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Abstract: Much molecular-evolution research is con-
cerned with sequence analysis. Yet these sequences
represent real, three-dimensional molecules with complex
structure and function. Here I highlight a growing trend in
the field to incorporate molecular structure and function
into computational molecular-evolution work. I consider
three focus areas: reconstruction and analysis of past
evolutionary events, such as phylogenetic inference or
methods to infer selection pressures; development of toy
models and simulations to identify fundamental principles
of molecular evolution; and atom-level, highly realistic
computational modeling of molecular structure and
function aimed at making predictions about possible
future evolutionary events.

This is an ‘‘Editors’ Outlook’’ article for PLoS Computational

Biology.

Introduction

The field of molecular evolution investigates how genes and

genomes evolve over time. It has its origin in the late 1960s, when

the first DNA and protein sequences were becoming available.

With rapid progress in sequencing technologies came ever

increasing demand for computational tools to study molecular

evolution. Today, molecular evolution is among the largest

subfields of evolutionary biology, and arguably one of the most

computationally advanced. Thousands of person years have gone

into developing sophisticated alignment algorithms, phylogenetic-

tree reconstruction methods, or statistical tests for positive

selection.

A side effect of the strong emphasis on developing sophisticated

methods for sequence analysis has been that the underlying

biophysical objects represented by the sequences, DNA molecules,

RNA molecules, and proteins, have taken a back-seat in much

computational molecular-evolution work. The vast majority of

algorithms for sequence analysis, for example, incorporate no

knowledge of biology or biochemistry besides that DNA and RNA

sequences use an alphabet of four letters, protein sequences use an

alphabet of 20, and the genetic code converts one into the other.

The choice to treat DNA, RNA, and proteins simply as strings of

letters was certainly reasonable in the late 20th century.

Computational power was limited and many basic aspects of

sequence analysis were still relatively poorly understood. However,

in 2012 we have extremely powerful computers and a large array

of highly sophisticated algorithms that can analyze strings of

letters. It is now time to bring the molecules back into molecular

evolution. Several groups have embarked on this path, and I will

highlight some of the work that has been done and speculate on

future developments we may see.

In this article, I focus on the evolution of protein-coding genes,

the area I am most familiar with myself. However, my overall

message, that it is time to bring the molecules back into molecular

evolution, similarly applies to other genetic sequences, such as

intergenic regions, RNA genes, or the various forms of short

RNAs. I will consider three broad areas, corresponding to three

distinct research goals: (i) reconstructing and interpreting past

evolutionary events; (ii) identifying fundamental principles of

molecular evolution; and (iii) predicting probable evolutionary

trajectories.

Reconstructing and Interpreting Past
Evolutionary Events

A major goal of comparative sequence analysis is to reconstruct

and/or interpret past evolutionary events. For example, we may

have sequences from multiple species and want to know how they

relate to each other, which specific sequence changes caused them

to diverge, and whether certain sites were under particularly

strong selective pressure. The standard analysis pipeline for such

questions is to align sequences, build trees, and run scans for

positive or other types of selection, and/or for recombination. This

analysis pipeline uses nothing but sequences as input. Only once

the analysis is completed may the researchers take sites of interest

they have identified, map them back onto the structure of the

protein they are studying, and carry out further experimentation.

(However, increasingly the initial sequence analysis is only the

prerequisite for a successful study, and the value of the study is

defined by the follow-up work; see e.g., [1,2].)

The standard analysis approach has been highly successful. Yet

it ignores most of the biochemistry that ultimately determines the

fitness landscape in which sequences evolve. Thus, methods that

combine sequence data with additional information, such as

protein structure, should yield more sensitive and more accurate

estimates than methods based on sequence data alone. On the

basis of this premise, a few groups have started to develop such

methods. For example, some authors have developed models of

coding-sequence evolution that incorporate interactions among

sites mediated by protein structure [3–5]. (See also this review:
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[6].) Similarly, some authors have incorporated knowledge of

protein structure in methods of ancestral state reconstruction [7].

Finally, in phylogenetic-tree inference, evidence is accumulating

that independence of sites may not be a good assumption [8] for

protein-coding and even more so for RNA-coding sequences.

Thus, future methods of phylogenetic tree reconstruction may also

incorporate structural information in some form. Coarse-grained

models of protein-sequence evolution are being developed that

may be useful for this purpose [9].

The development of methods that integrate molecular structure

into sequence analysis is still in its infancy. While several groups

are exploring a variety of approaches, none of these approaches is

well established at this time. Comparative analyses that use

nothing but sequence data remain state of the art. My expectation

for the near future is that we will continue to see efforts to extend

comparative analyses beyond sequence data alone. Eventually,

some of these efforts will prove sufficiently useful that it will

become commonplace to combine sequence data with structural,

functional, or other molecular data in comparative analyses.

Identifying Fundamental Principles of Molecular
Evolution

Besides understanding and interpreting specific evolutionary

events, evolutionary biologists also aim to identify fundamental

principles of molecular evolution. Fundamental principles are

insights that apply to many different biological systems; a classical

example would be the finding that codon usage bias correlates

with gene expression level [10,11].

The search for fundamental principles tends to require

somewhat different computational approaches than the analysis

of past evolutionary events. It often involves developing toy models

(either in the form of mathematical equations or of simulations) to

explore possible system dynamics under different modeling

assumptions or parameter choices. The specific toy models to be

explored are usually inspired by observations from past evolution-

ary events. To give an example from my own research, starting

about 10 years ago many groups found that highly expressed

proteins evolve slowly [12]. This observation prompted several

authors to develop models of varying complexity that might

explain the pattern [13–17].

Toy models of evolution have been studied for over a century.

And much of this work has not considered the underlying

biochemistry of the evolving organism. For example, the

population-genetics literature contains plenty of abstract, mathe-

matical models (such as two-locus, two-allele models) that make

absolutely no assumptions about the mechanisms that connect

different allelic states with different fitness values. These abstract

mathematical models are valuable, of course, yet they can get us

only so far. Most importantly, they cannot explain how,

mechanistically, genotype maps to phenotype and fitness.

As we try to get a better understanding of the genotype-

phenotype map, we have to build more realistic models. For

example, virtually all the models trying to explain the relationship

between evolutionary rate and expression level make concrete

assumptions about mechanisms of protein folding and function

[13–17]. Many implement an actual (though simplified) protein-

folding model in which actual amino-acid sequences are compu-

tationally folded, using either a lattice [14,15] or an off-lattice [16]

approach.

More generally, we are seeing an increased trend towards

integrating some biophysical realism into toy models of evolution.

Several groups are regularly working with models that incorporate

some aspect of protein biochemistry, such as protein fold stability

[9,14–16,18–22] or protein–protein interactions [22–24]. Models

may represent individual evolving proteins [18,20,21,23] or entire

cells [19,22,24]. Finally, some groups elucidate the molecular

fitness landscapes that underlie adaptive events [25–27]. Works

such as these aim to identify the biophysical mechanisms that drive

molecular evolution.

I believe that we have only scratched the surface of what is

possible with simple, biophysically inspired models of molecular

evolution. I expect that we are going to see more of this modeling

approach in the coming years, and that it will help us to develop a

deeper understanding of fundamental principles of molecular

evolution.

Predicting Probable Evolutionary Trajectories

For many real-world applications, it would be useful to be able

to predict future evolutionary events. For example, we know that

H5N1 avian influenza could potentially cause a deadly pandemic

if it ever evolved the ability to effectively spread between humans.

What we do not know [28] is the likelihood that it will evolve this

ability, nor whether it might possibly become less pathogenic as it

evolves more effective human-to-human transmission capabilities.

As a second example, some authors have proposed treating

infectious diseases with interfering particles (e.g., [29]). Because of

the potential for transmission of these particles among infected

patients, the safety of such treatments stands and falls with our

ability to accurately predict how such therapeutic particles might

evolve once released.

Since evolution is a stochastic process, we cannot expect to ever

predict which specific mutations will accumulate in a given

lineage. However, at least in principle, we should be able to make

probabilistic predictions of the form ‘‘Outcome A is the most

likely, and has a 37% probability of occurring; outcome B is the

second most likely, and has a 24% probability of occurring.’’ It

would be tremendously useful if we could make such predictions

reliably, in particular for rapidly evolving pathogens. Therefore,

there is growing interest among evolutionary biologists to develop

predictive frameworks [30–33]. In my opinion, successful

approaches in this area will most likely involve realistic, atom-

level computational modeling of the system of interest.

With rapid increases in computational power over the last two

decades, realistic modeling of biological systems is becoming

increasingly feasible. At the molecular level, obvious applications

of realistic modeling are atom-level predictions of protein structure

[34] or protein-folding dynamics [35,36], and computational

enzyme design [37–39]. The accuracy of these computational

models, when they work, is getting quite good. For example, in

computational enzyme design, where the goal is to design

catalytically active enzymes de novo, crystal structures of

successfully designed enzymes are often very close to the

computationally predicted ones [39]. However, it is common that

only a small number of the computational designs actually work as

expected. In a recent study, 84 computationally designed enzymes

were evaluated experimentally [39]. Of those, 50 were soluble and

only two catalyzed the desired reaction.

At present, atom-level modeling of proteins is not commonly

used in applications of evolutionary biology (but see [40]).

However, it seems to me that as our modeling capability improves,

a logical next step will be to apply these models to predicting

evolution. If we can predict computationally which mutants will be

able to carry out specific functions, then we should also be able to

predict which mutants are likely to arise under specific, well-

defined selection pressures. While I cannot imagine that we will

ever be able to solve open-ended problems, such as, for example,

PLoS Computational Biology | www.ploscompbiol.org 2 June 2012 | Volume 8 | Issue 6 | e1002572



to predict all the sequence changes an invasive species will undergo

as it is introduced into a new environment, we should have

reasonable success for well-defined problems, such as to find the

mutations an animal virus would require to bind to the human

form of the receptor it uses for cell entry in its host species.

An alternative to atom-level modeling can be statistical

inference of biophysically important sites from large sequence

alignments. For example, in a recent paper Bloom and Glassman

[41] proposed a method to infer the effect of point mutations on

protein stability from the distribution of mutations in a dense

phylogeny. This method performed better in predicting measured

DDG values than alternative methods based on protein structure

and atomic force fields. Bloom and co-workers then used this

method to identify mutations that were likely to be involved in the

evolution of oseltamivir resistance in influenza [42].

Regardless of whether one uses atom-level modeling or

statistical approaches, computational predictions are not going to

be perfect. Thus, computational methods to predict evolution are

most likely going to be useful in generating candidate scenarios.

These candidate scenarios will include many false positives and

will have to be screened experimentally to separate false from true

positives.

Summary

There is a growing trend in widely differing subfields of

molecular evolution to increase biophysical realism in computa-

tional models of sequence evolution. Some subfields are further

along this path than others. Among groups developing simple toy

models of evolution, models incorporating some biophysical

realism have been quite popular in recent years. By contrast,

statistical models of sequence evolution incorporating biophysical

realism are being developed by some groups but are not being

routinely applied in sequence-analysis applications. A major

impediment to more routine use of such models is likely the lack

of widely available, easy-to-use implementations. Hopefully, we

will see progress in this area soon. Methods to predict future

evolutionary trajectories do not really exist at this time. However,

there is a growing interest in developing them. I believe that the

computational methods required for this type of prediction are

falling into place in the protein-design field; we may soon see a

first, small-scale demonstration that computational prediction of

evolutionary trajectories is actually possible.
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