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Abstract

Recent advances in sleep neurobiology have allowed development of physiologically based mathematical models of sleep
regulation that account for the neuronal dynamics responsible for the regulation of sleep-wake cycles and allow detailed
examination of the underlying mechanisms. Neuronal systems in general, and those involved in sleep regulation in
particular, are noisy and heterogeneous by their nature. It has been shown in various systems that certain levels of noise
and diversity can significantly improve signal encoding. However, these phenomena, especially the effects of diversity, are
rarely considered in the models of sleep regulation. The present paper is focused on a neuron-based physiologically
motivated model of sleep-wake cycles that proposes a novel mechanism of the homeostatic regulation of sleep based on
the dynamics of a wake-promoting neuropeptide orexin. Here this model is generalized by the introduction of intrinsic
diversity and noise in the orexin-producing neurons, in order to study the effect of their presence on the sleep-wake cycle. A
simple quantitative measure of the quality of a sleep-wake cycle is introduced and used to systematically study the
generalized model for different levels of noise and diversity. The model is shown to exhibit a clear diversity-induced
resonance: that is, the best wake-sleep cycle turns out to correspond to an intermediate level of diversity at the synapses of
the orexin-producing neurons. On the other hand, only a mild evidence of stochastic resonance is found, when the level of
noise is varied. These results show that disorder, especially in the form of quenched diversity, can be a key-element for an
efficient or optimal functioning of the homeostatic regulation of the sleep-wake cycle. Furthermore, this study provides an
example of a constructive role of diversity in a neuronal system that can be extended beyond the system studied here.
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Introduction

Disorder, which originates from both noise and diversity, is

naturally present in all biological systems. In neuronal systems

some examples are the random opening and closing of ion

channels, the multitude of stochastic input currents in the neurons,

and the diversity of shapes, sizes, and electrophysiological

properties of the neurons [1,2]. Disorder is often considered to

be harmful to the systems’ functioning and to information

encoding. However, it was likewise repeatedly demonstrated that

a certain level of disorder can facilitate signal encoding by

enhancing system’s response to an external stimuli. For instance,

quenched diversity clearly shows its constructive role in the

phenomenon of diversity-induced resonance, in which an assem-

bly of heterogeneous excitable units presents an optimal response

to an external forcing for a suitable intermediate degree of

heterogeneity [3,4,5]. Similar constructive effects can be observed

in the presence of noise. For example, interplay of noise and

nonlinear forces produces the directed motion of motor proteins

[6], order-disorder transitions, oscillations, and synchronization in

assemblies of excitable units [7,8,9], and an optimized system

response in the ubiquitous phenomenon of stochastic resonance

[10,11], e.g. in ion-channels and neurons [12,13,14,15,16,17].

In the present study we examine the effects of noise and

diversity (heterogeneity) in a physiologically based neuronal model

of sleep-wake cycles [18]. This model introduces a novel

mechanism of the homeostatic regulation of sleep based on the

dynamics of a wake-promoting neuropeptide orexin (also called

hypocretin), assuming depression of orexinergic synapses during

wakefulness and their recovery during sleep. This mechanism is

based on the experimental findings of the essential role of orexin

system in maintaining wakefulness and its ability to integrate the

sleep-wake relevant information coming from many brain areas

[19,20] and respond to changes in the body external and internal

environments by encoding the body activity state, energy balance,

sensory and emotional stimuli [21,22].

In the original model interaction between only two represen-

tative neurons is simulated: the orexin neuron and the local

glutamate neuron that are reciprocally connected to each other

according to the experimentally established physiological connec-
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tions [23]. Both orexin and glutamate neurons are firing during

wakefulness and are silent during sleep. The transitions between

firing and silence are governed by the interplay between the

circadian input and homeostatic mechanisms as initially proposed

by Borbely [24]. For simplicity, in this model only a single type of

orexin neurotransmitter (instead of the two types actually known)

is considered, and it is assumed that the system can be either in the

wake state or in a generic non-Rapid Eye Movement sleep state,

without specifying ultradian structure of sleep. Also this model did

not consider noise effects, and diversity could not be included since

there are only two neurons present.

In the present paper we extend the above described two-neuron

model to a more realistic multi-unit model with heterogeneous

neurons. The aim of the study is to first of all investigate how the

presence of diversity in the neuronal population affects sleep-wake

transitions, since it is well-known that neurons are highly

heterogeneous by their nature. In particular, within the orexin

neurons population significant intrinsic diversity can be found:

different electrophysiological properties, sizes in the diameter

range 15–40 mm, and various shapes such as a spherical, fusiform,

or multipolar [19,25,22]. Secondly, also stochastic fluctuations,

representing current noise, are added to the model and the

response of the system is studied for different levels of noise. The

question naturally arises, to what extent noise and diversity are

essential ingredients for the functioning of assemblies of neurons

and other complex systems, and what is the optimal level of noise

and diversity required for the emergence of an optimal response to

external stimuli. It is shown below that the model under study

presents both diversity-induced resonance and stochastic reso-

nance, but the former appears more clear and robust, since it is

always associated with a regular almost-periodic spiking-silence

activity, rather than to the irregular random transitions charac-

terizing the stochastic resonance regime.

Materials and Methods

In this section the two-neuron model of sleep-wake cycles [18] is

described and some examples of dynamics in the presence of an

external periodic signal are illustrated. Further, this model is

extended to account for multiple neurons dynamics and hetero-

geneity, and a simple quantitative criterion to estimate the quality

of a sleep-wake cycle is introduced. This criterion will be used in

the Results section to compare sleep-wake cycles dynamics

obtained at different parameter sets.

The two-neuron model
The original model of the homeostatic regulation of sleep has a

minimal structure consisting of two representative interacting

neurons A and B, as depicted in Fig. 1. The neuron A simulates a

representative neuron from the orexinergic neuronal population,

while the neuron B represents a local glutamate interneuron (for

details see [18]). The state of wakefulness or sleep is determined by

the firing regime of neurons A and B, since these neurons are

known to fire during wakefulness and be almost silent during sleep

(see e.g. [22]).

Interaction between the neurons A and B takes place through

glutamate and orexin neurotransmitters, as detailed below. The

neuron A is acted upon by a stimulus in pace with the circadian

rhythm, here treated as a periodic external signal — a simplification

justified by its independence from the homeostatic process [26]. The

homeostatic process itself is described by an additional macroscopic

variable M(t) simulating availability of orexin.

Dynamics of the neurons A and B are based on a Hodgkin-

Huxley-type model [27]. The membrane potentials of the neurons

A (VA(t)) and B (VB(t)) are thus calculated as:

CA
dVA

dt
~IextzjA{IA,L{IA,Na{IA,K{IA,gl

:IextzjA{gL½VA{EL�{gNa½VA{ENa�aA,Na

{gK½VA{EK�aA,K{ggl½VA{Egl�aA,gl,

ð1Þ

CB
dVB

dt
~jB{IB,L{IB,Na{IB,K{IB,gl{Iox

:jB{gL½VB{EL�{gNa½VB{ENa�aB,Na

{gK½VB{EK�aB,K{ggl½VB{Egl�aB,gl{gox½VB{Eox�aox,

ð2Þ

where Cp (p~A,B) are the membrane capacitances per unit area

of the respective neurons, Ia (a~L,Na,K,gl,ox) are the ionic

currents, ga are the maximum conductances, and Ea are the

equilibrium potentials. The capacitance values are taken as

CA~CB~1 mF=cm2. The values of all the other model param-

eters are listed in Table 1.

In the following we give a detailed explanation of different parts

of the model.

N External forces. The current Iext acting on the neuron A and the

noise currents jp(t), p~A,B, can be considered as external forces,

in the sense that they do not depend on the system variables.

The external current Iext(t) is assumed to simulate a stimulus

associated with the circadian rhythm. For simplicity in the present

study a periodic pulse input is used to introduce circadian

activation of the system: t, Iext(t)~Iext(tzt). Such current can be

interpreted as an awakening effect of an alarm clock or some other

disturbance coming with a period of 24 hours. In the following we

employ a train of rectangular pulses with length t0 (t0vt) and

height I0, as depicted in Fig. 2-top,

Iext(t)~I0, ntƒtvntzt0,

~0, ntzt0ƒtv(nz1)t,
ð3Þ

where n is an integer. This simple form is chosen because it is

convenient for carrying out a systematic study of the neuron

response at different parameters sets. However, it should be kept in

mind that it represents a drastic simplification, and more realistic

shapes of circadian currents can also be used [18].

Author Summary

All biological systems are inherently noisy and heteroge-
neous. Disorder is mostly expected to disturb proper
functioning of a system, like it can be the case with noise
in a radio signal. However, it has been demonstrated by
numerous studies that noise can actually improve signal
encoding – the so-called stochastic resonance phenomenon.
Recently, it was discovered that quenched diversity (hetero-
geneity) can also enhance the response of a system to an
external perturbation (diversity-induced resonance). In this
study we investigate the role of noise and diversity in a
neuronal model of sleep-wake cycles based on the dynamics
of the wake-promoting orexin neurons that is crucial for
stability of wake and sleep states. We demonstrate that
suitable levels of diversity introduced in the orexin neurons
can significantly improve the quality of the sleep-wake cycle,
and may be essential for proper sleep-wake periodicity.
Noise, on the other hand, provides only a mild improvement.

Diversity and Noise in a Sleep-Wake Cycle Model
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The noise term jp(t) represents fluctuating currents that are

known to be always present in neurons. For simplicity, we assume

zero-average Gaussian white-noise processes:

Sjp(t)T~0; Sjp(t)jp’(s)T~2Dpdp,p’d(t{s), p,p’~A,B, ð4Þ

with Dp being the noise intensity.

N Internal dynamics. The leakage, sodium, and potassium currents

Ip,a (p~A,B; a~L,Na,K) in the equation of the neuron p depend

only on the variables of the same neuron p and, thus, describe the

neuronal internal dynamics.

The leakage currents Ip,L~gL(Vp{EL) represent a flow of ions

with a small conductance gL&0:1 mS=cm2 driving the membrane

potential toward the negative value EL&{60 mV.

The depolarizing Na-currents Ip,Na~gNa(Vp{ENa)ap,Na have a

maximum conductance gNa~3 mS=cm2 and a large positive

equilibrium potential ENa~50 mV. The activation variables

ap,Na(t), with 0ƒap,Naƒ1, represent the fraction of open ion-

Figure 1. Scheme of the two-neuron model of the sleep-wake cycle [18]. The A?B red arrow from the orexin-producing neuron A (red
circle) to the neuron B (blue circle) represents the glutamate projection as well as the orexin projection regulating the homeostatic process. The blue
arrow represents the B?A glutamate projection. The neuron A is also acted upon by a periodic signal representing the effect of the circadian clock.
doi:10.1371/journal.pcbi.1002650.g001

Table 1. Parameters of the two-neuron model [18].

Conductance

(mS=cm2)

Equilibrium
Potential
(mV)

Slope
Parameter
(mV�1)

Threshold
Potential (mV)

Time Scales
(ms)

L (Leakage current) gL~0:1 EL~{60

Na (Sodium current) gNa~3 ENa~50 SNa~0:25 WNa~{25 (tNa&0)

K (Potassium current) gK~4 EK~{90 SK~0:25 WK~{25 tK~2

gl (Glutamate current) ggl~0:15 Egl~50 Sgl~1 Wgl~{20 tgl~30

ox (Orexin current) gox~0:135 Eox~50 Sox~1 Wox~{20 tox~300

gox~0:2 tz
ox~7500

t{
ox~920

Periodic current t~24000

t0~500

doi:10.1371/journal.pcbi.1002650.t001

Diversity and Noise in a Sleep-Wake Cycle Model
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channels contributing to the Na current. Because of their fast

activation relative to the other time scales, the Na-current is

assumed to be activated instantaneously, according to its voltage-

dependency:

ap,Na~W(SNa(Vp{WNa)), ð5Þ

where W(x) is the sigmoid function

W(x)~
1

1zexp({x)
, ð6Þ

SNa is the steepness of the sigmoid function and WNa is the half-

activation potential.

Figure 2. Response of the two-neuron model. Main variables and inter-spike times dtp (p~A,B) versus time for a pulse height I0~0:895 mA
(left) and I0~0:893 mA (right), see text for details.
doi:10.1371/journal.pcbi.1002650.g002

Diversity and Noise in a Sleep-Wake Cycle Model
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The repolarizing K-currents Ip,K~gK(Vp{EK)ap,K are charac-

terized by a maximum conductance gK~4 mS=cm2, a large

negative equilibrium potential EK~{90 mV, and a longer

activation time than the depolarizing Na-current, namely

tK~2 ms. Consequently, the dynamics of the K-currents activa-

tion variables are modelled as

dap,K

dt
~{

1

tK
ap,K{W(SK(Vp{WK))
� �

, ð7Þ

where W(x) is defined in Eq. (6).

Couplings. The neurons A and B are mutually coupled by

chemical synapses through the glutamate-induced (Ip,gl) and the

orexin-induced (Iox) currents. Unlike the Na and K currents, Ip,gl

and Iox depend on the activity of both presynaptic and

postsynaptic neurons. The activation variables ap,gl and aox

depend on the appearance of a spike in the presynaptic neuron,

i.e. on the presynaptic voltage. Additionally these currents depend

on the voltage of the postsynaptic neuron, similarly to other ionic

currents. Both glutamate and orexin are excitatory neurotrans-

mitters, so they are assumed to open depolarizing ion channels,

such as Na-channels.

The activations of the glutamate-induced currents are modeled as:

dap,gl

dt
~{

1

tgl

ap,gl{W(Sgl(V�pp{Wgl))
� �

,

�pp~B if p~A; �pp~A if p~B:

ð8Þ

This equation is similar to Eq. (7) but has the important difference

that the equilibrium value W(Sgl(V�pp{Wgl)) for the activation

variable ap,gl depends on the membrane potential V�pp of the other

neuron �pp (�pp~B if p~A, �pp~A if p~B). The time constant

tgl~30 ms accounts for the delay coming from the activation of

glutamate receptors, and the following activation of ion channels.

The orexin-induced current represents the effect of orexin produced

by the neuron A and acting on the neuron B. It is modeled in a

form similar to the glutamate-induced current. This current

provides a simplified description of the effects of orexin on the

neuron B which appear after a complex series of processes,

involving production of orexin in the soma of the neurons, its

release in the synaptic cleft, and activation of G-protein coupled

metabotropic receptors. The dynamics of the activation variable

aox(t) depend not only on the membrane potential VA(t), but are

also related to the availability of orexin at time t, described by the

additional variable M(t) (0ƒMƒ1). The dynamics of the

variables aox(t) and M(t) are defined by the equations:

daox

dt
~{

1

tox

½aox{M|W(Sox(VA{Wox))�, ð9Þ

dM

dt
~{

1

tz
ox

(M{1){
1

t{
ox

M|W(Sox(VA{Wox)): ð10Þ

The term M|W(Sox(VA{Wox)) in the Eq. (9) reflects activation

of the synaptic current due to appearance of a spike in the

presynaptic neuron A. At the same time it determines the rate of

orexin availability reduction in Eq. (10) due to spiking of the

neuron A with a time constant t{
ox. The first term in Eq. (10)

determines recovery rate of the orexin availability with time

constant tz
ox.

The meaning of the product M(t)|W(Sox(VA{Wox)) is that

there is orexin-induced activity in neuron B if (1) there is enough

orexin available above a critical threshold [M(t)wMcritical], and

(2) the neuron A is in the firing state [W(t)&1].

The time constants t+ox accounting for the orexin dynamics are

much longer than the time constants associated with ionic current

terms. The time constant tox of the homeostatic regulation process

is even longer, being of the order of magnitude of the daily period t.

For numerical convenience, simulations are made over rescaled

daily and orexin time scales: the daily period was assumed to be

t~24 s, instead of t~24 h, achieved through a suitable rescaling,

which was applied to the orexin time scale tox and the production

and reduction times t+ox. The other time parameters are left

unchanged. Since such rescaled tox and t+ox are still much larger

than any other time scale of the microscopic dynamics, the

rescaling does not change the main results of the simulations. See

[18] for a detailed validation of such rescaling procedure.

All the parameter values for the currents are listed in Table 1. It

is assumed that the neurons A and B share the same parameter

values, unless specified otherwise. Such an assumption is justified,

because the major properties of these neurons required for the

model are the tonic firing (periodic single spike activity) and silent

states. Without any external input both neurons should be in a

silent state, while they are brought to firing activity in response to

depolarization. Therefore, change of parameters in a physiolog-

ically allowed range would primarily lead to the different amount

of depolarization needed to excite neurons, and would not affect

the major outcomes of the simulations.

The system defined above is essentially an excitable feedback

system, i.e. both the external input of sufficient strength and the

AB coupling are essential elements for maintaining firing activity

of the neurons. Orexin-related dynamics, with the associated long

time scales, are expected to direct the homeostatic sleep process,

which regulates the sleep-wake transitions. The healthy sleep-wake

cycles in this system are realized as follows:

N Initiating wakefulness. A sufficiently strong or long external signal

or a stimulus associated to the circadian rhythm, e.g. the idealized

rectangular pulse considered here, activates the system and

induces firing activity in the neuron A. Due to the excitatory

synaptic connection from A to B, the neuron B is also activated.

N Maintaining wakefulness. Once the pulse is finished and the

external current is zero, the system remains in the wake state

(i.e. both neurons A and B are firing) due to reciprocal

excitation between the neurons. The firing activity lasts for a

fraction q of the daily period t. Ideally one can assume

q~2=3, corresponding to 16 hours for a day of 24 hours, i.e.

16 seconds for the daily period t~24 s with the time scales of

the model considered here.

N Initiating sleep. The firing stops in both neurons due to decreased

availability of orexin according to the dynamics of M(t). This

is associated witch the transition from wake to sleep.

Two examples of the two-neuron model dynamics without noise

are illustrated in Fig. 2. The left part of the figure represents the

response obtained for a pulse length t0~500 ms and height

I0~0:895 mA=cm2. In each period orexin is depleted during the

neuronal activity and recovered while the neurons are silent. The

stimulus parameters used in this example have been intentionally

chosen close to the critical firing threshold, so that by slightly reducing

the pulse height or length, the periodic appearance of a continuous

time interval of spiking regime is lost. Such case is demonstrated in

the right hand side of the figure, where the current pulse height is

slightly lower, I0~0:893 mA, while all the other parameters are kept

Diversity and Noise in a Sleep-Wake Cycle Model
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the same. There the prolonged wake state is induced only every other

day, because the input is insufficient to induce sustained spiking at the

same levels of orexin availability. By reducing the pulse amplitude or

duration even further it is possible to observe different behaviors such

as triple or higher-order periodicities.

The heterogeneous model
As a step toward a more realistic model we generalize the two-

neuron model into a heterogeneous multi-neuron model. For

simplicity we first increase the number of orexin neurons only. To

do this we replace the single neuron A by a set of NA neurons

fAig (i~1, . . . ,NA), while still maintaining only one neuron B.

Also, in this paper we assume that the diversity is constant in time

in order to consider the simplest case possible.

In reality a certain level of heterogeneity is observed in all

neuronal parameters. However, given that our model neurons are

simple pacemaking neurons such diversification of different model

parameters (in a physiologically allowed range) would simply lead

to slightly different firing rates of the neurons. This, in turn, will

result in diversity in activations of synaptic currents, which can be

mimicked by simply diversifying their activation thresholds. Thus,

in the following we can limit ourselves to studying the effects of

diversity in activation thresholds of synaptic currents without loss

of generality. Furthermore, as a first step, the heterogeneity is only

introduced in the glutamate-induced currents to avoid having a

too complicated system, which would become difficult to

understand.

With regard to the coupling topology among the orexin

neurons, so far there is no detailed experimental data. Therefore,

for simplicity, we chose an all-to-all coupling via gap junctions, but

other variations can be tested in the future. The intensity of the

coupling has been chosen large enough to ensure that the neurons

Ai respond in pace to the external current. The equations of the

two-neuron model are modified accordingly.

N Dynamics of the neurons Ai. The membrane potentials V
(i)
A (t) of

the neurons Ai, are described by equations analogous to Eq. (1):

CA

dV
(i)
A

dt
~Iextzj

(i)
A {I

(i)
A,L{I

(i)
A,Na{I

(i)
A,K{I

(i)
A,gl{

X
j

Iij

~Iextzj
(i)
A {gL½V (i)

A {EL�{gNa½V (i)
A {ENa�a(i)

A,Na

{gK½V (i)
A {EK�a(i)

A,K{ggl½V (i)
A {Egl�a(i)

A,gl

{kint

X
j

½V (i)
A {V

(j)
A �:

ð11Þ

The current terms are similar to those in the two-neuron model,

apart from the additional coupling currents between two generic

neurons Ai and Aj , Iij~kint(V
(i)
A {V

(j)
A ), with i,j~1, . . . ,NA,

where kint is the gap junctions conductance that can be treated as

coupling strength. The currents’ activation variables a
(i)
A,Na and

a
(i)
A,K are modeled in accord with the equations of the two-neuron

model. Note that the specific values of the activation variables will

be different for different neurons since they depend on voltages of

each particular neuron Ai.

For simplicity the same external current Iext(t) given by Eq. (3)

is assumed to act on all neurons Ai (see Fig. 3). The noise terms

j(i)
A (t) as well as the noise jB(t) acting on the neuron B (see below)

are also defined similarly and assumed to be statistically

independent from each other. For convenience the properties of

all stochastic forces are written together (i,j~1, . . . ,NA):

Sj(i)
A (t)T~SjB(t)T~0,

Sj
(i)
A (t)jB(s)T~0,

Sj
(i)
A (t)j

(j)
A (s)T~2DAdi,jd(t{s),

SjB(t)jB(s)T~2DBd(t{s):

ð12Þ

N Connections from the neuron B to the neurons Ai. The neuron B has

glutamatergic synaptic inputs to each of the neurons Ai as

depicted in Fig. 3. Diversity is introduced in the activation

thresholds of the glutamate-induced currents according to the

following equation for the activation variables:

da
(i)
A,gl

dt
~{

1

tgl
a

(i)
A,gl{W(Sgl(VB{W

(i)
B,gl))

h i
: ð13Þ

The thresholds W
(i)
B,gl adopt different values for each neuron Ai

that are independently extracted from a probability distribution

defined later in the text.

N Connections from the neurons Ai to the neuron B. Each of the neurons

Ai has synaptic projections to the neuron B. This is translated in

the model by replacing the single glutamate- and orexin-induced

currents with their averages such that Eqs. (8) and (9) for the

activation variables become:

daB,gl

dt
~{

1

tgl
aB,gl{

1

NA

XNA

i~1

W(Sgl(V
(i)
A {W

(i)
A,gl))

" #
, ð14Þ

daB,ox

dt
~{

1

tox
aB,ox{

1

NA

XNA

i~1

M (i)W(Sox(V
(i)
A {Wox))

" #
: ð15Þ

Note that diversity is again introduced in the activation thresholds

of the glutamate-induced currents W
(i)
A,gl corresponding to hetero-

geneous (Ai?B) synapses located at the neuron B. Due to the

differences in the Ai neurons, the orexin availability function M (i)(t)
is different for different neurons, although still following Eq. (10).

The above described set of equations constitutes the multi-

neuron heterogeneous model of the homeostatic regulation of

sleep. Numerical results were obtained using a variation of the

Runge-Kutta 2nd-order method, which is suitable for equations

with stochastic terms, namely the Heun method [28]. Identical

initial conditions were assumed for all neurons, corresponding to a

silent state.

Quantifying the quality of the sleep-wake cycle
In this section a heuristic criterion is introduced in order to

evaluate and compare the quality of the system responses obtained

for different external signals or internal parameter values.

For this purpose, the period t is divided into a ‘‘day’’

wakefulness sub-period of length t1~qt and a ‘‘night’’ sleep

sub-period of length t2~(1{q)t, with t~t1zt2. The quantity q
is defined as a wake fraction. A typical sleep-wake cycle with an

eight-hour sleep sub-period has q~2=3. For the day correspond-

ing to the n-th period (nt,(nz1)t), the ‘‘day’’ is represented by the

sub-interval (nt,ntzt1)~(nt,(nzq)t), which covers the first

fraction q of the period, while the ‘‘night’’ extends in the

Diversity and Noise in a Sleep-Wake Cycle Model
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complementary fraction (1{q) of the period in the time interval

(ntzt2,(nz1)t)~((nzq)t,(nz1)t).

For each period n~0,1, . . ., we compute wakefulness time

intervals Dt(1)
n and Dt(2)

n spent by the system in the wake state

during the day, Dt(1)
n , and night, Dt(2)

n . The wake/sleep state is

identified with the spiking/silent regime. A simple quantitative

estimate of the quality of the sleep-wake cycle can, thus, be done

through the following linear function of the wakefulness time intervals,

Figure 3. Scheme of the heterogeneous model. Example of model system with NA~5 orexin-producing neurons fAig, i~1, . . . NA (red
spheres) and one neuron B (blue sphere). The neurons A interact with each other through an all-to-all coupling (red lines). Blue and red projections
have a meaning similar to those of Fig. 1: the neuron B is coupled to the neurons Ai through parallel glutamate projections, while each neuron Ai is
coupled to neuron B through a glutamate and an orexin projection. The neurons A are also acted upon by a stimulus representing the effect of the
circadian clock (gray arrows).
doi:10.1371/journal.pcbi.1002650.g003

Diversity and Noise in a Sleep-Wake Cycle Model

PLOS Computational Biology | www.ploscompbiol.org 7 August 2012 | Volume 8 | Issue 8 | e1002650



r(Dt(1),Dt(2))~
Dt(1)

t1
{

Dt(2)

t2
, ð16Þ

where Dt(a)~
P

n Dt(a)
n =Nsp, a~1,2, represent the average of the

wakefulness time intervals during the day (a~1) and during the night

(a~2), with Nsp being the total number of periods of the simulation.

The fractions Dt(a)=ta (a~1,2) can vary in the interval (0,1);
then the coefficient r in Eq. (16) is limited in the interval ({1,1).
The maximum value r~1 corresponds to an optimal cycle with

Dt(1)~t1 (wakefulness during the entire day) and Dt(2)~0 (sleep

during the entire night); any deviation from the optimal state

(r~1) comes either from values Dt(1)
vt1 (implying some sleep

during the day) or values Dt(2)
w0 (meaning at least some

Figure 4. Effect of noise in neurons Ai. (A). Ten periods of the raster plots of neuron B for different intensities DA of the noise acting on neurons
Ai . Vertical dashed lines mark the beginning of the pulses of the external current Iext , see text for details. (B). Coefficient r, from Eq. (16), versus current
noise intensity DA .
doi:10.1371/journal.pcbi.1002650.g004
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wakefulness in the night). See Text S1 for further details on the

definition of the time intervals Dt(1), Dt(2) and the coefficient r.

Results

In this section we study how the presence of disorder affects the

system response and discuss the main differences compared to the

two-neuron model. The term ‘‘disorder’’ is used here to refer to

either noise, i.e. disorder in time (stochastic terms in the external

current), or diversity, i.e a quenched heterogeneity in the neuronal

parameters. These two aspects are studied separately. For the sake

of simplicity, we examine the response of the system to a periodic

stimulus represented by a train of short rectangular pulses as

defined in Materials and Methods.

In each of the examples considered, the initial configuration in

the absence of noise and diversity is the same as the sub-threshold

state illustrated in Fig. 2-right with a double-periodic response. It is

obtained for a reduced height of the current pulse I0~0:893 mA,

while the other parameters are unchanged as given in Table 1. The

reason for starting from such an under-threshold non-optimal

configuration is that it is most sensitive and, thus, best illustrates the

effects of added noise or heterogeneity. While a response with a

double-periodicity may seem unrealistic, this starting configuration

is intended to be an example of non-optimal response rather than a

standard reference state. In fact, in realistic situations noise and

heterogeneity are always present so that such a state without noise

or diversity represents a hypothetical system that would be obtained

if one could switch off noise or replace heterogeneous synapses with

perfectly identical ones. The results presented below suggest that a

multi-periodic sleep-wake cycle can be turned into a regular (single-

periodic) one by adding a suitable degree of disorder.

Effect of noise
Here we investigate the effects of the noise currents in the

equations for the membrane potentials. For clarity only the cases

in which noise currents are present either in the neurons Ai or in

the neuron B are considered.

Noise in the neurons Ai. To study the effects of the noise

currents j
(i)
A (t), i~1, . . . ,NA acting only on the neurons Ai (as per

Eq. (11)) we set DB~0. Also, no diversity in the characteristic

parameters of neurons Ai is introduced. We have simulated a

system with NA~20 identical neurons and a single B neuron on a

time interval t[(0,100t). A raster plot for the activity of the neuron

Figure 5. Effect of noise in neurons A. Sample of four periods of some relevant variables and inter-spike times dtp (p~A,B) versus time of neuron
A1 and neuron B for an intensity of noise in neurons A DA~1 mA (left) and DA~5 mA (right). Compare Fig. 4 and see text for details.
doi:10.1371/journal.pcbi.1002650.g005
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B at different values of DA (indicated on the left) is shown in Fig. 4-

A. The plot shows that

N for small DA&0 the system’s configuration corresponds to the

assumed non-optimal double-periodic solution;

N the system’s response becomes slightly more regular and

periodic as DA is increased, despite the fact that the neuron

cannot initiate a firing event at the beginning of each period;

N as DA becomes even larger the neuron B keeps firing tonically

for a longer and longer time interval (even longer than a single

period) thus deteriorating the general quality of the response.

A sample of time dependence of the main variables in the

interval (0,4t) for DA~1 mV and DA~2 mV is illustrated in

Fig. 5. In general, the type of variability induced by noise currents

acting on the neurons Ai affects both the firing initiation and,

especially, its duration. However, it is difficult to establish an

actual improvement of the quality of such a response as a function

of the noise intensity DA, as even the coefficient r, shown in Fig. 4-

B, suggests only a mild stochastic resonant behavior characterized

by a wide plateau at intermediate values of DA.

Noise in the neuron B. Here we consider the complementary

case, in which DA~0 and a current noise only affects the neuron B.

Figure 6. Effect of noise in neuron B. (A). Sample of ten periods of the raster plots of neuron B for different values of the intensity DB of the noise
acting on neuron B. Vertical dashed lines mark the beginning of the pulses of the external current Iext, see text for details. (B). Quality of the sleep-
wake cycle from the coefficient r, Eq. (16), versus current noise intensity DB .
doi:10.1371/journal.pcbi.1002650.g006
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A sample of raster plots of the membrane potential of the neuron B

is depicted in Fig. 6-A in the time window t[(0,10t) for the values of

the noise intensity DB indicated on the vertical axis.

The raster plot in Fig. 6-A indicates that:

N the smallest values of noise intensity DB&0 correspond to the

double-periodic configuration discussed above;

N the response becomes periodic, and the length of the firing

periods more regular for higher values of DB;

N at larger values of DB the state of sleep is frequently

interrupted by almost isolated spikes at random times.

A representative example of time dependence of selected

variables of the neurons A1 and B are shown in Fig. 7. Note the

different type of behavior induced by a high levels of noise acting

on the neuron B, compared to the case in which noise acts on the

neurons Ai. In the first case irregular switching between the firing

and silent states is observed more often, especially considering the

transient firings in the otherwise silent sleep state. Furthermore,

this random firing appears only in the neuron B, but is insufficient

to also induce spiking in the A1 neuron. This activity may

represents intermittent awakenings, which are likely due to the

ability of noise to favor the ignition of spiking events. Such random

spikes are not observed when noise acts on the neurons Ai only,

even at much larger noise intensities. This may be related to the

coupling between the neurons Ai, which constrains them in the

same (spiking or silent) state. In order to excite all neurons Ai

together one would need an input signal affecting all of them in the

same way, which is highly improbable in a realistic system.

The dependence of the coefficient r on DB is shown in Fig. 6-B.

Again, only a mild stochastic resonance behavior is suggested by

the data when varying the noise intensity. It should be noted that

in this particular configuration with noise acting only on the

neuron B, the response of the neuron B does not depend on the

number NA of homogeneous neurons fAig, due to the equiva-

lence to the configuration of the two-neuron model, as we have

checked numerically. Thus, the plots of neuron A1 in Fig. 7 are

representative of all other neurons Ai. In fact, the external current

Iext(t) as well as the coupling currents are the same for each

neuron Ai, which produces the same response. According to the

equations of the heterogeneous model, the effective current acting

on the neuron B is the arithmetic average of the currents coming

Figure 7. Effect of noise in neuron B. Sample of four periods for some relevant variables and inter-spike times dtp (p~A,B) versus time for
neuron A1 and neuron B for an intensity of the noise acting on neuron B DB~1 mA (left) and DB~2 mA (right). Compare Fig. 6 and see text for
details.
doi:10.1371/journal.pcbi.1002650.g007
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from the various neurons fAig and, therefore, coincides with that

of any single neuron Ai. We use here a homogeneous multi-

neuron generalized model only for a better comparison and

consistency with the rest of this study.

Effects of heterogeneity
The effects introduced by a heterogeneity in the neurons are

dramatic compared to the effects of noise. The corresponding

improvement of the system response for suitable intermediate

amounts of diversity can be detected very clearly. This is the main

result of this paper and it is illustrated in this section. Noiseless

neurons are assumed for easier estimation of the heterogeneity

effects (DA~DB~0).

As in the study of noise described above, we carry out the study

of diversity starting from the same configuration with a non-

optimal double-periodic response to the external periodic stimulus,

corresponding to a zero diversity (homogeneous system). Hetero-

geneity is then introduced in the glutamate-induced currents,

Figure 8. Effect of diversity in the B?Ai synapses. (A). Sample of ten periods of the raster plots of neuron B for different heterogeneity levels
dWB,gl in the B?Ai glutamate synapse thresholds, see text for details. (B). Quality of the sleep-wake cycle from the coefficient r, Eq. (16), for various
threshold diversities dWB,gl .
doi:10.1371/journal.pcbi.1002650.g008
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either in the thresholds W
(i)
A,gl regulating the response of the Ai?B

synapses at the neuron B or in the thresholds W
(i)
B,gl of the B?Ai

synapses at the neurons A. This is done by randomly extracting

values W from a probability density fp(W ) and assigning them to

the threshold parameters W
(i)
p,gl (p~A,B). The probability density

used here has a bell-shape fp(W )~P((W{W p,gl)=dWp,gl), where

P(x)!1=cosh(x)2, the quantity W p,gl~SWT represents the

average value, while dWp,gl measures the dispersion of the

distribution fp(W ) around the average value and is related to

the standard deviation sp by dWp,gl~psp=
ffiffiffiffiffi
12
p

. For further

details see Text S1. The width dWp,gl is assumed in the following

as the measure of neuronal diversity. In order to carry out

meaningful comparisons with the homogeneous (two-neuron)

model, the average values are set equal to the corresponding

parameters of the homogeneous two-neuron model,

W p,gl:
ð

dW W fp(W )~Wp,gl , p~A,B: ð17Þ

The other parameters are unchanged compared to the two-neuron

model, see Table 1.

Diversity in the B?Ai synapses (neurons Ai). Diversifying

the potential thresholds W
(i)
B,gl implies heterogeneous glutamate

synapses located at the neurons Ai, see Eq. (13) and Fig. 3. That is,

each neuron Ai responds in a different way to the stimulation from

the neuron B. Notice that this is a truly heterogeneous system which

cannot be reduced to an effective two-neuron model—as in the case

of heterogeneous synapses at neuron B considered in the next

section. We studied a system with NA~20 neurons Ai with

diversified threshold parameters W
(i)
B,gl, i~1, . . . ,NA. The system

dynamics were examined for different sets of thresholds fW (i)
B,glg

extracted from distributions fB(W ) with different widths dWB,gl but

always the same average value W B,gl~WB,gl.

The resulting raster plots of the activity of the neuron B are

shown in Fig. 8-A, and a sample of time dependencies for the

neurons A1 and B is shown in Fig. 9. The existence of an optimal

degree of diversity, corresponding to a value dWB,gl approximately

Figure 9. Effect of diversity in the B?Ai synapses. Sample of four periods of some relevant variables and inter-spike times dtp (p~A,B) versus
time for neuron A1 and neuron B for different levels of the threshold diversity dWB,gl~1 mV (left) and dWB,gl~5 mV (right). Compare Fig. 8 and see
text for details.
doi:10.1371/journal.pcbi.1002650.g009
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between 1 and 1:5mV, can be clearly seen both from Fig. 8-A and

from the dependence of the coefficient r on the diversity degree

dWB,gl, in Fig. 8-B.

The underlying mechanism leading the system from the double-

to the single-periodic response as diversity is increased can be

interpreted following the prototype mechanical model of diversity-

induced resonance introduced in Ref. [3]. In this model a set of

interacting oscillators moving in a bistable potential is subjected to

an external periodic force, which pushes the system toward the left

and the right barrier alternately. If the oscillators are identical, i.e.

they have the same parameter values corresponding to an under-

threshold regime, then the system of oscillators cannot perform

jumps on the other site of the barrier under the action of the

applied periodic force. However, when the parameters are

diversified (keeping constant the corresponding average value)

some oscillators respond more promptly to the force and jump to

the other side of the barrier, gradually pulling the rest of the

system. In the present case, each neuron Ai corresponds to a

nonlinear oscillator of the example, while the parameter which is

diversified is the activation thresholds W
(i)
B,gl of the glutamate-

induced currents.

To show that this is the actual mechanism in action, Fig. 10 (left)

illustrates the response of the heterogeneous system by depicting

the time dependence of the glutamate activation variables a
(i)
A,gl(t)

of the neurons Ai, i~1,5,10,15,20, with different values of the

thresholds W
(i)
B,gl, at the beginning of a new period in the presence

of the periodic current pulse. In Fig. 10 also the raster plots for all

neurons in the same time interval are shown. One can notice that

the activation variables a
(i)
A,gl(t) behave differently from each other.

Those associated to the lowest values of the activation threshold

(indicated by small i values) respond stronger to the current pulse

than those with the highest values of the threshold (largest values of

i). The system is observed to reach the spiking regime faster than

in the homogeneous case, which is shown in the right part of

Fig. 10 through the comparison between the glutamate activation

variable of the homogeneous system, aA,gl(t), and the average

activation variable SaA,gl(t)T~N{1
A

P
i a

(i)
A,gl(t) of the heteroge-

neous system. Eventually, aA,gl(t)?0 and the homogeneous

system goes back to the silent state, while the average activation

variables of the heterogeneous system (and their average

Sa
(i)
A,gl(t)T) continue to oscillate around positive values, signaling

the stability of the reached firing state.

Diversity in the Ai?B synapses (neuron B). In order to

study the effects of added heterogeneity in the glutamate synapses

located at the neuron B, one has to diversify the potential

threshold parameters W
(i)
A,gl, see Eq. (14). For this particular case, it

is possible to simplify the model into a two-neuron model with a

single effective AB coupling. This is possible because heterogeneity

only enters Eq. (14), while other model equations reduce to the

same equations in the case of identical neurons Ai, so that all

neurons Ai behave in the same way. Thus, the effective glutamate-

induced current to the neuron B is

Ieff (V )~
1

NA

XNA

i~1

W(Sgl(VA{W
(i)
A,gl))

h i

&
ð

dW f (W )W(Sgl(VA{W )),

ð18Þ

where VA is the common value of the membrane potentials of the

neurons Ai. Here f (W ) is the probability density of the

Figure 10. Effect of diversity in the B?Ai synapses. Comparison between the responses of the heterogeneous system (left column) and
homogeneous system (right column) in the first part of the time period t=t[(1,2) during the action of the 500 ms long current pulse starting at
t1=t~1 and ending at t2=t&1:021. (A) and (B) (top panels). External current pulse. (C) and (D) (central panels). Behavior of some representative

glutamate activation variables of the heterogeneous system, a
(i)
A,gl(t) for i~1,5,10,15,20 (panel (C)), and the (common) time dependence aA,gl(t) of

the homogeneous system activation variables (panel (D), black continuous curve); in the latter figure also the average value

SaA,gl(t)T~N{1
A

P
i a

(i)
A,gl(t) of the heterogeneous system (dashed grey curve) is shown for comparison. (E) and (F) (bottom panels). Raster plots

of all the neurons of the system. See text for further details.
doi:10.1371/journal.pcbi.1002650.g010
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corresponding thresholds W~W
(i)
A,gl, which is assumed to be the

same bell-shaped probability density f (W )~P((W{W )=dW ) as

discussed above, with W~WA,gl and dW~dWA,gl.

We now consider two limiting cases of the effective current

given by Eq. (18). In the limit dW%S{1
gl , when diversity is very

small on the scale S{1
gl , it can be assumed that the following

approximation holds, f (W )~P((W{W )=dW )&d(W{W ) and

the integral (18) can be reduced to the homogeneous result,

Ieff (V )&
ð

dWd(W{W )W(Sgl(VA{W ))~W(Sgl(VA{W )): ð19Þ

In the complementary limit of high diversity level, dW&S{1
gl , the

smooth function W(Sgl(VA{W )) can be approximated with

Heaviside step functions H(W{VA), and the effective current

becomes

Ieff (V )&
ð

dW f (W )H(W{VA)

~

ð
dW P((W{W )=dW )H(W{VA)

~W((VA{W )=dW ):

ð20Þ

Figure 11. Effect of diversity in the Ai?B synapses. (A). Sample of ten periods of raster plots of neuron B for different heterogeneity levels
dWA,gl in the Ai?B glutamate synapse thresholds, see text for details. (B). Coefficient r, Eq. (16), for various degrees of diversity dWA,gl.
doi:10.1371/journal.pcbi.1002650.g011
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This follows from the form of the chosen distribution,

P(x)!1=cosh(x)2~{4dW(x)=dx. Thus, in both these limiting

cases the effective current can be written in the form

Ieff (V )&W(l(VA{W )), with l~Sgl for dW%S{1
gl and

l~dW{1 for dW&S{1
gl . It is interesting that, as we have

checked by numerical integration of Eq. (18), the same analytical

form also holds for intermediate values of dW and S{1
gl , so to a

very good approximation the effective current can be written as

Ieff (V )&W(l(VA{W )), where the parameter l depends on the

ratio dW=S{1
gl and varies monotonously between Sgl and dW{1,

as dW=S{1
gl varies between 0 and ?.

The system’s response at different levels of heterogeneity,

dWA,gl, is presented in Fig. 11-A through the raster plots for the

neuron B. A sample of time dependence is shown in Fig. 12, while

Fig. 11-B shows the dependence of the coefficient r on the diversity

level. In Fig. 11, it can be seen that for small values of the diversity

dWA,gl the response of the neuron B presents the double

periodicity of the reference configuration. Single periodicity is

recovered for higher levels of diversity. At even higher values of

dWA,gl, the coefficient r begins to decrease. The points of the

curve corresponding to the highest values of r suggest an optimal

degree of diversity dWA,gl&1 mV.

The main difference compared to the case in which noise

intensity is varied, is that the response of the system remains more

regular also at the highest levels of diversity considered, i.e.

without random spikes appearing during the silent state and with a

typical cycle well shared between a day and a night sub-period.

Discussion

In the present work we have introduced a heterogeneous multi-

neuron version of the previously developed physiologically motivated

model of the homeostatic regulation of sleep. The multi-neuron

model is composed of a population of conductance-based orexin-

producing neurons and a single representative glutamatergic neuron.

In this model the glutamatergic and orexinergic neurons are

undergoing transitions between firing and silence depending on the

external circadian input and internal homeostatic mechanisms. These

transitions correspond to the transitions between wake (firing) and

sleep (silence), with the homeostatic mechanism being dependent on

the availability of orexin.

Figure 12. Effect of diversity in the Ai?B synapses. Sample of four periods of the time dependence of some relevant system variables and
inter-spike times dtp (p~A,B) of neuron A1 and neuron B for a threshold diversity dWA,gl~1 mV (left) and WA,gl~5 mV (right). Compare Fig. 11 and
see text for details.
doi:10.1371/journal.pcbi.1002650.g012
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The specific aim of this study was to explore the effects of noise

and diversity in the regulation of sleep-wake cycles in such a

model. It is clear that diversity and noise are integral parts of all

biological systems, including the orexinergic neuronal population

in the lateral hypothalamus. However, the role of disorder, and

especially diversity, is rarely considered in the physiologically

based mathematical models of sleep-related systems

[29,30,31,32,33,34,35]. To our knowledge, diversity had so far

been included only in one such model, i.e. the model of interacting

circadian oscillators [5], and here we present another example of

the constructive role of diversity in regulation of sleep.

We have demonstrated the existence of a diversity-induced

resonance, leading to a clear and strong improvement of the

quality of the sleep-wake cycles, at a physiologically justified

intermediate level of diversity of the orexin-producing neurons.

However, only a mild improvement was found with varying noise

intensity (stochastic resonance phenomena).

We have considered the simplest system with only 20

heterogeneous orexin neurons and one local glutamate neuron.

Also we have used a very simple all-to-all network topology for the

connections among orexinergic neurons. However, it can be

expected that constructive effects of diversity will be found also in

other model configurations. In the future, more realistic modifi-

cations of the model with a larger population of glutamatergic

neurons and more sophisticated inter-populations connections

should be considered. Furthermore, in the future studies interplay

between noise and diversity should likewise be investigated, since

in nature both types of disorder are normally present.

The validity of the result obtained within this model may be

more general, since diversity-induced resonance is known to take

place for suitable values of the parameters in general networks of

interacting (non-linear) oscillators. A question then naturally arises:

whether the phenomena encountered here could also characterize

other systems where there is a coupling between two very different

time scales or, in other words, if homeostatically regulated

biological systems may take advantage from a suitable level of

heterogeneity of their components.

Supporting Information

Text S1 Some details on the numerical simulation. The

supporting Information file Text S1 contains some more detailed

information about: A: the definition of the wakefulness time

intervals during the day and the night, Dt(1) and Dt(2), respectively,

used for evaluating the quality of the sleep-wake cycle; B: the

extraction procedure of the diversified threshold potentials Wi and

the form of the corresponding probability distribution f (W ).
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