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Abstract

Many human diseases, arising from mutations of disease susceptibility genes (genetic diseases), are also associated with
viral infections (virally implicated diseases), either in a directly causal manner or by indirect associations. Here we examine
whether viral perturbations of host interactome may underlie such virally implicated disease relationships. Using as models
two different human viruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), we find that host targets of viral
proteins reside in network proximity to products of disease susceptibility genes. Expression changes in virally implicated
disease tissues and comorbidity patterns cluster significantly in the network vicinity of viral targets. The topological
proximity found between cellular targets of viral proteins and disease genes was exploited to uncover a novel pathway
linking HPV to Fanconi anemia.
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Introduction

Functional interactions between cellular targets of viral proteins

and disease susceptibility genes [1,2,3,4,5] might play key roles in

disease etiology. Advances in the mapping of the human

interactome network, as well as in the systematic identification

of gene-disease associations, provide functional data that can be

used to explore fundamental connections between viral targets and

disease genes. Here we formulate a local impact hypothesis, stating

that diseases that can be either genetic or virally implicated can be

better understood from a network perspective [6]. By this

hypothesis the products of disease susceptibility genes should

reside in the network vicinity of the corresponding viral targets

[7,8].

To test this hypothesis we focused on Epstein-Barr virus (EBV)

and human papillomavirus (HPV) type 16, two human viruses that

differ in their host tropism, genome and proteome size, and disease

etiology. We find that the disease susceptibility genes of known

virally implicated diseases are in the immediate network vicinity of

the host proteins that are targeted by these viruses. We could

identify a viral disease module for EBV and HPV, representing a

subnetwork of the interactome that contains key mechanistic

pathways responsible for the observed virus-disease associations. A

computational prioritization procedure, joined by large-scale

comorbidity and expression pattern analyses, identified new

potential mechanistic disease pathways. To validate several of

these pathways, HPV16 E6 and E7 oncogenes were independently

expressed in primary human fibroblast (IMR90) and keratinocyte

(HFK) cell populations to identify disease-associated genes whose

expression levels were significantly altered in these E6/E7-

expressing cell populations. We could identify a novel pathway

that links HPV to a specific form of Fanconi Anemia. The

systematic network-based framework we applied works to decipher

the interplay between viruses and disease phenotypes.

Results

Virally implicated diseases and interactome construction
We define as ‘‘virally implicated diseases’’ those diseases whose

association with a particular virus is supported by peer-reviewed

publications in the literature. This list includes not only diseases for

which there is universally accepted consensus that a virus is causal

(such as cervical cancer for HPV16 and Burkitt’s lymphoma for

EBV), but also diseases which have some reproducible evidence of

viral association but for which the mechanistic pathways are not

worked out. There is significant and legitimate controversy and

subjectivity regarding which diseases are virus-associated or virally

implicated, so to avoid infusing personal bias in the selection

process, we turned to several recently published authoritative

review articles [1,2,9,10] as well as additional literature searches.

From these sources we compiled a list of 17 and 14 diseases for

which a disease etiology with EBV and HPV16 has been claimed.

Most of the selected virally implicated diseases (13 for EBV and

9 for HPV16) are genetic diseases in that they have been

associated with mutations in at least one human gene (Table 1), as

compiled in the Online Mendelian Inheritance in Man (OMIM)

Morbid Map repository [11], although there are notable

exceptions. Infectious mononucleosis, a disease clearly linked to

EBV infection, lacks any known susceptibility genes (Table 1a).

Similarly, cervical carcinoma, known to be caused by HPV

infections, does not have a known genetic association (Text S1).

Whenever a given disease is universally associated with viral

infection and not driven by genetic changes, our approach will not

yield a link between these diseases and the corresponding virus.

To explore the role of macromolecular networks in virus-disease

associations we collected four categories of biological connections:

1) lists of previously published experimental virus-human protein-

protein [12,13,14] and protein-DNA interactions [2,15,16]; 2) a

newly generated dataset of EBV-human and HPV16-human

protein-protein interactions (Tables S8, S9 in Text S1), with sets

(1) and (2) together defining our set of ‘‘viral targets’’; 3) previously

published experimental human protein-protein interactions

[17,18,19,20,21], experimental and predicted human protein-

DNA interactions [22,23], and predicted human metabolic

coupling interactions [24], all of which together define our ‘‘host

interactome’’; and 4) human gene/disease associations [11] which

define a set of human genes associated with human diseases (Text

S1).

Local impact hypothesis
To test our hypothesis that genes associated with virally

implicated diseases are located in the network vicinity of viral

targets (Figure 1A), we measured the shortest paths, defined as the

minimum number of ‘‘hops’’ along the links of the host

interactome from viral targets to genes associated with a given

virally implicated disease (Figure 1B). For either EBV or HPV the

average shortest path (averaged over the number of virally

implicated diseases) is significantly shorter than when virally

implicated diseases were replaced with randomly sampled human

diseases in OMIM (Figures S2, S3 in Text S1; P = 2.361026 for

EBV and P = 761027 for HPV16, based on empirical calculation).

That this shortest path was less than one for both EBV (0.667) and

HPV (0.5) indicates that viral proteins preferentially target a

disease associated protein directly (hop 0) or a protein that directly

interacts with a disease associated protein (hop 1). To mitigate

potential investigational biases that accompany literature-curated

datasets [25], we also examined the average shortest path upon

removal of small-scale protein-protein and protein-DNA interac-

tions from the host interactome, leaving only interactions derived

Author Summary

Many ‘‘virally implicated human diseases’’ - diseases for
which there is scientific consensus of viral involvement -
are associated with genetic alterations in particular disease
susceptibility genes. We proposed and demonstrated that
for two human viruses, Epstein-Barr virus and human
papillomavirus, topological proximity should exist be-
tween host targets of viruses and genes associated with
virally implicated diseases on host interactome networks
(local impact hypothesis). For representative EBV- and
HPV16- implicated diseases, genes in the neighborhood of
viral targets in the host interactome have significantly
shifted expression levels in virally implicated disease
tissues, in line with the local impact hypothesis. The viral
neighborhoods in the host interactome, along with their
disease associations, defined as ‘‘viral disease networks’’,
contain connections known to be informative upon
disease mechanisms as well as diseases whose associations
with viruses are not yet known. We prioritized these
diseases for their candidacy as potential virally implicated
diseases based on network topology, and benchmarked
this prioritization of candidate diseases using relative risk
measurement which depicts population-based clinical
associations between candidate diseases and viral infec-
tion. Exogenous expression of HPV viral proteins in a
human cell line offered evidence for a novel disease
pathway that links HPV to Fanconi anemia.

Viral-Host Networks Reflect Disease Etiology
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from high-throughput investigations. The average shortest path

remained significantly shorter than random (average shortest

path = 1.0; P = 4.961025 for EBV and average shortest path = 1.0;

P = 361024 for HPV16, based on empirical calculation;

Figure 1C,D). The shortness of the path lengths between viral

targets and genes associated with virally implicated diseases is

mostly due to the tendency of the viral targets being hubs, and to a

lesser degree to the properties of disease genes (Text S1).

The relative shortness of the paths from viral targets to disease

genes validates the hypothesis that genes in the ‘‘neighborhood’’ of

viral targets are more likely associated with virally implicated

diseases, compared to genes in distant regions of the host

interactome. But still, given the small world nature of the

interactome, large numbers of proteins are within a few hops of

the viral targets, potentially implicating hundreds of diseases for

which there is no known relationship to HPV or EBV.

Accordingly, a procedure is needed to identify the set of host

cellular components (genes, proteins, and metabolites) that are

most likely impacted by the virus, representing the network

neighborhood of viral targets. Do the three kinds of interactions

used to build the interactome — protein-protein, metabolic and

regulatory interactions — play a comparable role in linking viral

Table 1. Virally implicated diseases.

Table 1A

EBV-implicated diseases Mapped genes ICD-9 code(s)

1. B cell lymphomas incl. Burkitt’s lymphoma BCL3, BCL2, CCND1, MYC 200

2. Breast cancer SLC22A18, TP53, TSG101 174, 217, 239.3

3.Hemophagocytic lymphohistiocytosis FHL3 288.4

4. Hepatocellular carcinoma APC, TP53 155, 211.5

5. Lung cancer EGFR, SLC22A18 162, 231

6. Nasopharyngeal carcinoma TP53 147

7. Severe combined immunodeficiencyi ADA 279.2

8. Stomach carcinoma APC, IL1B, KIT 151

9. T cell lymphomas MSH2 202

10. Classical Hodgkin lymphoma - 201

11. Salivary carcinoma - 142

12. Wiskott-Aldrich syndromei - 279.12

13. X-linked lymphoproliferative disorderi - 238.79

14. Infectious mononucleosis * 075

15. Lymphocytic interstitial pneumonia * 516.8

16. Oral hairy leukoplakia * 528.6

17. Thymus carcinoma * 164

Table 1B

HPV-implicated diseases Mapped genes ICD-9 code(s)

1. Bladder cancer RB1 188

2. Breast cancer BRCA1, CASP8, RAD54L, TP53 174, 217, 239.3

3. Colon cancer APC, BAX, EP300, MSH2, ODC1, RAD54B, RAD54L, TP53 153

4. Head and neck squamous carcinoma TNFRSF10B 173

5. Ovarian cancer BRCA1, ERBB2, FN1, MSH2 183, 220

6. Prostate cancer CD82 185, 233.4

7. Squamous cell carcinoma of the lung CASP8, ERBB2, EGFR, IRF1 162, 231

8. Carcinoma of cervix uteri - 180, 233.1

9. Laryngeal carcinoma - 161

10. Bowen disease * 230–234

11. Conjunctival carcinoma * 190.3

12. Intraepithelial neoplasia * 233

13. Oral carcinoma * 140, 141

14. Oral leukoplakia * 528.6

A, EBV-implicated diseases. B, HPV16-implicated diseases. Mapped gene column lists the genes found in the neighborhood of viral targets. An asterisk (*) in the
‘‘mapped gene’’ column corresponds to diseases where no known genes are reportedly associated with the disease in OMIM database, and (-) corresponds to diseases
where there are genes reportedly associated with the disease in OMIM database but are not identified with our approach. Diseases marked with (i) correspond to EBV-
implicated diseases within the framework of B cell lymphoma.
doi:10.1371/journal.pcbi.1002531.t001

Viral-Host Networks Reflect Disease Etiology
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targets to virally-implicated diseases, and how deep into the

interactome should one go, keeping in mind that most proteins are

approximately three links from the viral proteins.

To find the optimal neighborhood responsible for the pheno-

typic impact of a virus, we tested several ‘‘configurations’’ that

govern the maximum hops allowed from the viral targets for each

type of biological interaction. The simplest configuration includes

only viral targets, while the more extended configurations capture

increasing number of hops along the links of the interactome

network, connecting an increasing number of proteins. The best

configuration, as measured by the odds ratio of the enrichment of

virally implicated diseases, defined the optimal neighborhood as

the viral targets themselves and the genes regulated by them, and

was the same for both viruses (Figure S4A,B in Text S1; Tables

S3,S4 in Text S1). This agrees with our finding that genes

associated with virally implicated diseases are themselves viral

targets or are the interaction partners of viral targets (local impact

hypothesis). For both viruses protein-protein and metabolic

Figure 1. Linking a viral proteome to virally implicated diseases through the host interactome. A, Viral proteins (virome) interact with
host proteins (viral targets) in the host interactome, which in turn are linked to various human diseases (phenome) through mutations in particular
disease susceptibility genes (variome). B, Determining topological proximity between viral targets and genes associated with virally implicated
diseases by measuring the shortest path lengths between them. For each disease, the minimum number of hops of interactions needed to connect
any of its associated genes to any viral targets is designated as the shortest path. C,D, The average shortest path for either EBV (C) or HPV16 (D) was
significantly shorter than random expectation.
doi:10.1371/journal.pcbi.1002531.g001

Viral-Host Networks Reflect Disease Etiology
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interactions in the host interactome were of secondary importance

in linking the viral targets to the diseases they cause. For other

viruses, however, these interactions could prove to be important.

Indeed, analyses restricted to high-throughput data suggested

additional relevance of host protein-protein and metabolic

interactions (Figure S4C,D in Text S1; Tables S3,S4 in Text

S1). In the selected optimal configuration, 9 out of the 13 virally

implicated diseases for EBV were associated with genes in the

neighborhood of EBV targets (Table 1a), and 7 out of 9 virally

implicated diseases for HPV were associated with genes in the

neighborhood of HPV16 targets (Table 1b). Both of these numbers

were significantly higher than random expectation (Figure 2A,B;

P = 0.0012 for EBV and P = 0.0005 for HPV based on empirical

calculation). We therefore chose this configuration to define the

network neighborhood of the viral targets, representing the viral

disease modules, leaving aside the host metabolic and protein

interactions.

According to the local impact hypothesis, the genes regulated by

viral targets should have significantly altered expression levels in

virally implicated disease tissues within the viral disease modules.

To test this, we collected microarray gene expression data for two

representative EBV-implicated diseases, Burkitt’s lymphoma and

B cell lymphoma [26], and for two HPV16-implicated diseases,

cervical cancer [27] and head and neck squamous cell carcinoma

[28] (Methods). We compared gene expression levels between

disease tissues to control (unaffected) tissues. We defined genes

with significantly altered expression levels (‘‘differentially expressed

genes’’) as those whose changes in expression level between disease

and normal tissues were among the top or bottom 5% of all genes

(conclusions were unaltered across a wide range of cutoffs) (Table

S5 in Text S1 and Text S1). In disease samples there were

significantly more differentially expressed genes in the neighbor-

hood of viral targets of either EBV or HPV16 than in the

neighborhood of randomly sampled host genes that are regulated

by at least one transcription factor in the TRANSFAC database

(Figure 2C,D; Figures S5, S6 and Table S5 in Text S1).

Viral disease network
Given the high interconnectivity of the host interactome, the

number of all potential distinct paths linking viral targets to genes

(or gene products) associated with virally implicated diseases

exceeds 10200 for both viruses (Text S1). Yet, the local impact

hypothesis argues that only paths within the neighborhood of viral

targets might play a mechanistic role in virally implicated diseases.

These paths, defined as the shortest paths between the set of viral

targets and genes associated with virally implicated diseases, are

much fewer (20 for EBV and 24 for HPV), and could be inspected

individually to determine whether they may contribute to known

disease mechanisms and whether they predict potentially novel

links between viruses and virally implicated diseases. Several of

these paths are already informative upon disease mechanisms

(highlighted in Figure 2E,F): i) EBV protein EBNA-LP has been

shown to bind to RB1, which in turn regulates MYC, a human

gene associated with Burkitt’s lymphoma, an EBV-implicated

disease [2,10]; ii) EBV protein EBNA2 binds to host protein RBPJ

[2] which regulates Bcl-3 [29], which is in turn associated with B

cell lymphoma, an EBV-implicated disease [2,10]; and iii) HPV

E6 protein interacts with p53 which regulates TNFRSF10B which

is associated with head and neck squamous carcinoma, an

HPV16-implicated disease [30]. The many other suggestive paths

uncovered between viral targets and genes associated with virally

implicated diseases (Figure 2E,F) represent candidates for focused

investigations into the molecular mechanisms of these diseases.

The neighborhoods of viral targets in the host interactome,

along with their disease associations, represent ‘‘viral disease

networks’’ (Figure 3A,C). The viral proteins, their viral targets, the

proteins in their local neighborhood and diseases associated with

all the host genes are included in the disease network. In line with

the local impact hypothesis, we expect that these neighborhoods

contain most cellular components that play a role in the

phenotypic impact of the virus on the host. The neighborhood

of randomly chosen human proteins as viral targets yields a much

sparser and smaller network (Figure 3B,D), indicating that the

observed viral disease networks had not emerged by chance, but

instead reflect the functional adaptation of viruses to the host

interactome. Randomly chosen degree-controlled viral targets also

yielded random disease networks with significantly smaller

connected components (Figure S8 in Text S1).

Prioritizing virally implicated diseases
The uncovered viral disease networks contain several diseases

that have not been previously associated with infection by the

corresponding viruses (grey squares in Figure 3A,C). These

diseases arise by mutations in cellular pathways that are targeted

by these viruses. Some of these diseases might arise from infection

with HPV or EBV. Given the large number of such disease

candidates (128 for EBV and 141 for HPV), it is important to

prioritize them based on their proximity to viral targets, inferring

the likelihood that the virus-induced perturbations could contrib-

ute to the particular disease phenotype. We implemented a

topology-based network flow algorithm [31] that simultaneously

exploits the local modularity of the interactome and the non-

random placement of the disease associated components in the

network. Initially, only the viral targets have non-zero scores, and

the score of other proteins in the entire interactome is zero. The

algorithm iteratively distributes scores to host genes based on their

potential association with viral perturbation, prioritizing the genes

in the neighborhood of the viral targets. Using literature-derived

virally implicated diseases (Table 1) as a positive reference set, we

evaluated the precision-recall performance of the prioritization for

both EBV and HPV16 (Figure S9 in Text S1) and found

enrichment of virally implicated diseases among the high-ranking

diseases (e.g. Burkitt’s lymphoma for EBV and bladder cancer for

HPV16, Tables S6, S7 in Text S1), supporting the feasibility of the

prioritization procedure.

To independently benchmark the prioritization of candidate

diseases, we turned to relative risk measurement [24,32,33], which

provides population-based clinical associations between candidate

diseases and viral infection in patients (Text S1). Using U.S.

Medicare patient medical history data [24,34] derived from 13

million patients, we found that higher-ranked diseases in the

prioritization are more often associated with viral infection, for

either EBV or HPV (Figure 3E). This comorbidity analysis

indicates that diseases with associated genes in the network vicinity

of viral targets are strong candidates for being virally implicated.

The prioritized virally-implicated disease candidates (Tables S6,

S7 in Text S1) indicate, for example, that malignant neoplasms of

retina and bladder, ranked in the top three by the flow algorithm

regarding their potential association with HPV, have relative risk

15.7 and 2.7 (Table S7 in Text S1), meaning that HPV patients

have 15.7 and 2.7 times increased chance of developing these

diseases. Several diseases that ranked high in our prioritization

procedure are not commonly linked to the studied viruses, but

their potential viral association was supported by recent suggestive

reports, such as malignant neoplasm of thyroid gland association

with EBV [35] and retinoblastoma association with HPV [36,37].

Viral-Host Networks Reflect Disease Etiology
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Figure 2. Virally implicated diseases associated with genes in the neighborhoods of viral targets. A,B, The number of virally implicated
diseases in the neighborhoods was higher than randomly expected for EBV (A) and HPV16 (B). C,D, The number of differentially expressed genes in
the neighborhood of viral targets of either EBV (C) or HPV16 (D) was significantly higher compared to that in the neighborhood of randomly sampled
host genes. The total number of genes regulated by EBV and HPV targets is 109 and 122, respectively. Expression level was measured in tissues of two
virally implicated diseases respectively, Burkitt’s lymphoma (EBV) and cervical cancer (HPV), and compared to normal tissues. E,F, Known virally

Viral-Host Networks Reflect Disease Etiology
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Experimental validation
To demonstrate the value of the network-based approach to

generate new biological hypotheses, we explored whether the

cellular perturbations induced by expression of individual viral

proteins are similar to those seen in particular disease phenotypes.

We generated primary human keratinocyte (HFK) populations

with stable expression of the HPV16 E6 or E7 oncoproteins and

analyzed the gene expression profiles of multiple independent

samples for these cells in concert with expression data from

IMR90 cells expressing HPV16 E6 or E7 proteins (Methods and

Text S1). Of the 104 human genes regulated by the 15 human

protein targets of E6 and E7 (i.e., those two degrees away from E6

and E7 in Figure 3C), 22 were found to be differentially expressed

in E6 or E7 induced IMR90 and/or HFK cell populations

(Figure 3F; Table S14 in Text S1). Of these 22 genes 15 of them

were also differentially expressed in cervical carcinoma tissues

evaluated previously to test the local impact hypothesis (Text S1).

These 22 genes have been linked to 39 diseases in OMIM, among

which only six belong to known HPV-related diseases (Table 1B).

We therefore asked if any of the remaining 33 diseases might be

virally implicated (Figure 3F). Illustrative of our approach is

ovarian cancer, which is linked to HPV via three lines of evidence:

(i) the disease has significant comorbidity with HPV associated

diseases; (ii) four of the ovarian cancer associated genes in the

disease network are differentially expressed in E6 or E7 induced

IMR90 or HFK cell populations; (iii) three of these, FN1, BRCA1,

ERBB2, are differentially expressed in ovarian carcinoma tissues

(GEO dataset: GDS3592; two-tailed t-test; P,0.05) [38].

Seven out of 39 diseases have high relative risks among HPV

patients (Figure 3F), of which four are previously unknown.

Among these four diseases, neoplasm of peritoneum, benign

neoplasm of skin, and diseases of sebaceous glands satisfied only

two of the three criteria (Text S1). Fanconi anemia, the fourth

disease on the list, satisfied all three in that (i) Fanconi anemia

shows high relative risk with HPV; (ii) FANCC, a gene in the

disease network mutated in Fanconi anemia, is up-regulated in the

E6 exogenous expression IMR90 cell data, and (iii) FANCC is

significantly up-regulated in low density bone marrow cells of

Fanconi anemia patients (GEO dataset: GSE16334; two-tailed t-

test; P = 0.00069) [38]. In addition, HPV16 E7 was hypothesized

to induce expression of FANCD2 through an E2F-dependent

pathway [39,40], a finding that is also supported by our analysis

(Text S1). Our analysis predicts a novel potential link between

HPV and Fanconi anemia, through the E6RTP53RFANCC

pathway, which had not been previously established. FANCC has

been reported to be expressed at higher levels upon activation of

TP53 [41] but since E6 targets TP53 for degradation it is unlikely

that the observed upregulation of FANCC expression in E6

expressing cells is solely modulated by p53. An additional

connection to Fanconi anemia may be through interaction with

BRCA1 [42] (Figure 2F). In addition to a physical interaction of

E6 and E7 with BRCA1, BRCA1 expression is upregulated in E6

expressing cell lines (Table S14 in Text S1). BRCA1 has been

shown to have a potential role in Fanconi anemia through its role

in the colocalization of FANCD2 protein [43,44].

The clinical connection between Fanconi anemia and HPV

associated tumors has been subject to debate. Not debatable is that

FA patients have a much-increased risk in developing squamous

cell carcinomas (SCCs) at anatomical sites infected by HPVs. Our

analysis does not necessarily mean that SCCs in Fanconi patients

are caused by HPV, but that they arise by similar molecular

mechanisms. The well-documented interplay between E7 and FA

and our discovery of a possible connection between E6, FANCC

and BRCA1 support this hypothesis. Moreover, we observe a

relative risk of 3.7 among female HPV patients (mostly cervical

cancer patients) toward Fanconi anemia using the US-wide

Medicare data, which further supports the identified molecular

level relationship between Fanconi anemia and HPV (Methods

and Text S1).

Discussion

Given the large number of functional interactions present in

human cells and the many possible paths among cellular

components, uncovering the precise impact of a virus upon the

host interactome is an enormously complicated task. Here we

provide evidence that a large proportion of the effect of a virus can

be accounted for locally in the network space, which allowed us to

develop and test a general methodology designed to elucidate the

consequences of viral impacts on the host interactome network,

and to prioritize candidate diseases for potential viral implications.

A predictive methodology should ideally take into account cell

tropism. Tissue-specific gene expression data can be merged with

our analysis (Text S1). We used tissue-specific expression data from

BIOGPS [45] to narrow down the number of genes and their

associated diseases from the diseasome map. If a gene in the

neighborhood of the viral targets is not expressed or is not present in

the tissue of interest, we removed the gene from the network. In this

way, we obtain a tissue-specific viral network. By applying tissue

specificity, the number of associated diseases for EBV was reduced

from 128 to 89, and for HPV from 141 to 105, without losing any of

the virally-implicated diseases (Text S1 for analysis details; Tables

S15, S16 in Text S1 for the list of genes and diseases).

The strategy developed here is not unique to EBV and HPV16.

Although the strategy should work better for carcinogenic

pathogens, given how well-studied proteins involved in cancer

are, it is equally applicable to any pathogen for which protein

interactions between the pathogen and the host proteome have

been mapped. While still limited by the incompleteness of

genome- and proteome-scale datasets [19], the usefulness of the

method is likely to grow alongside the ongoing expansion of high-

throughput functional genomics databases and gene-disease

associations.

Methods

Virus-host protein-protein interactions
Yeast two-hybrid screens (Y2H) between EBV and HPV16

viral proteins and ,12,200 human proteins encoded by a library

of full length human open reading frame (ORFs) clones in

Human ORFeome v3.1 [46,47] encompassing ,10,200 human

genes were carried out as before [17,48]. The EBV-human

library Y2H screen tested 86 out of 89 EBV proteins as fusions to

the DNA binding domain of Gal4 (Gal4-DB) against ORFeome

v3.1 proteins fused to the activation domain of Gal4 (Gal4-AD),

while the HPV-human library Y2H screen testing HPV16

proteins E4, E5, E6 and E7 was carried out in reciprocal fashion

with HPV proteins as both Gal4-DB and Gal4-AD fusions

against the corresponding human Gal4-AD and Gal4-DB fusions,

respectively.

implicated diseases in the vicinity of viral targets for EBV (E) and HPV16 (F). Examples of paths that are known to correspond to disease mechanism
are highlighted in grey and listed individually underneath.
doi:10.1371/journal.pcbi.1002531.g002
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Differentially expressed genes in virally implicated
disease tissues

Raw data of the gene expression datasets used (GSE2350,

GSE2392 and GSE15156) was obtained from Gene Expression

Omnibus (GEO) [49], normalized and log-transformed by RMA

algorithm [50], and expression changes were calculated as the

ratio of expression levels between virus-infected tissues and normal

tissues.

Exogenous expression of HPV viral proteins in human cell
lines

To obtain the disease associated genes that are differentially

expressed in viral protein induced cell populations, HPV16 E6 and

E7 oncogenes were independently transfected into primary human

fibroblast (IMR90) and keratinocyte (HFK) cell populations.

Affymetrix Human Gene1.0 ST and Human Genome U133 Plus

2.0 arrays, respectively, were used to measure gene expression

profiles for five or more replicate samples in each of the cell types.

Array data were normalized by RMA, batch effects were removed

using ComBat, and the limma package in R/Bioconductor was

used to identify differential expression.

Comorbidity analysis and relative risk calculation
Relative risk (RR) was calculated as the ratio between the

observed co-occurrence and probabilistically-inferred (assuming

independence) co-occurrence of two diseases, based on the patient

medical history data from United States (U.S.) Medicare, which

contains the clinical diagnosis record of each hospital visit (in ICD-

9 codes) of 13 million U.S. patients at age 65 or older [33].

Patients with viral infections were defined with the following

diagnostic codes in U.S. Medicare database: 200 (B cell

lymphoma) or 147 (nasopharyngeal carcinoma) for EBV infec-

tions; 078.1, 079.4, 180 or 795.0 for HPV infections.

Statistical tests
The statistical significance of the average shortest path between

viral targets and genes associated with a given virally implicated

disease was calculated by randomly sampling human diseases from

OMIM (full table of disease in Dataset S2). The number of virally

implicated diseases associated with the proteins in the neighbor-

hoods of random host targets was calculated by picking random

proteins from the interactome space (n = 7,832). For both

measurements, P values were calculated based on empirical data

with 10,000 random configurations. For the analysis of GEO

microarray data we used two-tailed t-test statistics.

Supporting Information

Dataset S1 Full list of interactions and gene-disease associations

in viral disease networks, including the sources of data. (Sheet 1)

EBV disease network, (Sheet 2) HPV16 disease network. VH-

PPI: virus-host protein-protein interaction, PPI: host protein-

protein interaction, PDI: host protein-DNA interaction, MCI:

metabolic enzyme-coupled interactions calculated using KEGG,

or BIGG databases, or flux coupling analysis.

(XLS)

Dataset S2 OMIM genes and diseases and their corresponding

ICD-9 codes.

(XLS)

Dataset S3 Relative risk analysis. (Sheet 1, 3) relative risk

between EBV- and HPV-implicated diseases and candidate

diseases in the disease network. (Sheet 2, 4) relative risk between

EBV- and HPV-implicated diseases and all mappable diseases

which constitute the random control.

(XLS)

Dataset S4 Full list of diseases prioritized by the flow algorithm

for (Sheet 1) EBV (Sheet 2) HPV. Diseases are sorted according

to maximum scores.

(XLS)

Text S1 Supporting information, tables and figures are provided

in this document.

(PDF)
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