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Abstract

Genome-wide association studies (GWAS) have in recent years discovered thousands of associated markers for hundreds of
phenotypes. However, associated loci often only explain a relatively small fraction of heritability and the link between
association and causality has yet to be uncovered for most loci. Rare causal variants have been suggested as one scenario
that may partially explain these shortcomings. Specifically, Dickson et al. recently reported simulations of rare causal variants
that lead to association signals of common, tag single nucleotide polymorphisms, dubbed ‘‘synthetic associations’’.
However, an open question is what practical implications synthetic associations have for GWAS. Here, we explore the
signatures exhibited by such ‘‘synthetic associations’’ and their implications based on patterns of genetic variation observed
in human populations, thus accounting for human evolutionary history –a force disregarded in previous simulation studies.
This is made possible by human population genetic data from HapMap 3 consisting of both resequencing and array-based
genotyping data for the same set of individuals from multiple populations. We report that synthetic associations tend to be
further away from the underlying risk alleles compared to ‘‘natural associations’’ (i.e. associations due to underlying
common causal variants), but to a much lesser extent than previously predicted, with both the age and the effect size of the
risk allele playing a part in this phenomenon. We find that while a synthetic association has a lower probability of capturing
causal variants within its linkage disequilibrium block, sequencing around the associated variant need not extend
substantially to have a high probability of capturing at least one causal variant. We also show that the minor allele
frequency of synthetic associations is lower than of natural associations for most, but not all, loci that we explored. Finally,
we find the variance in associated allele frequency to be a potential indicator of synthetic associations.
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Introduction

Recent years have seen a plethora of genome-wide associa-

tion studies (GWAS) finding thousands of common markers that

are associated with hundreds of diseases and other traits.

GWAS were initially founded on the Common Disease-

Common Variant hypothesis [1–3], which predicted that

common complex diseases are most likely caused by a few

common variants. As a consequence, the design of most GWAS

consisted of genotyping common tag single nucleotide poly-

morphisms (SNPs) and comparing their allele frequencies

between cases and controls. Some limitations of this design

have been the topic of much recent discussion, with the gap

between association and causality and the relatively small

portion of heritable variation explained by associated markers

drawing the most concern [4–7]. Several hypotheses aiming to

explain the missing heritability have been proposed, including

the roles of structural variants, gene-gene interactions, gene-

environment interactions, epigenetics, and complex inheritance

[4–7]. In addition, rare variants of relatively high penetrance

contributing to disease risk [8,9] has also been suggested as a

source of missing heritability since rare variants have not been

directly observed in most GWAS, and they might be differently

tagged by common markers [10–12].

Given this renewed interest in such variants, an investigation

into their effect on GWAS association signals is warranted. A

recent simulation-based study showed that rare causal variants can

often create ‘‘synthetic associations,’’ namely significant associa-

tions of common markers induced by the combined effect of one

or more rare causal variants [13]. Dickson et al. further showed

that a synthetically associated common marker could be substan-

tially further away than expected had the underlying causal

variant been common, and that synthetic associations are expected

to be on average of lower minor allele frequency (MAF) than

associations due to underlying common causal variants [13].

These predictions may partially explain why resequencing fine-

mapping efforts, which are based on patterns of linkage

disequilibrium (LD) of common variants, have often been

unsuccessful in uncovering causal variants [10,13,14]. As the

development of new methods and study designs for associating

rare causal variants is underway [12,15–24], the predictions of

Dickson et al. are influencing the choice of study design, as well as
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the interpretation of traditional, genotyping-based GWAS (e.g.

[25,26]).

A few instances of rare causal variants have already been well

established [27–29], including potentially causal rare variants in

NOD2 that contribute to Crohn’s disease risk [30–33]. In this

example, since an associated common marker in the same gene is

in LD with at least two of the rare variants, it is possible that they

contribute to the marker’s association signal [30], thus inducing a

synthetic association. As only a few examples of rare causal

variants contributing to complex disease are well established, the

jury is still out on their prevalence and on how often they lead to

synthetic associations, with several recent studies arguing that the

phenomenon is not necessarily widespread [34–36]. In light of this

uncertainty, a detailed investigation of the signatures of synthetic

associations and their implications is crucial for interpreting the

results of genotyping-based GWAS and for considering the

alternative of association studies based on whole-genome or

whole-exome sequencing.

Two of the key questions with regards to ‘‘synthetic associa-

tions’’ are (1) what are the implications for the resequencing

distance for fine-mapping of significant associations? and (2) how

different is the MAF of synthetic associations from that of ‘‘natural

associations’’ (i.e. associations where the underlying causal variants

are common)? While these questions have been addressed in

studies of simulated data [13,36], those simulations did not

account for the nature of disease loci and risk variants, nor did

they account for the specific nature of human genetic variation. In

the former, it has been shown that the effect size and frequency of

the disease variants can alter the power of the test [37]. While, in

the latter, the mark left by human evolutionary history on patterns

of genetic variation can greatly influence the nature of significant

association signals, which we address in the present study. For

example, when considering samples from European populations,

which have been the populations of choice of most GWAS, it is

crucial to account for their recent explosive population growth

that has led to an inflation in the proportion of rare variants and to

an altered haplotype and LD structure [38–41], as well as to

account for the well-established effects of the earlier Out-of-Africa

event on these genetic patterns [42–48].

Here, we focus on the question of how empirical LD patterns

can affect signals of ‘‘synthetic association’’ by investigating them

in real human population genetic data. Through this, we aim to

derive a better understanding of synthetic associations and their

practical implications. Using empirical resequencing data, we

randomly assume certain variants as increasing disease risk,

determine cases and controls accordingly, and conduct an

association study using genotyping data of the same individuals

from arrays that have been employed in most GWAS. To

illuminate and quantify signatures that are specific to ‘‘synthetic

associations’’, we repeat the process for rare and common causal

variants and contrast the characteristics of synthetic associations

with those of natural associations.

We aim to elucidate how far associations are from the

underlying causal variants, how their frequencies are distributed

and, more importantly, how these different signatures should alter

the design of fine-mapping studies. To examine possible hetero-

geneity in these signatures across the genome and across

populations with different evolutionary histories, we repeated the

analysis for several resequencing loci on different chromosomes

and for two populations, one West African and one North

European. The novelty of this study is in elucidating implications

of synthetic associations and how they may affect fine-mapping

strategies with patterns of LD as observed in human populations.

Results

To empirically investigate the signatures of ‘‘synthetic associa-

tions’’, we needed to examine scenarios in human genetic data

where the presumed disease risk variants—rare or common—are

known. Thus, we considered ‘‘disease loci’’ in the ENCODE

regions that were sequenced as part of HapMap 3 [49]. The

advantages of using these resequencing data are overcoming

ascertainment biases that plague genotyping arrays [45,50–52]

and observing variants of much lower allele frequency. Equipped

with resequencing data for over 110 individuals in each

population, we studied variants that appeared at least twice in

220 chromosomes. We randomly assigned variants within each

disease locus as being causal and considered individuals carrying

any one of these variants to have elevated disease risk. We then

probabilistically assigned individuals to be either cases or controls

based on their assigned risk. To mimic the case of many rare

variants of large effect size underlying synthetic associations, and

to contrast it with that of a few common variants of moderately

low effect sizes underlying natural associations, we investigated

three scenarios: (i) 2 common causal variants with a genotypic

relative risk (GRR) of 1.5, (ii) 5 and (iii) 9 rare causal variants with

a genotypic relative risk of 3. We verified that our results are not

an artifact of the number of causal variants, as illustrated in the

following, by comparing with a less realistic scenario of 5 common

causal variants. We also considered a random assignment of cases

and controls, which provides a null distribution in the absence of

any risk alleles.

After obtaining a set of cases and a set of controls, we performed

an association study using the genotyping array data for the same

individuals from HapMap 3 [49], without considering any of the

resequencing data in which disease loci have been emulated

(Materials and Methods). This mimics the conditions and variant-

type of actual genotyping-based GWAS, which typically utilize

array data of mainly common markers, most often using the same

or similar arrays to those we have used for our analyses (a

combination of Affymetrix Human SNP array 6.0 and Illumina

Human1M). We report results for association testing of all

genotyped markers located within 3 cM of the resequenced

disease locus, after verifying that the vast majority of significant

associations are within those bounds (Materials and Methods).

Similar to the requirement of genome-wide significance in a

GWAS, we required significance following multiple-hypothesis

correction for the entire region tested, such that our results can be

Author Summary

Genome-wide association studies (GWAS), based on the
hypothesis that common genetic variation underlies
complex diseases, have found many sites in the genome
associated with complex diseases. However, both the
fraction of variation explained by these sites and the
number of studies identifying causal variants remain low.
While there are many possible explanations for these
issues, we focus on one theory that suggests rare variants
also play a significant role in complex diseases. We
investigated the effect of rare causal variants as compared
to common causal variants in simulated data with patterns
of variation observed in actual human genetic data. As
suggested by previous studies, we found that rare causal
variants show different signatures in GWAS results. We
explore in this study the implications of these differences
in influencing the search for causal variants underlying the
signal of association.

Empirical Signatures of ‘‘Synthetic Associations’’
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extrapolated to genome-wide studies. We repeated the association

testing for 5 different disease loci (Table 1) and for 50 sets of

random assignments of causal variants in each locus. For each of

these sets, we repeated the association testing in 10 replicates,

varying between them only the stochastic assignment of cases and

controls, for a total of 500 association tests in each locus for each

of the three scenarios of causal variants. We also considered

separately both a European (CEU) and a West African (YRI)

population. Because of the relatively small sample size of ,110

individuals, we simulated a larger sample using HAPGEN [53],

which maintains the genetic variation observed in the original

data, including patterns of LD and MAF (Materials and

Methods).

All scenarios show significant associations much more often

than the false discovery rate of 5% (Table S1). To determine

whether ‘‘synthetic associations’’ due to underlying rare variants

tend to be further away than ‘‘natural associations’’ due to

underlying common variants, we considered for each association

test the distance between any association and the causal variant

with which it is in strongest LD (Materials and Methods). We

found that the median distance, over the many hundreds of

associations found across the 500 tests, is variable across the five

loci and—to some extent—between the two populations (Figure 1).

Synthetic associations tend to be much further than natural

associations, as previously predicted [13], though for one region

(disease locus #1) both synthetic and natural associations are in

close proximity to the causal variants (Figure 1). Alternatively,

when considering the distance between an association and the

closest causal variant (rather than the one in strongest LD), the

distance of synthetic associations is reduced, yet generally remains

greater than that of natural associations (Figure S1). Taken

together, these results lead us to ask what factors contribute to this

increased distance, and, more importantly, to what extent this

increased distance should impact the choice of fine-mapping

strategies.

We explored several plausible explanations for this increased

distance. Firstly, we ensured that the increased distance of rare

causal variants is not due to more variants in those scenarios (5 and

9) than in the scenario of common causal variants (2) by repeating

our analysis for cases with 5 common causal variants. We observed

no increase in association distance of resultant natural associations

(Figure S2), revealing that the increased distance is not due to the

increased number of causal variants. Secondly, we investigated the

hypothesis that increased marker effect size can cause greater

association distances since association power is proportional to

effect size times the correlation between the causal variant and the

marker [37]. We investigated this hypothesis by increasing the

effect size of common causal variants to equal that in the scenario

of rare causal variants, though such an effect size might be

considered unrealistic for common variants. The median associ-

Table 1. List of ENCODE regions used as disease loci [45].

Locus # ENCODE name Chromosome Location (bp)
# Common variants*
(YRI/CEU)

# Rare variants*
(YRI/CEU)

1 ENr221 5 56071684 57/36 59/20

256170943

2 ENm010 7 27124056 58/40 117/57

227223436

3 ENr321 8 119082399 72/20 108/45

2119182123

4 ENr123 12 38827200 43/62 72/50

238925373

5 ENr213 18 23920590 60/54 108/41

224019175

*Variants with MAF of either between 0.1–0.3 or between 0.005–0.04 after resampling of haplotypes using HAPGEN.
doi:10.1371/journal.pcbi.1002600.t001

Figure 1. Distance of synthetic and natural associations from
the causal variant it is in greatest LD with. Box plot of the distance
between any associated SNP and causal variant it is in highest LD with,
measured in r2, for (a) YRI and (b) CEU in four scenarios: 2 common
causal variants with a GRR of 1.5 (dark blue), 2 common causal variants
with an unrealistic GRR of 3 (light blue), 5 and 9 rare causal variants with
a GRR of 3 (red and gold respectively). Distances vary greatly between
the different disease loci (x-axis) as well as between populations, but in
all regions the median (line within each box) is larger for rare causal
variants than for common causal variants of lower effect size. Increasing
the effect size can result in higher association distance as is observed
most notably in region #5.
doi:10.1371/journal.pcbi.1002600.g001

Empirical Signatures of ‘‘Synthetic Associations’’
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ation distance of the resulting natural associations indeed increases

for all regions and populations, but is still considerably lower than

synthetic associations in most cases (Figure 1).

We next tested whether the age of the mutation played a role in

increasing association distances for synthetic associations. As rare

variants are, on average, resultant of more recent mutations

compared to common variants, recombination would have had

less time to operate, thus resulting in diminished decay of LD and

haplotype structure around rare variants [39]. To test whether the

age of the mutation plays a part in explaining our results, we

partitioned rare causal variants into two age groups: i) variants due

to relatively more recent mutations and ii) variants due to relatively

older mutations. Variants with minor alleles present in only a single

population fell into the former category, while those with minor

alleles present in more than one population fell into the latter

(Materials and Methods). We observed a larger distance between

an associated marker and the causal variant with which it is in

highest LD for more recent mutations than for older mutations

(Figure 2). Out of the 4 disease loci for which enough data was

available to perform this analysis, 3 in YRI and 2 in CEU exhibit a

median distance from older rare causal variants that is at least 41%

less than the median distance from more recent causal variants.

Combined, these results suggest that the increased distance of

synthetic associations compared to natural associations is partially

due to the young age of the mutations that give rise to rare risk

alleles, as well as due to the higher effect size that is claimed to be

implicated for rare risk alleles.

The main concern regarding synthetic associations is how their

signatures alter the search for the actual causal variant(s).

Specifically, how far should one sequence around an association

in order to capture causal variants? We addressed this question

using two approaches. We first computed for each scenario of

causal variants the fraction of tests (out of all tests with any

significant association) that had at least one associated marker

within any given distance of the causal variant with which it is in

highest LD. We found that for common causal variants, a shorter

resequencing distance of 0.01 cM is enough to capture a causal

variant in 90% of the tests in CEU and 77% for YRI (Figure 3).

For rare causal variants, combined over all disease loci, at least

90% of tests discovered an association within 0.1 cM of a causal

variant (Figure 3). Secondly, we investigated a scenario in which

fine-mapping consists of sequencing the LD block of associations

as observed in the data. Hence, we estimated the probability that

an associated marker is in the same LD block as any of the causal

variants, with the definition of LD blocks being based only on

markers from the genotyping arrays, which are relatively common

(Materials and Method). On average, the LD blocks spanned

0.007 cM for CEU and 0.005 cM for YRI, after the addition of a

flanking region of 0.0005 cM. We found that in CEU, 94% of

associated markers had a common causal variant in the same LD

block, while the same was true for only 78% of associated markers

in the rare causal variant case. A similar trend was observed for

YRI, albeit less marked, where 79% of natural associations

captured a causal variant, but only 73% of synthetic associations

captured a causal variant.

Finally, we explored the minor allele frequency (MAF) of

associated markers and found that natural associations are of

higher frequency on average than synthetic associations (Figure 4).

Summing over all disease loci and populations, ,1% of natural

associations had MAF below 0.1, while this proportion increased

to 15–28% for synthetic associations. Dissecting the signal further

by region and population, we found that while some regions

display less than 2.4% difference between the median MAF of

Figure 2. Distance of causal variant from ‘‘synthetic associa-
tions’’ partitioned by the age of the mutation. Box plot similar to
Figure 1, while separating rare variants in CEU and YRI into a more
recent and an older class (Materials and Methods). Variants due to more
recent mutations result in much increased distance between the
associated SNP and the causal variant with highest LD in 3 regions in
YRI and 2 regions in CEU. Results are presented for only 4 of the disease
loci due to lack of relevant data in locus #1. Note that the risk allele
frequency range for rare variants is narrower compared to Figure 2
(Materials and Methods) and that the y-axis scale is different between
the two populations.
doi:10.1371/journal.pcbi.1002600.g002

Figure 3. Resequence window size necessary to capture at least
one causal variant. The figure presents for a given window size, the
fraction of tests combined over all regions with significant associations
where at least one association is within the given distance from the
causal variant it is in highest LD with. The colors correspond to the
same scenarios as in Figure 1. Resequencing need not extend much
further than in the common causal variant case, as a window of size of
0.1 cM has at least one association tagging a rare causal variant in
.90% of the tests between both populations and all regions.
doi:10.1371/journal.pcbi.1002600.g003

Empirical Signatures of ‘‘Synthetic Associations’’

PLoS Computational Biology | www.ploscompbiol.org 4 July 2012 | Volume 8 | Issue 7 | e1002600



natural associations and synthetic associations (disease locus #1 in

YRI, #2 in CEU), others display an almost 200% difference (#4

in CEU). Synthetic associations also display a larger standard

deviation in associated MAF across different associations in

different sets and replicates as compared to natural associations,

with all but one region displaying a difference ranging from 17%–

70% (Table 2).

Discussion

With the use of HapMap 3 resequencing and genotyping data

from five different genomic regions and two populations [49], we

considered several scenarios of disease risk loci, and performed

association tests to investigate the signatures of synthetic associ-

ations and how they alter one’s approach for studying them. We

found that the median distance of synthetic associations, while

greater than that of natural associations, still never exceeds

0.15 cM (,150 kb) for any of the 10 locus-by-population settings.

Even if we instead consider the worst-case scenario of the largest

distance between any association and any causal variant, its

median still never exceeds 0.41 cM (,410 kb). These results are in

clear contrast to the results of a previous simulation-based study

that showed the median of the largest distance to be 5 cM (5 Mb)

[13]. The difference between the two studies may be attributed to

differences in the frequencies of rare causal variants. We

considered rare alleles of frequency in the range 0.005–0.04

(average across all variants of 0.019), while Dickson et al.

simulated allele frequencies in the range 0.005–0.02 [13] (average

of 0.0125 assuming uniform sampling). However, when we

restricted to a narrower range of frequencies up to 0.02 (average

of 0.012), we still observed no locus for which the median distance

of synthetic association exceeds 0.5 cM (‘All variants’ in Figure 2).

It is unlikely that any remaining slight difference in risk allele

frequency would result in over an order of magnitude difference in

association distance.

A more substantial difference between the two studies lies in the

data analyzed. Dickson et al. conducted simulations of constant

effective population size, uniform recombination rate, and neutral

loci, with association testing based on a simulated ‘‘genotyping

array’’ that follows a uniform ascertainment bias [13]. Here, we

have analyzed data with empirically observed LD patterns, and

have based association testing on data from real genotyping arrays

as designed for GWAS. Put together, while theory posits that a

median distance of synthetic associations of 5 cM is possible,

characteristics of empirical data suggests that such cases will not be

common, and that even under the worst-case scenario the vast

majority of synthetic associations are at least an order of

magnitude closer.

By considering which of the rare polymorphisms are popula-

tion-specific, and hence likely to be more recent, we illustrated that

the increase in association distance is partially due to the age of the

mutation. This is likely a result of recombination having had less

time to break down the haplotype surrounding more recent

mutations. We also considered common causal variants with a

higher effect size and showed that association distance is increased.

As rare causal variants contributing to an association signal are

claimed to have higher effect sizes than common causal variants,

the increased distance for synthetic associations can thus partially

be due to the larger effect size. Additionally, the contribution of

multiple rare causal variants to a single signal of association may

also increase association distance –a source we have yet to fully

explore in detail.

To assess the impact of this increased association distance, we

explored the probability that an association test had at least one

association where the causal variant with which it was in highest

LD lay within a given distance from the association. We found that

for rare causal variants a window size of 0.1 cM was sufficient to

capture at least one causal variant in such a manner in at least

90% of the tests for all regions and populations (Figure 3).

Alternatively, by following an LD block based approach for fine-

mapping, 73–79% of synthetic associations capture at least one of

the rare causal variants within the same LD block. This suggests

that traditional LD block-based fine-mapping offers a pretty high

probability of discovering some of the causal variants, though

Figure 4. Minor allele frequency (MAF) of associated variants.
Box plot of the minor allele frequency for all associated variants in the
different scenarios. Although synthetic associations have median MAF
lower than that of natural associations, the range of MAF for synthetic
associations varies across the different loci and populations. The
median MAF is similar between the natural and synthetic associations
for a few loci (disease locus #2 in CEU and #1 in YRI).
doi:10.1371/journal.pcbi.1002600.g004

Table 2. Standard deviation of minor allele frequency for
associated variants.

Locus # Common (2) Rare (5) Rare (9)

YRI

1 0.086 0.134 0.131

2 0.117 0.154 0.150

3 0.114 0.131 0.124

4 0.124 0.151 0.145

5 0.113 0.121 0.126

CEU

1 0.084 0.113 0.116

2 0.056 0.118 0.121

3 0.064 0.152 0.143

4 0.121 0.121 0.126

5 0.073 0.133 0.136

doi:10.1371/journal.pcbi.1002600.t002
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there could still be added benefit from sequencing a larger region.

Preliminary analysis suggests that it is difficult to predict the

optimal region to resequence given a specific disease locus, as no

single factor, such as pair-wise LD decay, can sufficiently predict

this distance (data not shown). Further work is thus necessary in

order to determine which factors that influence synthetic

associations, such as the age of mutation, causal variant effect

size, haplotype structure and the stochastic coupling of multiple

rare variants on the background of a common marker, play a role

in an observed association signal.

In a further analysis, we found that the causal variants being

rare entails that the associated markers will themselves be of lower

frequency (Figure 4), a result consistent with previous simulation

studies [13,36]. When narrowing the number of associations to

only the most significant, we found that this further reduced the

allele frequency of synthetic associations (Figure S3). In addition,

we found that the frequency of synthetic associations often had a

larger standard deviation than natural associations (Table 2).

These results have two implications. Firstly, it suggests that

synthetic associations as compared to natural associations are likely

to have underestimated effect sizes of the causal variant due to

reduced associated allele frequencies [54] (especially when

analyzing the most significant association) and from incomplete

LD with the causal variant. Secondly, this suggests that the

standard deviation of the associated minor allele frequency can

offer a way to flag for underlying rare causal variants that induce

potential synthetic associations; given a larger standard deviation

of associated frequencies, it would be advised to follow a wider

fine-mapping study design.

Due to the .1000-fold human population growth in the last

hundreds of generations, the amount of rare variation is much

greater than expected [38–41]. This explosive addition of rare

variation entails an LD structure that is yet to be quantified, but

certainly disparate than the extensively studied LD structure of

common variants. In addition, the earlier founder events as modern

humans migrated out of Africa and settled across the globe have

been shown to greatly alter patterns of genetic variation [42–45,55].

For this reason we studied both a West African population and a

population of European ancestry, with differences in our results

between the two reinforcing the importance of taking demographic

history into consideration by studying empirical data. The effect of

evolutionary history on signatures of synthetic and natural

associations is further supported by the highly variable behavior

across genomic regions of all the signatures we observed.

In conclusion, this study delivered a characterization of several

signatures of synthetic associations and assessed their impact on

the search for the causal variant(s) underlying the signal. While our

study does not take part in the debate on how frequently synthetic

associations occur, it is relevant in any situation in which they do.

We illustrated that because synthetic associations are likely to be

more distant from causal variants, fine-mapping studies should

look further than when searching for common causal variants, but

to a much lesser extent than previously suggested. We also propose

the larger standard deviation of associated allele frequencies as a

way to detect potential rare causal variants at play. Additional

analysis is warranted though, to elucidate the quantitative

relationship between genetic architecture, demographic history,

allele frequency and association signals. Finally, although the

debate remains open as to the contribution of rare risk alleles to

human complex diseases and to the ensuing abundance of

synthetic associations [34–36,56], our results offer new guiding

principles for determining a length of a region to fine-map, and for

considering the alternative of an association study based on whole-

genome or whole-exome sequencing.

Materials and Methods

Data
We obtained from HapMap 3 [49] genotyping array data for

YRI (Yoruba in Ibadan, Nigeria) and CEU (individuals in Utah

with Northern and Western European ancestry from the Centre

d’Etude du Polymorphisme Humain collection) and resequencing

data of five ENCODE regions, each 100 kb in length (Table 1), for

115 YRI and 111 CEU individuals. We also obtained resequen-

cing data for 60 TSI (Toscani in Italia) samples and 60 LWK

(Luhya in Webuye, Kenya), which we used for the variant age

analysis (below). We considered each resequencing region as a

disease locus from which to select causal variants. Using

resequencing data facilitates higher concentration of rare variants

and is free of the ascertainment biases associated with genotyping

arrays [45,50–52].

Simulated Data
Due to the low sample size, we employed HAPGEN [53] to

simulate 10,000 individuals for each population –a strategy

previously employed to investigate the estimation of relative risks

[54]. HAPGEN simulates additional haplotypes by treating each

new haplotype as a mosaic of already present haplotypes. We refer

readers to [53] for additional details on HAPGEN.

We first phased and imputed missing data with BEAGLE v3.3

[57]. We then simulated additional data for each resequencing

region and the 3 cM-flanking window for each region using

HAPGEN with a recombination map from the March 2006

human reference sequence (NCBI Build 36, hg18) and a null

mutation rate as input parameters. We ensured that the LD

patterns of the original data (for rare and common variants) were

maintained (Figure S4). We also ensured that allele frequencies in

the simulated data do not change drastically from the original data

as no variants were observed that were initially of very low

frequency and attained a much higher frequency and vice versa in

the simulated dataset (Figure S5, S6).

Association tests were performed using the simulated data from

the HapMap 3 genotyping array data, excluding any causal

variants that happen to be in the genotyping array data. We report

results for an association study for SNPs located in the disease

locus and in flanking regions of 3 cM on each side (from which no

causal variants are chosen), as almost no associations were

observed to fall beyond that distance (data not shown). In our

study, rare causal variants have risk allele frequencies in the

simulated data between 0.005 and 0.04 (we note that a portion of

this range is defined as ‘‘low frequency’’, rather than rare, by some

studies), and common causal variants have risk allele frequencies in

the simulated data between 0.1 and 0.3. In testing for association,

we considered all SNPs of all allele frequencies from the

genotyping data. All coordinates and genetic distances in this

paper are according to the March 2006 human reference sequence

(NCBI Build 36, hg18).

Disease Model and Association Study Design
We considered each individual as a case or a control with a

probability proportional to the individual’s assigned risk, which is

elevated if the individual has one or more risk alleles. We set the

baseline risk as 0.15 and the genotypic relative risk to 1.5 for the

scenario of common causal variants. We also explored an

unrealistic genotypic relative risk of 3 for common causal variants

to investigate the influence of effect size on association distance.

For rare causal variants, we assigned a higher genotypic relative

risk of 3. While the use of a fixed GRR for variants of differing

allele frequencies results in differing portions of variance explained
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by each variant, it is a more realistic disease model. By fixing

variance explained, rarer variants would tend to have higher, and

perhaps somewhat unrealistic, GRRs. Because we have fixed

GRR and allowed the proportion of variance explained to vary, an

association test will have more power in detecting variants of

higher allele frequency given a fixed GRR.

For the common causal variants scenario, we randomly assigned

2 SNPs from the resequencing data as causal, while we assigned

either 5 or 9 for the rare causal variants scenario. To ensure that

the number of causal variants did not affect our results, we also

studied a scenario with 5 common causal variants in loci where

this was feasible. For each scenario of a certain type and number

of causal variants, 50 sets of causal variants were randomly

selected, with replacement between groups. Each of these 50 sets

allows for a possibly different risk for each individual. For each of

these 50 sets, we repeated 10 replicates of randomly assigning cases

and controls according to the same individual assigned risk.

In each of the 500 association tests (50 different variant groups

and their 10 phenotypic replicates), we randomly chose 1000 cases

and 1000 controls according to the individual’s assigned risk. This

ensures that the same number of cases and controls were shared

across all analyses, thereby having comparable statistical power.

For each scenario of type and number of causal variants, we

pooled together the results from these 500 tests for the statistics

and figures presented in this study. Similarly, we generated 500

tests for each disease locus with randomly assigned case/control

status to serve as a control.

All association tests were done with PLINK’s logistic regression

function [58]. Significance thresholds were determined with a

region-wide Bonferroni correction. For the control scenario of

random assignment of cases and controls, 2.12% of the association

tests showed a significant association as compared with the

expectation of 5%.

Distance Analysis
We determined genetic distances based on the Oxford genetic

map based on HapMap2 data [50,59]. For SNPs missing from

HapMap2, we estimated the position as the linear interpolation of

the genetic positions of the two closest SNPs. The association

distances were determined by computing the genetic distance

between an associated SNP and the causal variant with which it

was in highest LD, measured in r2. Pairwise r2 values were

calculated in pLINK [58].

Age of Mutation Analysis
To partition rare variants based on the age of the mutation, we

first narrowed the range of the risk allele frequency in the

simulated data to 0.005 and 0.02 in order to ensure a roughly

equal partition into the two age groups. We discarded disease locus

#1 from this analysis because it had too few rare variants to allow

their portioning into two groups (Table 1). Rare variants in the

111 CEU individuals were defined to be relatively more recent if only

the major allele was observed in the resequencing of 115 YRI

individuals and 60 TSI individuals in the original data; the variant

was defined as relatively older otherwise. We repeated the above

analyses for each of these groups separately, such that in each

association testing either all causal variants are older or all are more

recent. We repeated the same analysis in YRI with CEU and 60

LWK as out groups. We duly note that polymorphisms absent

from the limited number of samples may not be monomorphic in

the population as a whole, hence not all mutations leading to

relatively older variants precede those leading to variants in the

relatively more recent class. Yet, this represents only a small fraction

of variants and variants in the relatively older class are expected to

be older on average than those belonging to the more recent class. It

is also important to note that false positive variant calls are added

to the more recent group despite the erroneous call. This scenario is

highly unlikely in our analyses due to the stringent quality control

measures taken in HapMap 3 [45] and the exclusion of singletons

in our study. For each of these two scenarios of causal variants, we

similarly chose 50 sets of causal variant groups with 10 phenotypic

replicates each and obtained maximal distances as above. For

comparison, we repeated the analysis for random rare causal

variants in the narrowed range of frequency of 0.005–0.02 used

here, irrespective of mutation age.

Resequencing Distance Analysis
For each association test we explored whether a causal variant

with which an association is in highest LD (measured in r2) is

within a given genetic distance from the association. For each

simulated scenario and resequencing window size ranging from

0 cM to 10 cM, we calculated the proportion of tests that have at

least one such association.

For the second analysis, we observed over all significant

associations if any causal variant was in the same LD block as

an association. LD blocks were estimated in pLINK with the

genotyping data [58] and 0.0005 cM was added to the start and

end coordinates in order to compensate for the uncertainty in

these estimates.

Supporting Information

Figure S1 Distance between association and closest
causal variant. The figure mirrors Figure 1, but plots instead

the distance between an association and the closest causal variant.

The distance of synthetic associations is reduced, yet generally

remains greater than that of natural associations.

(TIFF)

Figure S2 Distance of common causal variant is not
sensitive to the number of causal variants. The figure

mirrors Figure 1, but to the inclusion of results for 5 common

causal variants (‘‘Common (5)’’) in loci where this was feasible (all

for CEU). All other results are reproduced from Figure 1. The

difference in distance between common and rare causal variants

remains even with 5 common causal variants.

(TIFF)

Figure S3 Minor allele frequency of most significant
association. The figure mirrors Figure 4, but displays the minor

allele frequency of only the most significant association across each

test. The median frequency of the most significant association is

reduced for synthetic associations.

(TIFF)

Figure S4 Empirical LD patterns are preserved in
HAPGEN simulations. Plotted above is data for region 1 in

CEU. For each 0.01 cM bin, the figure presents the mean pair-

wise LD (measured in r2) between variants from the resequencing

and genotyping data for a) common markers (minor allele

frequency .0.04) or b) common and rare markers (minor allele

frequency ,0.04). We observe that HapMap 3 LD patterns (blue)

are largely preserved in HAPGEN simulations (green). Missing

points reflect lack of data for certain distance bins.

(TIFF)

Figure S5 Minor allele frequency in HapMap3 com-
pared to minor allele frequency in HAPGEN simula-
tions. Plotted are minor allele frequencies in HapMap 3 (x-axis)

compared to minor allele frequencies in HAPGEN simulations (y-
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axis) for a) YRI and b) CEU. Each row represents a separate

region. No drastic departures from the original minor allele

frequencies are observed in the simulated data.

(TIFF)

Figure S6 Minor allele frequency in HapMap3 com-
pared to minor allele frequency in HAPGEN simulations
for frequencies below 0.08. Same plot as in Figure S5 showing

only variants with frequencies below 0.08. As in Figure S5, no

drastic departures from the original minor allele frequencies are

observed in the simulated data.

(TIFF)

Table S1 Percentage of tests with significant associa-
tions.
(DOC)
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