
Perspective

Which of Our Modeling Predictions Are Robust?
Rob J. De Boer*

Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands

Abstract: In theoretical ecology it
is well known that the steady state
expressions of the variables in a
food chain crucially depend on the
parity of the length of the chain.
This poses a major problem for
modeling real food webs because it
is difficult to establish their true
number of trophic levels, with
sometimes rare predators and of-
ten rampant pathogens. Similar
problems arise in the modeling of
chronic viral infections. We review
examples where seemingly general
interpretations strongly depend on
the number of levels in a model,
and on its specific equations. This
Perspective aims to open the dis-
cussion on this problem.

Patients chronically infected with HIV-

1 differ several orders of magnitude in the

total amount of virus circulating in their

blood. Individual patients approach their

particular ‘‘set-point’’ viral load on a time

scale of months, after which it remains

fairly stable over a period of years. The

viral set-point is a quasi steady state in

which productively infected cells have a

half-life of about 1 d [1–3] and are

continuously replaced by newly infected

target cells. The biological mechanism

underlying the huge heterogeneity in set-

points in HIV-1-infected patients is not

well understood. Because genetic differ-

ences in hosts [4,5] and viruses [6–8] play

a role, every HIV-1-infected patient comes

with its own set of parameters. One major

heterogeneity in the hosts is the polymor-

phism in the HLA molecules activating

CD8z cytotoxic T lymphocytes (CTL)

[5].

Fitting mathematical models to experi-

mental data has identified several crucial

parameters of this viral infection [2], and

this is one of the most productive areas of

mathematical biology, involving intensive

collaborations between modelers, immu-

nologists, and virologists. Several mathe-

matical modeling studies have addressed

the question of the variation in set-point

viral loads [3,9,10]. Paradoxically, the

outcome of these studies depends strongly

on the design of model, and especially on

the number of levels of interaction incor-

porated in the model [9]. Similar prob-

lems have been described in theoretical

ecology, where the parity of the number of

trophic levels in a model is known to

influence the predicted outcome [11,12].

Since good mathematical models are

natural simplified caricatures of complex

biological systems, one would hope that

the predictions and interpretations in-

ferred by analyzing these models were

more robust and relatively independent of

their precise set of equations.

Model Predictions Are Not
General

Let us illustrate the absence of robust-

ness by presenting simple models for

chronic viral infections, involving target

cells (T), infected cells (I) producing virus

(V), and implicitly or explicitly, an immune

response (E). The nature of these models is

basically an ecological food-chain of prey

(T), predator (I), and top-predator (E). A

first model would read:

dT

dt
~s{dT T{bTV ,

dI

dt
~fbTV{dI , and

dV

dt
~pI{cV ,

ð1Þ

where s is a production term of target cells

(cells d21), dT the death rate of target cells

(d21), b the infection rate, 0#f#1 the

fraction of successful infections, d the

death rate of productively infected cells

(d21), p the number of virions produced

per infected cell d21, and c the clearance

rate of viral particles. The cellular immune

response is implicit in this model and

could affect f; for example, f = (1+EE)21,

and/or d; for example, d = dI+kE, where E

is the magnitude of the immune response,

E scales their scales their ‘‘early’’ effect

[3,9,13], and k is a mass-action killing

rate. Since the dynamics of viral particles

is much faster than that of the cells [2],

one typically replaces dV/dt by its quasi

steady state V = (p/c)I to arrive at

dT

dt
~s{dT T{bTI ,

and
dI

dt
~bTI{dI ,

ð2Þ

where b = bp/c, and we have set f = 1 for

reasons of simplicity (see below). The

parameter d has been estimated in hun-

dreds of patients, varies around d = 1 d21,

and is not correlated with the set-point

viral load [3]. The most important target

cell for HIV-1 is an activated CD4+ T cell,

and this model has a fixed production

term of s target cells d21 (which can also

be modeled with a logistic growth term).

During the first weeks of infection the viral

load grows exponentially at a rate of

approximately 1.5 d21 [14]. Since d.1,

one could argue that bT(0).2.5 d21,

where T(0) = s/dT is the target cell density

in the absence of infection.

Bonhoeffer et al. [3] have generalized

the steady state of Equation 2 by writing a

very generic model, dT/dt = P2B = 0,

where P and B stand for ‘‘net production’’

and ‘‘infection’’ of target cells, respectively,

and dI/dt = B2dI = 0. Using that P = B,

they arrive at �II~P=d, where they also let

d implicitly take the immune response into

account. Because d hardly varies among

patients, it was argued that variation in the

net production of target cells, P, should be

responsible for the large variation ob-

served in the set-point of the infected cells

[3]. Indeed, in the presence of infection
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the steady state of Equation 2 can be

written as:

�TT~
d

b
, and

�II~
s{dT

�TT

b�TT
~

P

d
~

s

d
{

dT

b
,

ð3Þ

Where P =s2dTT, and b �TT~d by the

steady state of dI/dt in Equation 2. Thus,

this model is a special case of the

seemingly very general conclusion of

Bonhoeffer et al. [3] that variation in Ī is

largely due to variation in net target cell

production, P, given that d is fairly

invariant.

Adding an Explicit Immune
Response

Nowak and Bangham [15] extended

Equation 2 with a very simple immune

response, and wrote that:

dE

dt
~aEI{dEE, and d~dIzkE, ð4Þ

where a is an activation rate allowing E to

proliferate, dE and dI are normal turnover

rates (d21), and k is a mass-action killing

rate. Disturbingly, if Equation 2 is extend-

ed with Equation 4, the steady state of the

infected cells, Ī, can only be solved from

Equation 4 and becomes Ī = dE/a. Since

we do not expect much variation in the life

spans of CTL among patients, most of the

variation in Ī should then be due to the

activation rate a. This seems to contradict

the generic Ī = P/d result derived above.

However, it can be shown from the steady

state of the full model that mathematically

both results are in agreement (as they

should be). Solving the steady state of

Equation 2 and Equation 4 yields:

�TT~
s

dTzb�II
~

s

dTzbdE=a
,

�EE~
b�TT{dI

k
, and �II~

dE

a
~

P

d
,

ð5Þ

where the latter is true because

P~s{dT
�TT~sbdE=(adTzbdE) and

b �TT~d~dIzk�EE.

Although it is obviously still correct that

Ī = P/d in the steady state of the extended

model, it is no longer true that patients with

a different parameter for the production of

target cells—for example, different s—will

have a different set-point levels, Ī. Only

differences in the activation parameter a (or

possibly dE) can account for that. Thus, the

two immune response parameters fully

determine the set-point, Ī = dE/a, and then

the steady state of the whole model also

obeys Ī = P/d because the steady state

expressions �TT and �EE let P = dĪ. Extending

the general model with an explicit immune

response thus has a major effect on the

predicted outcome of heterogeneity in hosts

in their parameters s and a.

Can such a dominant role of a cytotoxic

immune response be in agreement with

the minor variation observed in the death

rate d? Yes, Nowak and Bangham [15]

showed that the magnitude of the steady

state immune response, �EE, varies much

less than the viral set-point. Indeed, for

high activation rates, a.bdE/dT, the target

cells in Equation 5 approach their unin-

fected steady state, �TT~s=dT , and hence

the immune response approaches its

maximal value �EE~(bs=dT{dI )=k, while

the set-point Ī remains inversely related to

a in this domain.

More Realistic Immune
Responses

Equation 4 for the immune response is

very simple, and yet different results will

be obtained if one were to take the equally

simple dE/dt = aI2dEE, which assumes

that the total production of effectors is

limited by I [9]. Another problem with

Equation 4 is that one cannot model

several immune responses that are togeth-

er controlling a chronic infection, because

this model would predict competitive

exclusion, allowing only the response with

the largest a to survive. We have proposed

immune response functions based upon a

competitive saturation term, resembling a

Beddington functional response [12,16],

which can be derived by making a special

quasi steady assumption [17–20]:

dEi

dt
~

pEEiaiI

hzEizaiI
{dEEi i~1,2, . . . ,n,

and d~dIzk
Xn

i

aiEi,

ð6Þ

where 0#ai#1 is the ‘‘avidity’’ of immune

response i for infected cells, pE is the

maximum division rate (d21), h is a

saturation constant (that can be set to

h = 0 because during a chronic infection

typically Ei+aiI&h), and we allow for n

immune responses. The steady state of

Equation 6 is �EEi~ai
�II(pE=dE{1){h,

saying that the magnitude of each immune

response is approximately proportional to

the set-point Ī weighted by the avidity. For

one immune response, the steady state of

the full model is obtained by solving a

quadratic equation, and selecting the

positive root knowing that pE.dE, we have

�TT~
bdE(dI{aihk)za2

i dT k(dE{pE)zr

2b2dE

,

�II~
bdE(dI{aihk)za2

i dT k(pE{dE){r

2a2
i bk(dE{pE)

,

where

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bdE(dI{aihk)za2

i dT k(dE{pE)
� �2

z4a2
i b2dEk(pE{dE)s

q
:
ð7Þ

Importantly the steady state expression for

Ī now contains all parameters of the

model, and one can show numerically that

increasing s increases the set-point and

that an increase of a or k decreases the set-

point (see Figure 1C and compare the

related model of Müller et al. [9]). Thus,

rather than having a single parameter

determining Ī, parameters now have a

more pleiotropic effect that seems much

better in agreement with the fact that

several factors influence the viral set point

[4–8].

This model has similar saturation effects

as the parameter a in Equation 5. For

instance, if the collective immune response

is strong, because k or n is large, the target

cells will again approach their healthy

steady state, �TT?T(0)~s=dT (see

Figure 1C). Indeed one can compute a

maximal steady state immune response by

arguing that in dI=dt~I ½b �TT{d�~0 the

maximal ‘‘replication rate’’ of infected

cells, b �TT , is obtained when �TT?s=dT .

This implies that at steady state dmax = bs/

dT.2.5 d21. Importantly, when d is de-

fined by Equation 6, this means that

increasing the diversity of the immune

response, n, is not expected to proportion-

ally increase d (Van Deutekom, Wijnker,

& De Boer, unpublished) (even though we

have no direct competition between the

immune responses [21]). Instead, the more

immune responses there are, the smaller

the contribution of each immune response

to d, ultimately approaching (bs/dT–dI)/n,

which is confirmed numerically in

Figure 1. This could help to explain why

there is so little variation in d among

patients, because d would tend to reflect

the maximal growth rate of the virus.

Similar arguments apply when one recon-

siders the early immune response in

dI=dt~I ½f b �TT{d�~0, where f ~1=
(1zE

Pn
i aiEi) and d = dI, delivering

E
Pn

i aiEi~bs= dT dð Þ{1^1:5 when �TT?
T(0) and d^1. Both results suggest that

the virus will evolve only few immune

escapes when it is controlled by a diverse

immune response, since escaping from
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each of them provides little advantage

[21].

Because results have changed with

every extension of the model, we should

ask ourselves how generic this latter result

is. Indeed, one could extend Equation 6

with exhaustion of CD8+ T cells during

chronic infections [22] and/or add a level

of regulatory T cells that down-regulate T

cell responses. However, the result is

obtained from setting dI/dt = 0 only, and

observing that b �TT~d, and does not

require other steady states besides the

intuitive argument that �TT?s=dT when

kR‘ (see Figure 1C). Thus, whenever the

diversity of the immune response is hardly

changing the density of target cells, �TT , the

killing per CTL response should be

inversely related to the diversity, n.

Parameters That Vary Should
Be Functions

Müller et al. [9] have discussed similar

problems with explaining the variation in

HIV-1 set-points, and proposed that given

the non-robustness of steady state expres-

sions, it is better to estimate parameter

values from measured steady state values.

Demonstrating that such values are robust

to changes in the model structure, they

proceeded by arguing that parameters that

vary widely between patients are probably

more complicated processes—that is, func-

tions depending on other variables—and

not extremely heterogeneous constants.

An excellent example is the large variation

in a that the model of Equation 4 required

to explain the large heterogeneity in viral

set-points. Replacing the parameter a by a

saturation function like that of Equation 6

allows one to explain the heterogeneity in

viral-loads by combinations of small var-

iations in several parameters [9].

Non-Cytolytic and/or Early
Killing

An important issue in the cellular

immune response to HIV-1 is that the

response involves more than the mere

killing of productively infected cells. There

may be cytolytic, and/or non-cytolytic,

responses by CD8+ T cells before the

infected cells actually start to produce

virus (i.e., during their eclipse phase). This

has been addressed by setting f,1 in

Equation 1 [9] and by allowing for two

sub-populations of infected cells [13]. In

contrast to the models discussed above

[23], these extended models are in good

agreement with recent experiments where

the chronic steady state is perturbed by

elimination the CD8+ T cells [9,13]. Thus,

we again face a situation calling for

improving the model by changing its

equations.

Discussion

It seems a hidden assumption in math-

ematical biology that generic mathemati-

cal results tend to carry over to similar

other models. Disturbingly, the identifica-

tion of the crucial parameters determining

the set-point viral load levels have changed

with every reasonable model extension

discussed above. The precise reason for

this absence of robustness remains unclear.

One particular problem comes about

when steady state results from other

equations are substituted into to the

equation of interest, as illustrated above

by the change of interpretation when the

model of Equation 2 was extended with

Equation 4. This approach of substituting

terms will be most precarious when the

actual number of levels implemented in a

model determines its steady state expres-

sions [11,12]. The problem seems to most

prevalent in Lotka-Volterra type models,

in which in several equations x can be

cancelled from the dx/dt equation, imply-

ing that �xx has to be solved from another

level. Equation 6 is a counterexample

because Ei cannot be cancelled from dEi/

dt due to density-dependent effects within

the Ei population, and indeed in that

model the set-point became dependent on

almost all parameters of the model [9].

Thus, predictions that do not rely on

substituting steady state results seem to be

more reliable than those that do require

terms from other equations.

Arguing along these lines, the famous

estimation of the death rate, d, of virally

infected cells from the downslope of the

viral load in patients started on effective

treatment [1,24] seems a good example of

a robust interpretation because one basi-

cally simplifies Equation 1 into a model

like dI/dt = 2dI and dV/dt = pI2cV by

assuming bR0 to implement an effective

treatment blocking de novo infections.

Nevertheless, there remains to be discus-

sion on how to interpret the various

downslopes in the viral load observed

during treatment [25–27] and during

experiments [28,29], and the results sim-

ilarly depend on the number of compart-

ments and the complexity of the models

employed to describe the data. However,

this is a different discussion relating to the

more general problem of parameter iden-

tifiability in modeling data [30,31].

Obviously, the question raised in this

Perpective should not lead to the conclu-

sion that mathematical modeling cannot

capture biological complexity in a mean-

ingful way, or that one should generally

aim for models capturing much more

biological detail. A large model will suffer

from similar problems, but they will be

much more difficult to detect. Modeling in

biology helps us to ‘‘think more clearly’’

about complex problems [32], and helps

us to better interpret quantitative experi-

mental data in terms of the underlying

biological processes. Instead, we have to

open the discussion on how to treat the

‘‘boundary’’ problem of limiting the num-

ber of levels of regulation, and the

complexity of the terms, in our simple

mathematical models of complex biologi-

cal systems.
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Figure 1. Numerical simulation of Equation 6. Without loss of generality one can scale the number of target cells in the uninfected case to
T(0) = s/dT = 1. Allowing for an initial growth rate of the infection of approximately 1.5 d21 [14], we set b = 2.5 d21 because d = 1 d21. Since the
activated CD4+ T cells comprise the majority of all target cells [2], we let them to be relatively short-lived and set dT = 0.1 d21. CD8+ effector cells
should also be short-lived and we set dE = 0.1 d21. Assuming that CD8+ T cells are activated at low doses of antigen the saturation constant h can be
set to zero. The maximal proliferation rate of CD8+ T cells is approximately pE = 1 d21, and we set the avidity ai = 1 for each Ei. The killing rates of CTL
are not known and we begin with setting k = 1. The initial condition in Panel (A) is T(0) = 1, I(0) = E1(0) = 1023, and in Panel (B) we add two more
immune responses by setting E2(0) = 1024 and E3(0) = 1025. The model behavior is somewhat too oscillatory, but it is known that this can be repaired
by allowing for two stages of the infected cells [20]. The effect of the diversity, n, of the immune response on the steady state can be investigated
more generally by making all immune responses equal (ai~1,Vi), and observing that d~dI znk�EEi , where all �EEi are the same. The dependence of
steady state and d on the diversity, n, is depicted in Panel (C) by plotting the steady state as a function of nk, where the line marked by Ei depicts the
size of a single immune response. We observe that �TT?s=dT ~1, and that dR2.5 d21, for nk.10. For higher killing rates this happens earlier—that is,
for k = 10 going from n = 1 to n = 10 immune response makes hardly any difference in the total killing rate d. For k = 1 this axis would obviously
correspond to the diversity, and then the total immune response, nEi, increases with n (not shown).
doi:10.1371/journal.pcbi.1002593.g001
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