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Abstract

Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an
uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both
innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By
comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell
availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and
substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells
mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load
declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss
of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or
even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain
the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the
viral and interferon kinetics during a typical influenza virus infection.
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Introduction

Despite vaccines and antiviral agents, influenza A virus infection

remains a major public health problem worldwide. Seasonal and

pandemic influenza results in approximately 3 to 5 million cases of

severe illness and approximately 250,000 to 500,000 deaths

worldwide [1]. Influenza viruses primarily infect and replicate in

epithelial cells [2]. The immune response to influenza virus

infection plays an important role in controlling the virus within a

host. The nonspecific innate immune response provides the first

line of defense, which reacts immediately upon infection and

involves generating a variety of chemotactic, proinflammatory and

antiviral cytokines [3]. An important cytokine produced during the

innate immune response is type I interferon (mainly IFN-a/b).

IFN-a/b has been shown to stimulate resistance to infection in the

neighboring cells by inducing the expression of many IFN-

stimulated gene products, including antiviral proteins, such as

protein kinase R, PKR [4]. Depletion of key IFN signaling

proteins in mice results in greater mortality, accompanied by

systemic (as opposed to respiratory-restricted) infection [5]. In

addition, IFN is able to activate immune system cells, such as

natural killer (NK) cells, during the early stage of infection, which

can destroy infected cells [6–10]. The secretion of IFN-a/b by

infected epithelial cells is also important for the initiation of the

antigen-specific adaptive immune response [11,12], which in mice

takes approximately 5 days to begin in the lung [13]. The adaptive

immune response mainly consists of cytotoxic CD8+ T cells

eliminating infected cells and antibodies neutralizing the virus

[11]. It is important for clearing the virus and provides immunity

against future influenza virus infections. Because of limited

information about influenza pathogenesis and the host immune

response in humans, various animal models, such as mice, ferrets,

and horses [14–17], have been used to obtain a better

understanding of the biological mechanisms underlying viral

control.

A number of mathematical models have been developed to

study the dynamics of influenza virus infection and immune

responses [13,18–28] (also see recent reviews in [29–31]). By fitting

a simple viral dynamic model to the data derived from 6

experimentally infected human volunteers, Baccam et al. [20]

showed that target cell limitation can explain the kinetics of

influenza A virus infection in humans. Both innate [18,20,28] and

adaptive immune responses [21,22,24] have also been incorpo-

rated into the basic model to evaluate the effect of immune

responses on viral control. In a recent study, Miao et al. [13]

quantitatively investigated the innate and adaptive immune

responses to primary influenza A virus infection in mice. They

compared the half-life of infected epithelial cells and free virus

before and during a virus-specific immune response (about 5 days

post-infection). Lee et al. [27] developed a two-compartment

model to study the contributions of different factors, such as

antigen presentation and activation of naive T and B cells, CD4+
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T cell help, CD8+ mediated cytotoxicity, and antibody, to the

control of influenza A virus infection. These studies provide a

quantitative understanding of the host immune response in

controlling virus replication.

The relative contributions of target cell availability and immune

responses to viral control remain unclear. In a recent study, Saenz

et al. [19] estimated the numbers of viral-antigen-positive cells in

the lungs of ponies at days 2.5, 4.5, and 5.5 after challenge with

equine influenza virus (EIV). The result indicated that up to 5% of

bronchiole cells were infected at any one time, yielding an

estimated total cell loss of about 27% by the end of the infection.

This suggests mechanisms for viral control in addition to target cell

depletion [20], and motivates the development of a model that

includes a strong innate immune response to explain the clearance

of virus during infection [19]. However, the model in [19] is

unable to capture a number of important features of the viral

kinetics observed in 6 ponies, e.g., the viral peak in most of the

ponies, the rapid and substantial viral decline after the peak (2 to 4

log decline within 1 day), and a short plateau phase in which the

viral load remained unchanged or even experienced a minor

second peak in some ponies [19]. In this study, we develop

mathematical models based on several possible biological mech-

anisms that attempt to explain all of these observations. Our

objective is to investigate which biological parameters can give rise

to the viral load change observed during an uncomplicated

influenza virus infection.

Materials and Methods

Experimental data
The data we studied were from an experimental challenge of 6

unvaccinated ponies infected with EIV A/eq/Kildare/89 (H3N8)

[16]. Nasal secretions (NS) were collected daily for 10 days post-

challenge and number of copies of influenza virus RNA per

milliliter (ml) was quantified. Blood samples were also collected to

quantify the fold changes in cytokine expression including IFN for

days 1 through 5 post-challenge compared to the day prior to

challenge. We used both the viral load and the IFN fold change

data in this study. High antibody titers were detected by the single

radial haemolysis (SRH) assay 14 days post-challenge in the

horses.

Upon infection, the viral load increased rapidly and reached its

peak at day 2 for all ponies. There was a wide variation in the peak

level. The highest was approximately 108 copies of viral RNA/ml

of NS (pony 2), while the lowest was 104 copies/ml of NS (pony 6).

After the peak, the viral load experienced a rapid and substantial

decline (about 2 to 4 logs within 1 day). All the ponies had a viral

plateau and some experienced a minor but obvious second peak.

After the viral plateau/second peak, there was a second viral

decline starting around day 6. In 4 out of the 6 ponies, the viral

load decreased to below the detection limit by day 8. The rest of

the ponies had undetectable viral load at day 9. During the

infection, IFN expression increased substantially reaching a peak

on day 2 in 5 of the 6 ponies, followed by a rapid decrease to the

pre-infection level [16,19]. The peak of IFN-fold change ranged

from approximately 1 (pony 3) to more than 10 (pony 6).

Mathematical model
We developed a model to study the within-host dynamics of

EIV infection in horses. It is described by the following system of

equations

dT

dt
~{bVT{wFTzrR

dI

dt
~bVT{dI{kIF

dR

dt
~wFT{rR

dV

dt
~pI{cV

dF

dt
~qI{dF

ð1Þ

The model has five variables: target cells (T), productively infected

cells (I), uninfected cells that are refractory to infections (R) because

of IFN-induced antiviral effect [32], free virus (V), and IFN (F).

The term bVT represents the rate of infection when virus

encounters susceptible target cells. IFN induces an antiviral effect

and enables uninfected cells to become refractory to infection at

rate wFT . Cells in the refractory state revert back to the susceptible

state at rate r. Infected cells are assumed to die at per capita rate

d.

Prior to the emergence of the antigen-specific adaptive immune

response, we assume d is a constant dI. This rate (d) becomes

dA = dm-(dm-dI)e
2s(t-m) after the adaptive immune response emerg-

es, where m is the time at which the adaptive immune response

emerges, dm is the maximum death rate of infected cells in the

presence of an adaptive immune response, and s determines how

fast the death rate increases from dI to the saturation rate dm.

Because we only model the dynamics for a few days after the

adaptive immune response emerges, we modify the time-varying

death rate to dA = dIe
s(t-m) without using the maximum constant dm.

In this way, the number of parameters introduced is reduced by 1.

Another method that explicitly includes the adaptive immune

response as an additional variable in the model was also examined

and the results are mentioned in the Discussion section.

In the early stage of influenza virus infection, NK cells can be

activated by IFN to induce cytolysis of infected epithelial cells and

play an important role in the innate immune response [6,7,8,9,10].

Here, we assume the number of activated NK cells is proportional

to the level of IFN and use the mass action term kIF to represent

the killing by NK cells. Note that killing by NK cells is an

important, but not the only factor leading to the loss of infected

cells. Cytokines or proteins released by other cells such as

macrophages [33] during the innate immune response can also

Author Summary

Influenza, commonly referred to as the flu, is a contagious
respiratory illness caused by influenza virus infections.
Although most infected subjects with intact immune
systems are able to clear the virus without developing
serious flu complications, the mechanisms underlying viral
control are not fully understood. In this paper, we address
this question by developing mathematical models that
include both innate and adaptive immune responses, and
fitting them to experimental data from horses infected
with equine influenza virus. We find that the innate
immune response, such as natural killer cell-mediated
infected cell killing and interferon’s antiviral effect, can
explain the first rapid viral decline and subsequent second
peak viremia, and that the adaptive immune response is
needed to eventually clear the virus. This study improves
our understanding of influenza virus dynamics and may
provide more information for future research in influenza
pathogenesis, treatment, and vaccination.

Within-Host Dynamics of Influenza Infection
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promote increased lung epithelial apoptosis following influenza

virus infection [34,35]. Infected cells are assumed to produce virus

at rate p and free virus is cleared at rate c per virion. As in the

previous models by Baccam et al. [20] and Saenz et al. [19], loss of

virions due to infection has been neglected. Since an infected cell

may produce as many as 20,000 virions [36], the loss of one virion

to produce an infected cell can be neglected. IFN is secreted by

infected cells at rate q and decays at rate d. A schematic diagram of

Eq. (1) is shown in Figure 1. Variables and parameters are

summarized in Table 1.

Parameter values and data fitting
We fixed some parameters and estimated the rest by fitting the

model to both the viral load and IFN data. The lifespan of infected

cells prior to the emergence of the adaptive immune response, 1/

dI, was fixed to 0.5 days [31,37], which is the value used in

previous modeling studies [19,21]. Because no CD8+ T cell data

were obtained in this experiment, we chose the time at which the

adaptive immune response emerges (m) according to the second

viral decline. For example, we chose m = 7 days for pony 1 and

m = 6 days for pony 2. A similar method has been used previously

in analyzing acute HCV infection kinetics in chimpanzees [38].

We also included a delayed adaptive immune response explicitly in

the model and obtained similar results (see Discussion). The initial

population of epithelial cells in the equine respiratory tract was

fixed at T0 = 3.561011 cells [39]. We assume all such cells are

target cells, as used in Saenz et al. [19], although H3N8 viruses

prefer to infect a 2,3 sialic acid glycan-expressing cells [40] and

thus the number of target cells could be less than assumed here.

We include sensitivity test to a number of parameters including the

initial number of target cells below. We set the initial population of

infected cells and refractory cells to 0, and the initial IFN fold

change to 1, i.e., no change, as given in the data set. The

remaining parameters were estimated from data fitting. Note that

some parameters, such as the infection rate constant b and the

viral production rate p, do not have physiological values because

they are in the unit of ml of nasal secretions.

We fit the model to both the viral load and IFN data of each

pony using the commercial software package Berkeley Madonna

(Version 8.3.18). The obtained parameter values were based on

the best nonlinear least squares fit of the model equations to the

data set, i.e., the program minimized the root mean square (RMS)

between data points and the corresponding model predictions,

given by

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nV

XnV

i~1

logVi{log �VVið Þ2z 1

nF

XnF

i~1

Fi{�FFið Þ2
vuut ð2Þ

where the number of viral load and IFN fold change measure-

ments for an individual pony are denoted by nV and nF,

respectively. Viral load data is given by �VVi and the analogous

value given by our model is Vi. Similarly, the measured IFN fold

change is �FFi and the corresponding model prediction is Fi. The

first data point below the detection limit (100 copies/ml of NS) was

assumed to be 1 copy/ml of NS. Other values, such as half of the

detection limit, can also be used [41], which will affect the estimate

of the parameter s in this study. There are also other approaches

to incorporating left-censored measurements [42]. We did not

include the viral load data under the detection limit after the first

undetectable data point. Equal weights for both viral titer and IFN

data were employed because they are approximately in the same

range. Using different weights or normalized data (each value is

divided by the maximum) generates a similar fit, although the

estimates of parameter values can be different.

Approximation of viral decline after the peak using the
target cell limited model

The target cell limited model was used in [20] and described by

the following equations: dT/dt = 2bVT, dI/dt = bVT-dI, and dV/

dt = pI-cV. Assuming tpeak is the time at which the viral load

achieves its peak, we have pI = cV at t = tpeak. Thus, I(tpeak) = cV

(tpeak)/p. Because target cells are nearly depleted around the peak

Figure 1. Schematic representation of Eq. (1).
doi:10.1371/journal.pcbi.1002588.g001

Within-Host Dynamics of Influenza Infection
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of infection in this model [20], we assumed T<0 for a short time

period after tpeak, and solved for I(t). This assumption was also used

in [23] to obtain an approximation for the decay after the peak

using the model with an eclipse phase. The solution is

I(t)~
c

p
Vpeake{d(t{tpeak), t§tpeak. Substituting this into the V(t)

equation and solving for V(t), we have V(t)~Vpeake{c(t{tpeak)z
cVpeak

c{d
½e{d(t{tpeak){e{c(t{tpeak)�, t§tpeak. Thus, the predicted viral

load reduction 1 day after the peak is
V (tpeakz1)

Vpeak

~e{cz

c

c{d
(e{d{e{c)~

c

c{d
e{d{

d

c{d
e{c. As c is typically much

larger than d (Table 2), this ratio is mainly determined by the value

of d . For d in the range of (0, 4.5) day21, which covers most of the

estimates in the literature [20], the ratio is always greater than 0.01

for any positive value of c. This implies that for any value of d,4.5

day21, the target cell limited model generates ,2 log decline within

1 day after the peak. The actual viral load reduction predicted by

the model should be less than this approximation because we

assumed T<0 over the interval [tpeak, tpeak+1]. Numerical results

show that to obtain a 3 log decline within 1 day after the peak, c

should be .12 day21 and d needs to be .8 day21. To attain a 4 log

decline, c should be .18 day21 and d needs to be .10 day21.

Statistical analysis
To statistically compare the best fits using model 1 (Eq. (1)) and

model 2 (setting k to 0 in model 1, i.e., no killing of infected cells

by NK cells), we performed an F-test. An F-test is used to compare

two nested models used to fit the same data set to determine

whether the model with more parameters statistically improves the

fit. The improvement is considered to be statistically significant if

the p-value is less than 0.05. We begin with the calculation of the

F-value as follows:

F~
½RSS2{RSS1�=½df2{df1�

RSS1=df1

,

where RSS is the sum of squared residuals between model predictions

and data. The RMS value generated from Berkeley Madonna is the

root of the mean squared residuals. Hence, RSS = nN(RMS)2, where n

is the number of data points. The subscripts 1 and 2 represent model

1 and model 2, respectively. The degree of freedom associated with

RSS is df = n-m, where m is the number of fitted parameters. Note that

m, the time at which the adaptive immune response emerges, was

counted as a fitted parameter although we fixed it according to the

second viral decline. To compute the p-value, we calculated the F

distribution evaluated at the F-value with (df2-df1, df1) degrees of

freedom. Comparison between models was performed individually

for all the ponies.

Results

Overview of the best fits of Eq. (1) to experimental data
We fit the predicted values of V(t) and F(t) in Eq. (1) to the viral

load and IFN (fold change) kinetic data, respectively, of each pony.

The best fits, shown in Figures 2 (red solid) and 3 (blue solid),

indicate that Eq. (1) agrees with both the viral load and IFN data

well. Parameter values corresponding to the best fits are given in

Table 2. Note that the estimates of some parameters, such as the

infection rate b and the viral production rate p, have large

variations. This is expected because there is a large variation (up to

4 logs) in the peak viral load of the 6 ponies. We also fit the model

to the average data of the 6 ponies (Figures 2 and 3). The average

data show similar kinetic changes of viral titer and IFN, and the

best-fit model agrees well with the data.

For comparison, we also plotted the best fits (dashed lines in

Figures 2 and 3) of the Saenz et al. model [19] to the same viral

load and IFN data. Our model improves the viral load data fits in

several aspects. First, our fits capture the viral peak in all 6 ponies.

Second, the fits achieve the rapid and substantial viral decline

within 1 day after the peak in all ponies. Third, the fits generate a

period of viral plateau and/or a second peak. Lastly, our fits

generate the rapid second viral decline to below the detection limit

in all 6 ponies. Detailed explanations and possible biological

mechanisms for these viral load changes are given below.

Table 1. Variables, parameters, and values used in Eq. (1).

Symbol Definition Unit Value

T Uninfected epithelial cells that are susceptible to infection cells initial value: 3.561011

[39]

I Infected epithelial cells cells initial value: 0

R Epithelial cells in the refractory state cells initial value: 0

V Viral load RNA copies (ml NS)21 initial value: fitted

F Interferon IFN fold change initial value: 1

b Infection rate (RNA copy)21 ml NS day21 fitted

w IFN-induced antiviral efficacy (IFN fold change)21 day21 fitted

r Reversion rate from refractory day21 fitted

dI Death rate of infected cells before the adaptive immune response emerges day21 2 [31,37]

dA Time-varying death rate of infected cells during the adaptive immune response day21 see text

k Killing rate of infected cells by NK cells (IFN fold change)21 day21 fitted

p Viral production rate RNA copies (ml NS)21 day21 cell21 fitted

c Clearance rate of free virions day21 fitted

q Production rate of IFN IFN fold change day21 cell21 fitted

d Decay rate of IFN day21 fitted

doi:10.1371/journal.pcbi.1002588.t001
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PLoS Computational Biology | www.ploscompbiol.org 4 June 2012 | Volume 8 | Issue 6 | e1002588



Rapid and substantial viral decline after the peak
The viral loads in all 6 ponies experienced a 2 to 4 log decline

within 1 day after the peak [16,19]. Similar viral declines were also

observed in 6 volunteers experimentally infected with influenza A

virus [20]. What causes such a rapid and substantial viral decline

within a short period of time? The data fits using both the target

cell limited model in [20] and the modified model in [19] did not

capture this feature. In fact, using the target cell limited model we

can derive an approximation of the viral load reduction 1 day after

the peak (see Materials and Methods). For most of the estimates of

the infected cell death rate in the literature, the target cell limited

model cannot generate a .2 log decline within 1 day after the

viral peak. This suggests that other factors not included in the

target cell limited model may be responsible for this dramatic viral

decline. We tested different models based on several possible

biological mechanisms (see below) and found that the model

shown in Eq. (1) can reproduce the viral load change observed in

the 6 ponies. The rapid viral decline after the peak is mainly due to

the combination of two factors: the decline of target cells because

of their conversion to the refractory class (wFT in Eq. 1) by IFN’s

antiviral effect, and the killing of infected epithelial cells (kIF in

Eq. 1), possibly mediated by IFN activated NK cells during the

innate immune response.

We plotted the changes of uninfected target cells (solid blue),

infected cells (solid green), refractory cells (dashed red), and total

cells (dotted black) in Figure 4. The number or percentage of

infected epithelial cells is low compared to the prediction of the

target cell limited model [20]. In contrast with the predictions of

the Saenz et al. model [19], the level of uninfected target cells

remains high (.1010 cells) for all the ponies during the entire

infection course. The reversion of cells from the refractory to the

susceptible class (rR) prevents uninfected target cells from

decreasing to a very low level. This suggests that in addition to

target cell depletion, cytolysis of infected cells mediated by IFN

activated cells such as NK cells during the innate immune

response may be responsible for the viral decline during the early

stage of influenza virus infection.

To further test if a model that only includes the refractory class

without NK cell-mediated infected cell killing (k~0 in Eq. 1;

referred to as model 2) can explain the first rapid viral decline, we

fit model 2 to the same experimental data (dashed lines in Figure 5

for viral load and Supporting Figure S1 for IFN fold change). We

found model 2 cannot generate the rapid viral load decline after

the peak. We also tested a model assuming that IFN only reduces

the viral production rate (i.e., assuming k~0 and replacing p with
p

1zQF
in Eq. (1); this is referred to as model 3) and found this model

could not generate the first rapid viral decline either and yielded

dynamics very similar to model 2 (dotted lines in Figure 5). Thus,

the cell-mediated lysis of infected cells during the innate immune

response plays a critical role in generating the first rapid viral

decline in our model. We calculated the error between modeling

predictions and experimental data (RMS) for different models.

The RMS values are given in Table 3. Model 1 generated the

smallest error for each pony.

We compared the best fits of using model 1 and model 2 by

performing an F-test , which determines which one of the two

nested models provides a better data fit from a statistical

standpoint (Materials and Methods). The results given in Table 3

show that model 1 provides significantly better fits for ponies 2 and

3 (with the p-value,0.05). For the other ponies, the F-test shows

that there is a statistical trend supporting model 1 (with the p-value

from 0.1 to 0.4). We also compared the best fits using the modified

Akaike Information Criterion (AICc) (Supporting Text S1). Model

1 is supported over model 2 for each pony (Table S4).
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We did not statistically compare the fits of model 1 with the

Saenz et al. fits [19] because the objective functions minimized

during data fitting are different. Saenz et al. [19] incorporated the

percentage of infected cells in their fitting. We did not include this

because the data of the percentage of infected cells were from a

different study [43]. The errors listed in Table 3 and the fitted

curves (Figures 2 and 3) show that our fits improve those using the

Saenz et al. model.

Viral plateau and second peak
The phenomenon of bimodal viral titer peaks in most ponies

[16] was also observed in other studies with influenza virus

Figure 2. Model comparisons with viral load data. Best fits of Eq. (1) (solid red) and the Saenz et al. model (dashed green) to the viral load data
(filled red circles) were shown. The horizontal dashed blue line represents the detection limit of the viral titer, i.e., 100 RNA copies per ml of nasal
secretions. Data below the detection limit were plotted as 1 RNA copy per ml of nasal secretions.
doi:10.1371/journal.pcbi.1002588.g002
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infection [44,45,46]. The target cell limited model [20] and the

Saenz et al. model [19] cannot generate bimodal virus titer peaks.

Adding the effect of IFN and a time delay in its production into the

target cell limited model was shown to be able to generate bimodal

peaks [20]. However, the fits obtained by Baccam et al. [20] using

this model did not agree well with the data. Our fits using model 1

generated an obvious bimodal behavior (Figure 2). The level of

IFN peaked around day 2 and then declined rapidly (Figure 3),

concordant with the emergence of viral plateau/second peak

(Figure 2). Thus, the viral plateau and the second viral titer peak

can be explained by the loss of the IFN-induced antiviral effect

(wFT in Eq. 1). Increased availability of susceptible cells due to

reversion from the refractory state (rR in Eq. 1) can also contribute

to the viral plateau/second peak. From our data fits we estimated

Figure 3. Model comparisons with IFN data. Best fits of Eq. (1) (solid blue) and the Saenz et al. model (dashed orange) to the IFN fold change
data (filled blue circles) were shown.
doi:10.1371/journal.pcbi.1002588.g003
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that the rate (r) at which refractory cells (R) revert from the

refractory to the susceptible state is on average 2.6 per day. The

reversion rate is also important in preventing uninfected target

cells from decreasing to a very low level. Sensitivity tests of the

model predictions to a number of parameters, including w and r,

are given below.

Sensitivity test
We examined the sensitivity of the predicted viral load of pony 1

to several parameters, including w, r, k, and p (Figure 6). More

sensitivity tests of the predicted viral load and IFN to other

parameters and contour plots are presented in Supporting Figures

S2, S3, S4, S5, S6, S7, S8. Sensitivity tests show that the IFN’s

antiviral efficiency (w) and the reversion rate (r) are important in

generating the viral plateau and the second peak (Figure 6A, B). A

large value of w can also yield a rapid first viral decline. However,

this will eliminate the viral plateau and the second peak

(Figure 6A). Increasing the infected cell killing rate constant k
alone will decrease the first viral peak and increase the second

peak (Figure 6C). A large value of the viral production rate p

(Figure 6D) or the infection rate b (Figure S2) can achieve the first

viral peak. However, they will significantly reduce the time for the

viral titer to reach the peak. These sensitivity tests suggest that the

cell-mediated lysis of infected cells (k) and the IFN’s antiviral effect

(w) during the innate immune response are the major factors

responsible for the first rapid viral decline and subsequent viral

plateau/second peak.

Since the initial number of target cells of H3N8 virus infection

could be less than 3.561011 cells (T0), the estimate of total

epithelial cells in the equine respiratory tract [39], we reduced it

from T0 to 75% or 50% of T0. The simulation in which the other

parameters are assumed to be unchanged shows that a small initial

number of target cells can delay the time to reach the first viral

peak, reduce the magnitude of the peak viremia, and eliminate the

Figure 4. The changes of cell populations predicted by Eq. (1) based on the best fits. Solid blue represents susceptible cells, solid green
represents infected cells, dashed red represents cells in the refractory state, and dotted black represents the total number of cells. The curves were
zoomed in for ponies 2 and 4 to show the level of refractory cells.
doi:10.1371/journal.pcbi.1002588.g004
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Figure 5. Best fits of different models to experimental data. Model 1 is described by Eq. (1). Model 2 is Eq. (1) with k= 0, i.e., no killing of
infected cells by NK cells. Model 3 is model 2 assuming the viral production rate is p=(1zQF ). The detection limit of the viral titer is 100 RNA copies
per ml of nasal secretions. Data below the detection limit were plotted as 1 RNA copy per ml of nasal secretions.
doi:10.1371/journal.pcbi.1002588.g005

Table 3. Comparisons of the best fits using different models.

Pony RMS of model 1* RMS of model 2*
Number of data
points** p-value for F-test RMS of Saenz et al. model***

1 0.695 0.951 14 0.181 1.442

2 0.651 1.061 15 ,0.05 1.873

3 0.320 0.718 14 ,0.05 1.613

4 0.768 0.953 15 0.202 1.352

5 0.618 1.027 13 0.157 1.610

6 0.695 0.845 13 0.400 1.802

*Model 1 is described by Eq. (1). Model 2 is Eq. (1) with k= 0, i.e., there is no killing of infected cells by NK cells.
**We did not include data points of viral titer under the detection limit after the first undetectable data point.
***The RMS value was calculated by Eq. (2) in the Materials and Methods. These values are different from those presented in Saenz et al. [19] because the percentage of
infected cells is not included (see text).
doi:10.1371/journal.pcbi.1002588.t003
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viral plateau (Figure S2). However, data fitting using 75% and

50% of T0 still generates good fits to the experimental data (see

Figure S2 for the fit to the viral load data of pony 1).

Discussion

The biological factors responsible for viral control during

influenza virus infection remain unclear. Earlier work [20]

suggested that the viral decline after the peak could be explained

by a limitation in the availability of target cells. However, a recent

study by Saenz et al. [19] estimated that ,5% of epithelial cells

are infected at any one time and that the total epithelial cell loss is

,30% by the end of the infection. They modified the target cell

limited model by including an IFN-induced antiviral state of

uninfected cells [19]. However, their modified model is still

essentially a target cell limited model — uninfected target cells

move to the refractory class, causing the depletion of susceptible

cells and hence the viral titer declines after reaching the peak.

Numerical simulations also confirmed this prediction (Figure 3 in

[19]). As we analytically showed in Materials and Methods, the

target cell limited model cannot generate a rapid and substantial

viral decline after the peak unless a very large death rate of

infected cells is chosen. However, only increasing the death rate of

infected cells will decrease the first peak and eliminate the viral

plateau/second peak, which is observed in all the 6 ponies. In this

paper, we developed a new model (Eq. (1)) and showed that

cytolysis of infected cells mediated by cytokines and cells such as

NK cells during the innate immune response, can explain the

rapid viral decline after peak.

During an early stage of infection, NK cell activity contributes

to a rapid termination of many virus infections, including

influenza, before the onset of the adaptive immune response

[11,47,48,49,50]. Several studies in mice have illustrated that

depletion of NK cells resulted in increased morbidity and mortality

from influenza infection [51,52,53]. In humans, severe/lethal

2009 H1N1 influenza virus infection in 3 cases was associated with

reduction of NK cells rather than effector CD8+ T cells [54], and

influenza vaccination led to increased levels of NK cells with

activation markers CD56 and CD69 [55]. NK cells are not only

responsible for producing antiviral cytokines, but they are also

directly involved in destroying virus-infected cells via the

recognition by the natural cytotoxicity receptors (NCR) NKp46

(NCR1 in mice [6]) and NKp44 [7,8,9,10]. Gazit et al. [6] showed

that influenza virus infection was lethal in mice when the NK

receptor NCR1 was knocked out.

In our model, we assumed that the level of activated NK cells is

proportional to that of IFN, whose levels were measured in the study

[16]. There is evidence supporting that NK cells have similar

dynamics to IFN and virus during influenza virus infection. For

example, an experimental study on murine influenza virus infection

[56] showed that the effector cells with the properties of NK cells

had very similar dynamics to the IFN level changes, i.e., peaked at

1–2 days post-infection and decreased to low levels by day 6. In mice

that were inoculated intranasally with the mouse-adapted strain of

human influenza A/PR/8/34 (H1N1) virus, the timing of viral peak

and subsequent decline was consistent with that of NK cell-

mediated cytolysis [57]. Another study [58] also showed that the

peak of NK cells occurred within the first several days after influenza

virus infection in mice, consistent with the timing of IFN

production. In addition to the killing by IFN activated NK cells,

high expression of cytokines during the innate immune response

may also lead to infected cell death [34]. For example, influenza A

virus-stimulated apoptosis was shown to be enhanced by IFN a/b
and by increased expression of the antiviral protein PKR [35].

Figure 6. Sensitivity tests of the predicted viral load of pony 1 to model parameters. The parameter in the legend was varied (10-fold
larger or smaller than the estimate in Table 2) while the remaining parameters were fixed and chosen from Table 2.
doi:10.1371/journal.pcbi.1002588.g006
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Macrophage-derived TRAIL (tumor necrosis factor-related apop-

tosis-inducing ligand) also plays an important role in promoting

epithelial cell apoptosis [33].

We used IFN as a proxy of the innate immune response to

model the cell-mediated lysis of infected epithelial cells and the

antiviral effect. This may not be accurate because a number of

other cytokines are involved in the innate immune response.

Dendritic cells (DCs) and macrophages produce large amounts of

antiviral and immunostimulatory cytokines in response to influ-

enza virus infection [2,4,59,60,61]. We assumed that IFN is

secreted by epithelial cells once they are infected. Other cells, such

as monocytes, macrophages, and plasmacytoid DCs, can also

contribute to IFN production [4,37,62]. Further, there may exist a

time delay in IFN production, as observed in pony 1 (Figure 3) in

which viral titer/infected cells peaked at day 2 post-infection while

IFN peaked at day 3 post-infection. A similar time lag was

observed in mice with influenza virus infection [63]. Moltedo et al.

[63] showed that the initiation of lung inflammation (generation of

IFNs, cytokines, chemokines, etc) did not begin until almost 2 days

after infection, when virus replication reached its peak. This delay

may be mediated by the influenza-encoded NS1 protein [63],

which can act to block IFN production in influenza infected cells

[48,64,65]. The burst of IFN production after day 2 might be

explained by activation of plasmacytoid DCs or other uninfected

cells in the lung, which are activated to a degree that correlates

with viral titer or number of infected cells. Future comprehensive

models may wish to take macrophages, DCs and other cytokines

into account. However, more complicated models should be

accompanied with appropriate data for model verification.

After the rapid post-peak decline of viral titer, we observed a

plateau phase and/or the second viral peak. Although a number of

models have been developed to study within-host influenza virus

dynamics, very few models can generate the second peak. As the

innate immune response weakens (Figure 3 shows that a rapid IFN

decay was observed in all ponies even when the viral load was still

high), the killing of infected cells (kIF ) lapses in our model. Thus,

the level of infected cells can remain unchanged for a while or

even increase. This can explain the viral plateau and the second

viral increase.

Another factor leading to the second peak is the augmented

availability of target cells. The rapid IFN decay significantly

reduces the conversion of susceptible cells to the refractory class.

Because cells are most likely unable to maintain the antiviral state

for a long time without continued IFN signaling, those cells that

are already in the refractory class will revert back to the susceptible

state and become the target of virus infection again. This will

enhance the viral production. Some other factors may also

contribute to the second peak. For example, when virus spreads to

a previously uninvolved site in the lung or respiratory tract as

discussed in [20], viral infection and production will increase and

may lead to a second viral load increase.

After reaching the second peak around day 6 post-infection, the

viral titer underwent a rapid second viral decline to below the

detection limit. We showed that this second viral decline can be

generated by the emergence of an adaptive immune response

(Figure 2), which usually arises 4 to 7 days post-infection [11].

Without introducing an adaptive immune response in the model,

the virus will not be cleared in ponies with a plateau/second peak.

Because CD8+ T cell were not measured for these ponies, we

assumed an increasing death rate of infected epithelial cells, dA,

after the second peak. We have also examined a model with an

explicit adaptive immune response by adding another variable X,

representing cytotoxic T lymphocytes (CTL), with dX/dt = rX,

where r is the net expansion rate. We assumed the CTL-mediated

killing of infected cells is 2kXI in addition to dII in the model. In

order for the adaptive immune response to remain at a very low

level during the first several days, r should be very small. However,

such a low-level adaptive immune response cannot generate the

rapid second viral decline. This problem can be resolved by using

a larger r and a time delay for the emergence of the adaptive

immune response. However, this method is almost the same as

what we did in the main text: increasing the death rate of infected

cells several days after infection.

In addition to CD8+ T cells, antibodies neutralizing free virions

may also be involved in viral clearance. Increasing either the

infected cell death rate d, as shown in our study, or the viral

clearance rate c can generate the same second viral decline to

below the detection limit. Thus, from the comparison between

model predictions and the data, we cannot determine if the viral

clearance is mainly caused by CD8+ T cells or neutralizing

antibodies. However, in the experiment [16] from which we

studied the data, no anti-influenza antibodies were detected by the

SRH assay 7 days post-challenge in any of the ponies. Low levels

of antibodies were detected by ELISA on day 7 for 3 of the 6

ponies. Although such antibodies may exist at low levels before day

7, they may not be the major factor responsible for viral clearance

because the infection was already resolved by day 7 in ponies 5

and 6. Likewise, we cannot estimate the duration of the eclipse

phase in which infected cells have not started to produce virions

because the model with and without an eclipse phase both fit the

experimental data well (Supporting Text S1, Table S1, Table S2,

Figures S9, and S10).

Although target cells are not depleted, we predict a decline of

target cells as well as the total number of epithelial cells during

infection (Figure 4). The reason for the decline is that we did not

include generation/proliferation of epithelial cells. This is not

important for the short time period of infection we studied.

Consistent with the other studies [19,20,21], including the

regeneration of target epithelial cells in our model does not

improve the fits of the model to the data set. This is also supported

by the observation in humans that regenerating respiratory

epithelium cells appeared only in 3 out of 14 subjects after 5–14

days post-infection [66], whereas virus infection is usually resolved

within 7–10 days [67]. Once the virus is cleared, generation/

proliferation will increase epithelial cells to the pre-infection level.

In summary, by fitting mathematical models to the viral load

and IFN data we illustrate that both the innate and adaptive

immune responses are needed to explain the viral load change

during influenza virus infection. The first post-peak viral decline

(about 2 to 4 logs within 1 day) can be explained by the lysis of

infected epithelial cells, mediated by cytokines and cells such as

NK cells, during the innate immune response. The subsequent

viral plateau/second peak is generated in our model by the loss of

the IFN-induced antiviral effect and the increased availability of

target cells as cells lose their antiviral state. An adaptive immune

response is needed in our model to explain the eventual viral

clearance. A detailed and quantitative study of the within-host

dynamics of virus, cells, and cytokines may provide more

information for future research in influenza pathogenesis, treat-

ment, and vaccination.

Supporting Information

Figure S1 Best fits of different models to the IFN data.
Model 1 is described by Eq. (1). Model 2 is Eq. (1) with k= 0, i.e.,

no killing of infected cells by NK cells. Model 3 is model 2

assuming the viral production rate is p=(1zQF ).

(TIFF)
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Figure S2 Sensitivity tests of predicted viral load to
parameters. The first four rows: sensitivity tests of the predicted

viral load of pony 1 to model parameters (Eq. (1)). The parameter

in the legend was varied while the remaining parameters were

fixed and chosen from Table 2. The fifth row: best fits of Eq. (1)

assuming the initial number of target cells is 75% or 50% of

3.561011 cells to the viral load data. The best-fit parameters are

shown in Table S3.

(TIF)

Figure S3 Sensitivity tests of predicted interferon level
to parameters. The parameter in the legend was varied while

the remaining parameters were fixed and chosen from Table 2.

(TIF)

Figure S4 Contour plots of the viral load as a function of
the indicated parameter and time. On the right side of each

contour plot there is a color scale in which different colors

represent different viral loads (in the log scale).

(TIF)

Figure S5 Contour plots of interferon as a function of
the indicated parameters and time.
(TIF)

Figure S6 Contour plots of the viral load peak as a
function of the indicated parameters.
(TIF)

Figure S7 Contour plots of the interferon peak as a
function of the indicated parameters.
(TIF)

Figure S8 Contour plots of the viral load as a function of
the indicated parameters and time.
(TIF)

Figure S9 Best fits of the eclipse model to the viral load
data. The horizontal dashed blue line represents the detection

limit of the viral titer, i.e., 100 RNA copies per ml of nasal

secretions. Data below the detection limit were plotted as 1 RNA

copy per ml of nasal secretions.

(TIF)

Figure S10 Best fits of the eclipse model to the IFN data.

(TIF)

Table S1 Parameter values of the best fits of the eclipse
model to experimental data.

(PDF)

Table S2 Comparisons of the best fits using different
models.

(PDF)

Table S3 Parameter values of the best fits of Eq. (1)
with reduced T0 to the data of pony 1.

(PDF)

Table S4 Comparisons of the best fits using AIC.

(PDF)

Text S1 The model with an eclipse phase.

(PDF)
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