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Abstract

We discuss methods for fast spatiotemporal smoothing of calcium signals in dendritic trees, given single-trial, spatially
localized imaging data obtained via multi-photon microscopy. By analyzing the dynamics of calcium binding to probe
molecules and the effects of the imaging procedure, we show that calcium concentration can be estimated up to an affine
transformation, i.e., an additive and multiplicative constant. To obtain a full spatiotemporal estimate, we model calcium
dynamics within the cell using a functional approach. The evolution of calcium concentration is represented through a
smaller set of hidden variables that incorporate fast transients due to backpropagating action potentials (bAPs), or other
forms of stimulation. Because of the resulting state space structure, inference can be done in linear time using forward-
backward maximum-a-posteriori methods. Non-negativity constraints on the calcium concentration can also be
incorporated using a log-barrier method that does not affect the computational scaling. Moreover, by exploiting the
neuronal tree structure we show that the cost of the algorithm is also linear in the size of the dendritic tree, making the
approach applicable to arbitrarily large trees. We apply this algorithm to data obtained from hippocampal CA1 pyramidal
cells with experimentally evoked bAPs, some of which were paired with excitatory postsynaptic potentials (EPSPs). The
algorithm recovers the timing of the bAPs and provides an estimate of the induced calcium transient throughout the tree.
The proposed methods could be used to further understand the interplay between bAPs and EPSPs in synaptic strength
modification. More generally, this approach allows us to infer the concentration on intracellular calcium across the dendritic
tree from noisy observations at a discrete set of points in space.
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Introduction

The problem of understanding the mechanisms that govern the

change in strength of a synapse remains a key problem in cellular

neuroscience. Fluorescence microscopy provides a way to examine

aspects of the structure and specifically the function of living cells

that are inaccessible to direct electrical recording. The experi-

menter performs optical recordings after delivering fluorescent

probe molecules that translate a biological or biochemical signal

into an optical output (for reviews see [1,2]). For instance, calcium

indicators are such fluorescent probes that, upon binding calcium

ions, change the amount of emitted light, which can be measured

with a photo detector.

The development of fast scanning multi-photon microscopy

techniques has revealed that intracellular calcium concentrations

play an important role in the interplay between backpropagating

action potentials (bAPs) and excitatory post-synaptic potentials

(EPSPs) that mediate synaptic changes through spike-timing

dependent plasticity (STDP). However, the available experimental

techniques still lead to noisy and spatiotemporally-subsampled

observations of the true underlying calcium signals. Therefore we

must use statistical methods to infer the details of the calcium

transients from observed data. However, optimal spatiotemporal

smoothing of the calcium profile on a dendritic tree given localized

noisy measurements remains a difficult computational problem

due to the high dimensionality (in terms of number of

compartments) and complex structure of dendritic trees.

In this paper we present a general methodology for fast spatio-

temporal smoothing of calcium signals on dendritic trees, based on

single-trial experiments. We take a functional approach according

to which the evolution of calcium concentration on the whole tree

is determined from a smaller set of hidden variables. These govern

the temporal dynamics of the calcium bound probe molecules, at

small but overlapping regions of the tree, and incorporate possible

concentration ‘‘bumps’’ due to bAPs, EPSPs or external stimula-

tion. These bumps in the hidden states are in general rapidly

increasing and slowly decreasing, and model the corresponding

spatially localized bumps in probe molecule concentration due to

rapid calcium transients. The calcium measurements are then

expressed as linear noisy measurements of the hidden variables.

PLoS Computational Biology | www.ploscompbiol.org 1 June 2012 | Volume 8 | Issue 6 | e1002569



Our problem then reduces to the maximum a-posteriori space-

time estimation of these hidden states. Using a standard state-

space approach we formulate our problem as one of optimization

that can be efficiently solved if the state-transition and measure-

ment-noise distributions are log-concave in the hidden states. In

this case the problem can be solved with a cost that scales linearly

with T (where T is the number of timesteps over which we would

like to infer the underlying signal) using standard convex

optimization techniques. These convex optimization approaches

usually scale cubically with the number of hidden states d, and are

thus inapplicable to arbitrarily large trees. However, we exploit the

localized structure that underlies our approach to show that the

complexity of the present estimation algorithm also scales linearly

with the size of the tree, leading to a total overall complexity that

scales linearly both with d and T .

Although related, the problem that we deal with in this paper is

different from the one of extracting spikes from mesoscopic

fluorescence recordings. In the latter, the data consists of images

taken at a low rate from a population of neurons, and the goal is to

extract a set of spike times. Several methods have been developed

for this problem, such as template matching [3], supervised

learning [4], particle filtering [5] and fast nonnegative deconvolu-

tion [6]. Our model is a spatiotemporal generalization of the one

presented in [6], with several important differences. Our data

consists of fast localized measurements at certain locations of the

dendritic tree. Instead of extracting spike times, our goal is to

smooth the data and estimate the full spatiotemporal profile of the

calcium concentration over the entire dendritic tree, including

locations at which no measurements were made. Moreover, the

spikes in our case correspond to fast calcium transients due to

bAPs, and apart from their timing, the estimation of their

amplitude is also of great importance.

We will consider data obtained by measurements of probe

fluorescence obtained with fast random-access multi-photon

(RAMP) microscopy [7] from a discrete set of recording sites

across a single cell. The light intensity emitted at each site is

related to the concentration of calcium-bound probe molecules,

and hence the underlying calcium concentration. It is important to

note that we can only estimate the signal up to an affine

transformation of the spatio-temporal calcium concentration. As

we discuss further below, estimation of the true calcium

concentration is possible, but would require further signal

processing that is affected by the various noise sources. Thus we

estimate the calcium concentration up to an affine transformation,

which still retains all the qualitative characteristics of the

spatiotemporal calcium transients. We demonstrate our algorithm

with examples on artificial and real data, and discuss some

different possible choices of the prior on the hidden states. This

prior can be chosen to reflect our a priori knowledge about the

location, amplitude, and smoothness of the calcium bumps.

Methods

Measurements of the light intensity emitted by calcium sensitive

dyes at discrete points in space and time can be used to infer the

evolving concentration of calcium across the dendritic tree. Here

we provide a description of an experimental situation suited for

this approach, and show how it leads to a statistical model that can

be used to estimate the calcium signal.

Outline of experiment
Although the statistical methods we present are general, we

demonstrate them in the context of a particular experiment. It has

been assumed that action potentials that backpropagate from the

soma into the dendritic tree play an important role in learning [8].

We examined how bAPs interact with synaptic input in pyramidal

cells from the CA1 region of the rat hippocampus in vitro, in

acutely dissected hippocampal brain slices. A schematic of the

stimulation protocol is shown in Fig. 1a: 500msec after the start of

the recording ten action potentials (APs) were initiated at the soma

of the pyramidal cell at 10 Hz. In some experiments, one of the 10

evoked APs is paired with a series of 3 synaptic EPSPs at 50 Hz.

These EPSPs were evoked starting at 50 ms before the selected

action potential by a bipolar extracellular stimulating electrode

placed at 20–50 mm from the dendrite of the recorded cell,

approximately 250–300 mm from the cell body layer.

Each evoked AP backpropagated into the dendritic tree. These

bAPs resulted in a transient increase in intracellular calcium

concentration, which has been previously shown to result from

increased conductance through voltage-dependent calcium chan-

nels [9,7]. The goal of the experiment was to study the effects of

the pairing of a bAP and EPSPs on the spatiotemporal structure of

Figure 1. Experimental protocol and simplified reaction
scheme. A: Experimental protocol. In the first protocol 10 spikes were
initiated at the soma 500 ms after the start of the recording with a
frequency of 10 Hz. In the second protocol, the last action potential was
preceded by a series of 3 EPSPs evoked at the dendrites, starting 50 ms
before the last spike at a frequency of 50 Hz. B: The relationship
between membrane potential and fluorescence. Changes in membrane
potential affect the rate of Ca2z influx into the cell via voltage gated
calcium channels. Intracellularly, ½Ca2z�i is sequestered by endogenous

Ca2z buffers, as well as by the optical probe, F. A change in the relative
concentration of F and FCa2z results in a measurable change in
fluorescence.
doi:10.1371/journal.pcbi.1002569.g001

Author Summary

Spatiotemporal dendritic imaging data, through fluores-
cent calcium indicators, opens an exciting window on
computations performed by single neurons at a subcellular
level. However, the analysis and interpretation of such data
is challenging. The measurements are noisy, intermittent in
space and/or time, and depend critically on the choice of
the fluorescent indicator. Consequently, analysis is typical-
ly limited to a specific branch of the dendritic tree,
neglects spatiotemporal correlations between neighboring
compartments, and requires averaging over multiple trials.
Here we derive a model for the spatiotemporal concen-
tration of calcium bound probe molecules. Using state-
space and optimization tools we derive a fast algorithm for
estimating the most likely concentration based on the
given measurements obtained from a single trial, and
argue that it can provide an estimate of the fast transients
of the underlying calcium concentration. In particular, our
algorithm estimates the timing and amplitude of calcium
transients due to backpropagating action potentials. It
provides a flexible approach to inferring the structure of
dendritic dynamics that are important in neural computa-
tion, but are inaccessible to direct measurement with
current experimental techniques.

Fast Calcium Smoothing in Dendritic Trees
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the calcium concentration across the dendritic tree. Each

recording lasted for approximately 6 sec.

Recordings were performed using 3D RAMP microscopy,

which uses acousto-optic deflectors (AODs) for high-speed

recording within a volume of live brain tissue [7]. Recording sites

were chosen by the user, and their location was fixed during a

recording session. A recording cycle took only 20 msec which

allowed a functional scan consisting of 30 arbitrarily positioned

recording sites to be made at a 1.6 kHz sampling rate.

Construction of the statistical model and the inference
algorithm

Calcium-bound probe molecules and the emitted light

signal. The concentration of calcium-bound probe molecules

can be used as a proxy for the concentration of calcium in the

system. A simplified reaction scheme describing calcium binding is

shown in Fig. 1b. As probe molecules bind to calcium quickly, we

assume that during fast transients, the change in concentration of

fluorophore bound to calcium (½FCa2z�) is proportional to the

calcium concentration ([ Ca2z ]) times the concentration of free

fluorophore at this location. This relationship holds as long as

probe molecules are not saturated with calcium. Our optical

probe, Oregon Green BAPTA-1, has a high affinity to calcium,

due to its fast binding rate, a, and slow unbinding rate, b, leading

to decay rates on the order of 0:5sec. As a result, the fluorescence

response from a fast voltage transient, like that of a bAP or an

EPSP, rises effectively instantaneously, and decays slowly [10,11].

Thus the fluorescent signal provides a temporally filtered

representation of the underlying intracellular calcium concentra-

tion. This complicates the interpretation of the recordings. Our

goal will be to reconstruct the spatial and temporal structure of

bound probe molecule dynamics. We therefore first describe how

the emitted light intensity is related to the calcium concentration at

a location within the cell.

The light intensity emitted at location x at time t, Ix,t, is directly

related to the concentrations of bound probe molecules by

Ix,t~K1(Rf ½FCa2z�x,tz½F�x,t)zK2,

where ½FCa2z�x,t and ½F�x,t are the concentration of bound and free

probe molecules respectively, at spatial location x and time t. The

scalar Rf represents the relative fluorescence of the bound

fluorophore to free fluorophore (Rf ~9 for the dye used here

[12]). The constants K1 and K2 represent the light intensity of free

probe molecules and autofluorescence, respectively.

Assuming that probe molecules are conserved locally, i.e.,

½F�x,baseline~½F�x,tz½FCa2z�x,t, we obtain

Ix,t~k1½FCa2z�x,tzk2,x ð1Þ

where k1~(Rf {1)K1 and k2,x~K1½F�x,baselinezK2. Therefore

fluorescence, Ix,t, is affinely related to the concentration of

calcium-bound probe molecules when these are not saturated.

To simplify our analysis we assume that Eq. (1) is deterministic and

that all the noise in our model comes from the recording

procedure, which will be described below. By defining the baseline

fluorescence at location x as Ix,baseline~k2,x, we have that

Ix,t{Ix,baseline!½FCa2z�x,t.

The signal of interest. The fast calcium signals in the tree,

in our case, are due to a bAP that results in a transient increase in

the concentration of bound probe molecules. High affinity calcium

dyes, such as the Oregon Green BAPTA-1 (OGB-1) used here,

bind calcium with a very fast onset and also have a much slower

dissociation rate. Neglecting spatial correlations and diffusion

terms, we can model the bound probe molecule dynamics as

d

dt
½FCa2z�x,t~{

½FCa2z�x,t

t
zJx,tnx,t: ð2Þ

Here t is the time constant that determines the rate at which probe

fluorescence molecules unbind from calcium. The term nx,t

represents the times at which the sequence of bAPs reaches the

location x and can in this case be written as the sum

nx,t~
P

k d(t{tk,x) of Dirac delta functions, where tk,x represents

the time at which the k-th bAP reaches location x. We will

generalize this assumption below. The k-th bAP at location x
results in an instantaneous jump of size Jx,tk,x

in bound probe

molecule concentration, followed by an exponential decay to a

baseline concentration at rate t. For a high affinity dye a fast

calcium influx leads to a ½FCa2z� transient with rapid onset.

Moreover, from the reaction scheme of Fig. 1b the amplitude of

this transient depends also on the baseline concentration Fx,baseline

of the optical probe at each location x.

This baseline probe molecule concentration typically varies

across the cell and is difficult to control a priori. For instance, probe

molecule concentrations are typically higher in the apical dendrite

and near the soma, resulting in the higher luminosity of these

regions. This variation may be due to nonuniform concentration

of basal calcium across the cell. Also contributing may be

limitations of the experimental setup, such as non-uniform laser

illumination across the microscope’s field of view or non-uniform

volume of fluorophore excitation, due to thin processes that extend

beyond the focal volume. Moreover, recording sites are sometimes

placed slightly off a dendrite. To account for such variability in

baseline fluorescence, we assume that such non-uniformities are

primarily due to the experimental limitations which affect the

number of probe molecules being excited. As a result, and based

on the dynamics of calcium binding, we expect that during fast

transients D(½FCa2z�x,t)!aD(½Ca2z�x,t)½F�x,baseline, where a is the

binding rate of our optical probe. Implicit in this relation is the

assumption that the concentration of probe molecules is away

from saturation, and that the fast calcium transient is mainly due

to the bAP. Therefore, Eq. (2) can be rewritten as

d

dt
½FCa2z�x,t~{

½FCa2z�x,t

t
zFx,baselineAx,tnx,t, ð3Þ

where Ax,t represents (up to a multiplicative constant) the

amplitude of the calcium transient at location x and time t.
Based on the above discussion, we make an important

conclusion: The relative change in bound probe molecules is

reflective of the transients in calcium concentration. Hence, by Eq.

(1), we need to estimate relative changes in light intensity at a given

location, as a proxy for transients in calcium concentration.

Dividing Eq. (3) by Fx,baseline we get

d

dt
Ux,t~{

Ux,t

t
zAx,tnx,t, ð4Þ

where Ux,t~½FCa2z�x,t=Fx,baseline. As discussed above Fx,baseline

cannot be easily estimated. However, from our measurements we

have access to Ix,baseline~K1½F �x,baselinezK2. To be able to

compare the calcium concentration at different locations of the

tree, we need that approximately ½F �x,baseline!Ix,baseline for all the

locations in the tree. This assumption is expected to hold if

Fast Calcium Smoothing in Dendritic Trees
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K2=K1%½F �x,baseline for all locations, which is expected since the

autofluorescence signal is in general weak for high affinity calcium

indicators. Therefore from now on we assume that the relative

change in bound probe molecules Ux,t is approximately propor-

tional to the DF=F-transformed emitted light intensity, with a

constant of proportionality that is the same across the tree:

Ux,t!
Ix,t{Ix,baseline

Ix,baseline

: ~(DF=F)(Ix,t): ð5Þ

Note that this resulting DF=F transformation is a standard

heuristic used in the analysis of fluorescent recordings [9,8].

The recorded signal. The signal, Ix,t, is weak, and is

measured using photomultiplier tubes (PMTs), sensitive light

detectors which contain several amplifying stages. Briefly, an

electron entering one stage will produce a random number of

outgoing electrons. If i is the number of incoming electrons at a

stage, the number of outgoing electrons, pg(i), is random. The

mean of pg(1) is the gain of the stage. For instance, pg(i) could be a

sum of i numbers drawn independently from a Poisson distribution

with mean g [13]. The output of an eight stage PMT is then an

eight-fold composition of pg with itself. The noise in the output of

the PMT can therefore be highly non-Gaussian, with a

distribution that is determined by the strength of the signal Ix,t.

In particular, at lower light levels Vx,t approximately follows an

exponential distribution (data not shown). At higher light levels,

the distribution is approximately Gaussian [14,13]. The photo-

multiplier statistics can be fit with a gamma distribution with

activity dependent parameters:

Vx,t*C(k(Ix,t),h(Ix,t))

k(Ix,t)h(Ix,t)~Ix,t:
ð6Þ

When we fit our data to this model we obtained

k(I)~0:163I2z7:56Iz0:313 (data not shown). Note however

that the signal of interest is not Ix,t itself but its relative change (see

Eq. (5)). If Ix,baseline is known, then the scaled random variable

Vx,t=Ix,baseline is distributed according to C(k(Ix,t),h(Ix,t)=
Ix,baseline). In that case the variance of the relative change in light

intensity remains approximately constant with small changes in Ix,t

relative to Ix,baseline. The skewness and kurtosis of the distribution

are given by 2=
ffiffiffiffiffiffiffiffiffi
k(I)

p
and 6=k(I) respectively. As k(I) becomes

large, they become very small and the resulting distribution is

approximately Gaussian [15]. This happens at locations with

moderate or high baseline activity. As a result we first assume that

the signal is sufficiently strong and the noise is Gaussian, so that

Vx,t~Ix,tzgx for a Gaussian random variable g. We relax this

assumption subsequently. However, we always assume that the

expected value of the measured voltage is proportional to the true

light intensity SVx,tT!Ix,t.

A general statistical model for the spatiotemporal

calcium signal. Using Eq. (4) for the dynamics of relative

bound probe molecules in the presence of incoming calcium

spikes, we have that

Ux,t~Ux(0)e{t
tz
Xn

k~1

Ax,tk,x
Uk(t)

where Uk(t)~e{
t{tk,x

t H(t{tk,x),

ð7Þ

where H(:) denotes the Heaviside function and n denotes the

number of spikes. If the time at which a bAP is initiated is known,

then the only parameters that need to be estimated are the

amplitudes Ak,tk,x
. We can assume that a bAP propagates through

the tree instantaneously, so that tk,x~tk for all locations. Under

this assumption amplitudes can be easily estimated using

maximum likelihood techniques, with the added constraints that

the inferred amplitudes are nonnegative. We will fully describe

these techniques in a more general setup below.

More generally, the timing of the APs may not be known or not

the same for all the locations in the tree and must be inferred from

the bound probe molecule trace. This is a challenging problem in

itself [6]. Moreover, the above approach neglects spatial correla-

tions caused from the backpropapation and possible calcium

diffusion mechanisms. As a result, the calcium profile at each

location is treated independently and cannot be used to make

predictions for neighboring, possibly non-imaged locations. Instead

of analyzing the recorded signals from each location separately we

would like to take advantage of the fact that the recording from one

location may provide information about the signal at neighboring

locations. We next describe a statistical approach that allows us to

perform spatial and temporal smoothing concurrently.

To address the issue of spatial correlations, we model the

relative concentration of bound probe molecules at location x of

the dendritic tree at time t as a linear combination of spatial

functions whose weights are allowed to change with time,

U(x,t)~
Xd

i~1

wi(t)fi(x): ð8Þ

The spatial functions fi(x) are bump functions which are smooth,

nonnegative and local (fi(x)~0 for x further than some distance

from the ‘‘center point’’ xi of the i-th bump). These functions serve

to spatially smooth the inferred signal, since U(x,t) cannot vary

more quickly in space than fi(x); by changing the number of

bumps d and their smoothness we can modify the overall spatial

smoothness of U(x,t). There are a number of possible interpo-

lation approaches, and we chose to use B-splines [16]. Other

choices include gaussian bumps or diffusion kernels [17] that

preserve continuous differentiability at the tree branch points.

However, the exact choice of basis functions did not considerably

affect our results, as long as these functions are smooth and are

placed approximately uniformly along the tree.

As the spline basis functions are typically defined on a line, here

we use a suitable generalization to trees. Splines are defined on

subdomains of the tree defined by the cell shape. This tree

therefore needs to be partitioned. We chose to define the partition

using the topological distance from the soma, i.e., the distance

from the soma along the tree. Thus all points that lie within a

given distance from the center of a spline function belong to the

same subdomain. Picking this distance is important because a very

large/small value can lead to significant under/over-fitting of the

data. In the Results section where we apply our algorithm to

experimental data, we propose a data-driven method for

determining this parameter.

We discretize the cell into N compartments so that the N-

dimensional state vector of normalized bound probe molecule

concentration at each location on the cell can be written in matrix-

vector form as

U(t)~Bw(t), ð9Þ

where B is an N|d matrix whose i-th column is a vector obtained

from the spatial discretization of fi, and w(t) is the column vector

of the activation variables at time t, and has length d.

Fast Calcium Smoothing in Dendritic Trees
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We assume the same temporal dynamics as in Eq. (2), but now for

the weight variables w, which are assumed to evolve according to

d

dt
wi(t)~{

wi(t)

t
zAi,tni,t: ð10Þ

Because of linearity, t has the same interpretation as the time

constant that determines the rate at which probe fluorescence

molecules unbind from calcium, and ni,t,Ai,t have similar interpre-

tations as before. After discretizing time, and introducing c~

(1{
dt

t
), Eq. (10) can be approximated by

wi(tzdt)~cwi(t)zAi(t)ni(t)dt: ð11Þ

In this discretized representation ni(t)~1=dt when t~tk, and

ni(t)~0 otherwise. In the general case, where the timing of the

spikes is unknown, we replace the product of Ai,tni,t with a

nonnegative random variable si(t).

dwi(t)

dt
~{

1

t
wi(t)zsi(t), ð12Þ

This model is a spatiotemporal generalization of that discussed in [6].

There are two essential differences between the model described

here by Eqs. (8)–(12) and the motivating model described in Eq.

(7): estimation of spike times, and incorporation of spatial

correlations. In the present model the input, si(t), is not assumed

to be a sum of delta functions with unknown weights occurring at

known times. Moreover, as we will see below, the inference will be

done at once for the whole tree and not individually and

independently for each location. Thus, this statistical approach is

more general since the algorithm is capable of finding spike times,

and more biologically accurate, since it allows for spatial

correlations for nearby compartments.

We use a Bayesian approach, and start by specifying a prior

distribution on si(t), and hence construct a prior distribution on

the hidden weights w(t) (and consequently on U (t)). For example,

if we know that calcium influx is small at certain times t or at

certain locations i, then we can choose the prior variance and

mean of the corresponding si(t) to be small. Local correlations in

si(t) may also be incorporated to increase the smoothness of the

state vector w. The prior on si can also be interpreted as an

autoregressive prior on wi(t) which serves to temporally smooth

the inferred signal, on a scale set by the time constant t. This time

constant t could also depend on the spatial variable i (modeling

different Ca2z buffer constants at different locations in the tree)

without significantly changing the presentation below.

Now taking into account the dynamics of probe molecules (see

Eqs. (1),(4) and (5)), the emitted light intensity can be written as

I(t)~Fb(kU(t)z1N ), ð13Þ

where Fb is a diagonal matrix where the non-zero entries denote

the probe molecule baseline concentration, 1N is a column vector

of ones with length N and k is a scalar constant, related to the

proportionality constant in Eq. (5), and is assumed to be constant

throughout the tree. Note that our signal of interest U(t) and the

emitted light intensity I(t) are related through an affine

transformation.

We have access to U(x,t) through spatially localized noisy

measurements. In each measurement, we image a single

compartment of the tree and at each time t, M such

measurements are performed. Let Rt be a M|N matrix where

each row has one entry equal to one, corresponding to the

compartment being imaged, and the rest equal to zero. Assuming

additive noise, the measurements can be expressed as

y(t)~RtFb(kU(t)z1N )zEE(t), ð14Þ

The noise EE is assumed to be spatiotemporally uncorrelated,

although this could be generalized to the case that the covariance

matrix of EE has a local structure. Note that M, the number of

measurements per time step, can easily change with time. The

matrix Rt can represent more general linear measurements.

Initially we assume noise is additive for notational simplicity. We

show below that more general forms of noise can be modeled

within this framework.

After discretizing time, Eqs. (8) and Eq. (14), correspond to the

state-space model

w(t) ~cw(t{dt)zs(t)

y(t) ~BtwtzRtf bzEE(t),
ð15Þ

where c~1{dt=t and we abbreviated Bt~kRtFbB (with

dimensions M|d ) and f b~Fb1N . This completes the specifica-

tion of the model.

We emphasize again that Eq. (14) provides a biophysically

inspired statistical model. As earlier, we aim to approximate a

signal proportional to the bound calcium concentration across the

dendritic tree. Note that certain parameters in the model such as

the time constant t do have direct physical interpretations

Computing and optimizing the log-posterior. We would

like to compute the maximum a-posteriori (MAP) estimate of the

relative spatiotemporal concentration of calcium-bound probe

molecules U , given the sequence of observations Y . Here

U~½U(1); U(2); . . . ; U(T)� and Y~½Y(1); Y(2); . . . ; Y(T)� de-

note the vectors with the underlying calcium concentrations and

measured light intensity at all times, and have lengths NT , MT
respectively. From Eq. (9) it follows that

argmax
U

p(U DY)~B argmax
W

p(W DY):

Thus we will focus on finding the MAP estimate of the activation

profile WMAP, where W is a vector of length dT defined similarly

to U and Y . Using Bayes rule and the state-space nature of the

model we can compute the log-posterior directly [18,19]:

log p(W jY)~ log p(Y jW)z log p(W)zconst:

~
XT

t~1

log p(y(t)jw(t))z log p(w(1))

z
XT

t~2

log p(w(t)jw(t{1))zconst:,

ð16Þ

where the constant does not depend on the W and thus can be

ignored. The log-posterior log p(W DY), can be maximized

efficiently if this function is concave in W . Since log p(W DY) is

a sum of terms of the form log p(y(t)Dw(t)) and

log p(w(t)Dw(t{1)), it is sufficient that these observation and

transition densities be log-concave, i.e., that log p(EE(t)) and

log p(s(t)) be concave in EE and s respectively. This means that

other log-concave noise distributions can be used in our

framework, not just additive Gaussian noise.

Fast Calcium Smoothing in Dendritic Trees
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Additionally, since the calcium concentration is nonnegative, we

have to ensure that all the activation variables, as well as the

bumps s(t) are nonnegative. These additional constraints can be

expressed w(1)§0,w(t){cw(t{1)§0,t~2, . . . ,T , where the

inequalities are in vector form, i.e., they have to hold for all the

entries. Therefore our optimization problem can be written as

ŴWMAP~ arg max
W :w(1)§0,w(t){cw(t{1)§0

log p(Y DW)z log p(W)f g: ð17Þ

In the Supporting Information we describe the technical details

of a fast method for the solution of Eq. (17). Briefly, we construct a

log-barrier method for the incorporation of the non-negativity

constraints [20]. In general, barrier methods are iterative

procedures that converge within only a few iterations, but at cost

per iteration O(d3T) in time and O(d2T) memory requirement.

The so called ‘‘big O’’ notation for the time cost O(d3T) is used to

denote that every iteration requires a number of operations that

scales linearly with the length of the experiment T and cubically

with the size of the imaged tree d . We see that for large trees this

cost can be prohibitive. However, by exploiting the tree-structure

and the spatially localized nature of the measurements, we show

that the cost per iteration can be dropped to O(dT) in terms of

both time and space, making our method applicable to arbitrary

large dendritic trees. Details can be found in the Supporting

Information.

A particular example
We discuss a particular example of choices for the prior and

noise likelihoods that are realistic and also ensure log-concavity. As

a first example, we consider the case where the DF=F-normalized

measurements Y(t) follow a Gaussian distribution with variance

s2. The simulated calcium bumps have deterministic fixed

amplitude A. We have

log p(Y DW)!{
1

2s2

XT

t~1

EY(t){Btw(t)E2~{
1

2s2
EY{QWE2, ð18Þ

with Q~diag(B1, . . . ,BT ), the measurement matrix at all times.

The imaging locations at each time can change.

The prior on W depends on the temporal statistics of calcium

activation and its amplitude at different locations of the dendritic

tree. For simplicity, the hidden state bumps are assumed to be

independent in time and space. Note that this assumption of

independence applies to the hidden states. The inferred concen-

trations of bound calcium are obtained from the hidden states by

interpolation using splines. As a result, the concentrations at

neighboring compartments on the tree will be significantly

correlated. The extent of these correlations is determined by the

structure of the splines used in the interpolation. Nevertheless, the

assumption of independence is a simplification, since a bAP is

expected to increase the intracellular calcium concentration

throughout the tree at approximately the same time. However,

this assumption allows for a fast implementation of our algorithm,

and in practice does not affect its performance.

A reasonable intuitive choice for the bump prior would be a

marked point process [21], i.e., a sequence of pairs of spike times

and amplitudes. However, since the latter is not in general log-

concave, we can approximate it (as in [6] for the case of a Poisson

process) with an exponential distribution with a desirable rate. The

exponential distribution corresponds to a sparse, nonnegative

prior, that also retains the desired property of log-concavity. The

prior log p(W) has the initial value w(1) chosen to be an

exponential with parameter l. For the state transitions, we let the

differences w(t){cw(t{1) follow an exponential distribution with

mean r(t)AD, where A is the amplitude of the bump (assumed

constant here), D is the time discretization step dt and r(t) is a

vector that depends on the possibly time-varying, rate. Therefore,

p(W) ~p(w(1)) P
T

t~2
p(w(t)jw(t{1))

~ld exp ({l1T w(1)) P
T

t~2
(AD)dPr(t)
� �{1

exp {(AD){1PPT
t~2

(w(t){cw(t{1))T r(t):{1

� �
,

ð19Þ

where Pr (t) denotes the product of all the entries of the vector

r(t), and r(t):{1, denotes the vector obtained by inverting each

entry of r(t). Taking the logarithm and removing the additive

terms that do not depend on W we get,

log (p(W))!{l1T w(1){(AD){1PPPT
t~2

(w(t){cw(t{1))T r(t):{1

!{l1T w(1){(AD){1(DW)T (rp:
{1),

ð20Þ

with rp~½r(2); . . . ; r(T)�, and D is an appropriate matrix such that

DW~½w(2){cw(1), . . . ,w(T){cw(T{1)�.
Putting everything together we seek the MAP estimate

ŴMAP~

argmax
w(1)§0,DW§0

{
1

2s2
EY{QWE2{l1T w(1){(AD){1(DW)T (rp:

{1)

� �
:

ð21Þ

We can find this estimate efficiently using the method described in

the Supporting Information. Note that the total number of

parameters to be estimated is dT , where d is the number of hidden

weights wi, and T is the number of timesteps.

Results

We demonstrate our approach using data generated by

numerically simulating calcium transients on a dendritic tree,

and then continue with the analysis of experimental data.

Application to simulated data on a real dendritic tree
We apply the developed methodology on a reconstructed

dendritic tree from a rat CA1 pyramidal cell. The tree was

discretized in N~1500 compartments and d~164 hidden

variables and spline functions were used to fit its dynamics. We

simulated a series of three bAPs that propagate instantaneously and

unselectively throughout the tree with amplitude that decreases

exponentially with distance from soma. The prior on the amplitude

of the hidden states due to the bAP was estimated from the transient

pattern induced from the bAP, with methods that are explained

below. We assumed that the calcium-bound probe molecule

concentration relaxes with a single time constant that is estimated

from the data and that the noise likelihood is known. For the noise

likelihood we used a gamma distribution with parameters that

depended on the true underlying value according to the statistics of

the PMT used in the experiment (see Eq. (6)). At every time step 200

randomly chosen points are measured.

Fig. 2 shows the true bound probe-molecules profile, the

observed measurements, the inferred weights and transients, and

the resulting estimated profile and error (U{ÛU). The algorithm

Fast Calcium Smoothing in Dendritic Trees
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correctly predicts the timing of the bAPs and estimates the true

bound probe molecules concentration. Fig. 3 shows the amplitude

of the second transient, the measurements right after the spike

occurrence, the estimated transients and error. As discussed

earlier, these transients estimate up to an affine transformation the

underlying calcium transients. A close inspection reveals that in

certain cases the algorithm underestimates the transient amplitude.

The reason for this is that our algorithm acts as a shrinkage

estimator due to the exponential prior [22]. The prior in our

analysis is included to provide more robust estimates in the

presence of high noise. Because of the bias-variance tradeoff [23] a

robust estimator (i.e., with low variance) can be biased in the

presence of high noise, as is in our case. If no prior is incorporated,

then our estimate can in principle be unbiased (e.g., the least

squares estimator in the presence of Gaussian noise), but it would

also have a large variance (data not shown). This leads to over-

fitting and is undesirable since the same underlying calcium

concentration can lead to very different estimates, due to different

noise realizations.

Sample code to generate Figs. 2 and 3 as well as a movie that

shows the spatiotemporal profile of the calcium in the tree can

be found at http://www.stat.columbia.edu/,eftychios/Home/

Calcium_Smoothing.html

We also tested the effect of the minimum topological distance

between imaged positions. We used the same setup as above, but

imaged the signal at 100 locations at every time step.

Figure 2. True and estimated probe molecule concentration and inferred transients. A: True calcium traces of a simulated experiment.
Three bAPs were simulated at timesteps 20, 50 and 66. B: Measurement locations and values at each timestep. The dark pixels correspond to
locations that were not measured at the specific timestep. C: Inferred weights of the hidden states w (top) D: Inferred transients of the hidden states s

(bottom). E: Estimated calcium traces for all compartments. F: Error between estimated and true profile DU{ÛU D. The algorithm correctly infers the
timing of the bAPs and estimates their amplitude (see also Fig. 3). The colorbars in the panels A and E are the same.
doi:10.1371/journal.pcbi.1002569.g002
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Additionally, at each repetition we imposed a minimal topolog-

ical distance between the imaged locations. Since the units are

arbitrary here the exact results are not reported. However, for

small values of the minimal distance the error grows slowly with

the minimal separation between the imaged locations. Large

errors are observed when the minimal distance between imaged

locations becomes comparable or larger than the distance

between centers of the interpolating spline functions. In the next

section we present an adaptive method of determining the

smoothing spline basis based on the locations of the measured

locations.

Application to real data
The algorithm was tested on calcium imaging data from a CA1

pyramidal neuron obtained with a fast three dimensional optical

scanner. The details of the scanner are given in [7]. The

reconstructed neuron consisted of N~3885 compartments.

Recordings were made at 97 different locations in 3 different

sessions. Every location was imaged at approximately every

0.6 msec. For simplicity, the dendrites that did not contain any

recording locations were removed from the tree graph (using the

TREES toolbox [24]) when analyzing the data. The resulting

truncated tree and the measurement locations are shown in Fig. 4.

The three subtrees A,B,C are shown in panels B,C,D of Fig. 4

respectively. Subtree A corresponds to the imaging session on the

dendritic tuft of the neuron. Subtree B corresponds to the

recording sites in the apical dendrites of the neurons and finally

subtree C corresponds to the recording sites in the basal dendrites

and around the soma.

For each pair of imaging data we estimated one set of model

parameters, so that the results of the imaging algorithm on the two

different protocols could be compared. The measured data was

normalized using the DF=F transformation (see Eq. (5)) before

being analyzed. The data was analyzed with the same set of model

parameters for the two different experimental protocols and

separately on the three different subtrees obtained from the three

different imaging sessions.

Estimation of the model parameters. Our model has

several parameters that have to be estimated before we apply our

smoothing algorithm. These are the baseline probe molecules

concentration, the time constant of calcium unbinding and the

noise statistics. Below we describe simple heuristic methods to

estimate the model parameters. In practice more sophisticated and

powerful methods can be developed such as Monte Carlo

estimation methods (e.g. via the Expectation Maximization

algorithm) [25]. However, we saw that the results of our algorithm

are qualitatively robust with respect to the various parameter

values. We also discuss how we chose the appropriate spline

matrix for each subtree and the prior on the transient amplitudes.

Baseline probe molecule concentration. The baseline

fluorophore concentration f b was estimated by taking the time

average of the measurements over the first 500msec on all the

Figure 3. True and estimated amplitude of the second transient along the tree. Estimated transient due to the second bAP in the simulated
experiment. A: True bound probe molecule transients. The transient occurs in the whole tree with an amplitude that decreases with the distance from
the soma. B: Noisy measurements and their locations at the time of the bAP. C: Estimated transients. D: Ampltiude error (true - estimated). The
amplitude is mostly underestimated due to the bias-variance trade-off. The colorbars for the first and third columns are the same.
doi:10.1371/journal.pcbi.1002569.g003
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imaged locations. This corresponds to the maximum likelihood

estimate of the baseline activity both under Gaussian and under

gamma measurement noise.

Time constant estimation. Next, the decay constant of the

recorded signal, t, through its discretized version c, was estimated:

First the measured calcium traces were passed through a low-pass,

moving average filter (with 60msec width) to eliminate the high

frequency noise effects (shot noise). After that, the discretized time

constant was estimated by fitting a first order autoregressive model

to the filtered data which was first normalized to have zero baseline.

c ~ argmin
a

PPM
i~1

PPT{1

t~T0

(yf (i,tz1){fb(i){a(yf (i,t){fb(i)))2

( )

~

PPM
i~1

PPT{1
t~T0

(yf (i,t){fb(i))(yf (i,tz1){fb(i))PP
i

PPT
t~T0

(yf (i,t){fb(i))2
,

ð22Þ

where yf is the filtered measured calcium trace, fb(i) is the baseline

concentration at location i, and M is the number of recording

locations. T0 was chosen T0~1450msec, i.e., shortly after the last

bAP. This estimator gave c~0:999, or t~620msec. The time

constant was estimated separately for each subtree and the estimates

were approximately equal.

Spline matrix and amplitude prior. The state transition

(amplitude) prior was considered to be an exponential distribution,

as discussed in the Methods section. There a marked point process

with rate r, mean amplitude A, and discretized in time at

resolution D can be approximated by a log-concave exponential

distribution with parameter l~(DAr){1. Therefore we need to

determine the amplitude of the hidden states at each location and

the rate which is time varying. Note that in general the mean

amplitude can be time varying, but we approximate it as constant

with time. The B-spline matrix B and the amplitude of the bump

were estimated via an alternating procedure as follows: The basis

Figure 4. Tree and measurement locations without the non-imaged dendrites. A: Tree projected in the x-y plane and measurement
locations. Each compartment is also color-coded according to its distance from the soma. The different colors in the measurement locations
correspond to the different imaging sessions. Right: Detailed subtrees in three dimensions for the three different imaging sessions. B: Subtree A,
recording locations in the apical tuft. C: Subtree B, recording locations around the apical dendrites. D: Subtree C, recording locations around the soma
and basal dendrites. All the units are in mm. In all panels the purple electrodes point at the soma.
doi:10.1371/journal.pcbi.1002569.g004
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functions were third order polynomials whose centers were placed

uniformly on the tree, and the only parameter required for

determining the splines was the topological distance (i.e., number

of compartments), between two neighboring center points. The

choice of this distance is important since a large distance can lead

to a less flexible model, whereas a small one can cause over-fitting.

We picked the maximum distance that allows the model to fit the

estimated amplitude of the calcium bumps. Choosing a smaller

distance gives more degrees of freedom to the system and can

potentially lead to overfitting. Note that the prior amplitude

pertains to the hidden state vectors w and thus cannot be readily

estimated from the data. We first obtained a crude estimate of the

amplitude of the normalized calcium transient as

ay(i)~ max
t1§t2

(yf (t1,i){yf (t2,i)), t1,t2[½500,550�msec, ð23Þ

i.e., the maximum difference after the first bAP, measured in the

filtered traces. Then to determine the amplitude for the hidden

states w and the B-spline matrix we proceeded as follows: For any

topological distance d between two neighboring spline function

centers, a different basis matrix Bd was constructed and the prior

amplitude vector aw(d) on the state variables w was given by the

solution of the quadratic program

aw(d)~ argmin
x§0

EBdx{ayE, ð24Þ

This provided the non-negative amplitude parameters aw of the

exponential priors that can best approximate ay (the estimated

calcium transients) for the given topological distance d. If this

approximation had a relative error larger than 0.1, we decreased

the topological distance d and repeated the same procedure. The

actual used topological distance d̂d, the splines matrix B, and

amplitude prior parameters aw were picked as

d̂d ~ max d : EayE=EBdaw(d){ayE§10
	 


B ~Bd̂d

aw ~aw(d̂d),

ð25Þ

i.e., we picked the maximum distance, and hence the smaller

number of hidden variables, that allow for a satisfactory

interpolation of the estimated calcium transients from the hidden

state amplitude prior parameters. The rate r(t) of bumps was time

varying and equal for all the states, given by

r(t)D~

0:05, tv500

10, t[½500,1500�
9:95 exp ({(t{1500)=500)z0:05, tw1500:

8><
>: ð26Þ

The rate starts with a low value at the first 500msec since we do

not expect any spikes there. Then, it is set at the value 10 since we

expect 10 bAPs during the one-second excitation window. After

that, the rate decays smoothly back to the initial value. As we

explain further below, this smooth decay prevents the algorithm

from inferring a non-existent spike at 1500msec due to the

temporal discontinuity of the rate. Note that with this model, the

exact spike times are considered unknown and are also to be

estimated by the algorithm.

Noise statistics. Finally, the noise likelihood at each

measurement location was assumed to be independent and

Gaussian with zero mean, and variance estimated directly from

the measurement traces. To find the noise statistics we subtracted

the filtered traces yf from the DF=F-normalized data and then

fitted a Gaussian distribution on the residual. Although this is a

simplified approximation, in most of the cases this residual could

be fit satisfactorily with a zero mean Gaussian distribution (data

not shown).

Spatiotemporal smoothing of calcium-bound probe
molecules

Fig. 5 shows the measured data, and the inferred traces at all

measurement locations, for all three subtrees and the two different

experimental protocols. The first column shows the measured raw

data. The last two show the data and the inferred traces in the

DF=F domain, i.e., the input and output of the algorithm. Based

on the discussion of the Methods section these inferred traces are

an estimate of the calcium bound probe molecules up to an affine

transformation, and thus their transients are indicative of the

calcium transients. From Fig. 5 we see that the algorithm detects

the spikes in the window ½0:5,1:4�sec (visible especially in the last

column), and that the calcium concentration in general decays

with the distance from the soma (see the color bars in the right

column), a fact that has been reported in many studies (see e.g.

[26,27]). In the first column of Figs. 5B and 5C we observe that the

measured light intensity in some locations is significantly larger in

a few points than the rest. These points lie in the dendritic trunk

and also exhibit a larger baseline intensity. However, as seen from

the last column, spikes are detected in most of the measurement

locations, but not all of them, indicating the selective propagation

of the bAPs. The results can best be viewed in video format, where

the spatiotemporal probe molecule profile can be examined in the

whole tree, and not just in the recording sites. Such movies can be

found online at http://www.stat.columbia.edu/,eftychios/

Home/Calcium_Smoothing.html.

The first row (A) of Fig. 6 shows the detailed trace of the

normalized measurements and inferred normalized concentrations

for one point in subtree B (marked with a blue electrode in

Fig. 6C), for the full length of the experiment. Panels B,C and D

show the normalized measurements and inferred traces at one

location of the subtrees A,B and C respectively for the first

2 seconds of the experiment. These points are highlighted with a

blue electrode in the second and fourth columns. The 1st column

is for the ‘‘10 bAP protocol’’ and the 3rd for the ‘‘bAP+EPSP

protocol’’. The red dashed lines mark the timing of the stimulation

that invoked the action potentials. Apart from the significant

denoising, the algorithm predicts the timing of the bAPs and

provides an estimate for the amplitude of the transient due to the

bAP, relative to the baseline concentration at this location.

In some cases, there are also a few spikes detected outside the

½0:5,1:4�sec excitation window. The main reason for this is the

data is non stationary. The baseline concentration is different

before and after the excitation, with the latter being usually higher.

This can also be seen in Fig. 6A that shows the measured and

inferred traces over the whole course of the experiment. However,

in our algorithm, the baseline activity is kept constant, and is

estimated as the mean measured value at the first 500msec. As a

result, after the end of the excitation window the inferred trace

tends to relax to a lower value than the one suggested by the data.

This is prevented by the inferred spikes outside the excitation

window. Note that sometimes these spikes, although not experi-

mentally caused, are also suggested by the data. However, these

spikes have always small amplitude and are spatially isolated in the

sense that they are not inferred at multiple locations in the tree at

similar times (as can be seen in the movies online). Consequently,

Fast Calcium Smoothing in Dendritic Trees

PLoS Computational Biology | www.ploscompbiol.org 10 June 2012 | Volume 8 | Issue 6 | e1002569



they can be easily classified as ‘‘artificial’’ during post-processing of

the data.

A possible solution to prevent such spikes would be to set the

spike rate outside the excitation window to a very low value.

However this led to overfitting in the amplitude of the spikes in the

interval ½0:5,1:4�sec. More specifically, if outside spikes are

prohibited then the last spike at 1:4sec will be overestimated, so

that the inferred trace did not relax to the actual baseline value of

the model until the end of the experiment. Our method allows

(possibly spurious) spikes at other times as well, but is robust to the

length of the experiment in the sense that the amplitude of the

transients remained approximately constant, independent of the

length of the imaging data that was analyzed. Another possible

approach would be to model the baseline as a slow time varying

hidden variable and infer it together with the vector of the hidden

states W. However, this would significantly complicate our model,

Figure 5. Observed and smoothed data at all the imaged locations for both experimental protocols. For each subfigure: First column:
Raw data Vx,t (unnormalized). Second column: Raw data (DF=F) normalized (Vx,t{Ix,baseline)=Ix,baseline. Third column: Smoothed data at
measurement locations Ux,t , estimate of the relative concentration of calcium-bound probe molecules. Top row: 10 bAP protocol. Ten spikes were
applied at the neuron soma at times 500msec, . . . ,1400msec. Bottom row: 10 bAP+3 EPSP protocol. 3 additional EPSPs were applied at times
1350msec,1370msec and 1390msec. A: Subtree A (tuft), B: Subtree B (apical dendrites), C: Subtree C (soma and basal dendrites). The algorithm
smooths the data and provides an estimate of the underlying calcium concentration. Only the imaged locations are shown for comparison purposes.
The inferred spikes are visible from the discontinuities in the third column. Spikes are not inferred in all locations indicating the selective propagation
of calcium in the tree.
doi:10.1371/journal.pcbi.1002569.g005
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since the DF=F transformation would no longer be readily

applicable.

From Fig. 6 we also see that the amplitude of the last transient

in the bAP+EPSP protocol is larger than the corresponding one

for the bAP protocol, especially in the locations away from the

soma in the tuft (Fig. 6B). This is further investigated in the second

and fourth columns where the amplitude of the last transient is

plotted in the whole subtree for all subtrees and both experimental

protocols. This amplitude was computed by subtracting the

inferred calcium signal just before the last spike from the inferred

calcium signal 10msec after the last spike. From these two columns

of Fig. 6 we see that for the subtrees B and C, the amplitude of the

last transient is larger in the bAP+EPSP protocol than the control

case (bAP only). This supports the hypothesis that calcium plays an

important role in the interplay between backpropagating action

potentials (bAPs) and excitatory post-synaptic potentials (EPSPs)

that mediate synaptic strength changes.

As an additional test of the robustness of our results we

examined how removing measurements from selected locations

affects the inferred traces. In Fig. 7 we show the results for subtree

A under the bAP protocol, when omitting data from 3

measurement locations. These locations are indicated with the

colored electrodes in Fig. 7A and the inferred traces at these

locations are plotted with the same colors in Fig. 7B–D

respectively. For comparison purposes we also plot with blue the

inferred traces when all the data was considered from the

algorithm.

The results shown in Fig. 7 are intuitive: When the measure-

ment sites that are left out are located at points that fall between

locations from which measurements are available (red and green

electrodes, Fig. 7B–C), the algorithm can approximate the bound

probe molecule traces. The prior we used causes the newly

inferred traces to have generally smaller amplitude. The event

times are again inferred and are in good alignment with the event

Figure 6. Detailed probe molecule traces and inferred transients. Detailed probe molecule traces for one location of each subtree (marked
with the blue electrodes on the right columns) and profile of the amplitude of the last transient inferred in the whole subtree. A: Detailed measured
and inferred trace for the whole length of the experiment at the marked location of subtree B. At each of the other rows: Detailed measured data and
smoothed traces (DF=F normalized) for two different locations (top and bottom row. The red dashed-lines correspond to the timing of the bAPs. The
algorithm reduces noise considerably, accurately infers the timing of the bAPs and provides an estimate of their amplitude. The second and fourth
columns provide an estimate of the amplitude of the last transient. Left: 10 bAP protocol. Right: 10 bAP+3 EPSP protocol. B: Subtree A (tuft), C:
Subtree B (apical dendrites), D: Subtree C (soma and basal dendrites). The effect of the EPSP pairing is apparent in the distal dendrites (subtree C,
second column), where the inferred amplitude is considerably higher that in the plain 10 bAP protocol.
doi:10.1371/journal.pcbi.1002569.g006
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times inferred when all of the data is used. However, when we try

to infer traces at the endpoints of dendritic branches (Fig. 7D)

and/or at locations far from those at which measurements are

available, the inferred traces are shrunk to zero by the prior, since

there is no data available to encourage non-zero estimates in this

case. Finally in Fig. 7A we also plot the relative error between the

‘‘full’’ and ‘‘cross-validated’’ traces for all the compartments of the

subtree. The relative error for location x is defined asP
t DÛU(x,t){ ~UU(x,t)D=

P
t DÛU(x,t)D, where ÛU(x,:) denotes the

inferred trace at location x when all the data is considered and
~UU(x,:) is the inferred trace when the chosen locations have been

left out. As expected from the spatially localized effect of any

measurement to our algorithm, the inferred traces at compart-

ments that are far from all the left out locations do not change. As

a technical side note, we point out that when trying our algorithm

for this cross-validation experiment, we did not reestimate all the

necessary parameters as a means to facilitate direct comparison.

Estimating these parameters again could lead to a better suited

choice of spline basis B and potentially to better interpolation

results.

Finally, we examined the effect of the temporal sampling rate,

by applying our algorithm to a subsampled version of the data. In

Fig. 8 we examine the differences in the results when the data have

been subsampled 4 and 8 times (subtree B under the bAP

protocol). As expected, the difference between the full and

subsampled results increase with subsampling factor. Using

subsampled data, the event times are not always predicted.

However, as can be seen from Fig. 8, the general behavior of the

inferred traces remains largely the same. It is also important to

note that in an experimental situation a lower temporal sampling

rate typically leads to a higher signal to noise ratio (SNR). It would

be interesting examine this quality-quantity tradeoff more

thoroughly [5]; however, such an analysis is not directly possible

with this dataset, since simple subsampling does not change the

SNR. The analysis shown in Figs. 7 and 8 was also carried out for

the other subtrees and experimental protocols and no qualitative

differences were observed (data not shown).

Application to simulated data under ‘‘synaptic
bombardment’’ conditions

We finally applied our algorithm to simulated data in a

dendritic tree receiving multiple synaptic input from both

excitatory and inhibitory presynaptic neurons. (These simulations

are necessarily somewhat underconstrained, since the spatiotem-

poral structure and effect of in-vivo inputs is only beginning to be

characterized [28],[29].) We simulated data from a rat CA1

reconstructed tree model (Fig. 9; N~392 compartments) used in

[30] (ch. 9), where the dendrites were endowed with the standard

Hodgkin Huxley neuron channels [31] and the voltage profile

obeyed the active dendritic cable equations [32]. To this model we

also added T-type voltage dependent calcium channels with the

same parameters as the ones measured experimentally in [33].

(Clearly more elaborate and realistic models are possible, but as we

will see below the details of the voltage and calcium model seemed

to have a minimal effect on the inference quality here.) We placed

a total number of 40 synapses (both excitatory and inhibitory) at

random locations along the tree. The synapses were of alpha type

with ta~1msec. The synapses were activated at random times

and a total of 80 synaptic events were produced. The neuron was

simulated for 300msec, during which 10 action potentials were

triggered as a result of the synaptic inputs; each of these spikes

propagated back into the tree to a varying extent.

Every 200msec we obtained ten noisy measurements from

uniformly random locations, using the same measurement noise

distribution described above (6). The probe molecule baseline

concentration and the time constant of the dye were both assumed

known. To apply our algorithm we constructed a spatial

smoothing basis consisting of d~150 spline functions. For each

of the hidden ‘‘spike’’ variables si(t) we used a simple uncorrelated

exponential prior at each location with a rate equal to the firing

rate of the neuron. The results of the inference are shown in

Fig. 10: even with a simple uncorrelated prior for si(t), and no

detailed knowledge of the underlying biophysical voltage and

calcium dynamics, the algorithm does a satisfactory job in

estimating the bound probe molecule concentration profile.

Figure 7. Cross-validation by leaving out locations. A: Locations of the omitted imaged sites and relative error between ‘‘full’’ and ‘‘cross-
validated’’ results along the tree. B–D: Comparison of the ‘‘full’’ traces (blue) with the cross-validated traces at the omitted locations. The colors of the
‘‘cross-validated’’ traces are in correspondence with the colors of the fictional electrodes in panel A. The algorithm can predict the traces at left out
imaging sites that are located in the middle of dendritic branches by interpolating the results from neighboring measured locations. However the
traces of omitted compartments located at the end of branches cannot be inferred.
doi:10.1371/journal.pcbi.1002569.g007
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Discussion

We presented a statistical model for spatiotemporal calcium

estimation (up to an affine transformation) given single-trial,

spatially localized, noisy imaging measurements. We showed that

our algorithm can infer the timing of bAPs and provide estimates

about the amplitude of the transients that they initiate. Although

the optical measurements come from a small subset of the neuron’s

compartments the algorithm estimates the full spatiotemporal

calcium profile. Moreover, it runs with complexity that scales

linearly both with the length of the experiment and the size of the

tree, and as a result it can be used in arbitrarily long experiments

and large dendritic trees. Our full spatiotemporal smoothing

algorithm therefore enables the study of selective propagation of

bAPs into specific dendrites, and of the effects of calcium as a

coincidence indicator between bAPs and EPSPs. Although the

focus of this study was the study of the interactions between bAPs

and known EPSP stimulation, we also tested the generality of our

algorithm by applying it to a conductance based neuron driven by

random (unobserved) synaptic inputs. More generally, our

algorithm opens up the possibility of single-trial analysis of

spatiotemporal calcium dynamics imaged on large dendritic trees,

and could therefore potentially lead to a better understanding of

these complex dynamics.

To obtain a relatively simple model and an efficient inference

algorithm, we had to make a number of assumptions. For

example, we employed a functional approach by assuming that the

relative bound probe molecule concentration can be spatially

approximated by a sum of smooth spline functions on the tree.

This is reasonable since calcium diffuses locally through the

dendritic tree. We assumed that the baseline fluorescence is

constant before and after the spike stimulation. While this is true in

Figure 9. Morphology of the CA1 neuron and somatic voltage trace used in Fig. 10. A: Morphology of the CA1 neuron in the x-y axis. B:
Voltage trace at the soma. 80 synaptic events were simulated and the neuron produced 10 action potentials. Neuron model and code adapted from
[30].
doi:10.1371/journal.pcbi.1002569.g009

Figure 8. Effect of the temporal sampling rate. A and D: Inferred traces using all the data for subtree B under the bAP protocol. B and E: Inferred
traces after 4| and 8| subsampling, respectively. C and F: Differences of the inferred traces under subsampling conditions from the traces that are
inferred using all the data. Note that many qualitative features of the inferred probe molecule profile are preserved even given heavy subsampling.
doi:10.1371/journal.pcbi.1002569.g008
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general, we observed that in some locations (and especially the

ones in the main dendritic trunk), the baseline can change

significantly after the excitation, leading to the inferred spikes

outside the excitation window, as discussed in the Results. The

model also relies on the assumption that the bound probe

molecules do not saturate during repetitive excitation, and that the

rate of calcium unbinding remains constant. Analysis shows that

the amplitude of the transients in general decreases as more spikes

are applied. This has been reported in many studies (e.g. [34]).

However, in some situations (see for example the first row in

Fig. 6b) there are indications of fast relaxations after the last spike

which may imply saturating effects.

Apart from constructing a spatial basis for the relative bound

probe molecules, we also tried the same approach on the un-

normalized, raw bound probe molecule measurements. However,

we noticed that in this case the required dimension d of the spline

basis was much larger because of the large variations in the

observed measurements. Consequently, the resulting spline

functions were very localized and as a result, inference suffered

from overfitting. Moreover, the noise statistics varied considerably

at the different measurement locations. Many bAP induced

transients went undetected, especially at the distal dendrites,

because of their low amplitude. As a result, we concluded that

normalizing the measurements with the estimated baseline

fluorescence concentration greatly improved the quality and

interpretability of results. This approach also has a clear

interpretation since the normalized measurements are linearly

related to the underlying calcium concentration.

Our model, so far, assumes only temporal dependencies on the

hidden activation states W . Allowing spatial dependencies in W
enables the modeling of calcium propagation along the dendritic

tree (similar to the cable equation for voltage diffusion) and would

Figure 10. Calcium estimation under ‘‘synaptic bombardment’’ conditions. A: Spatiotemporal voltage profile. B: Bound probe molecule
profile: C: Measurement locations and values at each timestep (dark grey corresponds to locations that were not imaged at each timestep). D:
Estimated bound probe molecule profile. The algorithm estimates satisfactorily the general behavior of the bound probe molecule concentration
profile.
doi:10.1371/journal.pcbi.1002569.g010
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lead towards a more biophysical realistic model. To allow this we

could modify the state equation Eq. (15) as

w(t)~Kw(t{1)zs(t), ð27Þ

where K is a suitable stable matrix. In the simplest case the spatial

dependencies are restricted to the direct neighbors of each hidden

variable, as in the standard cable equation [35]. In this case K
retains the tree structure. Our fast algorithm can be applied in this

setup without losing its linear O(dT) complexity, using methods

similar to the ones developed in [36] for voltage measurements in

dendritic trees.

The prior on the transient amplitude used in our model was

very simple. It reflected only the knowledge of the interval over

which the bAPs were initiated and their rate, but not the exact

timing of the bAPs and other qualitative characteristics of the

evoked transients. A more sophisticated prior can be chosen that

exploits several characteristics of the bAPs. For example, the exact

knowledge of the bAP timings can be incorporated to a greater

extent by manipulating the time varying spike rate so that it

becomes high in the time windows when we expect spikes, and low

elsewhere. Moreover, at the dendrites, the amplitude of spikes

usually decreases with the distance from the soma. In our

approach ‘‘we let the data speak’’, i.e., we determine the prior

of the spike amplitude from the recordings as we discussed in the

Results section. However, we can further impose a decreasing

amplitude constraint as a regularizer to further promote this

behavior, to better deal with the case where individual dendrites

are very sparsely imaged. In matrix-vector notation this can be

written as (G{I)Bs(t)§0 for all t, where G is the directional

adjacency matrix of the neuron graph [24]. The directional

adjacency matrix is defined as ½G�ij~1 if the compartment j is the

parent of compartment i and ½G�ij~0 otherwise. Since s(t)

represents the bumps of the hidden states at time t, Bs(t)
represents the bumps on the bound probe molecule concentration.

As the root (soma) of the tree has no parents, the first row of the

vector (G{I)Bs(t) does not correspond to a difference between

amplitudes and must be omitted from the constraints. Alterna-

tively, we can set ½G�11~1 to make it trivial. The matrix (G{I)B

has a tree-stucture and such a constraint does not affect the

complexity of our algorithm. Additionally, the exponential prior

distribution that we used promotes sparsity among the bumps. By

introducing a group-sparse nonnegative prior [37] we could

promote synchronized bumps along the tree, again without

changing the linear complexity per iteration [38]. However, note

that although our algorithm does not promote the above

qualitative characteristics, these are observed in the inferred

traces, indicating its suitability in cases with limited prior

information.

One natural question is whether the full spatiotemporal profile

of calcium concentration can also be estimated. Our model

promotes the inference of sparse events; this sparse regularization

is necessary to avoid overfitting artifacts given our undersampled

measurements. These sparse events, in turn, are interpreted as

indicators of calcium concentration transients which are assumed

to be instantaneous. As a result, due to these simplifications the

detailed calcium dynamics cannot easily be inferred from our

algorithm at its current form; see the Methods section for further

discussion. Additional constraints on the model (e.g., a modifica-

tion of the prior based on some knowledge of synaptic input

locations) could improve this estimation, but this remains a

direction for future work.

A final interesting question concerns the design of an optimal

path for measuring at different locations across the tree. In our

dataset the set of imaged sites was chosen by the experimenter and

held fixed for each imaging session. Such an approach is

suboptimal since it leaves many sites unrecorded and also neglects

the spatial correlations along the tree. A heuristic method was

presented in [39] for the case of imaging a population of neurons.

The goal there was to minimize the length of the scanning path in

order to provide faster measurements. In our case of single neuron

imaging, where the path length is small and fast measurements can

be obtained through RAMP microscopy, the optimality criterion

should be the one of maximally informative measurement

locations. A similar method was presented in [40] for the case of

voltage filtering. However the extension of this method to calcium

measurements is challenging because of our non-Gaussian setup

and the added nonnegativity constraints. The directions men-

tioned above will be pursued in future work.
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