
A Platform-Independent Method for Detecting Errors in
Metagenomic Sequencing Data: DRISEE
Kevin P. Keegan1,2,3*, William L. Trimble1, Jared Wilkening1,2,3, Andreas Wilke1,2,3, Travis Harrison1,2,3,

Mark D’Souza1,2,3, Folker Meyer1,2,3

1 Argonne National Laboratory, Argonne, Illinois, United States of America, 2 University of Chicago, Chicago, Illinois, United States of America, 3 Institute for Genomics and

Systems Biology, Chicago, Illinois, United States of America

Abstract

We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality
(alternatively referred to as ‘‘noise’’ or ‘‘error’’) within and/or between sequencing samples. DRISEE provides positional error
estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates
that can be used to identify samples with high or varying levels of sequencing error that may confound downstream
analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic
data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by
technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is
applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by
analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE
as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to
discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.
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Introduction

Accurate quantification of sequencing error is the single most

essential consideration of sequence-dependent biological investi-

gations. While true of all investigations that utilize sequencing

data, this is particularly true with respect to metagenomics.

Metagenomic studies produce biological inferences as the near-

exclusive product of computational analyses of high throughput

sequence data that attempt to classify the taxonomic (through 16s

ribosomal amplicon sequencing [MG-RAST [1], QIIME [2]]) and

functional (through whole genome shotgun sequencing [MG-

RAST [1]]) content of entire microbial communities. The

accuracy of these inferences rests largely on the fidelity of

sequence data, and consequently, on the ability of existing

methods to quantify and account for sequencing error. Surpris-

ingly, the most widespread methods to determine sequencing-error

in metagenomic data lack essential features and/or produce

underestimates of the overall error that disregard a substantial

portion of sequencing-related experimental procedures.

Sequence-based experimental inferences, particularly those

related to the identification and characterization of features

(protein or 16s rRNA coding regions, regulatory elements, etc.)

are greatly affected by the presence of sequencing errors [3].

Errors in metagenomic amplicon-based sequencing have led to

grossly inflated estimates of taxonomic diversity [4,5,6]. While

methods such as denoising [2,7,8] have been developed to address

these issues in amplicon-based metagenomic sequencing [2,9], no

analogous techniques have been reported to account for noise/

error in the context of shotgun-based metagenomic sequencing.

Limitations inherent to methods used to assess de novo sequencing

error are largely to blame. At present, two methods are commonly

used: reference-genome and score -based.

Reference-genome-based methods compare de novo sequenced

reads to preexisting standards (published genomes). Samples are

typically cultured from a clonal isolate for which a reliable

reference genome is readily available. Sequenced reads undergo

an initial alignment to the selected reference genome to match de

novo sequences with the regions in the reference genome to which

they correspond. Reads that do not exhibit a high enough level of

identity with the reference genome are excluded from further

analysis. Reads that exhibit a high fidelity match to a region in the

reference genome are compared to that region in great detail.

Deviations between sequenced reads and their corresponding loci

in the reference genome are scored as errors; these are typically

reported with respect to frequency and type (i.e. insertion,

deletion, substitution). Selection of the most appropriate reference

genome is essential. This is problematic when the best available

reference is a related strain or species. In these cases, real

biological variation can be mistaken for sequencing error

[10,11,12,13]. Reference-genome-based methods provide a par-

ticularly effective means to examine sequencing error in the
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context of genomic (i.e. single genome sequencing or re-

sequencing) data, but are not applicable to metagenomic samples

as these typically contain enormous taxonomic diversity (samples

contain a broad spectrum of species) for which little adequate

reference data is available. Many species have no appropriate

reference genome(s), and reference metagenomes do not currently

exist.

Score-based methods use an alternative approach. Sequencer

signals are compared with sophisticated, frequently proprietary,

probabilistic models that attempt to account for platform-dependent

artifacts, generating base calls, each with an affiliated quality (Phred

or Q score) that provides an estimate of error frequency, but no

information regarding error type. Although score-based methods

are applicable to metagenomic data, their inability to consider error

type can prove to be a substantial limitation. For example,

similarity-based gene annotation is extremely sensitive to frame-

shifting insertion/deletion errors but only moderately affected by

substitutions [3]. In this context, knowledge of error type,

specifically the ratio of insertion and/or deletions to substitutions

provides crucial information, knowledge unattainable with conven-

tional Phred or Q scores. The absence of information regarding

error type is an even greater concern in light of documented

platform-dependent biases in sequencing error type: Illumina-based

sequencing exhibits high substitution rates [14], whereas 454

technologies exhibit a preponderance of insertion/deletion errors

[13]; identical Q scores from these two technologies are likely to

represent different types of error, rendering ostensibly similar

metrics incomparable [13,15,16,17,18,19,20]. The most concern-

ing, but paradoxically least discussed and perhaps least understood,

deficit of score-based methods is their implicit disregard of

experimental procedure. Typical sequencing efforts employ a host

of procedures to extract, amplify, and purify genetic material,

experimental processes that necessarily contribute errors (i.e.

introduction of non-biological bias in sequence content and/or

abundance relative to original biological template sequences);

however, as these errors are introduced before the actual act of

sequencing, they can not be accounted for with score-based

methods. Thus, a large portion of experimental error in sequencing

is frequently overlooked (Figure 1a) (an in depth literature search

revealed no works that directly address this issue).

Reference-genome and score-based sequencing error determi-

nation methods require extensive prior knowledge in the form of

reference genomes and/or elaborate platform dependent error

models. At present it is not possible to apply reference-genome-

based methods to metagenomic data. Score-based methods

provide, at best, an incomplete assessment of error that is

incomparable between technologies and provides no information

with respect to error type. Neither of these approaches is well

suited to platform-independent analysis of error in shotgun-based

metagenomic data. The absence of an appropriate means to assess

sequencing error, in a platform independent manner, in the

context of metagenomic data, grows more acute with the

increasing democratization of high-throughput sequencing tech-

nologies (www.technologyreview.com/biomedicine/26850/) and

the rapid proliferation of projects that utilize them [21,22,23,24]

(in addition, www.1000genomes.org, www.commonfund.nih.gov/

hmp, www.earthmicrobiome.org). This includes an increasing

trend toward meta-analyses (studies that consider data from

multiple sources) to examine collections of samples that can exhibit

a diverse technical provenance [25,26,27,28]. Meaningful com-

parisons of technically diverse sequence data require accurate and

platform-independent measures of sequencing error, such that bona

fide observations can be differentiated from background noise.

Current methods, score-based methods in particular, are not well

equipped to provide these comparisons.

Results

A brief description of Duplicate Read Inferred
Sequencing Error Estimation

The limitations of reference-genome and score -based methods

inspired the creation of Duplicate Read Inferred Sequencing Error

Estimation (DRISEE). DRISEE exploits artifactually duplicated reads

(ADRs), nearly identical reads that share a completely identical

prefix, present with abundances that greatly exceed chance

expectations, even when a modest level of biological duplication

is taken into account [12,26]. We exploit the highly improbable

abundances of ADRs to distinguish them from other reads (see

Methods for details). While 100% identity in the prefix region is

used to cluster reads, only the non-prefix bases (those not required

to exhibit identity with other reads) are used in the error

calculations. No additional requirement for sequence identity/

similarity is required of the non-prefix bases. Given their technical

origins, it is reasonable to assume that sequence variation within

groups of ADRs are more likely to be the product of technical

artifact(s) (i.e. sample processing and/or sequencer errors) than a

reflection of genuine diversity in the originally sampled population

or culture. Based on this premise, DRISEE utilizes multiple

alignment (by default, multiple alignments are processed with

QIIME [2] integrated Uclust [29] – users will soon be able to

choose from a variety of other multiple alignment algorithms) of

groups of prefix-identical clusters of ADRs to create internal

standards (consensus sequences) to which each individual duplicate

read is compared. Sequencing error is determined as a function of

the variation that exists within clusters of ADRs. This strategy is

platform-independent and can be used to quantify error in

metagenomic or genomic samples with respect to error frequency

and type. DRISEE identifies duplicate reads using stringent

requirements for prefix length and abundance that are extremely

unlikely to occur unless the sequences have been artifactually

duplicated. In the work presented here, a prefix length of 50 bases

Author Summary

Sequence quality (referred to alternatively as the level of
sequencing error or noise) is a primary concern to all
sequence-dependent investigations. This is particularly
true in the field of metagenomics where automated tools
(e.g. annotation pipelines like MG-RAST) rely on high
fidelity sequence data to derive meaningful biological
inferences, and is exacerbated by the capacity of next
generation sequencing platforms that continue to expand
at a rate greater than Moore’s law. We demonstrate that
the most commonly utilized means to assess sequencing
error exhibit severe limitations with respect to analysis of
metagenomic data. Furthermore, we introduce a method
(DRISEE) that accounts for these limitations through the
application of a novel approach to assess sequencing
error. DRISEE-based analyses reveal previously unobserved
levels of sequencing error. DRISEE provides a platform
independent measure of sequencing error that objectively
assesses the quality of entire sequence samples. This
assessment can be used to exclude low quality samples
from computationally expensive analyses (e.g. annotation).
It can also be used to evaluate the relative fidelity of
analyses after they have been performed (e.g. annotation
of error prone samples is less reliable than that of samples
with low levels of sequencing error).

DRISEE
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and a minimum abundance of 20 reads was used; chance

occurrence < 4E-32 (see Methods). It is important to note that

this probability is so small as to be deemed effectively impossible in

biological sequence data (by way of comparison, the number of

atoms in the human body has been estimated at ,E28 [30]);

however, ADRs routinely exhibit abundances that greatly exceed

these expectations, making it relatively easy to identify these

sequences and simultaneously differentiate them from much lower

abundance biological duplication (there are obvious exceptions to

this notion, conserved regions in 16s ribosomal genes, repetitions

in eukaryotic DNA etc.). Figure 1b provides a visual overview of

DRISEE; text S1 (Supplemental Methods) outlines a typical

DRISEE workflow in much greater detail.

DRISEE tables, the preliminary output of DRISEE
The initial output of a DRISEE analysis is a table, excerpted

examples of which are presented as Tables 1 and 2. It indicates the

number (Table 1), or percent (Table 2), of sequences (indexed by

consensus sequence position) in all considered clusters of ADRs

that match or do not match the consensus derived from the ADR

cluster to which they belong. DRISEE tables can indicate the

match/mismatch counts for a single cluster of prefix-identical

reads from a single sequencing sample, for multiple clusters from a

single sample (Tables 1 and 2 present one such example), or for

multiple clusters collected from a large number of samples that

may represent some common trait of interest (e.g. samples

produced with the same sequencing technology, that used the

same RNA/DNA extraction procedures, that were collected as

part of the same sequencing project etc.). This adaptable tabular

format represents the simplest incarnation of a DRISEE error

profile; it can be analyzed and visualized in a number of ways

(numerous examples are presented below – see Figures 2–5) to

garner detailed platform-independent information regarding

sequencing error in genomic and metagenomic shotgun sequenc-

ing data. A more detailed description of the tabular format is

included in the legend for Tables 1 and 2.

Validation of DRISEE with simulated and real sequencing
data; Comparison of DRISEE to reference-genome-based
estimation of sequencing error

Initial validations of DRISEE with simulated data showed

nearly perfect correlations between known and DRISEE-based

error estimates (Figure 2a, R2 = 0.99). Additional validations with

real genomic sequencing data exhibit good correlation with error

estimates produced by conventional reference-genome-based

analyses [12] of the same samples (Figure 2b, R2 = 0.89, excluding

outliers).

DRISEE reveals unexpected levels of error in genomic and
metagenomic data from two widely utilized high-
throughput sequencing technologies

In further trials, DRISEE was applied to genomic and

metagenomic shotgun data produced by two widely utilized

Figure 1. (a) Error detection capabilities of Score, Reference-genome, and DRISEE methods. (1) Simplified procedural diagram of a typical
sequencing protocol. Sample collection: First, the biological sample is collected, Extraction/Initial purification: Then the RNA/DNA undergoes
extraction and initial purification procedures, Pre-sequencing amplification(s): Next, the extracted genetic material may undergo amplification
(e.g. whole genome amplification – see main text) followed by additional purifications and/or other processing procedures, ‘‘Sequencing’’: Genetic
material is placed in the sequencer itself, and is sequenced. Note that sequencing itself frequently involves additional rounds of amplification,
Analyses of sequencing output: Sequencer outputs are analyzed. (2) Given a procedure such as A, the portion of the procedure over which score/
Phred-based methods can detect error is indicated in red. (3) Given a procedure such as A, the portion of the procedure over which reference-
genome-based methods can detect error is indicated in green. Note that reference-genome-based methods are only applicable to single genome
data; they cannot consider metagenomic data. (4) Given a procedure such as A, the portion of the procedure over which DRISEE-based methods can
detect error is indicated in blue. Note that DRISEE methods can be applied to metagenomic or genomic data, provided that certain requirements are
met. See methods. 1: BMC Bioinformatics. 2008 Sep 19;9:386. 2: Nat Methods. 2010 May;7(5):335–6. Epub 2010 Apr 11. (b) DRISEE workflow The
steps in a typical DRISEE workflow are depicted and briefly described (in figure captions). Please see Text S1 (Supplemental Methods, Typical DRISEE
workflow) for a much more detailed description of each depicted step.
doi:10.1371/journal.pcbi.1002541.g001

DRISEE
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sequencing technologies, 454 and Illumina (n = 242 genomic 454,

n = 65 metagenomic 454, n = 10 genomic Illumina, and n = 159

metagenomic Illumina samples), 476 samples in all. Less than half

of the individual samples (n = 169) exhibit DRISEE-based errors

consistent with the reported range of second-generation sequenc-

ing errors (0.25–4%) [4,11,12,13,19,31]. The majority of samples

(n = 307) exhibit DRISEE-based errors that fall outside the range

of reported sequencing errors (error,0.25%, n = 73; error.4%,

n = 234; avg 6 stdev = 12.63615.12) (Figure 3). The Supplemen-

tal Methods (Text S1) include a description as to how data sets

were selected.

DRISEE detects error levels much higher than those
produced by a conventional score-based approach;
Comparison of DRISEE to Phred-based estimation of
sequencing error

To compare DRISEE derived errors with those determined

with a more conventional score-based approach, we obtained

FASTQ data (i.e. Phred scores) via SRA (http://www.ncbi.nlm.

nih.gov/sra) for subsets of DRISEE-analyzed samples: 20 of the 65

metagenomic 454 samples and 12 of the 159 Illumina metage-

nomic samples. Per base DRISEE and Phred [32]-based errors for

these samples were calculated and compared (see Methods). In 454

and Illumina-based metagenomic sequencing data, DRISEE

profiles reveal error levels much higher than those reported by

archived Phred values (Figure 4a & b). It is also intriguing to note

that, whereas Phred values exhibit nearly indistinguishable trends

between the 454 and Illumina data, DRISEE error profiles differ

markedly for each technology (Figure 4a & b).

DRISEE reveals drastic differences in sequencing error
among experiments and even between individual
samples from the same experiment

After observing differences in error profiles between 454 and

Illumina technologies, we explored the possibility that DRISEE

could be used to observe differences in sequencing error produced

by a single sequencing platform (Illumina). Sequencing samples

from five projects (i.e. groups of samples that were produced

together in a single experimental framework) were explored by

comparing the total DRISEE error profile for each (Figure 4c).

While two projects exhibited similar error profiles (Sample Sets 2

and 5), most were unique. The ability of DRISEE to resolve

unique error profiles was tested further by exploring two individual

samples taken from the same project/experiment (Sample Set 3),

those that exhibited the highest and lowest average DRISEE

errors. Although the two samples were produced on the same

sequencing platform as part of the same experimental project, the

individual error profiles are drastically different (Figure 4d). The

two samples underwent annotation via MG-RAST, a summary of

the annotation results for each sample appears, as a pie-chart,

imbedded in the plot of the DRISEE profiles.

DRISEE provides detailed data regarding error type
We also used DRISEE to provide data regarding error type.

Figure 5 presents all error types together (total error) as well as a

Table 1. Excerpt from a whole sample/run DRISEE error profile table – Raw abundance values.

ID:

4462612.3

Summary:

A_subst T_subst C_subst G_subst InDel Total_err prefix_length = 50

0.1436% 0.0961% 0.1441% 0.0907% 0.0053% 0.4798%

bp counts: Match Consensus Do Not Match Consensus

Consensus Position
Index A T C G InDel A T C G InDel

1 8646 5849 6119 11508 0 0 0 0 0 0

2 15800 6418 2782 7122 0 0 0 0 0 0

3 6897 15562 2685 6978 0 0 0 0 0 0

4 8820 7475 10374 5453 0 0 0 0 0 0

5 10454 7590 2645 11433 0 0 0 0 0 0

… … … … … … … … … … …

75 6320 5899 2543 2546 0 5 17 26 1 0

76 5760 5997 2548 2476 0 75 64 67 88 0

77 5912 5884 2431 2579 0 9 3 37 19 0

78 5228 6069 2414 2650 0 38 28 33 53 1

79 5511 5402 2550 2664 0 43 15 27 0 0

… … … … … … … … … … …

ID: Indicates an identification marker for the sample, in this case, an MG-RAST ID.
Summary: Indicates the total error as a percent of summed counts for each indicated class of error as well as the average percent error per position for each indicated
class of error.
bp counts: Each Consensus Position numbered row presents the number of matches (Match Consensus) and mismatches (Do Not Match Consensus) of the indicated
variety found across all reads in all considered bins at the indicated consensus position (Consensus Position Index). For example, the value of 8,646 in the Match
Consensus A column indicates that across all considered bins, 8,646 reads match a consensus A in the first position of their respective bin consensus.
doi:10.1371/journal.pcbi.1002541.t001
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breakdown of each error type (A,T,C, and G substitutions and

insertion/deletion errors) observed across metagenomic 454 (65

samples) and Illumina (159 samples) data. The results are

consistent with previous observations in genomic shotgun

sequencing: Illumina data are dominated by substitution-based

errors [14], whereas 454 data exhibit a majority of insertion/

deletion errors [13] (Figures 5a and 5b). No other method provides

estimates with respect to error type in metagenomic shotgun data.

Discussion

DRISEE provides a more complete estimate of sequencing

error than is possible with score-based methods, one that accounts

for error introduced at any/all procedural steps in a sequencing

protocol – all steps that have the potential to introduce errors (i.e.

deviation from the original biological template sequences) – from

collection of a biological sample to extraction of DNA/RNA,

intermediary processing of the extracted material and, finally,

sequencing itself (see Figure 1a). Error introduced by processes

outside of the actual act of sequencing are ignored by score-based

methods, thus it is not surprising that DRISEE derived errors are

generally larger than Q/Phred scores, as they account for errors

introduced over a much broader scope of experimental proce-

dures, from sample collection, to a wide variety and number of

possible intermediary processes, to sequencing itself. An example

may help to illustrate the critical importance of this consideration:

Amplification is commonly utilized to generate sufficient

quantities of material for sequencing from an initial RNA/DNA

sample. Here we refer specifically to amplification performed

outside of the sequencer/sequencing protocol. Various methods

exist – classically variants of the polymerase chain reaction were

used, more recent incarnations have adopted isothermic tech-

niques – all depend on high fidelity enzymes (e.g. Taq or W29

DNA polymerase), and are experimental processes, prone to

experimental error. Even with high fidelity enzymes, amplification

products will contain errors (i.e. deviations from the original

biological template). Successive amplification(s) propagate previ-

ous errors and introduce new ones, leading to populations of reads

that increasingly diverge from their original biological templates.

Amplification products are frequently used as the starting material

for a sequencing run, thus the starting material may contain large

numbers of unique reads that do not exist in the original biological

sample. Score-based methods have no means to distinguish these

unique and non-biological reads from the original templates.

Scores do provide useful information, the fidelity with which

sequencer base calls are made, but these estimates possess no

information with respect to the origin of the sequenced read: is the

sequence genuine/biological or an error containing artifact of

imperfect amplification? Through the careful examination of

prefix-identical reads, DRISEE is able address this question; in the

context of shotgun metagenomic data, no other method can.

We assert that reference-genome-based error determination

methods provide the most complete and accurate measure of

sequencing error. This is due to the fact that (1) such methods

consider the entire scope of procedures that accompany a typical

sequencing experiment and (2) they compare raw sequence data to

an absolute standard, a reference genome. Score-based metrics

(e.g. Q or Phred) only consider error introduced by the actual act

Table 2. Excerpt from a whole sample/run DRISEE error profile table – Percent scaled abundance values.

ID:
4462612.3

Summary:

A_subst T_subst C_subst G_subst InDel Total_avg_err prefix_length = 50

0.203% 0.151% 0.226% 0.191% 0.001% 0.772%

bp counts: Match Consensus Do Not Match Consensus

Consensus
Position Index A T C G InDel A T C G InDel

1 26.916% 18.209% 19.049% 35.826% 0.000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

2 49.187% 19.980% 8.661% 22.172% 0.000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

3 21.471% 48.447% 8.359% 21.723% 0.000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

4 27.458% 23.271% 32.296% 16.976% 0.000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

5 32.545% 23.629% 8.234% 35.592% 0.000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

… … … … … … … … … … …

75 36.412% 33.986% 14.651% 14.668% 0.000% 0.0288% 0.0979% 0.1498% 0.0058% 0.0000%

76 33.734% 35.122% 14.922% 14.501% 0.000% 0.4392% 0.3748% 0.3924% 0.5154% 0.0000%

77 35.036% 34.870% 14.407% 15.284% 0.000% 0.0533% 0.0178% 0.2193% 0.1126% 0.0000%

78 31.658% 36.751% 14.618% 16.047% 0.000% 0.2301% 0.1696% 0.1998% 0.3209% 0.0061%

79 33.993% 33.321% 15.729% 16.432% 0.000% 0.2652% 0.0925% 0.1665% 0.0000% 0.0000%

… … … … … … … … … … …

ID: Indicates an identification marker for the sample, in this case, an MG-RAST ID.
Summary: Indicates the total error as a percent of summed counts for each indicated class of error as well as the average percent error per position for each indicated
class of error.
bp counts: Each Consensus Position numbered row presents the percent of matches (Match Consensus) and mismatches (Do Not Match Consensus) of the indicated
variety found across all reads in all considered bins at the indicated consensus position (Consensus Position Index). For example, the value of 26.916% in the Match
Consensus A column indicates that across all considered bins, 26.916% reads match a consensus A in the first position of their respective bin consensus.
doi:10.1371/journal.pcbi.1002541.t002
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of sequencing (ignoring error introduced by any processes that

precede actual sequencing – e.g. DNA/RNA extraction, sample

amplification and purification, etc.) and are the product of

proprietary black-box software products that can vary consider-

ably among different sequencing technologies. Unfortunately,

reference-genome-based methods cannot be applied to metage-

nomic data (reference metagenomes do not exist, and are unlikely

to anytime in the near future). DRISEE can be thought of as a

Figure 2. DRISEE performance on simulated and real data. (a) Simulated data sets were generated from real whole genome sequences [12],
taken from a single sequenced genome, and randomly fragmented into reads that exhibit length distributions consistent with different sequencing
technologies (see Methods). Total DRISEE error rates for each sample (Y-axis) are plotted against the known, artificially introduced error rates (X-axis).
The equation and R2 values represent a linear regression of displayed data. (b) DRISEE and a conventional reference-genome-based error method
were applied to a set of published genomic data sets [12] (see Methods). Cumulative DRISEE errors (Y axis) are plotted against reference-genome
errors determined for the same sample. The equations and R2 values represent linear regressions of displayed data. The regression for all samples is
plotted as a black line; red lines indicate this regression plus or minus one standard deviation. Red points indicate values further than one standard
deviation from the ‘‘All Samples’’ regression. Orange indicates a single point that may disproportionately inflate the observed R2. Equations and R2

values for the ‘‘All Samples’’ regression are provided as well as for regressions that exclude only the red points or the red and orange points.
doi:10.1371/journal.pcbi.1002541.g002

DRISEE
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reference-genome-like method, the key difference is that the

reference sequences are derived internally from the pool of

artifactual duplicate reads, and not from an external reference

genome. The similarity between reference-genome and DRISEE

derived errors for the same genomic sequencing samples

(Figure 2b) is not surprising; both methods rely on comparisons

to reference standards. Unfortunately, reference-genome-based

methods cannot be applied to metagenomic data (the appropriate

reference standards do not exist).

Reference-genome-based methods possess another potential

fault, the utilization of preliminary identity/similarity filters that

may lead to artifactual deflation of error estimates. In particular,

conventional reference-genome-based methods employ a prelim-

inary similarity search to align sequenced reads to the most similar

portion of the selected reference genome. Reads that fail to align to

the reference genome with the selected initial level of stringency

(criteria are generally lenient, e.g. 90% identity for the full length

of the read [12]) are discarded from subsequent analysis. In this

way, the most error prone reads, those that do not align well to the

reference genome, even with lenient criteria, and would contribute

significantly to calculated error, are not considered. DRISEE takes

a very different approach. Reads are binned based on 100%

identity in their prefix region, but no identity/similarity require-

ment is made of the non-prefix bases. Criteria for prefix length and

abundance provide conditions so improbable as to preclude any

possibility other than technical duplication. Technical duplicates

should be identical to each other, not just in their prefix region,

but through the length of the entire read, except for differences

introduced by error. While 100% identity in the prefix region is

used to cluster reads, only the non-prefix bases (those not required

to exhibit identity/similarity with other reads) are used in the error

calculations. As no additional requirement for sequence identity/

similarity is required of the non-prefix bases, DRISEE can provide

estimates of error that are less constrained by filters placed in

conventional reference-genome based methods. As an example,

consider a 100 bp read. Under the reference-genome-based

method utilized by Niu et al. (see Figure 2b), 90 bp would be

required to perfectly align with a reference genome before error

analyses are conducted; thus, the maximum detectable deviation

from the reference standard is 10% (i.e. a maximum of 10% error

can be detected). Alternatively, DRISEE would cluster the read

into a bin of reads with the same 50 bp prefix and would

subsequently ignore this prefix to produce an estimate of error

solely on the non-prefix bases (those not required to exhibit

identity/similarity with other reads in their respective bin). This

allows DRISEE to consider errors that span a much broader range

(errors in excess of 50% have been observed – see Figure 3).

Given that DRISEE considers the complete scope of procedures

implemented in a given sequencing experiment, and score-based

methods only provide information with respect to the actual act of

sequencing, it is not surprising that DRISEE produces error

estimates that are generally higher (Figures 3, 4a, & 4b). The

uniqueness of DRISEE error profiles was unexpected. Distinct

error profiles are observed for each of two sequencing technolo-

gies, 454 (Figure 4a) and Illumina (Figure 4b); each exhibits a

clearly unique error profile, whereas Q-value derived error profiles

for the very same samples are indistinguishable from each other.

Furthermore, unique profiles were observed when samples

processed with the same sequencing technology (Illumina) were

grouped by experiment, suggesting the presence of platform-

independent technological or lab-dependent errors (Figure 4c).

Even finer distinctions are observable among the error profiles for

single samples taken from the same experiment (Figure 4d).

DRISEE provides a means to assess the relative quality of

sequencing between technologies (Figure 4a and b), experiments

performed on the same platform (Figure 4c), and even between

individual samples taken from the same experiment (Figure 4d).

The ability of DRISEE to provide a preliminary estimate of

sample quality, and indications as to the suitability of a sample for

subsequent analyses, is clearly demonstrated in Figure 4d. Two

samples from the same experiment exhibit vastly different

DRISEE error levels (1 vs. 45% average error). These values are

reflected in the MG-RAST-based annotations of the samples.

Nearly 90% of the reads from the high error sample fail MG-

RAST quality control procedures; just 4% of the reads are

successfully annotated as known proteins. The higher quality data

set loses a much smaller portion of its reads to quality control

(23%) and has eight times as many reads annotated as known

proteins (33%).

In the current age of compute-constrained bioinformatics, the

identification and correction/removal of low quality sequence

data, from relatively mild procedures like read trimming –

DRISEE informed read trimming is currently under development

– to more drastic action, including the elimination of entire

sequencing samples, is an acute and steadily growing necessity.

DRISEE can provide researchers with the ability to identify low

quality sequence data before time-consuming and potentially

costly analyses are performed. DRISEE also provides researchers

with a platform-independent means to assess error among samples,

after they have undergone analyses, allowing a quantitative

assessment as to the fidelity of analysis-derived inferences. As an

example, annotations related to high error samples like that

presented in Figure 4d (purple DRISEE profile) should be treated

with a great deal more skepticism than those derived from a higher

quality data set (e.g. 4d, green DRISEE profile). This is especially

Figure 3. Total DRISEE errors of genomic and metagenomic
data produced by 454 and Illumina technologies. A boxplot
(conventional five number summary) presents the distribution of
averaged total DRISEE errors observed among 476 sequencing samples.
The average total DRISEE error is plotted on the Y-axis. X-axis labels
indicate the technology (454 or Illumina), type of sample (shotgun
genomic or shotgun metagenomic), and in parenthesis, number of
samples represented by each individual boxplot. Gray highlight
indicates the range of values that have been previously reported for
error on 454 and Illumina sequencing platforms (0.25–4%).
doi:10.1371/journal.pcbi.1002541.g003
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true when considering samples with subtle differences that may

easily be obscured by high levels of sequencing error.

Arguably, DRISEE has some limitations. At present, it is not

applicable to eukaryotic data, sequences with low complexity,

and/or known sequences that may exhibit an unusually high level

of biological repetition, particularly amplicon ribosomal RNA

data. These types of data are likely to meet DRISEE requirements

for prefix length and abundance, but represent real biological

variation that could be misinterpreted by DRISEE as sequencing

error. Moreover, DRISEE operates on artifactually duplicated

reads—an approach that works well with current platforms such as

454 and Illumina but may require procedural modifications (such

as the intentional inclusion of highly abundant sequence standards)

if future developments eliminate ADRs.

In summary, DRISEE provides accurate assessments of

sequencing error of metagenomic (Figures 3–5) and genomic

(Figure 2) data, accounting for error type as well as frequency

(Figure 5). DRISEE error profiles can be used to explore

correlations between sequencing error and metadata (e.g.

Figure 4a & b suggests the presence of platform dependent trends

in DRISEE calculated errors; Figure 4d demonstrates a correla-

tion between DRISEE calculated error and the percent of reads

that MG-RAST is able to successfully characterize), allowing

investigators to differentiate experimentally meaningful trends

from artifacts introduced by previously uncharacterized sequenc-

ing error. Traditional score- and reference-genome- based

methods do not allow for such observations with respect to

shotgun metagenomic data. DRISEE also offers the advantage

Figure 4. DRISEE error profiles for metagenomic sequencing data sets. Total (% substitutions + % insertions + % deletions) DRISEE error (Y-
axis) as a function of read position (X-axis) for all considered reads. (a) and (b): Phred vs. DRISEE: Total DRISEE (red) and average Phred (blue)
derived errors (Q values converted to percent error) for (a) 20 metagenomic 454 samples and (b) 12 metagenomic Illumina samples. (c): DRISEE
total error of several Illumina-based sample sets: DRISEE total error profiles are displayed for 5 different Illumina experiments/sample sets.
Parentheses indicate the number of samples in each experiment/sample set. (d): DRISEE total error of single samples: DRISEE total error profiles
are displayed for two individual samples. The samples represent the lowest and highest averaged DRISEE total errors (averaged across all read
positions), observed in Sample Set 3 (see Figure 4c above). Pie charts indicate a summary of MG-RAST-based annotation of the two samples. The
upper pie chart was produced from the data set that corresponds to the purple DRISEE profile (average DRISEE error = 45%). The lower pie chart
corresponds to annotation of the data set that produced the green DRISEE profile (average DRISEE error = 1%).
doi:10.1371/journal.pcbi.1002541.g004
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that it requires no data other than an input FASTA or FASTQ

file. Moreover, DRISEE considers error independent of sequenc-

ing platform, without prior knowledge. These characteristics make

DRISEE a promising method—particularly with respect to the

enormous quantities of shotgun-based metagenomic data that are

anticipated in the near future.

DRISEE will soon be available to analyze sequencing samples

in MG-RAST. We also provide MG-RAST independent code to

allow users to perform DRISEE analyses without MG-RAST:

https://github.com/MG-RAST/DRISEE.

Methods

Overview
Duplicate Read Inferred Sequencing Error Estimation (DRI-

SEE) can be applied to sequence data produced from any

sequencing technology. It provides an error profile (Tables 1 and 2

provide an excerpted example) that can be used to explore the

sequencing error, as well as biases in error, that are present in a

single sequencing run or any group of sequencing runs. The latter

capability enables the user to produce error profiles specific to a

particular sequencing technology, sample preparation procedure,

or sequencing facility—in short, to any quantified variable (i.e.,

metadata) related to one or more sequencing samples.

DRISEE exhibits several desirable characteristics that are not

found in the most widely utilized methods to quantify sequencing

error: reference-genome-based methods that rely on comparison to

standard sequences (generally a published sequenced genome):

and quality score-based methods that rely on sophisticated, platform-

dependent models of error to derive base calls with affiliated

confidence estimates (Q or Phred scores) for each sequenced base.

DRISEE can be applied to metagenomic or genomic data

produced with any sequencing technology and requires no prior

knowledge (i.e., reference genomes or platform–dependent error

models).

DRISEE relies on the occurrence of artifactually duplicated

reads—nearly identical sequences that exhibit abundances that

greatly exceed expectations of chance, even when a modest

amount of possible biological duplication is taken into account.

Illumina and 454 platforms exhibit a well documented [12,26], but

poorly understood, propensity to produce large numbers of ADRs.

DRISEE utilizes this artifact as a means to create internal

sequence standards that can be used to assess error within a single

sample, or across multiple samples. We identify ADRs as those

reads that exhibit an identical prefix (prefix = the first l bases of a

read) at some threshold abundance (n) that exceeds chance

expectations, even those that take biological duplication into

account. The precise values of l (prefix length) and n (prefix

abundance) can be varied to accommodate the scale of any

sequencing technology. In the work presented here, bins (groups)

of duplicate reads were used to calculate error values if they

exhibited an identical prefix length (l) of 50 bases with an

abundance (n) of 20 or more reads. These requirements are

arbitrary, but were selected on sound statistical and biological

assumptions. Chief among these is the extreme improbability that

such an occurrence (20 reads, each with identical 50 bp prefixes)

could occur by chance, (i.e. without technical duplication via

WGA or PCR etc. These criteria are stringent enough to justify

assumptions of biological and statistical uniqueness; indeed, such

an occurrence is extremely unlikely by chance:

p~
1

n � 4lð Þ

� �
~

1

20 � 450ð Þ

� �
~4E{32

where p is the probability that a prefix of length l (50 bp) will be

observed n (20) times; 4 represents the number of possible bases (A,

T, C, and G). Even in data that are Illumina scale (on the order of

1 million reads per run), a chance observation of 20 reads that

exhibit the same 50 bp prefix is highly improbable (chan-

ce<1E0664E-32 = 4E-26); however, ADRs frequently exceed

these limits, making them easy to detect, and providing an ideal

population to probe for sequencing error – a population of reads

that should be completely identical (i.e. identical beyond their

50 bp prefix) except for errors introduced by sequencing

procedures. The default values for nucleotide length and number

of reads required for a bin of ADRs to undergo DRISEE analysis

are arbitrary; however, they possesses a key feature, improbability

Figure 5. DRISEE calculated Errors, separated by error type, for 454 and Illumina metagenomic samples. DRISEE error profiles are
displayed for metagenomic data produced by the 454 (65 samples, (a)) and Illumina (127 samples, (b)) platforms. DRISEE determined errors (Y-axis)
are plotted with respect to read position (X-axis). DRISEE errors are displayed as total (black) and type separated (A_sub = A substitutions, T_sub = T
substitutions, C_sub = C substitutions, G_sub = G substitutions, and InDel indicates insertions and deletions).
doi:10.1371/journal.pcbi.1002541.g005
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far beyond that expected by chance, even if biological repetition

was present, and even when data are Illumina scale (1E06 reads).

Less stringent criteria (prefix length 20 bp, prefix abundance 20;

p = 5E-14) were applied to data generated by 454 technologies,

yielding extremely similar estimations of error (data not shown).

Much more stringent criteria were selected for this study such that

the method could be applied to 454 and Illumina data without

concern for the difference in scale in the outputs of the two

technologies (454<1E05, Illumina<1E06 reads per run).

DRISEE exhibits a universality that other methods lack, but

only if the data under consideration meet the following criteria: (1)

Data must be in FASTA or FASTQ format. (2) There must be

enough ADRs to safely infer that they are the product of artifact

and not of real biological variation. (3) Input sequence data should

not be culled, trimmed, or modified in any way by sequencer

processing software: note that while DRISEE utilizes ADRs in its

calculations, it does not cull these sequences from processed

datasets (4) Data under consideration should be the product of

random (i.e. shotgun) sequencing. (5) At this time, amplicon

data—specifically, directed sequencing of amplicon ribosomal

RNA data, are not suitable for DRISEE analysis; ribosomal

amplicon reads start with highly conserved regions (primer target

sites) followed by regions that exhibit a large degree of real

biological variation (the hypervariable regions) that DRISEE could

misinterpret as error.

Data access
Unless otherwise indicated, data sets examined in this study

were obtained via SRA or MG-RAST. Table S1 (Supplemental

Table 1) contains a complete list of sequence data used in the

accompanying manuscript. Datasets are referenced by their SRA

(http://www.ncbi.nlm.nih.gov/sra), MG-RAST (http://metage

nomics.anl.gov/), or both identifiers/accession numbers.

An MG-RAST independent version of DRISEE code, with

detailed documentation, including installation and running

instructions as well as runtime related statistics, can be download-

ed from https://github.com/MG-RAST/DRISEE.

See Text S1 (Supplemental Methods) and Figure 1b for a

detailed workflow-based description of DRISEE.

Table 1 and 2 overview
DRISEE analysis tables take the same form if they exhibit the

counts derived from a single bin of artificially duplicated reads,

multiple bins from the same sample, or much larger collections of

bins spanning multiple samples. The excerpted tables displayed

here represent the raw and percent scaled DRISEE error profile

for all considered prefix-identical bins in a single metagenomic

sequence sample (MG-RAST ID 4462612.3). The DRISEE table

is presented as raw counts per base pair position (Table 1) or

percent error per position (Table 2). Tables 1 and 2 contain three

sections (ID, Summary, and bp counts), described in the legends

below.

Supporting Information

Table S1 Supplemental Table 1 contains a complete list of MG-

RAST and/or SRA accession numbers for all data used in this

study.

(XLS)

Text S1 Supplemental Methods. Contains an extended work-

flow description of a typical DRISEE analysis and some additional

detailed descriptions of methods briefly referred to in the main

text.

(DOC)
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