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Abstract

The rapidly increasing amount of public data in chemistry and biology provides new opportunities for large-scale data
mining for drug discovery. Systematic integration of these heterogeneous sets and provision of algorithms to data mine the
integrated sets would permit investigation of complex mechanisms of action of drugs. In this work we integrated and
annotated data from public datasets relating to drugs, chemical compounds, protein targets, diseases, side effects and
pathways, building a semantic linked network consisting of over 290,000 nodes and 720,000 edges. We developed a
statistical model to assess the association of drug target pairs based on their relation with other linked objects. Validation
experiments demonstrate the model can correctly identify known direct drug target pairs with high precision. Indirect drug
target pairs (for example drugs which change gene expression level) are also identified but not as strongly as direct pairs.
We further calculated the association scores for 157 drugs from 10 disease areas against 1683 human targets, and measured
their similarity using a 157|1683 score matrix. The similarity network indicates that drugs from the same disease area tend
to cluster together in ways that are not captured by structural similarity, with several potential new drug pairings being
identified. This work thus provides a novel, validated alternative to existing drug target prediction algorithms. The web
service is freely available at: http://chem2bio2rdf.org/slap.
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Introduction

Understanding the interaction of drugs with multiple targets can

identify potential side effects and toxicities [1–3], as well as

possible new applications of existing drugs [4–8]. Many efforts

have been made to integrate drug-target interactions in a large

scale [9–12]. A variety of computational approaches have been

previously explored for predicting drug-target interactions,

including molecular docking [3,13,14], ligand-based predictive

models [15,16], phenotype similarity (side effect similarity [17] or

gene expression profile similarity [18]) and chemical ontology

similarity [19]. Some similarity measurements have been com-

bined to elucidate drug targets [20]. Network analysis based on the

topology of known drug target network has also been utilized for

drug target prediction, but is currently limited to small data sets

[21,22].

Recent advances in the Semantic Web [23] have enabled the

creation of large heterogeneous networks of experimental and

other data in life sciences (for example: Chem2Bio2RDF [24],

LODD [25], Bio2RDF [26], OpenPHACTS (http://openphacts.

org), linked life data (http://linkedlifedata.com) and Linked Open

Data (http://linkeddata.org)), where the nodes can include

physical and abstract entities (compounds, protein targets,

substructures, side effects, diseases, pathways, tissues, gene

ontology terms and so on), and the edges (or links) represent

various relations between objects such as drug-drug interactions,

and drug target interactions, protein-protein interactions and so

on. The ability to easily integrate heterogeneous datasets in a

meaningful fashion makes semantic technologies attractive,

although it is only recently that supporting technologies have

adequately matured to make them useful in the biological sciences:

in particular the advent of fast triple stores for data storage, the

SPARQL query language (http://www.w3.org/TR/rdf-sparql-

query/) for searching, and the OWL ontology language (http://

www.w3.org/TR/owl-features/) for the description of ontologies.

Despite remaining deficiencies which are being addressed in the

Semantic Web community (including difficulty weighting edges

and maintaining provenance information) there are now many

examples of successful use of semantics in the life sciences [27]. In

contrast to hyperlinked data, semantic linked data encodes explicit

meanings of nodes and links, allowing traversing from one node to

another via particular kinds of relationship. Prediction of links not

in the dataset, based on the existing links, is widely used in social

networking, in which it is assumed that two nodes are similar if

they share similar topology (e.g., a certain number of neighbors,

and similar shortest paths) [28–30]. For example, in a coauthor-

ship network, two authors are similar in terms of research interests

if they coauthor lots of papers, hence their potential collaboration

could be predicted (it should be noted that social networks

generally only deal with positive relationships; drug discovery data

is different in that negative relationships such as inactivity are

important).
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In this work, we sought to use such semantic methods to

integrate and annotate the data in relation to drug target

interaction, constructing a heterogeneous network composed by

over 290 k nodes and 720 k edges. We further developed a

statistical model called Semantic Link Association Prediction

(SLAP) to assess the association of drug target pairs and to predict

missing links. An association score is calculated based on the

topology and semantics of the neighborhood. We demonstrate that

SLAP can correctly identify known drug target pairs from random

pairs with high accuracy and can also identify indirect drug target

relations (e.g., the change of gene expression level). The

association scores of a drug against a set of targets constitute a

biological signature that allows assessing the similarity of drugs in

the context of the whole system. The resulting drug similarity

network clusters drugs from the same therapeutic indication in

ways not observed using chemical structure similarity, and can also

be used to identify potential new indications for existing drugs.

Results

Semantic linked data
The SLAP pipeline is shown in Figure 1. A heterogeneous

network consisting of 295,897 nodes and 727,997 edges was

constructed from 17 public data sources pertaining to drug target

interaction. Every node and edge was semantically annotated

using a systems chemical biology/chemogenomics ontology

previously developed in our labs [31]. The nodes were grouped

into 10 classes which are linked by 12 types (Figure 1b). A single

node is an instance of a corresponding class, for example: a node

for the drug Troglitazone (labeled as 5591 in Figure 2) is an

instance of class Chemical Compound. We term paths of nodes

and edges that share the same semantics (but different data) path

patterns - each path is an instance of a path pattern. Table 1 shows

6 path pattern examples between Drugs and Targets. In Figure 2,

the path from node 5591 (Troglitazone) to node PPARG

(Glitazone receptor) via ACSL4 (Long-chain-fatty-acid CoA ligase

4) and 446284 (Eicosapentaenoic acid) is an instance of the path

pattern 1 in Table 1. We can interpret this path as indicating

Troglitazone could bind to ACSL4 which shares compound

Eicosapentaenoic acid with target PPARG. With the assumption

that two nodes are associated if they link to at least one other node,

or their linked nodes are linked, their relations can be assessed by

the analysis of the links (or paths) between the two nodes [32]. The

strength of their relation in the network can be measured by the

distance, the number of shortest paths and other topological

properties between the two nodes. In our example of the

relationship between Troglitazone and target PPARG, several

paths provide ‘‘evidence’’ of a relationship: Troglitazone and

Rosiglitazone both are hypoglycemic drugs and the latter is the

ligand of PPARG; Troglitazone binds to ACSL4 which shares

pathway(PPAR signaling pathway), ligand (Eicosapentaenoic acid)

and GO term (response to nutrient) with PPARG. A total of 1684

paths (length lƒ3) belonging to 10 path patterns contribute to

their relation.

Pattern score distribution
Each path between two nodes may contribute to the relation

between them, but the degree of contribution varies depending on

path distance and the weight of the edges involved in the path. For

example, a gene ontology molecular function term (GO:0005515)

shared by proteins is not as informative as a binding term

(GO:0005488) in assessing the similarity of two proteins. Thus the

weight of the edge linking one protein node to the molecular

function node is lower than that linking to the binding node.

According to this observation, we developed a statistical model to

measure the weight of edges as well as the significance of paths (see

methods). The model takes into account the distance and the

weight of each edge, and renders a raw score indicating the

strength of each path. We found that the raw scores within the

same path pattern are normally distributed, while the mean and

standard deviation of patterns are different (Figure S1). Z scores

converted from raw scores based on pattern score distribution are

used to measure the contribution to the association: the higher the

z score, the more contribution the path has. The sum of z scores of

all paths is defined as association score indicating the association

strength of the drug target pair. The logarithm of association

scores of random drug target pairs fit to a normal distribution

(Figure S2), that enables calculation of the significance of a given

association score. For our Troglitazone & PPARG example, the p-

value is 9.06E-6, indicating a strong association.

Pattern importance
A low p-value between a drug-target pair indicates a strong

probability of association between the drug and target, but it does

not necessarily mean the drug and target would interact

biologically. Some patterns may be uninformative. We therefore

considered each pattern as a feature and assessed each feature

alone for its ability to identify drug-target pairs from random pairs

across the set. Table 1 lists three informative patterns and three

uninformative patterns along with ROC scores. The first two

patterns illustrate the drug likely interacts with a protein that

shares commonalities in terms of GO or ligand binding profile

with an existing target that the drug already is known to interact

with. The third pattern indicates that the drug likely interacts with

a protein with which another structural similar drug could

interact. As a result of this analysis, 12 ‘‘uninformative’’ patterns

were removed. The sum of z score of a given pair is the sum of z

scores of the paths belonging to the informative patterns.

Association scores of drug target pairs
We randomly selected 1000 known drug target pairs from

DrugBank and compared their association scores with 1000

random pairs of drugs and targets sampled from DrugBank. For

Author Summary

Modern drug discovery requires the understanding of
chemogenomics, the complex interaction of chemical
compounds and drugs with a wide variety of protein
target and genes in the body. A large amount of data
pertaining to such relationships exists in publicly-accessi-
ble datasets but it is siloed and thus impossible to use in
an integrated fashion. In this work we have integrated and
semantically annotated a large amount of public data from
a wide range of databases, including compound-gene,
drug-drug, protein-protein, drug-side effects and so on, to
create a complex network of interactions relating to
compounds and protein targets. We developed a statistical
algorithm called Semantic Link Association Prediction
(SLAP) for predicting ‘‘missing links’’ in this data network:
i.e. compound-target interactions for which there is no
experimental data but which are statistically probable
given the other relationships that exist in this set. We
present validation experiments which show this method
works with a high degree of accuracy, and also demon-
strate how it can be used to create a drug similarity
network to make predictions of new indications for
existing drugs.

Drug Target Association with Semantic Linked Data
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each drug target pair, their direct link was removed in the score

calculation so that their association is only determined by their

neighborhood properties. We thus aimed to test the ability of

SLAP to correctly identify ‘‘missing links’’ in the data, with the

assumption that this might be used, for instance, to profile a group

of compounds against an identified set of targets. As Figure 3

shows, random pairs have a broad range of scores, but most of

them are close to zero. Overall, real drug-target pairs have much

higher scores than random pairs (pv2:2E{16 using paired t test).

We also took all drug target pairs from DrugBank (in total 5607

pairs in which 4508 pairs have at least one path with length lƒ3).

We sampled the same number of random drug target pairs as

decoys to check the capability of identifying real drug target pairs

by SLAP. We compared SLAP with other link prediction methods

adopted in social network analysis [32]. The AUROC of SLAP is

0.92, outperforming other methods (i.e., the number of shortest

paths, and the number of valid paths)(Figure 4). As the ratio

between true drug target pairs versus random pairs decreases (e.g.,

ratio = 1/12), the ROC scores do not vary very much

(AUROC&0:92) and SLAP still performs much better than

others, although the precision goes down considerably (Figure S5).

Even when random pairs are 12 times more than positive pairs,

the precision still can reach 0.6 while recall is 0.7. In addition, we

noticed using the sum (or max or mean) of raw score of the shortest

path (without converting into z scores) performs as a random

choice, indicating the importance of introducing random samples.

Since several drug target prediction approaches reported that the

performances may vary among different target classes [33], we

grouped the drug target pairs into 5 classes (Enzyme, Membrane

Receptor, Ion Channel, Transporter and Transcription Factor),

and found that the score does not have any preference to a

particular target class, indicating SLAP is capable of treating

different classes of protein targets(Figure S4).

As far as we are aware, SLAP is the only large predictive

network model that has been applied to drug discovery data.

However other drug-target prediction methods have been the

subject of recent publications [7,17,34], and we thus sought to

consider how the effectiveness of SLAP compares with these

methods. We ran SLAP against 23 drug target pairs (including 15

aminergic G-protein-coupled receptors and 8 cross-boundary

targets) predicted and confirmed in using the SEA method [7], a

novel drug prediction method based on similarity analysis. 9 pairs

of aminergic GPCRs were identified by SLAP (pv0:05); 1 pair

was not decided (pw0:05); the rest of GPCRs have no mappings in

the network (the drug was not found in the network), while only

one of eight cross-boundary targets was identified by SLAP (see

Table S4), indicating that, SLAP is not capable of finding

surprising pairs (cross-boundary targets). For example, Vadilex, an

ion channel drug was predicted in SEA as a ligand of a

transporter, a totally different target, but was not identified by

SLAP. Nevertheless, SLAP performs considerably well among

GPCRs in this case.

In addition, we examined drug target pairs from MATADOR

[35] which serves as an external dataset for validation. 1065 direct

pairs were collected, of which 444 pairings are not represented in

our network. 560 out of 621 known pairs and 170 out of 444

unknown drug target pairs were identified by SLAP (pv0:05).

Comparison with Connectivity Maps
By calculating association scores across multiple targets, SLAP

can be used to build a polypharmacology profile of a drug even

when a full data matrix is not available from drug-target

experiments. We took all the 164 small molecules from the

Connectivity Map (CMap), an online dataset mapping relation-

ships of disease profiles to known drugs [18], and 113 molecules

that were mapped to our network were used to build a library. The

Figure 1. SLAP pipeline. An ontology is used to annotate public data sets and integrate them into a semantic linked network. Two nodes are
linked by one or more number of paths, but only a small number of significant paths are kept for association estimation. The path significance and
drug target associations are assessed by statistical models derived from random samples.
doi:10.1371/journal.pcbi.1002574.g001

Drug Target Association with Semantic Linked Data
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association scores of these compounds against 1683 targets were

calculated, yielding a 113|1683 score matrix. The targets of

which max score is smaller than 113 (pv0:01) were eliminated so

that each remaining protein is a target of at least one drug. After

this filtering, a matrix composed by 113 compounds and 679

targets was built. We used the signature of a given drug to

compare it with all the compounds in the library to find the most

similar drugs according to Pearson correlation coefficient.

Following the CMap approach, 8 queries including 2 HDAC

inhibitors, 1 estrogen and 5 Phenothiazines were created and the

similar pairs are listed in Table S5. We set 0.75 as threshold. 21

pairs were identified by SLAP, 19 out of 21 pairs were actually the

pairs identified by CMap. SLAP recovered all HDAC inhibitors,

but missed two hits (Genistein and Tamoxifen) for estrogen,

Figure 2. Paths between Troglitazone (label as PubChem ID: 5591) and PPARG with length lƒ3. The nodes and edges are colored by
their classes and edge types respectively. Some nodes are annotated additionally to help understand.
doi:10.1371/journal.pcbi.1002574.g002

Table 1. Path pattern examples.

Path patterns AUROC

Chemical/Drug–bind–Target–bind–Chemical/Drug–bind–Target 0.850

Chemical/Drug–bind–Target–hasGo–GO–hasGO–Target 0.824

Chemical/Drug–hasSubstructure–SubStructure–hasSubstructure–Chemical/Drug–bind–Target 0.620

Chemical/Drug–express–Target–hasPathway–Pathway–hasPathway–Target 0.495

Chemical/Drug–express–Target–hasTissue–Tissue–hasTissue–Target 0.501

Chemical/Drug–express–Target–PPI–Target 0.501

Edge types are presented as italic. AUROC shows the performance of predicting drug target interaction with the pattern alone. The first three patterns are more
informative than the last three in their capability to contribute to the associations.
doi:10.1371/journal.pcbi.1002574.t001

Drug Target Association with Semantic Linked Data
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however, both hits rank very high. Two Phenothiazines were not

recovered using this similarity threshold, but they are quite similar

to other three Phenothiazines compared to the remaining

compounds in the library. The results show that most of hits

identified by SLAP are true positive, indicating that the profiles

derived from SLAP resemble gene expression profiles being used

for target identification.

Assessing drug similarity from biological function
We took 157 drugs from 10 disease areas to determine whether

SLAP is able to distinguish drugs from different therapeutic areas.

For each drug, we ran SLAP against 1683 human targets and got an

association score for each drug target pair, creating a 157|1683
score matrix. We only kept the drugs and targets in which the max

score is at least larger than 113 (pv0:01) to make sure each drug has

at least one valid target and each target has at least one valid drug.

The matrix was then reduced to 147|339, followed by the

correlation calculation of every drug pairs. Only pairs with

coefficient rw0:9 were taken to build a network (see methods).

Identifying mechanisms of action. Drugs with the same

therapeutic indication tend to cluster together (Figure 5), and we

also found that these subcluster by mechanism of action. For

example, hypertension drugs, subcluster into ACE inhibitors,

thiazide-based diuretics, angiotensin II antagonists, alpha-adreno-

receptor antagonists and beta blockers (clusters 1–5 in Figure 5

respectively).

Calculating similarity of drugs by biological

function. Mostly, chemically similar drugs have similar biolog-

ical function. However, small changes of structure may also result

in big change of function, or even totally different indications. For

example, adding a methyl group to Levodopa, a dopaminergic

agent for Parkinson’s disease, makes it Methyldopa, an antia-

drenergic (Tanimoto coefficient = 0.89; Figure S6b) for antihyper-

tension. They are distinguished by SLAP (similarity TCv0:3).

The antihypertensive effect of Methyldopa is likely due to its

metabolism to alpha-methylnorepinephrine (CID:3917). SLAP is

still able to distinguish its metabolite from Levodopa (similarity

TC~0:23). Conversely, biologically similar drugs identified by

SLAP are not necessarily structural similar. For example, a

number of drugs treating insomnia are quite different in term of

structure(Figure S6a), but they are clustered together by SLAP.

Figure 3. Logarithmic association score distribution of drug target pairs.
doi:10.1371/journal.pcbi.1002574.g003

Drug Target Association with Semantic Linked Data
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Drug repurposing. Some drugs with very different indications

are clustered together. This may suggest some new indications of

drugs or possible side effect considerations. For example, Butalbital, a

Barbiturate used to treat Migraines, is clustered with nine Insomnia

drugs, two of which (Butibarbital and SecoBarbital) are Barbiturates.

Barbiturates act as central nervous system depressants, capable of

producing all levels of CNS mood alteration including Insomnia.

Triprolidine, an HIV drug, is first generation histamine H1 antagonist

used in allergic rhinitis (and is clustered with other rhinitis drugs).

Cycrimine is a central anticholinergic drug designed to reduce the

levels of acetylcholine in the treatment of Parkinson’s disease, while its

neighbor Carbinoxamine, used for allergic rhinitis, is likely capable of

treating mild cases of Parkinson’s disease as well (http://www.ebi.ac.

uk/chebi/searchId.do?chebiId = 3398). It should be noted that since

SLAP does not differentiate positive and negative interactions

(activation or inhibition), the pairs may present opposite indication.

Phenylpropanolamine (an Alpha-1A adrenergic receptor agonist),

clustered with Doxazosin (an Alpha-1A adrenergic receptor antagonist

for treating hypertension) is known to cause severe hypertension [36].

Discussion

In this paper we demonstrate the SLAP method of association

prediction and the utility of predicting associations based on

semantic networks. The method performs extremely well in

correctly identifying known drug-target pairs in the data, has been

shown to outperform similar link prediction methods used in social

networking, and compares favorably with the established SEA

method for predicting new drug-target interactions, as well as with

the CMap method for associating drugs with changes in gene

expression levels. We introduce the use of a drug-similarity

network based on association profiles of drugs across targets, and

use these to propose potential new drug indications, although these

indications have not yet been validated experimentally.

The use of large semantically annotated datasets to identify

potential relationships from the linked data is a very new area, and

Figure 4. ROC curves among different prediction methods. Valid paths mean their z scorew0.
doi:10.1371/journal.pcbi.1002574.g004

Drug Target Association with Semantic Linked Data
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we consider this an initial work in this field. There are several

limitations to our current version. First, adding more data

pertaining to drugs and targets would help identify more pairs.

The side effect, disease and chemical ontology data are only linked

to a limited number of drugs at present, and protein-protein

interaction and protein pathway mapping data should greatly

enhance its utility. In particular, the ability to embed compounds

into the network for which there is no public information using

chemical structure similarity, or new targets into the network using

sequence similarity, would enable predictions to be made (albeit

more indirectly) for newly synthesized or resolved compounds and

targets. Second, as the complexity of path finding increases

dramatically with increasing path length, only shortest paths with

length lƒ3 was considered, thus potentially missing important

path patterns that have a greater path length. Third, edge weights

are defined with the assumption that the probability from one

node to its neighbors with same semantic type (e.g., from one drug

to its targets) is equal. An important limitation of our current

algorithm is that it does not enable differentiation of relationships

other than categorical ones defined in the ontology. For instance,

binding affinity could be used to weight the edge between drug

and target, the edge with lower affinity is expected to have higher

probability than that with higher affinity (or inactive interaction).

Using such data brings up the issue of comparability between

datasets: some chemogenomics datasets such as DrugBank

currently do not provide sufficient binding affinities, but the

weighting schema can be modified straightforwardly in SLAP once

the data is provided. In addition, binding types (agonist/

antagonist, activator/inhibitor) can be incorporated to classify

and weight edges. Fourth, it should be pointed out that using large

Figure 5. Drug similarity network. Each node presents a drug, and two nodes are linked if their similarity (in terms of polypharmacology profile)
rw0:9. The drugs are colored by their therapeutic indication. Five hypertension related clusters are shadowed.
doi:10.1371/journal.pcbi.1002574.g005

Drug Target Association with Semantic Linked Data
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public integrated datasets means there is often a fuzziness between

‘‘no data’’ and ‘‘inactive data’’: i.e. we cannot assume that because

two items do not have a relationship in the dataset, that they are

not related - for instance that a drug cannot inhibit a target.

A key question in employing any drug-target prediction method is

the extent to which it requires data completeness - in the extreme a

full experimental matrix - to work properly (i.e. if it needs to be

trained with consistent known active/inactive information for all

compounds against all targets). Our methods does not require such

training, indeed its purpose is to suggest potential ‘‘missing links’’ in

incomplete data. However, it should be pointed out that the level of

data completeness in a set will affect the path lengths, z-scores and

associations scores produced. We believe that overall SLAP should

be considered a useful tool for predicting that a relationship exists

between drugs and targets, and thus as a tool primarily for ideas

generation and for suggesting relationships to be probed experi-

mentally: its purpose is to predict a relationship, not necessarily

indicating a strong physical interaction. We believe it is also useful,

as demonstrated in our drug network, for profiling compounds by

their target associations (and vice versa) and we plan to explore

other types of network that can be derived from SLAP.

Many drug target prediction methods only employ single kinds

of information or relationship (e.g., substructure, side effect, etc.),

these methods are limited due to incompleteness of the data, for

instance drug target relation are far from complete [37]. The

employment of various data information can compensate for the

lack of completeness of individual information. SLAP shows a

direction to leverage such information for drug target prediction.

Several sample pairs along with their key information are listed in

Table S3. For instance, the association between pyridoxal

phosphate (CID: 1051) and cysteine conjugate-beta lyase 2

(CCBL2) is very strong (p-value = 1.9E-3), but if we removed

gene ontology information, their association would become very

weak (p-value = 0.02); the association between Dexamethasone

(CID:5743) and annexin A1(ANXA1) would hardly be captured if

substructure information were not considered.

The most compelling advantage of SLAP is its consideration of

relations from a system level rather than just by known binding

affinity data. Other than direct drug target interactions, SLAP is

also capable of recognizing indirect interactions (e.g., the change

of gene expression level) from random pairs, although the

association scores are often smaller than direct interactions (Figure

S3). It thus allows us to evaluate drug similarity based on the

biological function. The network demonstrates that such similarity

measurements not only is able to identify the drug action modes

but also could suggest the new use of drugs.

Materials and Methods

Network building
We extracted drug-target interactions and the data contributing

to either the similarity of compounds, the similarity of targets or

chemical target interaction from the Chem2Bio2RDF set [24],

and added semantic annotations using the Chem2Bio2OWL

ontology [31], to create a semantic drug-target network. For

example, two compounds are similar if they share same side

effects, same substructures or same chemical ontology terms; two

targets are similar if they share the same gene ontology terms or

ligands, or they function in the same pathway. Ten classes of

entities and 12 link types were defined in Table S1 and Table S2

respectively. A link between a drug and a target via bind type is

established if there is a binding affinity smaller than 30 um if

exists. Each node in the network is an instance of one of the

classes. The detailed information on the collection of individual

nodes and edges are in the supporting Text S1.

Drug target pairs preparation
Drug target pairs from DrugBank were used to build the

network. We took only the pairs in which drugs were small

molecules (by mapping to PubChem) and targets are Homo

sapiens (by mapping to HGNC). A total of 5607 pairs were

extracted from the network as one benchmark dataset for model

evaluation. The drug target pairs were grouped into 6 classes

according to ChEMBL [38] target classification (i.e., enzyme

(2393 pairs), membrane receptor(862 pairs), ion channel(392

pairs), transporter(209 pairs), transcription factor (208 pairs) and

others (1543 pairs)). Another benchmark dataset was created from

MATADOR [35] which was not used for network building. We

took drug target pairs with direct interaction types and confidence

score w800 from MATADOR. 1176 direct pairs in MATADOR

were used, in which 1065 pairs have at least one path with length

lƒ3. 3665 indirect pairs in MATADOR were also extracted for

evaluating indirect drug target interaction. Indirect interactions

are caused by many different mechanisms, such as binding with

drug metabolites or changing gene expressions [35].

Path finding
A heap-based Dijkstra algorithm was employed to quickly find

the paths between two nodes [39,40]. It can achieve a complexity of

O(nlogn). Each path is represented as:

node 1{edge 1{node 2{edge 2{ � � �{node n. The length of a

path is the number of edges between two nodes. We only took the

paths of length lƒ3. Only significant paths (assessed by statistical

models) are visualized in Cytoscape [41].

Path association
Let graph as G(V ,E), Pl(s?t) as the lth shortest path from

node s to t. ei?j as the edge from node i to node j. Ri,j as the link

(relation) type of ei,j .

It is assumed that it has an equal probability traversing node i to

its neighbor node j within the same type, thus:

p(e(i?j))~
1

Pn~1
k Ri,n~~Ri,j

where k is the degree of node i.

As the probability of each edge is independent, the probability

traversing from s to t via a path is:

p(Pl(s?t))~p(Pl(e1?2,e2?3,:::,em{1?m))~ P
m{1

i~1
p(ei?iz1)

where m is the number of nodes in the path. Since p is very small,

the logarithm is applied,

log(p(Pl(s?t)))~
Xm{1

i~1

log(p(ei?iz1))

Accordingly, the probability traversing from t to s via a path is:

p(Pl(t?s))~p(Pl(em?m{1,:::,e3?2,e2?1))~ P
m{1

i~1
p(eiz1?i)
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log(p(Pl(t?s)))~
Xm{1

i~1

log(p(eiz1?i))

We consider the graph as undirected, then we take the average

as the raw score of path l between s and t:

log(p(Pl(s,t)))~(log(p(Pl(s?t)))zlog(p(Pl(t?s))))=2

Statistical model
We randomly sampled 100,000 drug target pairs from

DrugBank covering 1355 approved small molecular drugs and

1683 human targets, 54,414 pairs have at least one shortest path

with length lƒ3. The sampling yielded 2,344,026 paths, which

were categorized into 34 path patterns. The scores of each pattern

were fitted to a normal distribution (Figure S1) and the expected

mean and standard deviation were estimated, followed by

calculation of the z score of every path. Only the paths with z

score greater than 0 were considered as the valid paths

contributing to the association. The z scores of all the valid paths

from s to t were summed up to get its association score, which was

later used to measure the strength of the association.

raw score(s,t)~
Xn

l

log(p(Pl)){h(log(Pl))

s(log(Pl))

where log(p(log(Pl)))wh(log(Pl)); n is the number of shortest

paths between the nodes s and t; h(log(Pl)) and s(log(Pl)) are

expected mean, expected standard deviation of the pattern to

which Pl belongs.

Some patterns may be not helpful or even noisy for assessing

drug target association. We built a test set consisting of drug target

pairs from DrugBank and the same number of random drug target

pairs sampled from the set of drugs and targets composing the real

drug target pairs. For one pair, raw scores of all the paths within a

path pattern were calculated and summed up as a score for that

path pattern. The scores were then used to rank the pairs in the

test set. The evaluation of each pattern was performed using the

area under ROC. We also applied the same procedure to the

direct pairs from MATADOR. The patterns with low ROC

(AUROCv0:51) were considered as uninformative. The unin-

formative patterns agreed by both test sets taken from DrugBank

and MATADOR were removed.

The logarithmic association scores of random pairs conforms to

a normal distribution (Figure S2); p-value is estimated to show the

probability of observing a given score by random chance alone.

Lower p-value indicates stronger relation between two objects.

Model evaluation
A test set was composed of a set of drug target pairs from

DrugBank and the same number of random pairs as decoys. Three

another test sets were created by increasing the number of random

pairs such that the sizes of random pairs are 4, 8 and 12 times

more than true drug target pairs. For each pair, the paths

including the direct link if exists were removed, and the z scores of

all valid paths were summed up as association score. The scores

were ranked to generate ROC curves [42], which are widely

adopted to measure drug target prediction methods [20,22,33,43].

We also considered Precision and Recall (PR) curve, which shows

the ratio of true positives among all the predicted positives under a

given recall rate [44]. PR curve is more informative and

biologically meaningful while the dataset is imbalanced. The

same procedure was also applied to another dataset collected from

MATADOR. Other than using SLAP scores, we considered the

number of shortest paths (maximum length 3), the number of valid

paths (significant path defined in the model), the sum of raw score

of all paths, the max raw score among all paths, and the average

raw score of all paths. In addition, we took the pairs validated in

experiments in a recent published paper [7] as novel pairs, after

manually mapping their drugs and targets to PubChem CIDs and

gene symbols, we ran SLAP to get p-values of all the valid pairs.

Assess drug similarity
We identified drug-disease pairs from Yildirim et al. [45], then

mapped the drugs to PubChem CIDs (the default compound

identifier in the network). Many drugs have multiple indications,

so in order to visualize drugs by therapeutic indications, only drugs

with one indication were kept. We also only kept the top 10

diseases ordered by the number of related drugs. The association

scores of all mapped drugs against a set of human targets construct

biological signatures which were later used for measuring drug

similarity using Pearson correlation coefficient. The pairs with

coefficient rw0:9 constitute the network. Drug structural similar-

ity was measured by Tanimoto coefficient using MACCS

fingerprint.

Supporting Information

Figure S1 Raw score distribution of 8 path patterns.

(TIFF)

Figure S2 Fit association scores of random pairs to a normal

distribution. Logarithm is applied to the scores. R2 is 0.96.

(TIF)

Figure S3 Logarithmic association scores of direct drug target

pairs versus indirect pairs. Indirect pairs were taken from

MATADOR.

(TIF)

Figure S4 Logarithm association scores of pairs among five gene

families and random pairs.

(TIF)

Figure S5 Precision and Recall curve under different ratios

between the number of true drug target pairs and the number of

random drug target pairs. (a) ratio = 1:1 (b) ratio = 1:4 (c)

ratio = 1:8 (d) ratio = 1:12.

(TIFF)

Figure S6 (a) Sample Insomnia related drugs (b) Levodopa vs

Methyldopa.

(TIFF)

Table S1 Node type information.

(DOCX)

Table S2 Edge type information.

(DOCX)

Table S3 Sample drug target pairs with/without key informa-

tion contributing to the association.

(DOCX)

Table S4 Comparing with SEA.

(XLSX)

Table S5 Comparing with CMap.

(XLSX)
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