ

Mean Locked State
time (s)

Mean Switch
Time (ms)

Locked state / Switch
time ratio Hill coefficient

0.55 0.55 4.05 0.44 14.44 30.39 8.00

0.55 0.65 4.05 0.50 16.01 31.09 8.52

0.55 0.75 4.05 0.59 18.13 32.79 9.03

0.55 0.85 4.05 0.68 20.21 33.59 9.31

0.55 0.95 4.05 0.80 22.55 35.41 10.01

0.65 0.55 4.05 0.50 16.08 31.07 8.57

0.65 0.65 4.05 0.59 18.51 32.07 9.22

0.65 0.75 4.05 0.75 21.22 35.14 9.89

0.65 0.85 4.05 0.86 24.51 35.24 10.26

0.65 0.95 4.05 1.01 28.34 35.62 10.85

0.75 0.55 4.05 0.59 18.14 32.29 9.10

0.75 0.65 4.05 0.72 21.48 33.46 10.02

0.75 0.75 4.05 0.86 25.19 34.32 10.66

0.75 0.85 4.05 1.03 28.95 35.58 11.29

0.75 0.95 4.05 1.23 35.87 34.33 11.67

0.85 0.55 4.05 0.65 20.10 32.29 9.50

0.85 0.65 4.05 0.83 24.51 33.95 10.53

0.85 0.75 4.05 0.97 30.01 32.41 11.27

0.85 0.85 4.05 1.26 35.64 35.28 11.91

0.85 0.95 4.05 1.48 41.85 35.36 12.46

0.95 0.55 4.05 0.73 23.04 31.55 9.95

0.95 0.65 4.05 0.94 27.62 34.18 10.78

0.95 0.75 4.05 1.17 35.06 33.27 11.80

0.95 0.85 4.05 1.45 41.29 35.03 12.66

0.95 0.95 4.05 1.76 50.99 34.58 13.06

0.55 0.55 4.15 0.52 14.40 35.75 8.09

0.55 0.65 4.15 0.62 16.04 38.33 8.72

0.55 0.75 4.15 0.74 18.32 40.16 9.27

0.55 0.85 4.15 0.82 20.13 40.79 9.71

0.55 0.95 4.15 0.96 23.15 41.65 10.13

0.65 0.55 4.15 0.61 16.40 37.13 8.74

0.65 0.65 4.15 0.74 18.17 40.98 9.52

0.65 0.75 4.15 0.87 21.69 40.10 10.10

0.65 0.85 4.15 1.04 24.62 42.19 10.73

0.65 0.95 4.15 1.22 29.79 41.00 11.19

0.75 0.55 4.15 0.71 17.99 39.24 9.29

0.75 0.65 4.15 0.88 21.60 40.66 10.12

0.75 0.75 4.15 1.04 24.98 41.49 10.78

0.75 0.85 4.15 1.23 30.93 39.88 11.38

0.75 0.95 4.15 1.55 35.27 44.07 11.87

0.85 0.55 4.15 0.78 20.17 38.49 9.77

0.85 0.65 4.15 0.98 24.02 40.84 10.84

0.85 0.75 4.15 1.25 29.29 42.79 11.50

0.85 0.85 4.15 1.47 35.25 41.64 12.17

0.85 0.95 4.15 1.83 41.38 44.23 12.67

0.95 0.55 4.15 0.89 23.49 38.04 10.10

0.95 0.65 4.15 1.16 27.48 42.25 11.07

0.95 0.75 4.15 1.43 34.19 41.80 12.09
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In contrast to the distributions of locked state intervals, the switch

times follow a peaked gamma distribution. At the parameter value

chosen, the mean lies between 58–61 ms for low (0.2), middle (0.5)

and high (0.8) biases and these are statistically independent of bias

and of direction of switch. In table 1, we presented the mean switch

time values calculated for parameter EA
0, EA

1 and EJ across the

ranges 0.5 kBT#EA
0#1.5 kBT , 0.5 kBT#EA

1#1.5 kBT , and 3.5

kBT#EJ#4.5 kBT. The result of our simulation shows that the mean

switch time values changes across the ranges from 12.03 ms to

322.65 ms. The mean switch time increases when activation or

cooperativity energy is increased, with the activation energy having

the dominant influence.

Power spectra
To confirm that typically one domain of opposite conformation

(rather than several) grows to encompass the entire ring, we also

computed power spectra for the ring activity traces in order to

characterize the spectral properties of the ring switch complex. If

switching events are associated with a single nucleation event (a

Possion step), we expect the power spectra of the trace to be

monotonically decreasing with a ‘knee’, i.e. display a Lorenzian

profile. In contrast, if switching events are associated with multiple

hidden steps, as for example in a closed biochemical system with

hidden reactions, then we expect a non-Lorentzian profile with a

peak (a local maximum) at a characteristic frequency related to the

number of steps involved [19].

Our simulation results (Figure 6) show the spectra thus obtained

are Lorentzian without a local maximum at long times. This

behavior is observed at different values of bias. These results offer

an internal confirmation of the model results shown in Figure 4,

which indicate that the distributions of times spent in the locked

states are exponential. Such a system would be expected to display

power spectra with Lorentzian profiles. However, because the

power spectra and locked state time distributions are computed

independently and by different methods, the result that they

predict the same behavior is an important internal test of the

model. In particular, the power spectra results confirm that the

locked state time distributions are not an artifact of our algorithm

for detecting the start and end of a locked state.

Parameterize the model using experimental
measurements

In our recent experimental paper [16], we used a high-

resolution optical system to measure the switching time and locked

state interval of bacterial flagellar motors. The experimental

observations confirmed that the switching time distribution follows

a broad gamma distribution with mean switch time 18.72 ms and

the locked state interval follows an exponential distribution with

Table 2. Cont.

EA
0 EA

1 EJ

Mean Locked State
time (s)

Mean Switch
Time (ms)

Locked state / Switch
time ratio Hill coefficient

0.95 0.85 4.15 1.74 41.90 41.49 12.53

0.95 0.95 4.15 2.15 50.81 42.36 13.40

0.55 0.55 4.25 0.63 14.79 42.25 8.28

0.55 0.65 4.25 0.75 16.37 45.57 8.93

0.55 0.75 4.25 0.86 18.37 46.56 9.43

0.55 0.85 4.25 1.02 20.76 49.08 9.76

0.55 0.95 4.25 1.16 23.06 50.46 10.47

0.65 0.55 4.25 0.72 16.52 43.86 8.94

0.65 0.65 4.25 0.90 19.03 47.39 9.71

0.65 0.75 4.25 1.06 21.30 49.57 10.26

0.65 0.85 4.25 1.27 24.96 50.78 10.87

0.65 0.95 4.25 1.48 28.30 52.22 11.19

0.75 0.55 4.25 0.84 18.59 45.30 9.55

0.75 0.65 4.25 1.06 21.27 50.00 10.27

0.75 0.75 4.25 1.23 25.58 48.27 10.92

0.75 0.85 4.25 1.50 29.50 50.90 11.74

0.75 0.95 4.25 1.87 34.77 53.82 12.06

0.85 0.55 4.25 0.96 20.14 47.67 10.00

0.85 0.65 4.25 1.19 25.40 46.68 10.94

0.85 0.75 4.25 1.53 30.98 49.41 11.69

0.85 0.85 4.25 1.82 37.75 48.29 12.53

0.85 0.95 4.25 2.17 42.18 51.37 12.82

0.95 0.55 4.25 1.05 23.33 44.93 10.39

0.95 0.65 4.25 1.36 28.24 48.20 11.20

0.95 0.75 4.25 1.71 35.49 48.07 12.39

0.95 0.85 4.25 2.18 42.71 51.09 13.01

0.95 0.95 4.25 2.54 48.36 52.52 13.92

doi:10.1371/journal.pcbi.1002523.t002
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mean interval value 0.75 s at neutral bias. Hence we use mean

switch time (,18 ms), mean locked state time (,0.75 s) and Hill

coefficient (,10) to parameterize our model.

Table 1 shows a coarse parameter search of our model with

predictions of the switching time, locked state interval, and Hill

coefficient. We identify the 0.55 kBT#EA
0#0.95 kBT , 0.55

kBT#EA
1#0.95 kBT , and 4.05 kBT#EJ#4.25 kBT region for a

fine parameter search (Table 2). We see with only a few parameter

sets, the conformational spread model is able to reproduce the

three experimentally determined quantities. With the results

shown in Table 2, we find 3 groups of values that fit the

experimental values determined by Bai et al. [16]. They are

EA
0 = 0.55kBT EA

1 = 0.75kBT EJ = 4.15 kBT, EA
0 = 0.75kBT

EA
1 = 0.55kBT EJ = 4.15 kBT, EA

0 = EA
1 = 0.65kBT EJ = 4.15 kBT.

We therefore expect a conformational spread model with

activation energy ,0.65 kBT and coupling energy ,4.15 kBT

can well reproduce experimental observations. Please see Figure 7

for a visual summary of our computational results. For simplicity,

we only showed those values with EA
0 = EA

1 = EA and the best-fit

parameter set has been labeled by a square.

Figure 7. Two dimensional contour plot showing A) Hill coefficient B) Mean locked state time C) Mean switch time as a function of
activation energy EA and coupling energy EJ of the conformational spread model. Left column: simulation result with 0.5 kBT#EA#1.5 kBT
and 3.5 kBT#EJ#4.5 kBT. The rectangular region has been selected for a fine parameter search. Right column: simulation result with 0.55 kBT#EA#0.95
kBT and 4.05 kBT#EJ#4.25 kBT. The best-fit parameter set has been labeled by a square.
doi:10.1371/journal.pcbi.1002523.g007
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The fundamental flipping frequency is a scaling factor of
the system

Although we have identified a best-fit parameter set that can

well reproduce experimental findings, we have to note that these

fit values are sensitive to the parameters fixed earlier, especially to

the fundamental flipping frequency va. Here we investigate how

mean locked state time and mean switch time respond to changes

of va while other parameters remain fixed. We see in Figure 8 that

the fundamental flipping frequency is a scaling factor of the

system. Both mean locked state time and mean switch time are

inversely scaled by the flipping frequency. When flipping

frequency is higher, each protomer on the ring makes more

attempts to flip to the opposite conformation and therefore the

locked state becomes less stable (hence mean locked state time

decreases) and transition becomes much faster (hence mean switch

time decreases); when flipping frequency is lower, each protomer

on the ring makes fewer attempts to flip to the opposite

conformation and therefore locked state becomes more stable

(hence mean locked state time increases) and transition becomes

much shorter (hence mean switch time increases).

Ring behavior at different sizes
In the above sections, we have determined the best-fit model

parameters using experimental results. It will be interesting to test

the ring behavior at different sizes using those values. When Duke

et al. [15] first proposed the conformational spread model, they

identified that EJ.kBT ln N (N is the size of the ring) is the

condition under which a large ring has the characteristic of a

coherent switch. In the case of 34 protomers, this condition

requires that EJ.3.5kBT. When this condition is met, in time series

of ring activity, we see for the majority of time that, the ring stays

in complete active (active protomer = 34) or complete inactive

(active protomer = 0) state. This invokes an empirical mathemat-

ical definition of ‘coherent switch’: the active number of protomers

on the ring has to be in 0 or N for greater than 65% of the total

simulation time.

We then simulated the ring activity at sizes of 10, 60, 100

protomers with activation energy 0.65 kBT and coupling energy

4.15 kBT at neutral bias and the result is shown in Figure 9. From

the requirement of EJ.kBT ln N we expect to see coherent switch

behavior for ring sizes at 10, 34, and 60, but not at 100.

Indeed, in Figure 9, we see with the same parameter set, the

smaller the ring is, the easier a switch happens. At ring size of 10,

34, 60 protomers, we see clear locked states in the trace and the

switching events are fast. However, at the ring size of 100, a switch

across the ring becomes very difficult and the time spent during a

switch is comparable to the time the ring stays in a locked state. In

Table 3, we made predictions about the mean locked state

intervals, mean switch times and Hill coefficient of the switch

response with activation energy 0.65 kBT and coupling energy 4.15

kBT at different ring sizes.

Discussion

In this study, we undertook a comprehensive numerical

simulation analysis of a general model of stochastic allostery in a

protein ring and evaluated the ability of such a model to explain the

switching, sensitivity and locked state behavior of the rotary

bacterial motor. We modeled the gearbox of the motor as a ring

of 34 identical protomers, a geometry inspired by the FliM structure

in the motor complex, believed to be responsible for motor

switching. The model is able to qualitatively reproduce the motor

behavior, such as locked rotation in CCW or CW state and fast

switching between the two. Furthermore, based on a comprehensive

parameter space search, the model can also quantitatively account

for the experimentally determined switch time, locked state interval

and Hill coefficient of the motor. Specifically, we found a unique set

of values that fit the experimental value best, activation energy must

be around 0.65kBT and the cooperativity around 4.15kBT. The

bounds around these values are tight. Smaller or larger energies

result in rings that either (a) spend too long or too little time in the

locked states, (b) do not have the required sensitivity or (c) far away

from this parameter regime, fail to switch coherently.

With the ring operating in this parameter set, time traces of ring

state (measured as the number of active protomers) indicate that

the ring spends most of its time in one of the two locked states, with

rare (every 0.5–2 seconds) switches between the two being

accomplished very rapidly (on the order of milliseconds). The

trace of ligand activity (measured as the number of ring protomers

having bound ligand molecules) mirrors the ring state, with the

two driving each other: binding of more ligand drives active

domain formation, which in turn leads to a preference for having

ligand bound and conversely. Rather than being completely

Figure 8. Dependence of A) mean locked state time and B) mean switch time on the fundamental flipping frequency va . The
fundamental flipping frequency is a scaling factor of the system.
doi:10.1371/journal.pcbi.1002523.g008
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Figure 9. Ring behaviors at size of 10, 34, 60 and 100 protomers. The simulation time is set to 30 seconds, the number of active protomers
shows locked state behavior and rapid switching.
doi:10.1371/journal.pcbi.1002523.g009

Table 3. Model predictions about motor switching time, locked state time, and Hill coefficient with activation energy 0.65 kBT and
coupling energy 4.15 kBT at different ring sizes.

Size (protomers) Mean Locked State time (s) Mean Switch Time (ms)
Locked state / Switch time
ratio Hill coefficient

10 0.22 0.72 312.88 3.05

34 0.74 18.17 40.98 9.52

60 1.33 104.56 12.70 13.60

100 2.06 371.23 5.54 16.01

doi:10.1371/journal.pcbi.1002523.t003
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locked in one stable state with all protomers being either active or

inactive, the ring displays constant activity in the form of nascent

domains of the opposite state to the locked state, seen as ‘noise’.

For the vast majority of the time, only one such domain exists, and

the presence of two (but no more) growing domains is frequently,

but not always, associated with a switching event.

The model predicts that the time spent by the ring in the locked

states corresponding to CW (all protomers active) and CCW (all

protomers inactive) is exponentially distributed. The model can

also predict the Hill coefficient (,10) measured for the sigmoidal

curve that relates CheY-P concentration to motor bias. Near the

optimal parameter point identified, the distributions of the

switching times are gamma-like with a peak around 5–8 ms.

To be effective, a switch must achieve two globally conflicting

properties. It must accomplish sensitivity by amplifying small

changes in the effector, but only over a narrow critical range (the

switching point). Outside this range, it must accomplish reliability

by being unresponsive to changes in the effector. The allosteric

switching model explains how the motor simultaneously meets

these competing design requirements. Near the critical CheY-P

concentration, a highly cooperative mechanism (EJ&1kBT) is used

to amplify small stochastically occurring nascent domains that can

rapidly grow to encompass the entire switching complex. The

resulting digital switch displays the desired selective ultrasensitivity

but switches chaotically. In order to ensure switch reliability,

CheY-P binding must moderately stabilize the protomer active

state, providing a mechanism for biasing the whole switch complex

by continuously varying the CheY concentration over a large

range: a strategy typical of analog control. The values and ratio of

the strengths of the two mechanisms must be tightly controlled in

order for the switch complex to be functional. We hypothesize that

this control is accomplished through the biochemical structure of

the protomers and ring, which are genetically determined and so

robust to intracellular noise during the cell’s life. In light of recent

studies of digital cellular signaling [20], we wish to further suggest

that the combination of analog and digital control here proposed

to explain the behavior of the bacterial switch complex may be a

motif typical of biological switch design.

In this study we have focused on a ring consisting of 34

protomers because it is believed that the C-ring in the E. coli

flagellar motor, which consists of 34 copies of the protein FliM,

acts as the motor direction switch. However, numerous examples

of protein rings and other interconnected protein complex

geometries are known, including DNA polymerase sliding clamps,

voltage-gated ion channels, ATP synthase etc. Each of these rings

may hypothetically accomplish its function using a conformational

spread mechanism, but would consist of different numbers of

protomers. In our model this can be simulated by changing N, the

number of elements in the ring. In this paper, we have narrowed

our study to a closed protein ring. However, we have to point out

that the conformational spread model as well as the numerical

method we presented here can be easily modified to describe one

dimensional allostery regulation in a protein chain or a strand of

DNA molecules. The model can also be modified to describe

signal transduction and amplification on a two dimensional plane,

which will be of great use in studying functions of cellular

receptors.

Allostery is a widespread mechanism in biology and conforma-

tional change is the basis for a large subset of all protein function.

Since protein complexes are the workhorses of the cell, we expect

models similar to this and the idea of conformational spread in

general to be increasingly important in systems biology and

biophysics. Investigating the applicability of conformational spread

models to other biological systems will be the subject of future work.

Bacterial chemotactic exploration depends on the ability of the

flagellar motors at the base of the flagella to perform two tasks: (1)

remain stable in their current direction of rotation for long periods

(seconds) as required and (2) switch quickly between the two

directions in response to the environmental changes detected by

the chemotaxis pathway. These properties make the bacterial

switch an exquisite computational element that combines ultra-

sensitivity and reliability. In this paper we presented an analysis of

a model featuring conformational spread that aims to explain the

mechanism of the motor switch. Simulations confirm that this

model is able to reproduce the characteristics of the motor

observed in experiments. We speculated that stochastic models of

conformational spread will be a common theme in protein

allostery and signal transduction.
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