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Abstract

Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time
scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability
of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two
competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local
inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by
recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity
also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple
presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response
reliability. These competing influences must be finely balanced in order to decorrelate odor representations.
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Introduction

The olfactory system must accomplish two seemingly conflicting

goals —generate distinct representations of different odors, yet

maintain stable representations of a repeated odor despite

variability introduced by noise. These conflicting ends, separability

and reliability, are met as information about odors traverses

multiple levels of the olfactory system.

Odor detection begins when odorant molecules bind to

olfactory receptor neurons (ORNs) and initiate cellular mecha-

nisms leading to the opening of ion channels, the depolarization of

the receptor neuron cell membrane, and the generation of action

potentials [1]. Because each receptor type responds better to some

odorants than others, the representation of an odor can be

described as a spectrum of activation patterns across the receptor

population [2,3,4]. Similar odors are presumably represented by

similarly distributed patterns of activation [5]. Information about

most odors, to a first approximation, is encoded in ORNs in a

combinatorial manner [6]. In insects, these patterns of receptor

activation are then conveyed to an olfactory structure called the

antennal lobe (AL), which contains far fewer neurons than there

are ORNs (in the locust, for example, ,90,000 ORNs converge

onto just 830 projection neurons (PNs) and 300 local inhibitory

interneurons (LNs) [7]).

Antennal lobe neurons respond to odor-elicited input with a

rich variety of spatiotemporal patterns [8,9,10,11]. Many inves-

tigators, beginning with Adrian [12], have suggested the temporal

pattern of spiking in these second order neurons encodes

information about odor quality. These spatiotemporal patterns

of activation unfold along multiple spatial and temporal scales,

transiently and successively recruiting different groups of neurons,

contributing to the progressive decrease in the overlap between

odor representations in the AL [11,13,14].

What network interactions shape spatio temporal patterning in

the AL to accomplish essentially opposed information processing

goals: that representations of different odors may be rapidly

distinguished; yet the same odor presented under changing

environmental circumstances is reliably identified? To address

this question we examined the contributions of two factors in a

realistic model of the locust AL [15,16]: 1) lateral local excitation

between PNs mediated by putative local excitatory interneurons

[17,18,19]; and 2) slow inhibition from LNs to PNs [15,20]. We

propose that these two complementary excitatory and inhibitory

influences must be optimized to achieve both reliable and

separable odor representations.

Results

Complementary effects of lateral excitation and slow
inhibition on Antennal Lobe dynamics

In the insect olfactory system input from ORNs converges into

PNs and LNs of the AL. With a model of the AL network we

sought to test the complementary effects of fast lateral excitation

and slow inhibition, both of which have been observed in vivo. The

model network was based on locust anatomy and consisted of

reciprocally connected PNs and LNs. Lateral excitation was

implemented by a class of excitatory interneurons (eLNs) that have

been described in the AL of Drosophila [17,18,19]. Although
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experiments to directly label eLNs have not yet been performed in

the locust, we infer they exist in this species from their prevalence

in other insect species (fly [21], moth [22]), and from the broadly-

tuned and complex responses of locust PNs consistent with

widespread excitation. In the model eLNs receive input from both

the PN and LNs and also provide lateral excitation to both these

classes of neurons (see Figure 1a for a schematic diagram of the

network architecture).

To test the network’s responses to external input we simulated

two classes of odor stimuli: odors represented by blue traces in

Figure 1b are similar to each other (they activate overlapping sets

of neurons) but are highly dissimilar to the odor represented by the

red trace(see Methods). Input was provided to PNs, LNs and eLNs.

We reasoned that unrestricted lateral excitation within the AL

could potentially recruit neurons explosively, and we hypothesized

that slow inhibition (mediated by GABAB receptors) could provide

both a suitable counterbalance to this, and an ability to generate

broadly distributed, temporally structured responses in the PN

ensemble. Indeed, our simulations showed that a balance of lateral

excitation and slow inhibition prevented cascading excitation that

could recruit all neurons in the network, and at the same time

allowed some neurons that receive sub–threshold input directly

from ORNs to become activated (Figure 2a, compare top left and

bottom right panels). Note that fast lateral inhibition mediated by

GABAA receptors was present in all the simulations including

those in which slow inhibition was removed (Figure 2a, top left).

Fast inhibition is responsible for the suppression of PN responses in

Figure 2a, top left, despite the lack of GABAB mediated slow

inhibition. To visualize these population-wide responses, we

calculated the peri–stimulus time histogram (PSTH) for each PN

and projected the collective dynamics of the model’s three

hundred PNs onto the first three principal components

(Figure 2b). Before stimulus onset the trajectories wandered near

the baseline (marked in Figure 2b). Upon odor stimulation the

trajectory moved toward a state defined by increased population

activity. The trajectory then returned to the baseline following

odor termination. As the strength of lateral excitation increased,

the resulting trajectories swept out increasingly wide loops

(Figure 2b, top panel), indicating stronger population responses.

Increasing the strength of slow inhibition had the opposite effect

(Figure 2b, bottom panel), a general decrease in the activity of

PNs. Further, we examined the time taken for a stimulus to push

the system to its maximal distance from baseline. Because the

response amplitude was determined by the number of PNs that

were recruited during odor stimulation, active state properties

varied with values of lateral excitation and slow inhibition. To

compare the speed with which networks with different character-

istics reached maximum response amplitude, we normalized the

amplitude of the trajectories by the maximum amplitude and

plotted the different traces as a function of time. We found that

increasing lateral excitation increased the maximum value of the

response amplitude (data not shown). The time taken by the

system to arrive at its maximum distance (compare the traces in

Figure 2b middle panel) also increased with increasing excitation.

Increasing slow inhibition, on the other hand, caused a less

pronounced effect in the opposite direction. We also found that the

baseline shifted as a function of lateral excitation since more PNs

were active even in the absence of an odor stimulus (Figure 2b

right). A histogram of the responses of PNs (Figure 2c) showed

that, in the absence of lateral excitation, very few neurons

generated more than 10 spikes during an odor presentation (green

and black traces). The green trace shows that in the absence of

lateral excitation, at the highest value of slow inhibition simulated

here (gGABAB
~0:01mS), most of the PNs remained silent except

for those receiving supra–threshold input. When lateral excitation

was increased in the model, the response distribution shifted

toward higher density spiking (blue trace). Introducing slow

inhibition modulated the spread of activity caused by excitation

(red trace).

Next, to characterize each PN’s tuning properties we simulated

a broad range of odors by successively displacing the Gaussian

input (Figure 1b) by five unit steps. Figure 3a shows the response of

a representative set of three PNs to an array of 21 odors; the input

each PN received as a function of 21 different odorants is plotted

as a blue trace in the top panels. We found the responses of PNs to

this array of odors (red traces) depended on the amount of lateral

excitation and slow inhibition. In the absence of both types of

lateral input (top left panels), responses of PNs were driven entirely

by the input simulating the activity of ORNs, and each PN

responded only when it received direct supra–threshold input.

However, consistent with recent studies in the fly showing that PNs

not receiving direct input from ORNs may be activated by indirect

input from other PNs via lateral excitation [18], our model showed

that, as the value of lateral excitation was increased, responses of

PNs became less selective (the mean response over the duration of

the odor presentation is shown by the red trace) (Figure 3a, top

right panels). Beyond broadening the response to an array of

odors, the addition of lateral excitation led to qualitative changes

in the shape of the response curve (for example, PN1 in the top

right panels started to show strong response to odors 15–21,

Figure 3a). Thus, the output of PNs may interact with the input

from ORNs in a nonlinear manner. Increasing slow inhibition

caused opposite effects in PNs, narrowing the widths of their

tuning curves (Figure 3a, bottom left panels). Including both lateral

excitation and slow inhibition in the model allowed PNs to

respond reliably and specifically; however, it also allowed a

nonlinear remapping of the output of ORNs to the responses of

PNs. This nonlinear transformation of ORN activity is evident in

Figure 3a (compare top left and bottom right panels). The example

Author Summary

The antennal lobe of insects and the olfactory bulb of
vertebrates represent the first centers of the olfactory
system where information about odor properties can be
reorganized and optimized for further processing. Com-
plex excitatory and inhibitory synaptic interactions within
the antennal lobe and the olfactory bulb alter the
responses of the principal neurons throughout the
duration of the odor stimulation. These dynamic changes
progressively increase the difference between firing
patterns evoked by structurally similar odors, potentially
helping the animal distinguish one odor from another.
However, this process, called odor decorrelation, appears
to oppose another important goal of olfactory processing,
to minimize the inevitable noisy variations in representa-
tions of the same odor encountered under different
environmental conditions; such variations could potential-
ly lead to misclassification. It remains an interesting
mystery how olfactory circuitry can solve these two
seemingly contradictory goals as they process olfactory
stimuli: first, separating different but chemically similar
odors (sensitivity, capacity); and second, identifying repre-
sentations of the same odor in a noisy environment
(reliability). Our results suggest a balance between
inhibitory and excitatory connections mediated by local
antennal lobe interneurons enhances the decorrelation of
similar odors while keeping the representation robust in
the presence of noise.

Local Interneurons Enable Tuning of Sensory Input
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PNs shown in Figure 3a were chosen to show the range of response

patterns observed in PNs given different parameter values. The

specific proportions of each type of response varied considerably

across the range of parameter values.

Further, we analyzed the roles lateral excitation and slow

inhibition play to shape the complexity of spatiotemporal

responses of PNs to an odor presentation. We first determined

each PN’s response to a panel of 21 odors (similar to each panel in

Figure 3a). To provide a measure of the complexity of the response

pattern of each PN to an array of odors we then used the following

procedure. For a given PN, the response to each odor of a set of 21

odors was binned (50 msec bins). The PN’s response to the entire

odor set was represented as a trajectory in a 21 dimensional space

(each dimension corresponding to one of the odors). If the PN’s

response remained static over the duration of the odor presenta-

tion, then the trajectory would appear as a single point in this

space. The complexity of this trajectory reflected both the diversity

of the PN’s responses to the set of 21 odors and the variability of

these responses over time. We computed the principal components

of the [21 odors 620 time bins] array and then determined the

variance explained by each 21 dimensional principal component

(given by its eigen value).We then computed the number of

principal components required to explain at least 80% of the

variance observed in PN response patterns. This number provided

a measure of the complexity of the response pattern of each PN to

an array of odors. We calculated this number for each of 300 PNs

and 10 presentations of each odor stimulus, with varying amounts

of lateral excitation and slow inhibition. Thus, we obtained

3000 measurements to assess the complexity of the network

response. Finally, we plotted the normalized distribution of these

values for different amounts of lateral excitation and slow

inhibition. By normalizing the histogram for each value of lateral

excitation and slow inhibition, we were able to detect a trend in

the peak location of each histogram despite changes in the height

Figure 1. a. Schematic diagram of the antennal lobe network consisting of projection neurons (PNs), inhibitory local interneurons (LNs) and
excitatory local interneurons (eLNs). (See text for connection probabilities between different neuron types). A random sampling of neurons receives
external input (red arrows). b. Input to the neurons. Each PN, LN, and eLN receives external input with amplitude chosen from a truncated Gaussian
distribution. The similarity between odors can be varied by changing the overlap in the input profile to individual neurons. The Gaussian intensity
profile of similar odors (compare the blue lines) show a large overlap whereas dissimilar odors (compare blue and red lines) show very little overlap.
(Note that the red profile ‘‘wraps around’’ from right to left.).
doi:10.1371/journal.pcbi.1002563.g001

Local Interneurons Enable Tuning of Sensory Input
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Figure 2. a. Raster plots showing the effect of lateral excitation and slow inhibition on network dynamics. In the absence of lateral excitation, the
neuronal activity is largely driven by the input (top left). Large values of lateral excitation allow input to explosively and unrealistically recruit the
entire network (top right). Adding slow inhibition curtails this activity (bottom right). The figure shows both the PNs (n = 300) and the eLNs (n = 50).
The width of input to the eLNs is a scaled down from that of the PNs. The trace on the left of the plot shows the maximum amplitude of the input to
PNs and eLNs. The onset of the input is indicated by the gray bars along the time axis. Two odor presentations, each lasting 1000 ms, are shown. b.
Left panels. Traces show the temporal evolution of the first three principal components generated from peri–stimulus time histograms as a function
of increasing lateral excitation (top panel excitation increases from blue to red, gGABAB

= 0.0002 is constant) and slow inhibition (bottom panel
inhibition increases from blue to red, gAch = 0.0002 is constant). Middle Panels. Normalized amplitude of the traces shown in the left panels as a
function of time. Different color traces correspond to different values of lateral excitation (top panel) or slow inhibition (bottom panel). The gray bar
indicates an odor presentation. Right panels. The amplitude of the traces shown in the left panels as a function of time. Here the amplitude is not
normalized and the responses are shown following odor offset. c. Response distribution of PNs. The proportion of PNs generating a given number of
spikes during odor stimulation is shown for different values of lateral excitation and slow inhibition.
doi:10.1371/journal.pcbi.1002563.g002

Local Interneurons Enable Tuning of Sensory Input
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of the distribution. Figure 3b shows that, as the strength of lateral

excitation grew, the peak of the distribution shifted to higher

values, indicating an increase in the complexity in the responses

of PNs. Again, slow inhibition had the opposite effect – it led to

the recruitment of fewer neurons during odor stimulation,

particularly in the absence of lateral excitation (see Figure 3a,

bottom left). Note, however, that for larger values of slow

inhibition the distribution also became broader. This suggests

that while the activity of some PNs was suppressed and became

less complex, the activity of other PNs remained diverse across

odors and variable over time even given the greatest strength of

slow inhibition.

Figure 3. a. Each group of panels shows the activity of a representative set of three neurons. The image map shows the spike activity evolving over
the duration of the stimulus presentation (500 to 1500 ms) in response to an array of 21 odors averaged over ten repetitions of each odor. The
average normalized activity over this duration is shown by the red trace in the panel above. The blue trace shows the normalized amplitude of the
input to the neuron for the set of 21 odors. The responses to different combinations of lateral excitation and slow inhibition are shown. b. Complexity
of PN responses. The temporal spiking patterns for individual neurons over an array of 21 odors (see panel a for examples) were chosen and the
number principal components required to explain 80% of the variance of each such pattern was calculated. For each value of lateral excitation and
slow inhibition, this generated 300PNs610trials = 3000 such numbers estimating the complexity of each PNs response to the array of odors. The
normalized distribution of this number is shown as a function of lateral excitation and slow inhibition.
doi:10.1371/journal.pcbi.1002563.g003

Local Interneurons Enable Tuning of Sensory Input
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Decorrelation of odor representations caused by network
interactions

Decorrelation of odor representations, a process that reduces

the overlap between odors, occurs over the duration of the

stimulus presentation. Network interactions between PNs and LNs

likely play a crucial role in this process. In this study AL neurons

received a stable pattern of input from the ORNs. If the AL

neurons respond to this input by generating a spatially distributed

but static pattern of activation, then the pattern should not

decorrelate over time. Decorrelation over time is only possible if

the odor representation is transformed either by network inter-

actions or by temporally varying noise.

To determine the degree to which noise can play a role in

transforming the odor representation, we first calculated the

correlation coefficient between the onset and subsequent epochs of

the input vector provided to the PNs (Figure 4a, blue line). We

then compared this value with the correlation between the initial

responses of 300 PNs to an odor and their responses at subsequent

times (Figure 4a, red line). We found that the correlation between

the onset and subsequent epochs of the odor response by PNs

decreased dramatically over the first 200 ms (Figure 4a, red line)

whereas the correlation between the onset and subsequent epochs

of the input vector decayed to a far lesser extent. This result

demonstrates that network interactions within the AL play a

crucial role in reducing the similarity between responses of PNs at

the odor onset and at later points in time [14,23] and that the

decorrelation is not driven entirely by noise.

Next, we sought to characterize the ability of the population of

PNs to differentiate among different odors. We presented a set of

21 odors and calculated the correlation between the responses of

Figure 4. a. The correlation between the 300-D activity vector at the onset of the odor stimulus and the activity at subsequent 50 ms epochs
decreases progressively (red trace). The blue trace shows the correlation between the input to the network at the onset of the odor and subsequent
points in time. b. Average correlation between 300-D activity vectors over time for similar odors (left panels) and dissimilar odors (right panels) for
two values of slow inhibition (gGABAB

= 0 and 0.0002 mS) and a range of values of lateral excitation. Lateral excitation was required to observe
measurable decorrelation. Odor stimulation was applied at 500 msec. Note that correlations start to change before t = 500 msec, because 50 msec
time bins were used (see methods). Representative time interval of the correlation coefficient change during odor stimulation includes t = [500 msec,
1500 msec]. c. Average correlation between 300-D activity vectors over time for similar (left panels) and dissimilar (right panels) odors for two values
of lateral excitation (gAch = 0 and 0.0002 mS) and a range of values of slow inhibition.
doi:10.1371/journal.pcbi.1002563.g004

Local Interneurons Enable Tuning of Sensory Input
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PNs to any two odors over time. Together, the correlation

coefficients for each 50 ms time window formed a 21621 matrix.

To analyze the AL mechanism responsible for this decorrelation

we then calculated the change over time in the correlation

coefficient averaged for all similar and, separately, for all dissimilar

odors, as a function of increasing amounts of lateral excitation and

slow inhibition (Figure 4b,c). We found that over the duration of

the odor presentation, responses of the PN ensemble to similar

odors became progressively different from one another, as evident

in the decreasing correlation coefficients plotted in Figure 4b. In

contrast, correlations between responses to dissimilar odors

progressively increased (also compare the left and right panels in

Figure 4b over the range from ,500 to 1500 ms). Note, that in the

absence of odor input (,500 ms in our simulations) very few

neurons generated spikes, resulting in activity vectors with many

zero elements. The correlations between these vectors therefore

tended to be high (,1.0). Overall, our findings are in a good

agreement with results previously obtained in vivo from the

zebrafish olfactory bulb [14]. The decrease in correlation can be

attributed in large part to the dynamical behavior of the AL

circuitry since a similar decrease is not observed in the input to

PNs and LNs (Figure 4a, top panel); and noise in the input should

not play a significant role in decorrelating the odor responses.

For similar odors we found that increasing the amount of lateral

excitation lead to a decrease in the correlation between odor

responses at a given time (Figure 4b, left panels). Increasing the

strength of slow inhibition led to a decrease in the correlation

between responses, but to a lesser extent than that seen when

lateral excitation was increased (Figure 4c). Surprisingly, we

observed the opposite in the correlation between dissimilar odors

(Figure 4b, right panels). The increase in correlation over time for

dissimilar odors may be attributed to the fact that the dissimilar

odors were maximally decorrelated to begin with (note that the

correlation coefficient at the odor onset (,500 ms is nearly 0).

Lateral excitation tended to recruit additional neurons that were

not activated in the absence of excitation (compare bottom left and

bottom right panels of Figure 2a). Increasing lateral excitation

would increase overlap in the population of neurons recruited by a

given odor, thus increasing the correlation coefficient. Indeed, as

the strength of lateral excitation increased from 0.0 mS to 0.001 mS

and the degree of overlap presumably increased, the correlation

between dissimilar odors also increased (Figure 4b, right panel,

compare lines of different color). In contrast, upon increasing the

strength of slow inhibition, the overlap between the sets of neurons

representing dissimilar odors decreased and led to a concomitant

decrease in the correlation (Figure 4c, right panels). Recordings

made in vivo from mitral cells in zebrafish olfactory bulb also

showed a similar trend [14].

Relative contributions of overall PN activity vs.
complexity of the PN response pattern to odor response
decorrelation

The correlation coefficient (see analysis in Figure 4) and the

Euclidean distance between PN activity vectors offer two distinct

measures of the separation between odor representations. The

correlation coefficient, which is the cosine of the angle between the

300–dimensional PN activity vectors representing the odors during

each time window, is based on the normalized vectors and does

not change in response to changes in the amplitude (the norm) of

the vector. The correlation coefficient, therefore, depends mainly

on the relative changes of the firing rates of individual PNs.

Complex and odor-specific spatiotemporal PN dynamics would

lead to rapid decreases in the correlation between odor responses.

The correlation coefficient, however, would not change if the

firing rates of all PNs increased or decreased proportionally. The

Euclidean distance, on the other hand, can change both as a

function of the angle and the amplitude of the activity vectors.

With these tools we could examine how a change in the strengths

of lateral excitation and slow inhibition would modify the distance

between representations of similar odors. We anticipated that

increasing lateral excitation would recruit more PNs that in turn

would generate activity vectors with larger amplitudes. The

distance between odor representations would therefore increase

with increasing lateral excitation. In order to measure the distance

between representations of similar odors (the Gaussian inputs to

the ALs corresponding to each odor were separated by 5 units) we

first constructed a PSTH for each of 300 PNs using 50 ms time

bins. For each of these time bins the odor was represented by a

300–dimensional vector of PN activity. We calculated the

Euclidean distance between these vectors in each time bin. The

distance averaged across all time bins over the duration of an odor

presentation was a measure of the distance between odor

representations for a given network configuration. We found that

an increase in lateral excitation increased the distance between odor

representations (Figure 5a). As expected, an increase of slow

inhibition led to the opposite trend, decreasing the amplitude of the

response and, therefore, decreasing the distance between odors. A

constant ratio of excitation to inhibition would correspond to the

diagonal on this graph.

To determine effect of the ratio of excitation to inhibition

gAch

gGABAB

� �
on the Euclidian distance and the correlation

coefficient, we plotted the distance and correlation over time for

different values of the excitation to inhibition ratio (Figure 5b). We

found that changing the ratio of excitation to inhibition had a

significant impact on the distance. Each row in the matrix

(Figure 5b, middle panel) shows the Euclidean distance between

odor response patterns for a value of the E/I ratio determined by

the black trace (Figure 5b left panel). So, the top row corresponds

to the minimal ratio (no excitation) and the bottom row illustrates

distance for the maximal E/I ratio. Plotting all the time series in

increasing order of the E/I ratio revealed that increasing the E/I

ratio led to a very systematic increase in the distance.

To determine whether the correlation coefficient reflected a

similar trend, for each value of lateral excitation and slow

inhibition we calculated the correlation coefficient between 300–

dimensional PN activity vectors generated as the network

responded to the two similar odors independently. The correlation

coefficients were determined during 50 ms epochs of time and the

resulting time series were then plotted in increasing order of the E/

I ratio (Figure 5b, right). We did not find any systematic changes in

the rate of change of the correlation coefficient as a function of

increasing E/I ratio. This suggests that changing E/I ratio leads to a

systematic change in the mean amplitude of the PN responses (e.g.,

increase of the firing rates of all PNs); however, not necessarily to a

systematic change in the relative balance of the individual PN firing

rates. The individual firing rates may increase or decrease

depending on the specific values of excitation and inhibition.

Maximizing reliability and separability of odor
representations

Animals are able to recognize an odor reliably each time it is

presented despite the inevitable small variations in each presen-

tation. Thus, our model of the olfactory system should be robust

enough to avoid classifying each encounter with a given odor as

unique. Correlations between the activity of PNs generated by one

odor and that of another odor provide a measure of how well their

representations may be distinguished by follower neurons. The

Local Interneurons Enable Tuning of Sensory Input
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olfactory system should therefore maximize correlations between

multiple presentations of an odor while simultaneously minimizing

correlations between representations of different odors. We found

this could be achieved in our model with a balance of lateral

excitation and slow inhibition. In Figure 6a the panels show

changes in the correlation coefficient as a function of lateral

excitation for two values of slow inhibition (red and the blue

arrows in the panels Figure 6b below.) Increasing lateral excitation

decreased the correlation between similar odors (Figure 6a, right),

effectively augmenting the ability of the system to distinguish

between these odors. However, it also decreased the correlation

between different trials of the same odor presented with noise

Figure 5. a. The mean Euclidean distance between the representations of similar odors shown as a function of lateral excitation and slow inhibition.
b. Time series of the Euclidean distance and correlation coefficient between similar odors arranged in order of the excitation-to-inhibition (E/I) ratio.
The leftmost panel shows the value of the E/I ratio (x-axis) for different parameter sets (y-axis). When the denominator was zero we set the value of
the ratio to 5 and arranged it according to increasing strength of lateral excitation. The right panels show the change in the distance and the
correlation coefficient from odor onset (500 ms) to the end of the trial (3000 ms). The odor was presented from 500 ms to 1500 ms. We calculated
the time series for 36 E/I ratios. Note, that the decrease of the correlation coefficient during the odor duration is significant but it is masked by limited
dynamical range of the graphs that also shows low correlations after odor offset.
doi:10.1371/journal.pcbi.1002563.g005

Local Interneurons Enable Tuning of Sensory Input
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(Figure 6a, left), thus potentially sacrificing the reliability of

responses. Increasing the amount of slow inhibition had different

effects depending on the value of lateral excitation, further

decreasing the correlation coefficient when lateral excitation was

minimal but increasing the correlation coefficient when lateral

excitation was stronger (compare relative position of red and blue

curves in Figure 6a). A similar trend emerged from a comparison

of correlations between multiple presentations of the same odor,

indicating that balanced amounts of lateral excitation and slow

inhibition are required to decorrelate different odors while

maintaining the similarity of responses to different trials of the

same odor.

We could readily achieve such a balance by maximizing the

quantity (Ctrials+(12Codors)) where Ctrials is the correlation between

multiple presentations of the same odor and Codors is the

correlation between the representations of different odors (see

Methods for a detailed description of how these quantities were

calculated). Even for small differences between odors (the peaks of

the input to similar odors are shifted by only 5 units; the maximum

possible shift between two odors is 150 units), Ctrials and Codors

differed in magnitude. These differences implied that the term

(Ctrials+(12Codors)) was not uniform across the parameter space

queried. Increasing the strength of both excitatory and slow

inhibitory AL connections decreased correlations between trials

(Ctrials; Figure 6b, left); however, at first, it led to an even faster

decrease of correlation between similar odors, Codors. The latter

corresponded to a rapid increase in the ‘‘anti-correlation’’

parameter (1- Codors; Figure 6b, middle), so the term (Ctrials+(12

Codors)) increased (Figure 6b, right). When values of excitation and

inhibition were larger, the opposite trend emerged – the

correlation between trials decreased faster than the correlation

between odors (i.e., Ctrials decreased faster than (12Codors)

increased), so the term (Ctrials+(12Codors)) decreased (Figure 6b,

right). Furthermore, when slow inhibition was increased while the

lateral excitation was minimal, we observed an immediate

decrease in correlations between multiple trials of the same odor

(Figure 6b, left). However, an increase in slow inhibition in the

presence of stronger lateral excitation (e.g., within the range

gAch~0:0003{0:0008mS, Figure, 6b, left) at first led to a small

but reliable increase in correlations between trials of the same odor

Figure 6. a. Top panels show the correlation coefficient as a function of lateral excitation for two different values of slow inhibition denoted by the
colored arrows in the bottom panels. b. Image maps of the time averaged correlation coefficient as a function of lateral excitation and slow
inhibition. The quantity to be maximized is calculated by summing the first two panels.
doi:10.1371/journal.pcbi.1002563.g006
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(note that the maximum of Ctrials is found for positive values of

gGABAB
when gAch is positive); only when slow inhibition was

further increased did the correlations decay. Together, these

results illustrate an optimal range of excitation and inhibition in

which gains in reliability across trials could be balanced against

gains in the separation of similar odors (Figure 6b right). While the

exact position of this maximum will vary with the choice of

optimization function, these results indicate that both non-zero

lateral excitation and inhibition are required to achieve a balance

between the system’s performance in the discrimination of similar

odors and the reliable identification of the same odor across

multiple trials with noise.

Odor classification
The primary reason to compare the correlation between

multiple presentations of the same odor versus correlations

between similar odors was to understand the network mechanisms

that enhance odor classification. In this section we examine how

well a simple classification algorithm could differentiate similar

odors despite realistic, noisy variations between multiple presen-

tations of the same odor. The correlation between representations

of the odor provides a useful metric of distance between

representations. Figure 7a shows the average (over time) correla-

tion between the responses of two similar odors (the inputs were

separated by five units). Each odor was presented 20 times. The

resulting correlation matrix consists of two diagonal blocks with

higher correlations. These correspond to the correlation between

different trials of the same odor. The off–diagonal blocks show a

lower mean correlation coefficient between different odors. We

used this correlation matrix as a measure of the pair–wise distance

between individual presentations of odors. Since lower correlation

indicates greater distance, we defined the pair–wise distance, dij ,

between representations i and j as 1{cij , where cij are elements of

the correlation matrix. This distance was then used to cluster the

representations into two groups using a hierarchical clustering

algorithm (see Figure 7b and the Methods section). Since we knew

a priori which representations corresponded to a particular odor,

we could track the individual representations that were misclas-

sified. We conducted the same analysis with nine more pairs of

similar odors and different values of the relevant parameters,

lateral excitation and slow inhibition. The average proportion of

errors for these nine odor pairs is shown as a function of gGABAB

and gAch (Figure 7c). Optimal odor classification implies that the

errors in classification were minimized. The pattern of errors that

resulted from this classification could be broadly inferred from the

measure Ctrials+(12Codors) used in the previous section (see

Figure 6b, right panel). Regions of minimum error in Figure 7c

(gAch[(0:0002,0:0006),gGABAB
[(0:0002,0:0004)) approximately

coincided with the regions where Ctrials+(12Codors) were high

(gAch[(0:0003,0:0008),gGABAB
[(0:00015,0:00035)), while the er-

rors were maximal when Ctrials+(12Codors) was low. Consistent

with the correlation analysis (Figure 6b), when lateral excitation

was present (e.g, for gAch.0.0002 mS), the lowest classification

error was obtained for non-zero values of slow inhibitory

conductance (Figure 7c). A high error rate was obtained when

lateral excitation was maximized and gGABAB
was set to zero (see

bottom right corner in Figure 7c). For these parameter values,

most PNs were recruited and overlaps between representations of

the same odor and also between different odors were large. The

exact value of gGABAB
and gAch when the errors were minimized

did not coincide exactly with the maximum of Ctrials+(12Codors).

However, a qualitative demarcation between regions of high and

low error rates could be inferred from Ctrials+(12Codors).

Discussion

In insects, tens of thousands of ORNs converge onto a few

hundred excitatory PNs and local inhibitory neurons in the AL

[7]. Interactions among AL neurons contribute to the generation

of spatiotemporal activity patterns that unfold over multiple

timescales. This process may contribute to a progressive decrease

in the overlap between representations of similar odors, a

phenomenon that was originally described in the olfactory bulb

of zebrafish [14]. In this study, using a realistic model of the locust

AL, we examined the potential contributions of lateral excitatory

and inhibitory connections to this temporal decorrelation.

Excitatory interneurons (eLNs) have recently been described in

the Drosophila AL [17,18,21] and are likely to exist in locust as well,

although no direct tests of their existence have yet been reported.

In the Drosophila AL, a recently identified class of local cholinergic

cells exhibits a widespread pattern of innervation that is not

glomerulus–specific [19]. Electrophysiological recordings indicate

that these cells tend to recruit PNs that receive zero or sub–

threshold input from ORNs [18], potentially boosting the

transmission of signals generated in the AL to follower neurons

in the mushroom body [17]. In contrast to lateral excitation, slow

inhibition [24] decreases the average activity of the AL over time

scales spanning hundreds of milliseconds. (This gain modulation is

distinct from the role of fast inhibition that, in concert with

reciprocal excitation from PNs, is known to produce a fast

oscillatory rhythm and synchronization of PN spikes over relatively

fast time scales [15,16,24].)

We tested the hypothesis that both lateral excitatory and slow

inhibitory connections, in proper balance, are required to achieve

two apparently opposing goals during the processing the olfactory

stimuli: to separate different but chemically similar odors

(sensitivity, capacity) and to identify repeated instances of the

same odor in a noisy environment (reliability).

We found that lateral excitation improves the sensitivity of the

olfactory system by recruiting additional PNs that do not receive

direct input from ORNs, thereby amplifying differences between

the representations of similar odors [17,18,19,25]. Increased

sensitivity, however, could compromise the robustness of the

AL’s responses to multiple presentations of the same odor when

noisy variations were included in the input. Slow inhibition could

curtail the spread of PN activity and introduce reliable variations

in spatiotemporal patterning over a time scale of hundreds of

milliseconds. This effect depended on the level of lateral excitation.

We found that increasing slow inhibition could lead to an increase

in the correlation between trials of the same odor (increase in

reliability) only when non-zero lateral excitation was implemented.

Our study shows that both slow inhibitory connections and lateral

excitatory connections mediated by local interneurons are

required to enhance the decorrelation of similar odors while

keeping the representations of odors robust across multiple

encounters in the presence of noise. The decorrelation achieved

by excitation and inhibition, in turn, enhances the ability of the

olfactory system to classify odors; the error rate of classification

was minimal in the presence of the balanced slow inhibitory and

lateral excitatory connections.

ORNs are preferentially sensitive to some odors. This prefer-

ence is manifest in the non-uniform firing rate distribution of

ORNs with a high peak at low frequencies and a long tail over

high frequencies [17]. The optimal distribution of neuron firing

rates for odor discrimination would be one without peaks

[26,27,28]. Such a response distribution may be achieved by a

nonlinear transformation function, implemented in the AL, with a

high gain for low firing rates that saturates for high firing rates,
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thereby employing the dynamic range of the PNs more effectively

[17]. Our study suggests that this transformation may be achieved

by the coordinated efforts of lateral excitation and slow inhibition

in the AL. Indeed, in our model, increasing the strength of lateral

excitatory connections mediated by local excitatory interneurons

increased the fraction of PNs responding to an odor and also

increased firing rates in many responding PNs. However, we

found this effect could be balanced by slow inhibitory connections

that reduced the firing rates of the most active PNs while

maintaining a broad response profile across the PN population

(Figure 2c). These results lead us to predict a strong link between

odor decorrelation and the optimization of odor representations:

maximal decorrelation is achieved in the AL network when firing

rates of PNs are optimally distributed.

In our simulations we focused on the role network interactions

play in decorrelating odor representations. Another contributor

to the temporal patterning in the AL driving decorrelation

appears to be the response dynamics of olfactory receptor

neurons. Recent studies have characterized the temporal

responses of ORNs by their response latency, rise time and

adaptation to a prolonged odor presentation. Variations in these

temporal properties, while not causing decorrelation in the

responses of the ORNs themselves [29], may enable lateral

inhibition in the AL to have this effect. Our model does not test

the roles specific forms of lateral excitation and inhibition may

play in the network, but rather argues more fundamentally that a

balance of excitatory and inhibitory drive to PNs is required to

enhance the ability of the system to decorrelate odor represen-

tations.

Our study suggests local excitatory and inhibitory interneurons

of the insect AL provide balanced, functional circuitry that

significantly reformats and optimizes odor representations in the

AL network. While the effects of excitation and inhibition would

cancel each other if averaged across the entire population of AL

neurons, heterogeneous interconnectivity among the lobe’s neu-

rons would allow a given receptor to trigger responses dominated

by inhibition in some PNs and by excitation in others. The

combined effect of excitation and inhibition may provide an

improved representation of the identity of an odor by being both

robust against noise and sensitive to relatively small variations in

the identities of active ORNs.

Methods

The model network simulations were based on a realistic and

robust model of the insect AL [15,16] that had previously been

used to establish the roles of fast and slow inhibition in the evolving

spatiotemporal dynamics of the locust olfactory network. Our

results show these features, including collective oscillatory dynam-

ics and slow patterning, persist even when the ratio of excitatory

and inhibitory neurons and the specific network architecture are

varied.

Figure 7. a. Average correlation coefficient between two odors. Each odor was repeatedly presented 20 times. The diagonal blocks show the
correlation between trials of the same odor. The off–diagonal blocks with lower correlation coefficients provide a measure of the similarity between
trials associated with different odors. b. Classification of responses by a hierarchical clustering algorithm. The bottom leaves of the tree represent
each trial (40 trials across 2 odors). c. Mean error in classification of two similar odors.
doi:10.1371/journal.pcbi.1002563.g007
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Neuron model
Individual projection and local inhibitory interneurons were

modeled by a single compartment that included voltage and Ca2+

dependent currents described by Hodgkin–Huxley kinetics.

Consistent with locust physiology, isolated PNs displayed over-

shooting Na+ spikes at a fixed frequency throughout DC

stimulation, and local inhibitory neurons, by contrast, fired low

amplitude Ca2+ spikes and displayed spike frequency adaptation

caused by Ca2+–dependent potassium currents. A separate

population of excitatory local interneurons with properties

identical to the PNs was also simulated. The model AL network

consisted of 300 PNs, 100 local inhibitory interneurons (LNs) and

50 local excitatory interneurons (eLNs) (Figure 1a).The ratio (3:1)

of the PNs to inhibitory LNs used in our model is based on known

features of locust olfactory anatomy, which includes 830 cholin-

ergic excitatory PNs and 300 inhibitory LNs [30]. Excitatory LNs

have not been described (or comprehensively searched for) in

locusts, but a number of indirect lines of evidence suggest some do

exist. We included 50 eLNs in most of the simulations, but, by

varying their numbers in a few control experiments, we found that

the absolute number of eLNs did not significantly affect our results

as long as we also compensated the strength of excitatory

connections to ensure the same overall level of excitation per cell.

Network interactions
Fast GABAergic (LN–PN, LN–eLN, and LN–LN connections)

and nicotinic cholinergic synaptic currents (PN–LN, PN–eLN,

eLN–LN) were modeled by first order activation schemes. Con-

nection probabilities were as follows. P(PN–eLN) = 0.5, P(eLN–

PN) = 0.1, P(PN–LN) = 0.5, P(LN–LN) = 0.5, P(LN–PN) = 0.5,

P(eLN–LN) = 0.5, P(LN–eLN) = 0.5. These probabilities are con-

strained by estimates made from locust AL circuits [20,30,31].

Each locust LN receives excitatory input from 50–75% of the PNs

as well as fast GABAA type and slow GABAB type inhibitory

lateral inputs from 25–50% of the remaining LNs [30]. No self-

inhibition has been reported in the locust AL. Each PN receives

fast GABAAtype and slow GABABtype inhibitory lateral inputs

from 75% of the LNs (G.Laurent, personal communication).

Probabilities of eLNs connections are presently unknown, howev-

er, varying their connection probability in our model produced

effects similar to varying the number of eLNs (see above).

The AL network was simulated for a range of values of lateral

excitation and slow inhibition. The maximal conductance

denoting the total lateral excitation received by a given cell was

set to a value ranging from gAch~0:00mS to gAch~0:001mS in

steps of 0:0001mS. Similarly, the maximal conductance due to

inhibitory GABAB type receptors was set to values ranging from

gGABAB
~0:00mS to gGABAB

~0:001mS in steps of 0:0001mS.

Input
The distribution of intensities provided to the PNs followed a

Gaussian profile (Figure 1b). The standard deviation of the

distribution was fixed at

sPN~0:2,

IPN~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
PN

p exp
(x{xodor)

2

2sPN
2

 !

where IPN is the input to PNs. The variable x ranged from

21 to 1. The index of PN is related to x as follows,

x~
2

number of PNs
PN indexð Þ{1. The identity of the odor is

determined by the peak of the Gaussian input and is given by

xodor. The input IPN was truncated to zero for values of the

Gaussian below 0.1 and scaled by a current of amplitude

0.00001 nA. The truncated Gaussian profile of the odor is shown

in Figure 1b.

The time course of the stimulus was modeled as a current pulse

with a rise time constant of 100 ms and a decay time constant of

200 ms. This was scaled by the factor IPN for each neuron. The

form of the input that each neuron received is given below,

I(t)~Imax{(Imax{Imin)exp
{(t{tonset)

trise

� �
, for tonsetvtƒtonsetztdur

I(t)~IminzRmax exp
{(t{(tonsetztdur))

tdecay

� �
, for twtonsetztdur

where, Rmax~Imaxz(Imin{Imax) exp
{tdur

trise

� �
. Imax~1 is the

maximum amplitude of the input and Imin~0 is the minimum.

tonset~500ms indicates the start of the stimulus with a rise time of

trise~100ms and a decay time constant of tdecay~200ms. The

stimulus decay began after tonsetztdurms. In addition to the

stimulus pulse, we also added a low amplitude noise term (,5–

10% of the stimulus amplitude). A similar input was also provided

to the LNs and eLNs. This input was scaled by the term IPN and

was used to drive individual PNs.

Different odors were generated by progressively shifting the

Gaussian input profile by5 unit steps. Similar odors were defined

as odors with input profiles shifted by 5 units; dissimilar odors

were shifted by 40 units (Figure 1b). For each pair (gAch,gGABAB
)

we stimulated the network with a sequence of 21 odors, each

presented 10 times. Each presentation, termed a trial, lasted

1000 ms and consisted of an initial onset at 500 ms followed by a

fast rise and a more gradual decay beginning at 1500 ms.

Analysis
To calculate all measures of correlation we first generated a

PSTH for individual neurons by determining the number of spikes

produced by each neuron in consecutive 50 ms time bins that

overlapped over 25 ms durations. The activity of the population of

PNs (n = 300) during each time interval could then be character-

ized as a 300–dimensional vector. Each 3000 ms (500 ms before

onset +1000 ms stimulus +1500 ms from offset) odor trial could

then be represented by a 3006120 matrix with elements providing

the number of spikes generated by the ith neuron during the jth

time–bin for specified trial, odor and (gAch,gGABAB
) values. For a

specified value of gAch and gGABAB
we first calculated the

correlation between all pairs of odors (n = 21) to generate a

21621 matrix for each time point. Each element of this matrix

denoted the correlation between a 300–dimensional PN vector

corresponding to the ith odor and the PN vector corresponding to

the jth odor during a specific 50 ms time window. A similar set of

matrices was also constructed to determine the correlation

between the inputs to PNs ([14] employed similar measures to

analyze the response of mitral cells in the zebrafish olfactory bulb).

Next, we picked all pairs of odors separated by 5 units (similar

odors are defined by |i-j| = 5, where i and j are the matrix indices).

The value of the correlation coefficient was averaged across all

such pairs of similar odors for different values of gAch and gGABAB
.

We also calculated the correlation between dissimilar odors (odor

pairs with |i-j| = 40).

We then evaluated the correlation between multiple trials

(n = 10) of the same odor. For each set of (gAch,gGABAB
) values we

generated a sequence of 10610 matrices denoting the correlation
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between PN vectors corresponding to different trials of the same

odor. We then averaged the value of the correlation coefficient

across all trials.

For each (gAch,gGABAB
) pair we determined the mean correla-

tion coefficient between similar odors by averaging the correlation

coefficients over the duration of the odor presentation. This

provided us with a matrix of values Codors. Similarly, we calculated

a matrix for the mean correlation between multiple trials of the

same odor Ctrials. We then obtained the optimal value of gAch and

gGABAB
to minimize the correlation between similar odors while

maximizing the correlation between multiple trials of the same

odor by finding the location of the maximum value of the matrix,

Ctrials+(12Codors). The use of correlation coefficient over the

Euclidean distance is preferred for this analysis as the correlation

coefficient is already normalized between 21 and 1.

We performed the clustering analysis using the Matlab Statistics

Toolbox. To cluster odor representations we first defined a

distance between the spatiotemporal patterns generated in

response to two odor stimulations. The two responses (i and j)

could be the outcome of either different odors or different trials of

the same odor. The distance between i and j was given by

dij = 12cij, where cij is the mean (averaged over the duration of the

odor stimulus) correlation coefficient between the two response i

and j. The greater the correlation (cij), the smaller the distance

between representations (dij). Once the distance between every pair

was calculated we sought to cluster the responses into two groups

for each value of lateral excitation and slow inhibition. Since we

know the identity of the odor that generated a particular response

we could easily determine whether the response was classified

accurately. The hierarchical classification algorithm (the ‘linkage’

function in Matlab) links pairs of proximate objects (based on the

correlation distance defined above) into binary clusters that are

then grouped together recursively to generate larger clusters until a

hierarchical tree can be constructed. We then divided the odor

representations into two classes by cutting the hierarchical tree at a

level such that exactly two clusters were generated. Each of these

clusters (say cluster 1 and cluster 2) was then assigned to one of the

odors (say odor A or odor B respectively). We then determined the

number of odor representations that were misclassified (Nerr1). We

then switched the assignment (cluster 2 was assigned to odor A and

cluster 1 was assigned to odor B). The number of errors (Nerr2) was

computed again. The actual number of errors was then defined as

Nerr = min(Nerr1, Nerr2). The error proportion Nerr/Ntotal, where Ntotal is

the total number of odor representations is shown in Figure 7. The

chance level is 0.5.
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