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Abstract

Several experiments indicate that there exists substantial synaptic-depression at the synapses between olfactory receptor
neurons (ORNs) and neurons within the drosophila antenna lobe (AL). This synaptic-depression may be partly caused by
vesicle-depletion, and partly caused by presynaptic-inhibition due to the activity of inhibitory local neurons within the AL.
While it has been proposed that this synaptic-depression contributes to the nonlinear relationship between ORN and
projection neuron (PN) firing-rates, the precise functional role of synaptic-depression at the ORN synapses is not yet fully
understood. In this paper we propose two hypotheses linking the information-coding properties of the fly AL with the
network mechanisms responsible for ORN—AL synaptic-depression. Our first hypothesis is related to variance coding of
ORN firing-rate information — once stimulation to the ORNs is sufficiently high to saturate glomerular responses, further
stimulation of the ORNs increases the regularity of PN spiking activity while maintaining PN firing-rates. The second
hypothesis proposes a tradeoff between spike-time reliability and coding-capacity governed by the relative contribution of
vesicle-depletion and presynaptic-inhibition to ORN—AL synaptic-depression. Synaptic-depression caused primarily by
vesicle-depletion will give rise to a very reliable system, whereas an equivalent amount of synaptic-depression caused
primarily by presynaptic-inhibition will give rise to a less reliable system that is more sensitive to small shifts in odor
stimulation. These two hypotheses are substantiated by several small analyzable toy models of the fly AL, as well as a more
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physiologically realistic large-scale computational model of the fly AL involving 5 glomerular channels.
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Introduction

The early stages of the drosophila olfactory system include a
primary sensory structure called the antenna lobe (AL). The AL
receives input from olfactory sensory neurons (ORNs) at the
sensory periphery, and is organized into glomerular clusters, with
each cluster corresponding to a specific olfactory receptor class [1—
5]. Each glomerulus within the AL contains dendrites of local
neurons (LNs) whose projections are limited to the AL, as well as
projection neurons (PNs) whose axons extend beyond the AL
deeper into the fly brain [6]. The PNs are excitatory, whereas
there is evidence that both excitatory local neurons (LNEs) and
inhibitory local neurons (LNIs) exist [7-9]. The LNs associated
with each glomerulus have local projections, which connect to that
glomerulus, as well as lateral projections which connect to other
glomeruli [10].

Various experiments indicate that there exists substantial
synaptic-depression at the synapses between olfactory receptor
neurons (ORNs) and neurons within the drosophila antenna lobe
(AL); by ‘synaptic-depression’, we refer to any mechanism which
gives rise to short-term depression of the ORN-induced EPSCs
within the AL following an increase in ORN activity. While it has
been proposed that this synaptic-depression contributes to the
nonlinear relationship between ORN and PN firing-rates, the
precise functional role of synaptic-depression at the ORN synapses
is not yet fully understood. To investigate the relationship between
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synaptic-depression and the coding properties of the fly AL, we
created and analyzed the dynamics of several models of the fly AL.
We have been able to distill two hypotheses linking the
information-coding properties of the fly AL with the network
mechanisms responsible for ORN— AL synaptic-depression.

Our first hypothesis is related to the variance coding of ORN
firing-rate information — once stimulation to the ORNs is
sufficiently high to saturate PN responses within any particular
glomerular channel, further stimulation of the ORNs can reduce
the amount of fluctuation of the ORN—PN input within that
channel, thus increasing the regularity of PN spiking activity while
maintaining PN firing-rates. Thus, given two different stimuli
which saturate the responses of a given glomerulus, it may still be
possible to distinguish between these two stimuli solely by using
this saturated glomerulus’ activity. In order to distinguish these
saturated responses, a readout mechanism must be sensitive to
higher-order statistics (such as variance) in the saturated glomer-
ulus’ activity.

Our second hypothesis proposes a tradeoff between trial-to-trial
reliability and sensitivity governed by the mechanisms responsible
for ORN—AL synaptic-depression. Within the fly, synaptic-
depression may be partly caused by vesicle-depletion, and partly
caused by presynaptic-inhibition due to the activity of inhibitory
local neurons within the AL [11,12]. Our second hypothesis is that
synaptic-depression caused primarily by vesicle-depletion will give
rise to a very reliable system, whereas an equivalent amount of
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Author Summary

Understanding the intricacies of sensory processing is a
major scientific challenge. In this paper we examine the
early stages of the olfactory system of the fruit-fly. Many
experiments have revealed a great deal regarding the
architecture of this system, including the types of neurons
within it, as well as the connections those neurons make
amongst one another. In this paper we examine the
potential dynamics produced by this neuronal network.
Specifically, we construct a computational model of this
early olfactory system and study the effects of synaptic-
depression within this system. We find that the dynamics
and coding properties of this system depend strongly on
the strength, and sources of, synaptic-depression. This
work has ramifications for understanding the coding
properties of other insect olfactory systems, and perhaps
even other sensory modalities in other animals.

synaptic-depression caused primarily by presynaptic-inhibition will
give rise to a less reliable system that is more sensitive to small
shifts in odor stimulation. Using this second hypothesis, one can
further postulate that a balance of vesicle-depletion and presyn-
aptic-inhibition within the AL is required in order to optimize the
discriminability of the network over short observation-times.

Results

The relationship between the architecture of the fly AL and its
odor-coding properties largely remain a mystery. Specifically, the
precise functional role of synaptic-depression at the ORN synapses
s still unclear. In order to investigate the possible function
associated with these network mechanisms, we have designed and
built a scaled down computational network model of the fly AL.
By analyzing the dynamics of this model we have been able to
distill two hypotheses linking the information-coding properties of
the fly AL with the network mechanisms responsible for
ORN— AL synaptic-depression. We will discuss these hypotheses
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Synaptic Depression within Fly AL

later in the sections below, after first introducing a few pertinent
details regarding our computational model.

Sketch of computational network model

In brief, our computational network model incorporates 5
glomerular channels, each with 6 PNs, 6 LNEs, 6 LNIs and 60
ORNS, in rough accordance with the experimentally observed
ratio of ORNs to PNs and LNs [13]. As the real fly AL has ~ 50
glomerular compartments, each of roughly this size [10], this
model is ~10% the size of the full AL. Each neuron in this
network model is modeled using Hodgkin-Huxley-type equations.
The synaptic currents in this network allow neurons to affect other
neurons in the same glomerulus, as well as neurons in other
glomeruli. The input to this network takes the form of noisy
stimulus current to the ORNs, with different ‘odors’ corresponding
to different levels of stimulus current to different ORN input
channels. Importantly, the model is built to accommodate
synaptic-depression of the ORN synapses, allowing for both the
mechanisms of presynaptic-inhibition as well as vesicle-depletion.
An illustration of the network’s connectivity, as well as an abridged
list of network parameters, is given in Fig. 1. We have built this
network to respect physiological constraints, and we have tuned
this model using several experiments as benchmarks. Here we
provide a brief summary of these results. A more detailed
description of the model as well as the details regarding the
benchmarking are contained in the Methods section.

Our goal while benchmarking this model was to ensure that our
model produced reasonable statistical features of AL activity
during the ~ 500ms following odor onset. The reason we focused
on matching the statistics of this transient period is that evidence
indicates that this period is likely critical for many basic olfactory
discrimination and classification tasks [14,15]. One of the
simplifications we have made in our model is that the input to
the ORNSs following odor onset is assumed to be a Poisson process
with a time-varying rate that is roughly stereotyped across ORN
classes (see Methods). While natural odor stimuli are likely
temporally complex [16] and even static stimuli generate odor-
specific temporal fluctuations at the level of the fly ORNs after

LNIs presynaptically inhibit ORN synapses

from Coupling Strengths (x 0.01)
to ORN @PN®LNE @LNI ®LNI (slow)
ORN 0.16xSP | 0.035xsP
PN @ 52 25
LNE @ 48 15 | 25 15
LNI @ 130 30

Coupling Probability (%)

from Intra-glomerular Inter-glom.
to ORN @PNOLNE @LNI®LNE @LNI
ORN 85 85
PN @ 100 15 75
LNE @ 75 50 | 15 | s0] 15 | 25
LNl @ 25 50 50

Figure 1. A schematic of the large-scale network model. [Left]: The network consists of 5 glomerular channels, each incorporating 60 olfactory
receptor neurons (ORNs in green) which stimulate a ‘glomerulus’ consisting of 6 projection neurons (PNs in red), 6 excitatory local neurons (LNEs in
magenta) and 6 inhibitory local neurons (LNIs in blue). The PNs, LNEs and LNIs are connected to one another randomly within each glomerulus, and
the LNEs and LNIs also affect the neurons in other glomeruli. The LNIs affect the ORN—AL synapses via presynaptic-inhibition. [Right]: The non-
negligible connection strengths are listed on top, with the slow-inhibitory connection strengths listed separately from the fast-inhibition strengths.
The relevant connection probabilities are listed on the bottom. The parameter S refers to SP™¥", which characterizes the overall strength of

presynaptic-inhibition. See Methods for full details.
doi:10.1371/journal.pcbi.1002622.g001
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several hundred ms [17], the dynamics of the ORN responses
during the first 500ms following odor onset seems to be relatively
stereotypical, involving either a sharp increase in activity or, more
rarely, an inhibitory phase [18,19]. Thus, the idealized input to the
ORNs we employ in our model is intended to capture these simple
features of ORN activity which drive the AL during the first
~ 500ms following odor onset.

The experimental phenomena we used to benchmark our
model ultimately provided three constraints on the connectivity of
our model network. First, the convergence ratio of ORNs to PNs
must be high, otherwise the PNs do not receive sufficient
convergent input to fire quickly after odor onset. Second, the
synaptic-depression at the ORN synapses must be sufficient to
ensure that PN firing-rates peak earlier than ORN firing-rates (in
response to odor stimulus), and that ORN—PN input is strong
and relatively stable during the first 500ms after odor stimulus
onset. Finally, the inter-AL connectivity (governed by the
LN—-LN, PN-PN, PN-LN, and LN—>PN connection matrix)
must be sufficiently strong to create PNs which are more broadly
responsive than their ORN inputs, yet sufficiently sparse to place
the network in a dynamic regime which does not develop
spontanecous oscillations (which are not observed experimentally
during the initial transient following odor onset — [17]).

In addition, to further understand the network mechanisms
underlying the two proposed hypotheses, we have designed
simpler neuronal network models which distill the relevant
phenomena, while allowing for a more comprehensive analysis.
The analytical tools we use include the analysis of return-maps for
simple network models, as well as the analysis of population-
dynamics equations for more complicated network models (see the
sections to follow for more details).

Hypothesis 1: a monotonically decreasing map between
ORN activity and PN input variance

As evidenced in [20,21], the relationship between ORN firing-
rate (mogy) and PN firing-rate (mpy) for a given glomerulus is
often nonlinear, with the PN firing-rate saturating rather quickly
as a function of ORN firing-rate. One consequence of this
nonlinearity is that, for low mogry, the gain in mpy is high — as
mogy varies from 0-50 Hz, mpy can vary from 0-150 Hz or
more. Another consequence of the nonlinear relationship is that,
for high mogy, the gain in mpy is low — as mogy varies from
100-200 Hz, mpy may remain almost constant. Many have noted
that the region of high gain allows for ‘odor separation’ — namely,
odors which give rise to similar mogy profiles for a given
glomerulus may in turn produce very different mpy profiles within
that glomerulus [20]. However, this ‘odor separation’ only works
when the odors in question generate mogry which are sufficiently
low as to lie in the region of high mpy gain. It is tempting to
conclude that if two odors generate mogry which are sufficiently
high (such that the induced mpy lie in the region of low gain), then
the mpy generated by these odors would be similar, and the odors
would not be ‘separated’.

The first hypothesis we propose is that, even if two odors
generate mogry which correspond to similar mpy, the dynamics of
the glomerulus may still serve to separate these odors. However, in
this case the odor separation takes place not in terms of PN firing-
rates (as, indeed, the mpy generated by these two odors may be
very similar or identical), but rather in terms of higher-order
statistics of PN activity. In other words, even though the set of PN
firing-rates produced at the plateau of the mpy(mogry) relation-
ship are similar, we hypothesize that there is in fact a systematic
difference in the PN dynamics underlying these similar PN firing-
rates.
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To be more specific, we claim that for values of mogry along the
plateau of the mpy(mogy) relationship, as mogy increases (and
mpy stays roughly the same), the synaptic-depression at the ORN
synapses continues to increase. One consequence of this increase
in synaptic-depression is that, as mopry increases along the plateau
of mpy(mogry), the number of ORN firing-events increases, but
the effect of each ORN firing-event on postsynaptic PNs decreases.
Thus, the postsynaptic conductance induced within any PN by the
ORN (i.e., the ORN input to the PN) maintains roughly the same
mean, but decreases in variance. When discussing a reduction in
the variance of ORN input, we refer specifically to a reduction in
the variance across short time-windows of the PN excitatory-
conductance due to ORN activity.

If the mogy is not very high, then each ORN generates
relatively few spikes, each resulting in a large EPSC in the
postsynaptic PN. Thus, the ORN input to the PNs will have large
fluctuations (i.e., the PNs will be ‘fluctuation-driven’). On the other
hand, if mogy is very high, then each ORN generates very many
spikes, each resulting in a small EPSC within the postsynaptic PN.
In this case the PN conductance due to the ORNs will be nearly
constant (and the PNs will be ‘mean-driven’). We further
hypothesize that, as mopgy increases along the plateau of
mpy(mogry ), the decrease in variance of ORN input to the PNs
will correspond to a decrease in the variance of PN spiking activity.
Because (1) the ORN activity is not deterministic, but rather driven
by many independent stochastic molecular binding events [18],
and (ii) many ORNs are presynaptic to each PN, the accumulation
of ORN firing-events observed by any given PN during any trial of
odor presentation 1s well-approximated by a Poisson process with
time-varying rate. Thus, a decrease in the ORN input variance
across short time-windows will be associated with a decrease in the
ORN input variance across multiple trials (for the same time-
window). Thus, one would expect the variance in PN spiking
activity mentioned above to decrease both across short time-
windows and across multiple trials (for the same time-window).
This reduction in variance of PN spiking activity is equivalent to
an increase in the regularity of PN spiking activity, which is
equivalent to a reduction in the variance of the inter-spike-interval
distribution associated with a PN within the given glomerulus.

Thus, in summary, our first hypothesis is that the dynamics of a
glomerulus can serve to separate ORN inputs in two ways. Not
only can similar ORN inputs within the high-gain region of
mpy (mogry) be mapped to significantly different PN firing-rates
(see [20]), but ORN inputs within the low-gain region of
mpy(mogry) can give rise to PN activity with differing degrees
of regularity, even when the PN firing-rates associated with those
ORN inputs are not significantly different. This hypothesis may
have significance for odor discrimination, as the variance in PN
activity may encode features of the odor even in situations where
the ORN input is sufficiently high that PN firing-rates have
saturated (see Discussion).

A simple cartoon of variance coding. As a simple cartoon
which illustrates this hypothesis, we have simulated a single
conductance-based integrate-and-fire PN, driven by a set of 4
ORNS, each endowed with a simple model of synaptic-depression.
This simple model exhibits the following dynamical features: (i) the
mpy (mogry ) relationship exhibits high gain and saturation, and (i)
for different values of mogy on the plateau of the mpy(mory)
relationship, the variance in PN activity decreases as mogry
increases, even though mpy remains roughly constant.

Within this simple model, we describe each ORN as a Poisson
process with fixed rate # (0Hz <y <180Hz). The coupling strength
SPN<ORN hetween the ORNs and the PN is modulated by a term
u(?) (0<p<1), which is intended to model vesicle-depletion at the
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ORN synapses. As each ORN fires, this g term will give rise to
synaptic-depression between the ORNs and the PN. If =1, the
synapses between the ORNs and the PN are 100% exhausted. If
u=0, the synapses between the ORNs and the PN are completely
refreshed. The model details are given in a section entitled “An
idealized model used to illustrate variance coding” in Methods.
With this simple model, it can be seen that the PN firing-rate
mpy (1) is a nonlinear function of the ORN firing-rate #, and that
mpy saturates (plateaus) at values of #~30Hz (See Fig. 2A). The
time-averaged mean total excitatory conductance {Gg), of the
PN enjoys a similar nonlinear relationship (Fig. 2B). Notably, for
values of #>30Hz, the time-averaged mean vesicle-depletion
parameter ), ory increases as a function of #, and the standard

deviation in the total PN conductance o‘GEzy/(G%)[—(GE)f

decreases as a function of 5 (Fig. 2C and Fig. 2D). This decrease in
standard deviation is associated with a decrease in coefficient-of-
variation for the total PN conductance. Qualitatively speaking, the
PN is more ‘mean driven’ when 17~ 180Hz, and the PN is more
‘fluctuation driven’ when n~30Hz, even though the firing-rate of
the PN is similar in both cases (Fig. 2E and Fig. 2F). This can be
quantified by measuring, for example, the autocorrelation of the
PN. In the case n=180Hz, the PN autocorrelation shows several
significant peaks, the first of which is at ~13ms, indicating
periodic-firing at ~70Hz (Fig. 2E). In the case n=30Hz, the PN
autocorrelation does not indicate a strong periodicity to the PN
firing-patterns (Fig. 2E).

The simple cartoon described above only considers synaptic-
depression resulting from vesicle-depletion. The real AL displays
evidence of presynaptic-inhibition as well. Nevertheless, the same
general principle still holds regardless of the source of synaptic-
depression at the ORN synapses, as long as the PNs become more
mean driven as ORN firing-rates increase. In fact, it is possible to
show analytically that similar results hold across a wide range of
parameters for an idealized system similar to this one (see the
section entitled ““A simple analyzable cartoon of variance coding”
in Methods).

If this picture is accurate in the real AL, then the PN dynamics
within any given glomerulus in the AL will change as a function of
ORN input to that glomerulus, even when the mean PN firing-
rates have saturated for that glomerulus. These dynamical changes
will only be observable through measurements of statistics that are
‘higher-order’ than mean firing-rate. We note that synaptic-
depression of the ORN synapses is not the only mechanism via
which the PNs may become more mean-driven as ORN firing-
rates Increase — other mechanisms, such as spike-frequency
adaptation, could also contribute to this effect. As long as the
postsynaptic influence of each ORN spike decreases as mogry
increases, the PN activity will become more mean-driven as mogry
increases. As the PN activity becomes more mean-driven, we
expect the firing-sequences produced by that PN to become more
regular [22].

An illustration of variance coding within a large-scale
We also observe this phenomenon within our large-scale
model (described in Methods), which contains both presynaptic-
inhibition and vesicle-depletion. To illustrate this phenomenon at
work, we created a panel of 16 odors, all of which saturated the PN
firing-rates (i.e., produced average PN firing-rates at the ‘plateau’
of the mpy(mogry) curve for the model). We presented each of
these odors to the model network 64 times.

For each of the 64 trials of each stimulus we measured the 30-
component vector of PN firing-counts collected over the 256ms
following odor onset. Each component of this vector represents the
number of spikes fired by one of the 5x 6 PNs during this time.

model.
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We then used this vector to perform each possible 2-way and 3-
way stimulus discrimination task (see the section entitled “Odor
Discrimination” in the Methods). Each of these 2-way and 3-way
discrimination tasks results in a discriminability rate (i.e., the
fraction of correctly categorized trials — note that chance
performance for a 2-way task is 50%, and chance performance
for a 3-way task is 33%).

We construct a histogram of the discriminability rates for the

2

the typical discriminability rate for the system is not particularly
high (recall that each odor saturated the PN firing-rates). Similarly,

( 16) 2-way discrimination tasks, and as expected (see Fig. 3A),

the ( 136) 3-way discrimination tasks performed using PN firing-

rate vectors also do not yield high discriminability rates (Fig. 3B).
However, if instead of merely using PN firing-rate information we
also use information regarding PN-PN correlations within the
system, then the typical discriminability rates for the 2-way and 3-
way tasks increase (see Fig. 3C,D). To produce the discriminability
rates shown in Fig. 3C,D, we measured not only the 30-
component vector of PN firing-counts for each odor trial, but
also the 30%-component vector of PN-PN correlations (with
correlation time 32ms). As expected, these higher-order statistics
contain enough information to discriminate odors significantly
more reliably than mere firing-rates.

The difference between the performance of these low-order and
high-order readouts is more noticeable when the synaptic-
depression in the system is strong. Conversely, in a network with
no vesicle-depletion and reduced presynaptic-inhibition, the low-
and high-order readouts yield more similar discriminability-rates
(see Fig. 3EF). Thus, the presence of strong synaptic-depression
within our system is one factor which allows the network’s
dynamics to encode input-specific information within the PN-PN
correlations.

For the example shown in Fig. 3, the difference between the
typical 2-way discriminability rates observed when using high-
order versus low-order readouts is maximized when the synaptic-
depression is strongest; the effect of variance coding is seen quite
clearly. However, for the 3-way discriminability rates, the
difference between the high- and low-order readouts is greatest
when the presynaptic-inhibition is not too strong. A natural
question is: why does the performance for the 3-way discrimina-
tion task not parallel that for the 2-way task? Why is the difference
in performance between high- and low-order readouts not
maximized when both presynaptic-inhibition and vesicle-depletion
are at their strongest?

This effect arises in part because the 3-way task is quite difficult
and the observation time T, over which the task is carried out is
rather short — Top =256ms in this case. As we will argue below,
one consequence of strong presynaptic-inhibition is that the
network’s ability to perform fine discrimination will be compro-
mised when T, is small. In order to perform very well on fine
discrimination tasks when T, is small, the network should have
only moderate amounts of presynaptic-inhibition (consistent with
Fig. 3F).

Hypothesis 2: a tradeoff between reliability and
sensitivity

It has been hypothesized that one functional role for the AL is to
separate similar odors and that the nonlinear gain curve
mpy(mogy) is instrumental in this process. As shown in [11],
the nonlinearity of mpy(mogy) is influenced strongly by
substantial synaptic-depression at the ORN synapses. Thus, it is
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Figure 2. A simple illustration of variance coding. Here we presume the simple model described in the section entitled “An idealized model
used to illustrate variance coding”. [A] There is a nonlinear relationship between the ORN firing-rate and the PN firing-rate. [B] There is also a
nonlinear relationship between the ORN firing-rate and the time-averaged conductance of the PN. [C] As the ORN firing-rate increases, the time-
averaged vesicle-depletion parameter increases and saturates. [D] Since the average vesicle-depletion parameter increases as the ORN firing-rate
increases, the variance in the PN conductance is a decreasing function of ORN firing-rate, for sufficiently high ORN firing-rates. Two different points
along this curve are indicated, corresponding to two different PN dynamical regimes with similar PN firing-rates. The ‘ x" and ‘(J’ symbols indicate,
respectively, an irregularly firing-regime and a regularly firing-regime. [E] As a result of the fact that the PN conductance has a low variance when the
ORN firing-rates are high, the PN activity is very regular when the ORN firing-rate is high. In contrast, the PN activity is less regular when the ORN
firing-rate is not as high. This is reflected in the normalized PN autocorrelation, which shows several significant peaks when the variance in the PN
conductance is low (‘[J)"-regime, left). In contrast, when the variance in the PN conductance is high the autocorrelation does not show significant
peaks (‘ x -regime, right). [F] The regularity in the PN spiking activity is seen in PN voltage trace, as shown for the ‘[J’-regime (top) and ‘ x "-regime
(bottom). [G] The variance in the PN conductance is seen in PN conductance trace, as shown for the ‘[]’-regime (top) and * x -regime (bottom). [H] In
this panel we show the voltage-trace of a putative Kenyon cell, a conductance-based integrate-and-fire-neuron, driven by either the PN from the [J-
regime (top) or the PN from the x -regime (bottom). Thick vertical lines indicate firing-events for this putative KC. When driven by the regular activity
of the [J-PN, the KC mainains an elevated subthreshold voltage, but does not fire often. On the other hand, when driven by the irregular activity of
the x-PN, the KC does not maintain an elevated subthreshold voltage but fires after each burst in x -PN-activity. This provides a simple illustration of
one possible way in a variance-code could be ‘read-out’ by downstream neurons.

doi:10.1371/journal.pcbi.1002622.9g002

reasonable to conclude that one functional role of synaptic-
depression at the ORN synapses 1s to enhance the odor separation
capabilities of the AL.

Within the fly AL there are multiple sources of synaptic-
depression at the ORN synapses. Two major mechanisms which
contribute to this synaptic-depression are vesicle-depletion and
presynaptic-inhibition. While either one of these mechanisms

PLOS Computational Biology | www.ploscompbiol.org

could, in principle, be the major contributing factor to the
synaptic-depression observed within the fly AL, it seems as
though both of these mechanisms play a substantial role in
producing synaptic-depression [11,12]. Thus, one is faced with
the following natural question: What purpose do these two
distinct mechanisms serve within the fly AL? How would the
odor-coding properties of the fly AL change if, say, only one of
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Figure 3. A manifestation of variance coding within the large-scale model. The large scale model (described in Methods) exhibits a
phenomenon similar to the variance coding shown in Fig. 2. We constructed a panel of 16 odors, all of which only directly stimulated the same 3
glomeruli (although to differing degrees). Moreover, we chose every odor within this panel such that the ORN firing-rates of the 3 directly stimulated
glomeruli were sufficient to saturate the firing-rates of the associated PNs (i.e., the directly stimulated ORN firing-rates were >12 Hz, see Fig. 10).
Given this panel of odors, we presented each odor multiple times, and used the collection of 30-component PN firing-rate vectors (measured over the
256ms period immediately following odor onset) to perform a variety of odor discrimination tasks (see Results for details). [A] The histogram of
discriminability rates associated with 2-way discrimination tasks when only firing-rate data is used. Note that 50% is chance level for these tasks
(chance level is also shown in panels B,C,D). [B] The histogram of discriminability rates associated with the 3-way discrimination tasks when only
firing-rate data is used (note that 33% is chance level for these tasks). [C] The histogram of discriminability rates associated with 2-way discrimination
tasks when firing-rate data and 2-point correlations (correlation time 32ms) are used. [D] The histogram of discriminability rates associated with 3-way
discrimination tasks when firing-rate data and 2-point correlations (correlation time 32ms) are used. Note that the typical discriminability rate is
higher when correlations are used. [E] Here we plot the difference in mean discriminability for the 2-way discrimination task between the cases (i)
when firing-rate data and 2-point correlations are used, and (ii) only firing-rate data is used. We plot this difference as a function of the parameters
Svesdep and §Presy ysed in our large-scale model. The vesicle-depletion parameter SY*9P ranges from 0 to 0.95 across the vertical axis, and the
presynaptic-inhibition parameter SP™¥" ranges from 1/3 to 2.25 across the horizontal axis. The data shown in panels A-D is taken from the
simulation indicated by the dashed square. Note that, as the total amount of synaptic-depression decreases, the discriminability computed using only
firing-rates is closer to the discriminability computed using both firing-rates and 2-point correlations. [F] Similar to panel-E, except for the 3-way
discrimination task, rather than the 2-way discrimination task.

doi:10.1371/journal.pcbi.1002622.9003

these mechanisms were responsible for the observed levels of
synaptic-depression at the ORN synapses? Is there some
functional advantage gained by having both of these mechanisms
at play?

In what follows we introduce a hypothesis which links the
underlying nature of synaptic-depression at the ORN synapses to
information-coding properties of the AL, such as reliability,
sensitivity and discriminability. First we will define these terms,
and then we will explain our hypothesis in more detail throughout
the rest of this section.

sources of noise: There are two sources of ‘noise’ in our
network which influence the reliability (or unreliability) of the AL’s
activity across trials. The first is the initial condition of the system
(i.e., the state of the system at odor onset). Different initial
conditions will give rise to different dynamic trajectories. The
second source of noise is the odor-driven Poisson input to the
ORNSs in the model. Different trials will give rise to different
sequences of ORN spikes.
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reliability: We define the reliability of the AL as the inverse of
the coefficient-of-variation in spike-counts of AL neurons, as
measured across trials over a given stimulus-driven time-window.
Reliability is high if the spike-counts of the AL neurons are similar
from trial-to-trial. Reliability is low if the spike-counts vary
significantly from trial to trial. In our analysis we will consider a
family of networks with the same mean firing-rate, hence the
notion of reliability can be constructed using standard-deviation in
spike-counts across trials, rather than coefficient-of-variation.

sensitivity: Given two similar stimuli, we can measure the
time-averaged firing-rates of the various neurons in the AL,
collected over a long time (e.g., 1024ms). If the firing-rates induced
by these two similar stimuli are nearly identical, we say that the AL
is ‘not sensitive’ to the difference between these two stimuli. On
the other hand, if the firing-rates induced by these two stimuli are
quite different, then we would describe the AL as ‘sensitive’ to the
stimulus difference. More specifically, we define sensitivity to be
the magnitude of the derivative of the vector of steady-state AL-
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firing-rates, when considered as a function of the odor input. In
this sense, our notion of sensitivity is built around firing-rates, and
does not explicitly consider higher order dynamical structure.

discriminability: Given an unknown odor from amongst a
set of possible known candidates, we can use the AL as a
discriminator: by presenting this mystery odor to the AL and
measuring PN firing-counts over a time-period 7ops, we can
attempt to classify the input as one of the possible candidate odors.
We define the discriminability of the AL as the accuracy (ie.,
correct-classification rate) of this procedure. The discriminability
depends strongly on Tops. If Tops 18 sufficiently long, the
discriminability of the AL is related directly to its sensitivity. If
Tobs 1s short, then unreliability may come into play and reduce
discriminability. As with our definition of sensitivity, our definition
of discriminability is built around measurements of firing-rates,
and does not take into account higher order dynamic structure.

The main thrust of our second hypothesis is that the
combination of the mechanisms of vesicle-depletion and presyn-
aptic-inhibition allows the fly AL to balance sensitivity and
reliability in such a manner as to maximize the discriminability of
AL activity (with respect to similar ORN inputs) over short
observation times.

An illustration of the tradeoff between reliability and
sensitivity within a large-scale model. In this subsection we
will show how the hypothesis introduced above manifests within
our large scale model. First we will discuss some features of this
model which are pertinent to this hypothesis, then we will discuss
our hypothesis in more detail.

We used simulations to investigate and benchmark our large-
scale model (see the sections regardin benchmarking in the
Methods). By analyzing these simulations we determined that,
even after benchmarking, there were still a handful of free
parameters that were left unconstrained. Two parameters in
particular were not fully constrained by our benchmarking: (i) the
strength of vesicle-depletion as characterized by SY%%¢P_ and (ii) the
strength of presynaptic-inhibition as characterized by SPY".
Within our large-scale model the combination of these two
parameters produced synaptic-depression of the ORN synapses.
While the total amount of synaptic-depression was constrained by
our benchmarking, the relative strengths of SY¥9¢P versus SPresyn
were not constrained.

As an example of this lack of constraint, consider the following
benchmark: assume that we expect the average PN firing-rate
within the AL to saturate at a certain level mpy when stimulated
sufficiently by ORN input. What we found was that there is a
spectrum of possible AL architectures which could produce this
desired firing-rate mpy: (A) on one end of the spectrum is an AL in
which there is hardly any vesicle-depletion of the ORN synapses,
but for which the LNIs give rise to substantial presynaptic-
inhibition at these synapses. This type-A AL would be character-
ized by a large value of SP™¥" and a small value of $Y*%P_ (B) on
the other end of the spectrum is an AL in which vesicle-depletion
is primarily responsible for synaptic-depression, and the presyn-
aptic-inhibition of the ORN synapses due to LNIs is negligible. For
this type-B AL SP¥" would be small and S¥%P would be large.

An example of this spectrum is given in Fig. 4. Given a fixed
value mpy for the saturated firing-rates of PNs in a strongly driven
glomerulus, there a l-parameter family of values
(Spresy“,SVESdep) which corresponds to networks exhibiting satu-
rated firing-rates equal to mpy. This 1-parameter family of values

exists

ranges from networks with high SP¥" and low SY%%P (i.c., type-A
networks) to networks with high $Y9P and low SP™" (i.e., type-
B networks).
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Shown in Fig. 4A are the mean stimulus-driven PN spike-counts
for several networks with varying values of SP¥" and §Y¢4°P, To
construct this example we performed a systematic scan of
parameter space for our large-scale network model. We selected
a 2-dimensional array of parameter values for SPresyr gvesdep

ranging from Spresyne[(4/ 3)74,(4/ 3)3] and from Svesdere

[0.0,0.9]. For each fixed SP™Y" §Ves4P vyithin this array, we ran
a large-scale simulation using a panel of 9 odors, and we ran 64
trials per odor. The first eight of the odors used stimulated three
glomerular channels — the first glomerular channel was stimu-
lated strongly, and an odor-specific subset of two other glomerular
channels was stimulated weakly. The ninth odor only stimulated
the first glomerular channel strongly. We remark that the
simulations used to construct this array differ only in their values
of SPTY™ and $¥e$4eP The architecture and connectivity of the rest
of the model network were fixed.

In Fig. 4A we show the mean spike-count of PNs in the first
glomerulus, for each pair of parameter-values SPFe?, §¥esdeP The
mean spike-count is calculated as the mean of the number of
spikes/48ms time-bin averaged across all 64 trials, and further
averaged over the 128 —512ms period following odor onset, and
further averaged across all 9 odors. Overlaid on top of the mean
spike-counts are contour lines for the spike-count. Each of these
contours represents a l-parameter family of networks with a
different constant mean stimulus-induced spike-count. Note that,
as indicated in Fig. 4B, these contours extend from regions of high
SPresyn and low SYS4P 1o regions of low SP*Y" and high SVesdep,
In this example Type-A networks correspond to the lower-left
corner of the array, and Type-B networks correspond to the
upper-right corner of the array. Thus, in Fig. 4A it can be seen
that mpy is constant along contours extending from type-A
networks (lower left) to type-B networks (upper right).

We observed two important systematic differences between the
candidate networks along these 1-parameter families. First, type-B
networks are more reliable than type-A networks. This can be
understood as follows. First consider the ORN inputs to PNs in a
type-B network (for which synaptic-depression is dominated by
vesicle-depletion). A typical odor stimulates many ORNs to fire at
a high rate. Each of the ORN synapses likely has a high quantal
release rate [11], implying that the fraction of active vesicles
remaining after several rapid ORN spikes is likely to be small.
Moreover, there are ~ 30 such ORNs which converge onto each
PN within their target glomerulus [23]. Thus each PN within a
strongly stimulated glomerulus receives a large number of input
spikes from a large number of presynaptic ORNS, each firing with
a high rate, each synapse of which is likely to experience profound
vesicle-depletion. Moreover, the vesicle-depletion experienced by
the ORN synapses is only dependent on the ORN activity, and is
independent of the activity of the AL. Thus, we expect the ‘feed-
forward’ synaptic-depression observed within a type-B network to
always exhibit very similar dynamic transients from trial to trial,
with the only differences due to the variation in ORN spike-
sequences induced by the trial-to-trial variability of the Poisson
input to the ORNs [19]. Now, on the other hand, let us consider
the ORN inputs to PNs within a type-A network. In such a
network, synaptic-depression is primarily governed by ‘feedback’
from the AL in the form of presynaptic-inhibition. ORNs in a
type-A network rely on the odor-specific firing patterns of LNIs in
order to exhibit synaptic-depression, and therefore may receive
different amounts of presynaptic-inhibition from trial to trial (or
over disjoint time-windows within a single trial). Moreover, there
are only a few LNIs per glomerulus, and a given stimulus may not
cause all these LNIs to fire at high rates. A few extra LNI spikes
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Figure 4. A tradeoff between reliability and sensitivity within our large-scale model. We performed a systematic scan of our large-scale
network model, varying SP™" and SV°54¢P (see the section entitled “An illustration of the tradeoff between reliability and sensitivity within a large-
scale model” in the main text for details). For each point in this parameter array we measured various features of the network dynamics (such as
mean PN spike-counts and reliability), as well as the performance of each of these networks on a 3-way odor discrimination task. [A] Shown is the
mean PN spike-count of PNs in the first glomerulus, for each pair of parameter-values SP¥", §vesdep Qverlaid on top of the mean spike-counts are
contour lines for the spike-count. Four of these contours are highlighted in magenta, and will be referenced later. [B] Indications of the type-A and
type-B network regimes. [C] Shown are the standard deviation in PN spike-counts of PNs in the first glomerulus (see colorbar on far left). [D]
Reproduction of panel-C, along with the contours of panel-A. [E-H] Shown are contour plots associated with R’ (SP“SY“,SV““P) for various values of
T,»s- These panels use the colorbar shown to the far left. [I] Here we plot the standard-deviation in spike-count (taken from panel-D) as a function of
the distance along each of the contours indicated in panel-D, with values bi-linearly interpolated as necessary. [J] Here we plot the discriminability
values R04 (Sp'eSY“,SveSdep) indicated in panel-E as a function of the distance along each of the contours shown in panel-D. The contours are indicated

using the colorcode from panel-Il. [K-M] Similar to panel-J, except for T,y =256ms, 512ms, and 1024ms respectively.

doi:10.1371/journal.pcbi.1002622.9g004

induced on any one trial may substantially change the footprint of
synaptic-depression across the ORN synapses, thus leading to even
more extra LNI spikes later on, and so forth. This ‘feed-back’
mechanism allows the synaptic-depression observed within type-A
networks to exhibit quite different dynamic transients from trial to
trial. Put another way, the ‘feed-back’ structure within type-A
networks allows the trial-to-trial variability in LNT activity to affect
and magnify the trial-to-trial variability in ORN input to the AL.
In conclusion, we expect that ORN inputs to PNs in type-A
networks will be less reliable than the corresponding ORN input to
PNs for type-B networks when measured either (a) over multiple
trials, or (b) over different time-windows within a single trial.
The second systematic difference between networks along such
a l-parameter family is that type-A network-dynamics is more
sensitive than type-B network-dynamics to subtle changes in ORN
input. To see why this might be true, let’s revisit the argument
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used above. Consider a subtle change in ORN input which is only
large enough at first to shift PN and LN firing rates slightly. This
subtle change in ORN input will not create a large shift in the PN
input for type-B networks, yet the same subtle change in ORN
input may give rise to a few different LNI firing-events in the type-
A network, which may then presynaptically inhibit different
ORN:S, giving rise to even more different type-A-network-activity,
and so forth. In other words, due to the feedback between the
type-A LNIs and the type-A ORNs, we expect the type-A system’s
dynamics to be more sensitive than the type-B network’s dynamics
to certain perturbations in input.

These systematic differences (i.e., type-A networks are less
reliable, but more sensitive to perturbations in input than type-B
networks) manifest within our large-scale model.

To quantify reliability for each network along such a 1-
parameter family, we measured the trial-to-trial standard deviation
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in PN spike-counts of PNs in the first glomerulus, for each pair of
parameter values SPY" §VedeP  The standard-deviation is
calculated as the standard-deviation of the number of spikes/
48ms time-bin across all 64 trials, averaged over the 128 —512ms
period following odor onset, then further averaged across all odors.
The coeflicient-of-variation in spike-counts is equal to the
standard-deviation in spike-count divided by the mean. Thus,
along contours of mpy (where the mean is constant) the
coefficient-of-variation in spike-count will be proportional to the
standard-deviation in spike-count. Shown in Iig. 4D are the
standard deviation in PN spike-counts along with the 4 contours
highlighted in Fig. 4A. These four contours (labelled o,f,y,0) each
correspond to a 1-parameter family of networks exhibiting a fixed
mean spike-count, and are each associated with a different color
(black, red, green, cyan, respectively) on the colorbar to the far left.
In Fig. 41 we plot the standard-deviation evaluated along these
contours. Note that, since contour y is longer than contour f3, the
graphs shown in Fig. 41 are not directly comparable. However,
there is a clear trend amongst all these graphs: As one moves along
the 1-parameter family of networks with constant mean stimulus-
induced spike-count from type-A networks to type-B networks the
standard-deviation in spike-count decreases as long as the mean
spike-count is sufficiently high (ie., contours f,y,6). This is
equivalent to the statement that, along contours f3,7,0, type-B
networks are more reliable than type-A networks.

Recall that, for each network (ie., for each fixed value of
Spresyn Gvesdepy e ran 64 trials for each of 9 different odors. Using
this data, we can quantify the sensitivity of each of these networks
to input perturbations. For each odor trial we measure the 30-
component PN firing-rate vector averaged over the T,p, =1024ms
time-window including and immediately following a 512ms odor
presentation. We use these time-averaged firing-rate vectors to

perform each of the 84 = <§

and thus we obtained a distribution of discriminability rates for
each 3-way odor task (see the section entitled “Odor Discrimina-
tion” in the Methods). For each network we then record the 407-
percentile of the distribution of discriminability rates (across
odors), denoted by R%**. We chose to display R%#, as this 40"-
percentile discriminability rate illustrates our conclusions most
clearly. However, our main results do not change if we choose
another percentile in the range [10,60]. Higher percentiles, such as

) 3-way odor discrimination tasks,

the 70" -percentile, are usually all near 100% correct-classification,
since the set of odors used contain several rather distinct odors.
Note that R will depend on SP*¥" and S¥4P_ Shown in
Fig. 4H are the contour plots associated with R%4 (Spresy“,SveSdep)
for Tops=1024ms. In Fig. 4M we plot these discriminability rates
along the contours shown in panel-A. For each of these contours
the maximum discriminability (when T, = 1024ms) occurs at the
type-A end of the spectrum. This indicates that the discriminability
of type-A networks (using firing-rates measured over long
observation times) is superior to that of the type-B networks. This
is a reflection of the fact that type-A networks are more sensitive
than type-B networks to subtle changes in input.

A combination of vesicle-depletion and presynaptic-
inhibition is required to optimize discriminability over
short observation-times within a large-scale model. Within
our model network we have observed a further functional
consequence associated with the tradeoft’ between reliability and
sensitivity described above. Type-A networks are indeed more
sensitive than type-B networks to shifts in input, and this sensitivity is
reflected in the long time (or trial averaged) PN firing-rate vector
associated with any given input. As a result, type-A networks
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outperform type-B networks in odor-discrimination tasks when the
discriminability rate is calculated using a long time observation (such
as T,ps =1024, as shown in Fig. 4H,M). However, type-A networks
are less reliable than type-B networks, and thus, if the observation-
time of any given odor stimulus is sufficiently short, the higher
variability associated with the single-trial short-time responses of
type-A networks will pollute the performance of any discrimination
task which uses only these short observations. On the other hand,
since type-B networks are rather reliable, shortening the observation-
time associated with a discrimination task will not affect the
discriminability rate associated with that task for a type-B network as
much. As demonstrated in our model network, if the observation-
time of any given odor trial is shortened from 1024ms (as shown in
Fig. 4HM) to merely 128ms after odor onset, the decreased
reliability associated with type-A networks will drastically lower the
discriminability rate of the odor-discrimination tasks which use only
these short observations (see Fig. 4E,]). Moreover, since the type-B
networks are more reliable than type-A networks, the decrease in
discriminability associated with reducing the observation-time of the
discriminability task is lower for type-B networks than it is for type-A
networks (compare Fig. 4],M). Most intriguingly, there is a midpoint
in the spectrum — a balance between vesicle-depletion and
presynaptic-inhibition which gives rise to the maximum
discriminability rates using only short-time observations. This
optimal point depends on the length of the observation-time
associated with the discrimination-task. With long observation-times
type-A networks are optimal. With very short observation-times
type-B networks are optimal.

This feature is shown in more detail for our large scale model in
Fig. 4E,F,G,J,K,L, which illustrate the discriminability capabilities
of our model for a variety of observation times T,ps = 128,256,512.
Note that, for any particular contour a,f,y,0, The point of
maximum performance occurs closer to the type-B extreme when
Tops is small, and this maximum occurs closer to the type-A
extreme when T, 1s large. In other words, when T 1s low, type-
B networks outperform type-A networks, whereas when 7pps is
large type-A networks outperform type-B networks.

In conclusion, we have demonstrated that for a particular set of
discrimination tasks the network which performs optimally lies in
between the type-A and type-B extremes. Moreover, as the
observation-time associated with this task increases (or decreases)
the optimal point shifts towards the type-A (or, respectively, type-
B) end of the spectrum. Although the details of Fig. 4 only pertain
to a particular discrimination task, we mention now that this
systematic dependence of the optimal point on observation-time is
actually a natural consequence of the fact that type-A networks are
more sensitive, and type-B networks are more reliable. Indeed, as
we will argue below (in a section entitled “A simple cartoon of
optimizing discriminability over short observation-times”), this
feature is to be expected for a rather general class of discrimination
tasks in which estimates of the mean firing-rates (sampled over an
observation-time) are used to classify the input.

A simple analyzable cartoon of the tradeoff between
reliability and sensitivity. In this section we introduce a
simple deterministic 2-neuron model network which will allow us
to discuss various aspects of hypothesis-2. This simple network has
the property that the sequence of neuronal firing-events is a
sensitive function of the network’s initial conditions as well as the
input to the network and the source of synaptic-depression within
the network. The model itself consists of 2 LNIs, each driven by a
single ORN. Each LNI (labelled 4 and B) is modeled by a simple
phase-oscillator (similar to a current-based integrate-and-fire
neuron), and each ORN is modeled by a fixed input-current
(i.e., ny and np). This input current indicates the rate at which
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each neuron would fire if there were no presynpatic-inhibition or
vesicle-depletion.

In this system the strength of presynaptic-inhibition is modeled
by a constant parameter £. As ¢ increases, the firing-events of each
neuron have a greater inhibitory effect on the input to the other
neuron. Specificially, whenever LNI A4 fires, the ORN input to
LNI B is shut off for ¢-time. Similarly, whenever LNI B fires, the
ORN input to LNI 4 is shut off for &-time. To ensure that both
neurons fire, we assume &<min(1/n4,1/15). As the amplitudes
14,1 p of the ORN processes are constant, the vesicle-depletion in
this system is assumed to attain a steady state, and is modeled via a
single constant parameter u>1, which reduces the ORN input to
both 4 and B.

In keeping with the description above, the membrane potentials
for LNI 4 and B obey the differential equations

dVdAt(l) =nA/lt'®A(l)=UA/ﬂ'|:1_Jt ,Zé(S_T’f)ds]
=&
(1)
dV;Z(Z) =N/ Op(1)=np/p [1— J ,Zé(s_Tlf)ds]’
=&

and whenever the potential V4 reaches V=1, we say that LNI 4
fires, and reset V4 to Vg=0. The Kkt spiketime of neuron A is
recorded as T{l. Similarly, whenever Vg reaches 1, we say that
LNT B fires, and record the k£ spiketime of neuron B as T . The
term @ =1— L’_E >k 0(s—TF)ds is equal to 1, unless neuron B
has fired within & of the current time, in which case ®4=0.
Similarly, the term @g=1— LCE > 5(s— T,f)ds is equal to 1,
unless 4 has fired within ¢ of the current time, in which case
®5=0. Note that, since {<min(1/n4,1/np), the terms ®,4 and
Op are each either 0 or 1 at each time.

This simple network is easy to analyze, and the firing-rates
my,mp of each LNI in the network, as well as the interspike-
interval-distributions (IS, and ISIg) can be directly calculated in
terms of the inputs to the network 5,,np and the sources of
synaptic-depression &£, and u. See the section entitled “A simple
model illustrating the tradeoff between reliability and sensitivity”
in the Methods for more details.

An example of such calculations is shown in Fig. 5. If we fix
u=1, then the firing-rates of the two neurons is a decreasing
function of € for small & (see Fig. 5A). As expected, this decrease in
firing-rate corresponds to the two neurons interfering with and
slowing down one another. However, this interference causes the
firing-events of each neuron to occur at irregular intervals, and
hence the variance in the ISI-distributions of these neurons is a
monotonic increasing function of ¢ for small ¢ (see Fig. 5B). Thus, as
¢ increases from 0, the neurons fire less, and have a lower trial-to-
trial reliability.

If we fix &, then the firing-rates of the two neurons are
decreasing functions of u. Thus, there is clearly a 1-dimensional
family of synaptic-depression parameters which gives rise to
networks exhibiting the same mean firing-rates for any fixed set of
inputs. This 1-parameter family ranges from type-A networks (with
high ¢ and low y) to type-B networks (with low & and high u) — see
Fig. 5C. We can index networks along this 1-parameter family
using &, assuming that () is chosen so that the average firing-rate
m is maintained (see Fig. 5D).

Intuitively, one expects that for an extreme type-B network (i.e.,
£=0) the activity should be perfectly regular: each neuron fires
independently of the other neuron. On the other hand, for an
extreme type-A network (i.e., £>0), each neuron fires in spurts,
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constantly disrupting the periodicity of the other neuron’s activity.
This interplay between the neurons (resulting from presynaptic-
inhibition) gives rise to a greater variability in the ISI-distributions
of the neurons within the type-A networks. This increased
variability implies that the neurons in the type-A networks have
a lower trial-to-trial reliability than the analogous neurons within
the type-B networks (assuming that different trials have different
iitial conditions).

This same intuition can be extended to see that, in the type-A
network, there is a ‘rich-get-richer’ phenomenon: the neuron
which gets more input will slow the other neuron down more than
it is slowed down by the other neuron. Thus, the presynaptic-
inhibition ¢ magnifies the sensitivity of the type-A networks,
increasing the difference in firing-rates between the two neurons
when the input to these neurons is similar. In other words, the
firing-rates produced by the type-A network should be more
sensitive than those produced by the type-B network to small
differences in inputs.

This intuition is borne out by analysis. When constraining p,¢
so that the mean firing-rate 7 is constant, we see that as ¢
increases from 0 the network becomes more sensitive (i.e., the
difference in firing-rates m4 —mp increases) and less reliable (i.e.,
the variance of the ISI-distributions of the two neurons increases).
These functions are plotted in Fig. 5D,E. Thus, for this simple
system, we can show analytically that hypothesis-2 holds: type-A
networks are more sensitive, and type-B networks are more
reliable. See the section entitled “A simple model illustrating the
tradeoft between reliability and sensitivity” in Methods for more
details.

A simple cartoon of optimizing discriminability over
As postulated above, and illustrated
for both a large-scale and idealized network architecture, we
expect there to be a 1-parameter family of networks with the same
mean firing-rate for any fixed set of inputs. This 1-parameter
family ranges from type-A networks (with significant presynaptic-
inhibition, lower reliability and higher sensitivity) to type-B
networks (with significant vesicle-depletion, higher reliability and
lower sensitivity). It turns out that, under rather general
conditions, the networks which perform best on discriminability
tasks with finite observation-times are the networks in the middle
of this spectrum (i.e., networks with a combination of presynaptic-
inhibition and vesicle-depletion).

To illustrate this principle, we will use the network architecture
discussed in the section entitled “A simple analyzable cartoon of
the tradeoft between reliability and sensitivity”. It should be noted
however, that the argument we will present here is not specific to
the 2-neuron architecture discussed above, and a modified version
of this argument will hold for any 1-parameter family of networks
ranging from the type-A to the type-B extremes discussed above.

To begin, let us consider the following discriminability task.
Assume that a simple 2-neuron network (of the type described in
the section entitled “A simple analyzable cartoon of the tradeoff
between reliability and sensitivity”) is driven by one of two inputs
— either (O1) neuron 4 is driven at rate 4+ A#n/2 and neuron B is
driven at rate 1 —An/2, or (O2) A4 is driven at #—An/2 and B is
driven at 7+ A /2. The steady-state ISI distributions IS14(O,u,&)
and ISIg(O,1,E) will depend on the unknown input O, as well as
the known system parameters u,¢. By performing a measurement
of the system, is it possible to tell which input (i.e., either Oy or O5)
is driving the system? Let us assume that our measurement process
consists of 2 steps. First, we estimate the mean of ISI,(O,u,&) by
drawing Tops samples from ISI4(O,p,&). For example, we can
either measure 4 within a single system for a long time, or we can
measure multiple systems from an ensemble. The longer a single

short observation-times.
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Figure 5. A simple analyzable cartoon of the tradeoff between reliability and sensitivity. In this example 1, =1.1, and 5 =0.9. In panels
A and B the vesicle-depletion parameter u=1. In panels C,D,E and F, the vesicle-depletion parameter u=u(¢), such that the mean firing rate
m=(m4+mp)/2~0.594 is held constant. [A] Graphs of m, (solid), mp (dashed), m= (m,+mp)/2 (gray), and Am=m,—mp (gray dashed), as
functions of &, for the case u=1. [B] Graphs of var(IS1,) (solid) and var(ISIz) (dashed) as functions of ¢, for the case u=1. [C] Graph of p as a
function of £, subject to the constraint that m remain constant. The constant value of 7z chosen (essentially arbitrarily) in this case is the value of
m=0.594 shown in panel A for £=2/5,—1/n. Other choices of m yield similar results. Note that this graph is monotonically decreasing, implying
the existence of a 1-parameter family of networks possessing the same m — ranging from type-A networks with low x and high ¢, to type-B networks
with high w and low ¢&. [D] Graphs of m4(&) (solid), mg(£) (dashed), (&) (gray), and Am(&) (gray dashed), for the case p = p(&). [E] Graphs of var(1S1,)
(solid) and var(ISIp) (dashed) as functions of &, for the case u=u(¢). [F] Graph of the optimal choice of ¢ (implying a vesicle-depletion parameter of
u(&)) for which discriminability is maximized, as a function of the sample number Tops. The notion of discriminability is described in the section
entitled “A simple cartoon of optimizing discriminability over short observation-times”. In this case the observation error o is fixed at 6 =0.01. Note
that for low Ty, discriminability is maximized for a type-B network. However, as T, increases, discriminability is maximized by type-A networks.
The graph shown plots &, for Tobs€[1,40], as for this particular simple example the derivative of &, (T,bs) reaches a vertical asymptote at Tops ~40.
doi:10.1371/journal.pcbi.1002622.g005

system is measured for, the larger the effective number of samples process includes some external noise modeled by a random
Tobs 1, assuming that measurements of the system that are variable Xg. For the sake of presentation, let’s assume that Xg is
sufficiently well-separated in time are effectively independent. We drawn from N (0,0f) (i.e., a Gaussian distribution with mean 0
use the notation Tops rather than Nops to draw analogy with the and variance GzE). Thus, our final measurement of the mean of
observation-time discussed in the section entitled “A combination IS14(O,p,¢) is some estimate {ISL(O,u,E)> 7, + XE.

of vesicle-depletion and presynaptic-inhibition is required to Our goal is to determine from this measurement
optimize discriminability over short observation-times within a ST (O,1,8) > 7, +Xe whether the input to the system is O
large-scale model”. Let us denote by <ISI4)r,, this estimate for or O,. By analyzing the signal to noise ratio of this measurement
the mean of ISI4. Second, we assume that our measurement process (see the section entitled “Analysis of signal-to-noise ratio in
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a general discrimination task” in Methhods), we can show that the
discrimination error E(Tobs,u,¢) associated with the best linear-
classifier for this problem is well-approximated by:

1 M)
2V2[52(1,6) [ Tops + 0%

E(Tops,1t,¢) =1 —erf , (2)

where AA(u,&) is the difference in the means of ISI4(Oy,u,&) and
ISIp(O1,1,E), and o>(u,E) is the average variance of
ISI(O,1,¢) and ISIp(O1,u,E). Because erf is monotonic
increasing, E(Tops,ft,) is minimized when the ratio

A/ 62 ) Tops +0% is maximized. Recall the structure of the

simple 2-neuron networks described above — both AA(y,¢) and
o(u,&) are monotonically increasing functions of &, and u(¢) can
be defined implicitly through & (by fixing /) as a monotonically
decreasing function of £. For these simple networks, when
Tobs> 1, this discriminability error is minimized when AZ is as
large as possible, and the maximum A/ is achieved when p,¢
correspond to a type-A network. Conversely, when Tops ~ 1, then
the discriminability error is minimized for p,¢ corresponding to a
network in between the type-A and type-B extremes. In this case,
one can show that if An,0g are sufficiently small, then the optimal
Eopt (for which the error E(Tops,pt(&),£) is minimized) increases as
Tobs increases. (see Fig. 5F, which displays Eqpi(Tobs) for the case
n=1, An=0.2, 65 =0.01).

As we mentioned earlier, The argument given in this section is
quite general, and similar reasoning can be applied whenever any
measurement is made by sampling from a distribution and adding
an observation error Xg. Given a 1-parameter family of networks
indexed by «, and a measurement of any dynamical feature 4, with
sensitivity described by A(e) and reliability described by ¢ (o),
the error associated with the best linear-classifier can be
approximated by an equation similar to Eq. 2, where Tops
increases as the observation-time of the measurement increases.

A population-dynamics approach towards verifying
Hypothesis 2 within more general networks. In the
preceding sections we have described in detail a specific 2-neuron
network which exhibits the phenomena associated with hypoth-
esis-2. However, the reasoning used in these sections cannot
readily be applied to more complicated heterogeneous networks
composed of more realistic model neurons. Indeed, while there
exist networks for which hypothesis-2 holds (e.g., the large-scale
networks described earlier on), there also exist networks for which
hypothesis-2 does not hold. A natural question is: given a specific
network architecture, what dynamic phenomena will that network
exhibit? In the remainder of this section we will apply a rather
general method [24,25] which can be used to assess the
equilibrium dynamics of pulse-coupled networks, and which can
be used to determine which network architectures exhibit
phenomena associated with hypothesis-2 (e.g., the tradeoff
between reliability and sensitivity discussed above). With this
analysis we will able to see that hypothesis-2 holds for a rather
large class of networks, and in particular holds for a class of sparse
randomly connected networks, provided that the network size is
sufficiently large.

For the purposes of illustration, let us consider a network of N
discrete-state glomeruli (LNIs), each driven by a different ORN.
We will model each ORN-LNI pair as a discrete-state discrete-
time Markov process which is as simple as possible, while still
retaining the following features: (i) each LNI generates spikes, (ii)
each ORN input spike contributes to the vesicle-depletion of that
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ORN—-LNI synapse, and (iii), each LNI spike gives rise to
presynaptic-inhibition of some subset of ORN—LNI synapses.
This model does not take into account excitatory interactions; PNs
and LNEs are not included. While these excitatory interactions
certainly contribute to hypothesis-2, they do not substantially
change the following analysis, and we delay discussion of their
effects until the end of this section.

Within this simple network model we will model the j" ORN-
LNI pair using the state-variables V;(¢), p;(#) and &;(f) which
represent LNI membrane-potential, ORN vesicle-depletion and
ORN presynaptic-inhibition, respectively. The architecture of the
model is determined by the connectivity matrix Aj which encodes
the presynaptic-inhibitory coupling between ORN-LNI pairs. The
other parameters of the model include the feedforward input rates
11 to each ORN-LNI pair, as well as the overall strength of vesicle-
depletion x,, and the overall strength of presynaptic-inhibition r.
The details of the model are given in a section entitled “A discrete
state model used to analyze hypothesis-2 within general networks
with arbitrary architecture” in Methods (see Eq. 16).

We are interested in how the dynamics of such a network
depends on the connectivity matrix A, and also on other
parameters such as the inputs #;, the vesicle-depletion strength
K, and the presynaptic-inhibition strength ;. For reference, let us
specify precisely what we mean by ‘hypothesis-2’. Let us say that
the ji LNI satisfies ‘hypothesis 2.0° if there exists a l-parameter
family of small variations in x¢,k, which maintain the firing rate of
the j LNI (denoted by my), such that this 1-parameter family
ranges from high k¢ and low k,, (i.c., type-A) to low k¢ and high x,
(i.c., type-B). Let us say that the j LNT satisfies ‘hypothesis-2.1" if,
given a small increase in k¢ along this 1-parameter family, the
reliability of the j TNT decreases (i.e., var(ISIj) increases as the
network parameters are shifted towards a type-A network). Finally,
let us say that the j™ LNT satisfies ‘hypothesis-2.2” if, given a small
increase in k¢ along this 1-parameter family, the sensitivity of the
jM LNI to its own input increases (i.c., Oy,m; increases as the
network parameters are shifted towards a type-A network).

Let us assume that we have some large network in which
17;=1=0.5 (i.e., the input to each LNI is the same), and that A is
given (but otherwise arbitrary). One can readily show that
hypothesis-2.0 holds — namely, for sufficiently small k¢, each
ORN-LNI pair with at least one presynaptic-inhibitory input has
the property that there exists a 1-parameter family of parameters
(ranging from high ¢ and low %, to low k¢ and high x,,) for which
the firing rate m; remains fixed. This is simply because, as either k¢
or K, increases, the firing rate 71; decreases (i.e., 5,(51’}1/- and GK}‘mj
are both negative) as long as x¢ is sufficiently small.

In the rest of this section, we will analyze reliability (ie.,
hypothesis-2.1). Let us concentrate on a single ORN-LNI pair
(say, the j™ such pair) embedded within this larger network, and
assume for the moment that the j ORN is presynaptically-
inhibited by the k" LNIT (with k #j). If we were to increase the
strength of the presynaptic-inhibitory connection between LNI k
and ORN J (i.e., if we were to increase Aj) without decreasing the
strength of vesicle-depletion x,, then the firing rate 7; would drop.
If, instead, we were to increase Ay while decreasing x,
simultaneously so as to maintain m; (as required by hypothesis-
2.1), then the ISI distribution of the /" LNT would change (but the
firing rate m; would remain constant by construction). In thi case
the differential shift in the ISI distribution of the j LNT associated
with increasing the strength of connection Aj; (while appropriately
decreasing k) gives rise to an increase in var(ISIj). Thus, if
coupling strengths are sufficiently weak, then the derivative of
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Var(ISIj) with respect to increasing Ay (while appropriately
decreasing x,) is positive. Using population-dynamics techniques
from [24,25], this reasoning can be systematically extended to
consider every connection in the network, not merely the
connection Aj.

Formally speaking, this analysis is nothing more than a Taylor-
expansion of var(ISIj) in terms of the coupling strengths of the
network. Namely, Var(ISIj) depends on many parameters (e.g.,
A, n;, K¢, i), and if we assume that x, is implicitly dependent on
Ke,A in such a way that m; is constant, then we can Taylor-
expand var(ISI;) in terms of ; and the components of A. If we
retain all terms up to second order, such an expansion has the
form

2 2
var (IS)) = ot wee i+ 1ce Y Bl + 127505 412 Y v
=y [y,

+ K% Z Vi i Djie + ng Z Vit Djic A + K% Z Vi Ak Aﬂ( 3)

=y, [y, k1 distinet
2 2
+K: E Vit Dic Akt + 16 E V el Aic Ak
k,1,j distinct k#j

where o is a 0"-order contribution, each f term corresponds to a
1*'-order contribution, and each y term corresponds to a 2M_order
contribution. Each f and y term is a correction to var (ISI/)
associated with a particular subnetwork containing the /" LNI (see
Fig. 6 for an example). For example, the term k¢f;; corresponds to
the subnetwork in which the j T.NI (see Fig. 6 for an example). For
example, the term K¢ f;; corresponds to the subnetwork in which the
J™ LNI presynaptically-inhibits its own ORN (the /™ ORN) — «¢ 8
is the differential correction to var (ISIJ-) associated with increasing
the connection strength Aj;, while appropriately decreasing x,,. This
correction K¢ f; is actually negative (i.e., if one were to increase Ay,
then the /™ LNT would become more reliable). As another example,
the term K?/jkj[ (with k,/,j distinct) corresponds to the subnetwork in
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which both the /™ LNT and the k" LNI presynaptically-inhibit the
jlh ORN. If both Aj; and Ay were to increase, then the change in
Var(ISI_,-) would be well-approximated by the change in the terms
Kf[f/-kAjk-I—Kéﬁj,Aﬂ—i-ZK%y]—kﬂAjkAﬂ (in this manner, the 2"-order
correction K%ijjl captures the change to Var(ISIj) which is not
accounted for by x:f; and x¢f;). Indeed, given any specific
network containing the j ORN-LNI pair, one can determine the
effect of increasing k¢ (or, equivalently, increasing all of the
components of A simultaneously) by dissecting the specific network
and determining the contributions made by the various comprised
subnetworks to var(ISIj). See Fig. 7 for an illustration of this
technique.

By analyzing the various terms in this expansion, one can
determine that by increasing the strength of certain elements of
4, it is possible to actually lower Var(ISIj), and make the j®
LNI more reliable. For example, by exclusively strengthening
Aj; without increasing the other Ay, the reliability of the jh
LNI would increase, in seeming contradiction to hypothesis-
2.1. However, in a typical random network (containing many
ORN-LNI pairs, and many presynaptic-inhibitory connec-
tions), the subnetworks which increase Var(ISIj) dominate
those that lower Var(ISIf), and thus a uniform increase in K¢
will increase var(ISIj). By analyzing the magnitudes of the
various o,f,y terms in Eq. 3, one can quantify this statement for
any particular class of networks. For example, consider a
random network of N neurons for which each 1; =7, and each
element of A is independently chosen to be either 1 or 0 with
probability p and 1 —p respectively (i.e., a Erdos-Renyi random
graph with sparsity coefficient p). For any fixed LNI j, which
does not presynaptically-inhibit its own ORN, there will be
approximately Np subnetworks of the form Ay, Np? subnet-
works of the form AjAyj, Np? subnetworks of the form A Ari,
N?p? subnetworks of the form AyAj, and N?p?
the form Aj A (where we assume k,j,/ are distinct). If k¢ and

subnetworks of

K, are modified for such a network so as to maintain m;, then as
Kg is increased var(ISIj) will increase as well (since the
reduction in Var(ISI,-) caused by the subnetworks of the form

A full network B oth order 1st order 2nd order
1x
(g + 1x + 2x

Figure 6. An example of subnetworks which come into play when considering the sensitivity or reliability of the /™ LNI. On the left in
panel-A we show a particular network, with various ORN-LNI pairs (shown as ovals and circles respectively) connected via presynaptic-inhibitory
connections. We will adopt the convention that the /" ORN-LNI pair is fixed (highlighted in dark gray), whereas the indices k,/ are not fixed, but are
considered distinct from j and from each other. Several dynamic features associated with the j™ LNI can be determined by considering an expansion
of the dynamics of this full network in terms of subnetworks. Shown on the right in panels-B,C,D are 0th-order, 1%-order and 2"-order subnetworks of
the ful