
The Spatial Structure of Stimuli Shapes the Timescale of
Correlations in Population Spiking Activity
Ashok Litwin-Kumar1,2*, Maurice J. Chacron3,4, Brent Doiron5,2*

1 Program for Neural Computation, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 2 Center for the Neural

Basis of Cognition, Pittsburgh, Pennsylvania, United States of America, 3 Department of Physiology, McGill University, Montréal, Québec, Canada, 4 Center for Applied
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Abstract

Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by
stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but
the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise
spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal
electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short (*10 ms) timescales
while simultaneously reducing correlations at long (*100 ms) timescales. A spiking network model of the first two stages of
electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both
saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are
experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of
descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction
of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously
suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering
of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication
inputs.
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Introduction

There is a clear link between the combined activity of neurons

and specific neural computations [1,2]. A common observation

from population recordings is that the correlation between the

activities of pairs of neurons can be modulated – for instance, by

the spatiotemporal structure of stimuli [3,4], the perceptual state of

the subject [5,6], or the spatial focus of attention [7–9].

Theoretical work has focused on the cellular and circuit

mechanisms that both determine and modulate correlation [10–

20]. However, the general applicability of these theories is unclear

[21], and how neural populations modulate the correlation

between their spiking activity remains an open question.

One complication is that spike train correlations reflect

common activity that may be measured at different timescales,

ranging from a few (synchrony) to hundreds of milliseconds (co-

variation of firing rates). For example, pairs of neurons in visual

cortex [22,23], olfactory bulb [24], and attention responsive

cortical areas [7–9] show increases in spike time synchrony which

accompany simultaneous decreases of rate co-variation. To

indicate the complex temporal aspects of this modulation, we

label a differential change in correlation over distinct timescales

correlation shaping [19,24]. In this study, we use a combination of in

vivo recordings and computational modeling of electrosensory

neurons to study how the spatial structure of a stimulus shapes the

correlation of primary sensory neurons.

Weakly electric fish detect perturbations of their self-generated

electric field through an array of electroreceptor neurons scattered

on their skin surface which synapse onto pyramidal neurons within

the electrosensory lateral line lobe (ELL) [25]. Relevant stimuli can

be broadly categorized as either local, stimulating only a small

fraction of the skin, or global, projecting to a broad area of the

animal’s body. Local inputs are a reasonable approximation to the

spatial scale of prey inputs, while global inputs mimic communica-

tion calls from conspecifics [26]. We recorded simultaneously from

pairs of ELL pyramidal neurons and found that global inputs

increased spike train correlations at short timescales while simulta-

neously decreasing correlations at long timescales, when compared

to the spike train correlation induced by local inputs. While there is a

general understanding about how local and global stimuli control

single neuron responses [26–30], the cellular and circuit mechanisms

that allow the spatial extent of stimuli to shape correlated population

activity in the electrosensory system are a new area of study.

Based on the well-characterized anatomy and physiology of

electrosensory circuits [25], we developed a spiking network model
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of ELL pyramidal neurons that captured the experimentally

observed correlation shaping. Diffuse inhibitory feedback was

activated preferentially by global stimuli and provided a decorr-

elating signal that reduced correlations at long timescales. Further,

global stimuli recruited feedforward circuitry that increased

correlations at short timescales which were immune to feedback

decorrelation. For sufficiently weak stimuli, we use a linear

response framework [28,31] to show how correlation shaping is

consistent with a shaping of the single neuron stimulus-response

gain function. We tested our model predictions experimentally by

selectively blocking feedback input, causing spike train correlations

at long timescales to increase, rather than decrease. This directly

demonstrates how inhibition can be a source of decorrelation to

pyramidal neurons, rather than a source of synchrony as described

in many previous studies [10,11,32–35]. Finally, we used our

understanding of the population’s response properties to study

how feedback selectively attenuates responses to distractor stimuli,

improving the system’s ability to represent relevant signals. In

total, our results reveal novel principles by which feedforward and

feedback neural circuits are differentially activated by stimuli to

shape population spike train correlations.

Methods

Ethics Statement
Animals were obtained from local importers and were

acclimated to the laboratory as per published guidelines [36]. All

experimental procedures were approved by the McGill University

Animal Care Committee and have been described in detail

elsewhere [37].

Electrophysiology
Briefly, dual extracellular recordings from the lateral and

centrolateral ELL segments of Apteronotus leptorhynchus were made

using metal-filled micropipettes [37]. Pyramidal cells within these

segments can be distinguished from cells within the centromedial

segment based on recording depth, the medio-lateral and rostro-

caudal positions of the recording electrode with respect to surface

landmarks such as the ‘‘T0’’ vein and its afferent veins [38], and

their responses to sensory input as previously described [39].

Superficial pyramidal cells were identified based on their low

(v25 Hz) whereas deep cells were identified based on their high

(w25 Hz) mean firing rates in the absence of EOD modulations

[26,30,40]. All data was sampled at 10 kHz.

Random amplitude modulations of the animal’s electric organ

discharge (EOD) consisting of white noise low-pass filtered with a

cutoff of 120 Hz (8th order Butterworth filter) were presented

either globally via two electrodes positioned on either side of the

animal or through a dipole located close to the skin surface [37].

The stimulus lasted L~120 s and consisted of 6 concatenated

segments of the same frozen noise epoch that lasted 20 s [37].

Pharmacological blockade of the indirect feedback from EGp

was performed by either applying the non-NMDA glutamate

receptor antagonist CNQX within the ELL molecular layer [30]

or by applying a 2% lidocaine solution to the praeminential-

cerebellar tract (PECB) as done previously [41]. Since both

manipulations gave rise to similar effects, the data was pooled.

Data Analysis
Spike train cross-covariance functions. The recorded

signals from a pair of neurons in response to the stimulus s(t)
were thresholded in order to obtain the spike times

fti1,ti2, . . . ,tiNi
g, where Ni is the number of spikes from neuron

i (i~1,2). The spike train from neuron i is then given by:

yi(t)~
X

k

dD(t{tik): ð1Þ

Here dD(t) is the discrete approximation of the Dirac delta

function with dD(t)~1=D if t[({D=2,D=2� and is zero otherwise;

throughout D~1 ms so that at most one spike was contained in

any time window. We note that this is equivalent to discretizing

time in bins of width 1 ms and setting the content of bin k to
1

D
when there is a spike time til such that kDƒtilƒ(kz1)D and to 0
otherwise, as was done previously [30].

The firing rate for neuron i is then estimated as:

ri~
1

L

ðL

0

yi(s)ds

~Ni=L,

ð2Þ

where L is the duration of a recording (typically 120 s). The spike

train covariance at time lag t between neurons i and j is defined as:

qij(t)~
1

L

ðL

0

yi(s)yj(s{t)ds{rirj

~
1

M

XM
k~1

yi(kD)yj(kD{t){rirj ,

ð3Þ

where the number of time bins in the discrete spike train is

M~L=D. We refer to qii(t) as the auto-covariance, while for i=j

qij(t) is called the cross-covariance.

Spike count correlations. We also considered the correla-

tions between the spike counts of pairs of neurons. The spike count

from neuron i is simply defined as the number of spikes occurring

in the time window (t,tzT). It is a random integer given by:

nT
i (t)~

ðtzT

t

yi(s)ds: ð4Þ

Author Summary

The size of a stimulus that is sensed by the nervous system
can control the activity of neurons in sensory areas. How
neural wiring supports this dependence remains an open
question. We explore this general phenomenon using
weakly electric fish, which possess a sensory system that
detects electric field modulations produced by the
surrounding environment. In particular, these animals’
nervous systems are tuned to detect the difference
between spatially compact prey inputs and spatially broad
communication calls from other fish. In experiment, we
discover that these two classes of stimuli differentially
control the synchrony between pairs of electrosensory
neurons. Using a computational model, we predict that
this modulation is related to feedforward and feedback
neural pathways in the electrosensory system, and we
verify this prediction with experiments. This architecture
prevents low frequency distractor stimuli, such as the
animal’s own tail motion, from driving neural population
responses. With our model, we demonstrate how a
common neural architecture enables a population-level
code for behaviorally relevant stimuli.

Spatial Inputs Shape Temporal Correlations
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For a given window size T , we computed a sequence of spike

counts from neuron i as Bi~fnT
i (0),nT

i (T=2),nT
i (T), . . . ,,

nT
i (L{3T=2),nT

i (L{T)g, using overlapping windows to increase

the number of estimates. We have that SBiT~riT , where SBiT
denotes the mean value of the sequence Bi. We can also obtain

second order statistics from Bi including the spike count variance

and co-variance, which are defined by:

Var(nT
i )~SB2

i T{SBiT2, ð5Þ

Cov(nT
i ,nT

j )~SBiBjT{SBiTSBjT: ð6Þ

From these one can define the correlation coefficient between

the spike counts nT
i and nT

j over a time window T :

rij(T)~
Cov(nT

i ,nT
j )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(nT
i )Var(nT

j )
q : ð7Þ

We use r(T) to denote the average value of rij(T) across all pairs

i=j and similarly for other pairwise statistics. For small T , the

correlation coefficient r(T) measures the degree of synchrony

between the two trains, while, for large T , r(T) measures the co-

variation in the firing rates of a pair of neurons [12,13].

The variance and covariance functions of the spike count and

spike train are related by:

Var(nT
i )~

ðT

{T

qii(t)(T{DtD)dt,

Cov(nT
i ,nT

j )~

ðT

{T

qij(t)(T{DtD)dt:

ð8Þ

These equations are the well known relations between second

order spike count and spike train statistics [42], with T{DtD
resulting from the convolution of the windowing function that

converts spike trains to spike counts.

Within-trial vs. across-trial covariance functions and

correlation coefficients. We note that both the spike train

covariance function qij(t) and correlation coefficient rij(T) are

within-trial measures of co-variability, since they incorporate both

signal induced as well as trial-to-trial variable (i.e noise) aspects of

common input fluctuations. Since we presented the same (i.e

frozen) realization of the signal six times in succession, we were

able to compute the spike train covariance and spike count

correlation that were due purely to the common signal by

computing joint statistics from neuron pairs recorded in different

trials (i.e. across-trial). Specifically, denote the spike train of neuron

i in response to the kth realization of the stimulus (k~1, . . . ,6) by

yk
i (t). The across-trial spike train covariance between neurons i

and j is then given by:

qs
ij(t)~

1

15

X6

k~1

X6

lwk

1

L

ðL

0

yk
i (s)yl

j(szt)dt{rirj : ð9Þ

In Eq. (9), L~20 s. Eq. (9) measures the joint spike statistics from

neuron pairs when the spike trains were not recorded simulta-

neously but were stimulated with the same signal. This is because

the summation runs over all possibly non-repeating combinations

(6_((6{1)=2~15) of the responses of each neuron to the six

presentations of the frozen stimulus.

Similarly, one can define the spike count sequence for neuron i

during stimulus realization k as Bk
i . The across-trial spike count

correlation coefficient between neurons i and j is then given by:

rs
ij(T)~

1

15

X6

k~1

X6

lwk

Cov(nT
k,i,n

T
l,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(nT
i )Var(nT

j )
q , ð10Þ

where Cov(nT
k,i,n

T
l,j)~SBk,iBl,jT{SBk,iTSBl,jT with Bk,i the

sequence of spike counts from the kth realization of the stimulus.

Linear Response Approximation
We use linear response theory in order to derive an expression

for the correlation coefficient rs
ij(T) in terms of the stimulus gain,

as done in past studies [12–14,19,28,31,43,44]. We consider the

Fourier transform of the spike train covariance function as the

length of the trial L becomes large and assuming the processes are

stationary:

Qij(f )~ lim
L??

ð?
{?

qij(t)e{2pif tdt: ð11Þ

Throughout, we will refer to Qij(f ) with i=j as the cross spectrum

and Qii(f ) as the power spectrum. To relate spike count statistics

to spike train statistics, we use the Wiener-Khinchin theorem to

rewrite Eq. (8) (assuming L is large):

Cov(nT
i ,nT

j )~

ðT

{T

ð?
{?

Qij(f )e2pif t(T{DtD)dfdt ð12Þ

~

ð?
{?

Qij(f )kT (f )df , ð13Þ

with kT (f ):
1

p2f 2
sin2 pfTð Þ. Note that kT (f )=T approaches a d-

function centered at 0 as T?? and a constant function on

({?,?) as T?0. Therefore, for large T , only the zero-

frequency components of the spectra contribute to the integral,

while for small T , all frequencies contribute. A similar relation

holds between Var(nT
i ) and Qii(f ).

For a fixed stimulus s(t), we assume that [13,28,31,43]:

SYiDs(f )T&Gi(f )S(f ), ð14Þ

where YiDs(f ) is the Fourier transform of the mean-subtracted spike

train yi(t){ri given a particular realization of s(t), S(f ) is the

Fourier transform of the stimulus, and S:T denotes an expectation

over repeated presentations of the stimulus. Gi(f ) is the single

neuron stimulus-response gain of the neuron (which we refer to as

the stimulus gain for brevity). It relates the amplitude of the response

to that of a signal at a particular frequency. For both experimental

data and numerical simulations, we compute Gi(f ) as:

Gi(f )~
Qis(f )

Qss(f )
, ð15Þ

where Qis is the cross spectrum between yi(t) and s(t) and Qss is

the power spectrum of the signal.

Spatial Inputs Shape Temporal Correlations
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Assuming that the spike trains are conditionally independent

given the stimulus, we can write Qij(f )~SSYiDs(f )YjDs(f )TTs&
SSYiDs(f )TSYjDs(f )TTs, where S:Ts denotes an expectation over the

random stimulus. Substituting Eq. (15) into Eq. (14),

Qij(f )&Gi(f )Gj(f )Qss(f ) (i=j): ð16Þ

Finally, combining Eqs. (13) and (16) yields the following

approximation:

Cov(nT
i ,nT

j )&
ð?

{?
Gi(f )Gj(f )Qss(f )kT (f )df : ð17Þ

Eq. (17) relates the joint spike count variability to the stimulus gain

Gi, and has been derived in several past studies [13,19]. We can

then approximate the predicted across-trial correlation as:

rs
ij(T)&

ð?
{?

Gi(f )Gj(f )Qss(f )kT (f )df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(nT

i )Var(nT
j )

q : ð18Þ

Modeling
ELL anatomy. The neuroanatomy and physiology of the

electrosensory system have been extensively characterized [25].

Pyramidal neurons in the ELL are subdivided according to several

criteria. Roughly half of all pyramidal neurons have a basilar

dendritic tree (BP neurons) and receive direct electrosensory

afferent input. The other half lack a basal dendrite (nBP neurons)

and receive afferent input only indirectly via interneurons [45].

Both BP and nBP neurons have an apical dendritic arbor;

however, the extent of the arbor is variable across neurons.

Pyramidal neurons with small apical dendritic trees are called deep

neurons and do not receive much feedback input [30,45,46]. In

contrast, pyramidal neurons with large apical dendritic trees are

called superficial neurons and receive large amounts of feedback

[30,45,46]. It has been recently shown [45] that the spatial

projection of electroreceptor input to individual pyramidal

neurons establishes a putative column, composed of BP and nBP

deep and superficial pyramidal neurons.

The afferent and efferent projections between the ELL and

higher brain structures further distinguish ELL pyramidal

neurons. Indeed, only deep pyramidal neurons project to the

praeminentialis dorsalis (Pd) [46], a second order isthmic structure

that directly projects to the posterior eminentia granularis (EGp),

which in turn projects back to the ELL along the dorsal molecular

layer via parallel fibers [25] that make synaptic contact onto the

large apical dendritic trees of superficial pyramidal neurons. Thus,

the deep ELL?EGp?superficial ELL feedback pathway can be

characterized as open-loop [46]. Electrophysiological studies

suggests that EGp granule cells show temporal locking to

electrosensory input [46,47] and that the indirect feedback input

onto ELL pyramidal neurons is in the form of a negative image of

the stimulus that is activated by spatially diffuse but not by spatial

localized stimuli [30,46].

ELL model description. Our model of the deep pyramidal

neuron to superficial ELL feedback via the nP and EGp contained

three distinct neural populations: a deep (Dp) ELL population that

projected to a population of granule cells in the EGp, which in

turn provided feedback to a population of ELL superficial (Sf)

neurons. All cells were modeled with leaky integrate-and-fire (LIF)

dynamics [48]. Numerical values of model parameters can be

found in Table 1, and a detailed model summary [49] can be

found in Table S1. The membrane potential V (t) obeyed linear

subthreshold dynamics supplemented with a spike-reset rule so

that V (t)~Vth implied that V (tz)~VrevVth, and t was marked

as a spike time. The deep population consisted of NDp~800

neurons, and the membrane potential of the ith deep neuron

obeyed:

dVi,Dp

dt
~

1

tDp

(mDp{Vi,Dp)zs
ffiffiffi
c
p

js(t)z
ffiffiffiffiffiffiffiffiffiffi
1{c
p

ji,n,Dp(t)
� �

: ð19Þ

The first two terms of the right hand side of Eq. (19) model a static

rest state and an intrinsic leak process, respectively. The process

js(t) models Gaussian stimulus locked electroceptor activity, while

ji,n,x(t) models stimulus independent activity afferent to neuron i

in population x (x[fDp,EGp,Sf g). As in the experiments, we set

Sji,n,x(t)T~Sjs(t)T~0, but the temporal structure of the

processes was white with Sjs(t)js(t’)T~d(t{t’), Sji,n,x(t)

ji,n,x(t’)T~d(t{t’), and Sjs(t)ji,n,x(t’)T~Sji,n,x(t)jj,n,y(t’)T~0

for i=j or x=y. The electroreceptor input contrast was set by

s and the correlation of the stimulus locked component by c.

The EGp population consisted of NEGp~200 neurons, and the

membrane potential of the ith EGp granule cell followed:

dVi,EGp

dt
~

1

tEGp

(mEGp{Vi,EGp)za1

XNDp

j~1

yj,Dp(t)zsji,n,EGp(t): ð20Þ

Here yi,Dp(t)~
P

j d(t{tij,Dp) is the spike train from the ith deep

neuron, and a1w0 is the strength of excitation from the Deep

ELL?EGp. The time constant tEGp was chosen as 10 ms, based

on recent measurements of input resistance for these cells of

approximately 2 GV [47] and data from cerebellar granule cells

indicating typical capacitance values of 3–5 pF [50–52].

Table 1. Parameter values used in numerical simulations.

Parameter Description Value

NDp Number of deep neurons 800

NEGp Number of EGp neurons 200

NSf Number of superficial neurons 2

tDp Deep membrane time constant 10 ms

tEGp EGp membrane time constant 10 ms

tSf Superficial membrane time constant 15 ms

mDp Deep bias 256 mV

mEGp EGp bias 260 mV

mSf Superficial bias 256 mV

Vth Threshold voltage 255 mV

Vre Reset voltage 265 mV

s Noise strength 1 mV

a1 Deep to EGp synaptic strength 7:6=NDp mV

a2 EGp to Superficial synaptic strength {7:6=NEGp mV

ts EGp to Superficial synaptic time constant 5 ms

cl Local input correlation 0.1

cg Global input correlation 0.2

doi:10.1371/journal.pcbi.1002667.t001

Spatial Inputs Shape Temporal Correlations
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Finally, since we are only interested in the pairwise correlation

between superficial neurons and because the feedback is open-

loop, it is only necessary to consider a pair of superficial pyramidal

neurons. As such, we set NSf ~2. The ith superficial pyramidal

cell’s membrane dynamics are given by:

dVi,Sf

dt
~

1

tSf

(mSf {Vi,Sf )za2

XNEGp

j~1

w � yj,EGp(t)

zs
ffiffiffi
c
p

js(t)z
ffiffiffiffiffiffiffiffiffiffi
1{c
p

ji,n,Sf (t)
� �

:

ð21Þ

Here w(t)~h(t)e{t=ts where h(t) is the Heaviside function. The

operation � denotes convolution. The inhibitory coupling from

EGp to the ELL was set by a2v0.

During local stimulation, a fraction g~0:05 of deep neurons

received coherent, stimulus-locked electroreceptor input (cl~0:1),

while all other deep neurons received uncorrelated input modeling

spontaneous afferent activity. During global stimulation, all deep

neurons (g~1) received stimulus-locked input (cg~0:2). The

increased value of cg reflects the fact that global stimuli will

spatially saturate the receptive field center and will thus more

effectively drive the afferent population [29,53].

In our model, a pair of neurons in a given layer could receive

correlated input from the previous layer in two ways. First, a

neuron in the previous layer could project to both downstream

neurons and thus correlate their input. Second, neurons in the

previous layer could become locked to the stimulus and their

pooled activity could correlate the downstream neurons, even if

their projections did not overlap anatomically. In the linear model,

we assumed that the first source of common input is negligible

relative to common input from stimulus locked, pooled activity, as

is often the case in feedforward networks [54]. Consequently,

correlations between model neurons were due only to external

signals that synchronously recruited electroreceptors. Therefore,

rij(T)~rs
ij(T) for the model.

To evaluate r(T) for our model using the linear response

approximation, we computed the superficial neuron stimulus gain

GSf (f ). For numerical simulations, we estimated GSf (f ) using Eq.

(15). However, following past work [28,31], we derived a

theoretical approach to compute GSf (f ). For global stimulation

and assuming that both the input correlations cg and the effective

coupling b1~a1NDp and b2~a2NEGp are sufficiently small, we

compute the feedback filter from the Deep

ELL?EGp?Superficial ELL using the serial computation

H(f )~b1b2W (f )AEGp(f )ADp(f ), ð22Þ

where W (f ) is the Fourier transform of the exponential synaptic

kernel w(t). This result follows simply from the linear convolution

of Deep ELL activity to EGp and then from EGp activity to

superficial ELL through w(t). Here we have introduced A(f ), the

single neuron cellular response function (which we refer to as the

cellular response for brevity) that measures a neuron’s response to an

applied current, independent of network feedback. A(f ) can be

computed using standard techniques from statistical mechanics

(see Text S1).

We note that H(f ) can be calculated for mixed excitatory and

inhibitory feedback to superficial neurons. In this case, the value of

b2 should be interpreted as the effective input strength from both

excitatory and inhibitory populations. For example, if the fraction

of excitatory synapses from EGp to superficial neurons is given by

f and the synaptic strength of excitation and inhibition are az
2 w0

and a{
2 v0, respectively, then we have b2~NEGp

(faz
2 z(1{f )a{

2 ). Previous studies have established that the

stimulus-locked EGp feedback is net inhibitory [46], and we

therefore model the pathway as purely inhibitory for simplicity.

With H(f ), we calculate the stimulus gain of a superficial ELL

neuron GSf (f ) as given in Eq. (25). Further, these techniques also

permit a calculation for the power spectrum Qii(f ). With

theoretical expressions for G and Qii, and assuming the signal is

Gaussian white noise with unit variance, we use Eqs. (17) and (18)

to obtain a theoretical prediction for the spike count correlation

between the two superficial ELL neuron spike trains:

rSf (T)~

ð?
{?

DGSf (f )D2kT (f )df

ð?
{?

Q(f )kT (f )df

: ð23Þ

Here we have used the homogeneity of the spike trains to set

Gi(f )~Gj(f )~G(f ) and Qii(f )~Qjj(f )~Q(f ) for all superficial

neurons.

Results

Correlation Shaping with Global and Local Stimuli
We examined the response of ELL pyramidal neurons to time-

varying electrosensory input. Broadband electrosensory stimuli

(Gaussian, 0–120 Hz) were applied to awake, behaving weakly

electric fish (Apteronotus leptorhynchus; see Methods). Throughout the

study, we delivered stimuli in one of two spatial arrangements: a

local or global configuration [26,27,29]. In the local configuration,

stimuli were spatially compact, delivered through a small dipole

(tip spacing of 2 mm), and excited only a small region of the skin

surface (Figure 1A, left, blue). Local inputs mimic prey stimuli

which drive only a spatially localized portion of the receptive field

of an ELL pyramidal neuron [55]. In the global configuration,

stimuli were spatially broad, delivered through a pair of electrodes

located on each side of the animal, and affected the entire surface

of the animal (Figure 1A, left, orange). Global inputs mimic stimuli

caused by conspecifics which drive nearly the entire surface of one

side of the animal, stimulating both the classical and non-classical

receptive field of a target pyramidal neuron [29,56]. During both

local and global stimulation, simultaneous extracellular recordings

of ELL pyramidal neuron pairs were collected (Figure 1A, right).

There was an intentional selection bias for superficial basilar

pyramidal (BP) neurons [25], since these neurons are known to

receive feedback projections that shape their responses to sensory

input [30,45,46]. Superficial neuron firing rates in the local and

global configurations were similar (17:3+1:7 Hz and

19:2+2:2 Hz respectively).

We used the simultaneous unit recordings to estimate the spike

train cross-covariance function (see Methods Eq. 3) for neuron

pairs in both the local and global stimulus configurations. Global

stimulation set a narrow peak of the cross-covariance function with

a high maximum at zero lag, while it was broad with a lower peak

value for local stimulation (Figure 1B1), consistent with previous

reports [37].

To quantify this shift in covariance at different timescales, we

computed the correlation coeffcient between the spike counts of

neuron pairs’ outputs [22,42]. This provided a normalized

measure of the similarity between the two spike trains as observed

over windows over a particular length T (see Methods Eq. 7). At

small window sizes (T*5 ms), spike count correlation was larger

during global stimulation than during local. For large window sizes

Spatial Inputs Shape Temporal Correlations
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(T*50 ms), this relationship was reversed (Figure 1C1). Corre-

lation r(T) is generally a rising function of window size [57], since

for small T few spikes will occur in the same window. However,

even small values of correlation (e.g. v0:1 in magnitude) have

substantial influence on the propagation of neural information

[54,58] and neural coding [59]. To provide a relative measure of

the shift in correlation between the two states, we considered the

ratio of global correlation to local correlation. This was a

decreasing function of window size which was substantially greater

than 1 for small window sizes and lower than 1 for large window

sizes (Figure 1D1).

We performed statistical tests to confirm that the trends

observed were significant. Nonparametric tests confirmed that

the distributions for the local and global conditions were different

(n~10, evaluated at T~95 ms, pv0:05, two-sample Kolmo-

gorov-Smirnov test). The trends with timescale were also

significant (n~10, T~2 ms compared with T~95 ms,

pv2|10{5 for local and pv:002 for global stimulation, two-

sample Kolmogorov-Smirnov tests). The means of the distribu-

tions were also different (n~10, evaluated at T~95 ms, pv:005,

paired t-test). In summary, the spatial extent of the electrosensory

signal shaped the timescales over which spike train pairs were

correlated.

Shifts in Single-Neuron Response Gain Predict
Correlation Shaping

In general, correlated neural activity can be decomposed into

stimulus induced and non-stimulus induced components [21,60].

Stimulus induced correlations reflect the two neurons locking to a

dynamic stimulus, while the non-stimulus induced correlations

reflect the neurons sharing a portion of their trial-variable noise,

presumably from a common pre-synaptic source. To uncover the

cellular and circuit mechanisms underlying correlation shaping,

we first determined whether the changes in correlation observed

were present across trials and therefore related to how neurons

responded to the repeated stimulus. Using spike trains across

different trials of identical stimulus presentations, we computed the

across-trial spike train cross-covariance functions and spike count

correlations (Figure 1B2,C2; see Methods Eqs. 9, 10). The

magnitude of these across-trial correlations was less than that of

the within-trial correlations, indicating the presence of some trial-

variable noise (compare Figure 1C1 and 1C2). Nevertheless, the

differential shaping of correlations at short and long timescales was

still present in the across-trial spike count correlation

(Figure 1C2,D2). This suggests that the way stimulus processing

shifts between local and global conditions is related to the

mechanisms responsible for correlation shaping.

To investigate this relationship, we considered the stimulus gain

G(f ), which measures a neuron’s response to an external

electrosensory stimulus at frequency f (Figure 2A, see Methods

Eq. 15). We computed the gain in the two stimulus conditions and

found that during local stimulation, the gain function was low-

pass, while during global stimulation, it was high-pass (Figure 2B),

consistent with previous studies [29,30]. We then asked if the

observed changes in correlation could be related to this shift in

frequency selectivity.

Motivated by past studies [12,13] we assumed that the cross-

spectrum between the spike trains was proportional to the product

of their stimulus gain functions (see Methods Eq. 16). This

amounts to assuming that the common stimulus is the only source

of correlation in the neural responses. This theory predicts that the

correlation for large window sizes T is determined by stimulus

gain at low frequencies. In contrast, correlation for small windows

involves gain at high frequencies. The shift in G(f ) from low

Figure 1. The spatial extent of electrosensory stimuli shapes
the temporal correlation between the spike times from pairs of
ELL pyramidal neurons. A, Stimulus protocol for local and global
stimulation. Left: Gaussian distributed electric field stimuli with
broadband spectral content (uniform over 0–120 Hz) were applied in
a spatially compact (local) or diffuse (global) manner. Right: Paired
extracellular recordings of ELL pyramidal neurons were made during
stimulation. B1, Spike train cross-covariance function in the local and
global stimulus configuration for pairs of simultaneously recorded
superficial BP neurons (within-trial correlation). Correlation function is
normalized by firing rate. B2, Same as B1 except computed between
spike trains recorded during distinct trials. C1, Within-trial spike count
correlation as a function of window length (T ) in the local and global
stimulus configuration. C2, Across-trial spike count correlation as a
function of window length T in the local and global stimulus
configuration. D1, Ratio of global and local within-trial spike count
correlations shown in panel C1. D2, Ratio of across-trial global and local
spike count correlations shown in panel C2. The data set consists of
n = 10 pairs of neurons, and all curves are population average
quantities. In all panels, shaded regions denote + standard error.
doi:10.1371/journal.pcbi.1002667.g001
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frequency transfer for local inputs to high frequency transfer for

global inputs therefore implies global stimulus correlation will be

enhanced for small T and attenuated for large T , with the inverse

true for local stimulation. We verified this hypothesis, obtaining a

prediction of the spike count correlation in the two states that

matched the experimental data (see Methods Eq. 18; Figure 2C,

solid versus dashed curves). Thus, the shift in the frequency-

selectivity of superficial neurons’ stimulus gain between the local

and global conditions indeed predicted the changes in correlation.

Modeling ELL Pyramidal Cell Responses
To understand mechanisms behind the shift in neuronal

responses under the local and global stimulus conditions, we

constructed a simplified population model of ELL pyramidal

neurons based on known anatomical and functional data as well as

our experimental results (Figure 3A; for a detailed discussion of the

anatomy, see Methods). This model captured two generic circuit

features that modulated population responses: feedforward sensory

input and feedback inhibition. All pyramidal neurons received

feedforward electrosensory input via electroreceptors, but were

divided into two classes based on their feedback afferents: deep

neurons did not receive feedback from higher regions, but

superficial neurons did receive inhibitory feedback. This feedback

arrived from the posterior eminentia granularis (EGp), which was

in turn innervated by the deep neurons. In total, this structure

formed an open-loop inhibitory feedback pathway, from deep

neurons to EGp neurons to superficial neurons. Motivated by past

studies, ELL pyramidal neurons were modeled as simple leaky

integrate-and-fire units [27,28,46]. Consistent with experimental

data [30], superficial firing rates in the model were lower than

deep firing rates (12 Hz and 36 Hz, respectively) in both local and

global stimulation conditions.

Previous studies have shown that EGp feedback modulates both

the static [41] and dynamic [30] gain of single neuron responses.

However, how it controls the ELL population response, and in

particular correlations between pyramidal neurons, is unknown.

To determine whether feedback is responsible for stimulus-

dependent correlations, we recorded from deep pyramidal

neurons receiving a frozen stimulus and computed stimulus

correlations between the pairs of spike trains. Consistent with

the lack of feedback projections to this subpopulation, these

neurons did not show substantial shaping of correlations between

the local and global conditions (Figure 3B, bottom), in contrast

with superficial pyramidal neurons (Figure 3B, top). The small

decrease in correlation for large time windows observed during

global stimulation for deep neurons (Figure 3B, bottom) is

consistent with these neurons receiving little feedback input [40].

Recruitment of Feedback in the Model During Local and
Global Stimulation

We used our model to examine the stimulus dependence of EGp

feedback. In our model, electrosensory stimulation caused the

firing of deep pyramidal neurons to become stimulus-locked.

When the stimulus was local, only a small fraction of this

population was stimulus-locked, so that the average correlation

across the deep population was low (rT??~:004 across the

population, Figure 4B1). The weak stimulus correlation across the

deep population failed to recruit coherent activity in the EGp

granule cell population, resulting in a near tonic inhibitory

feedback to the ELL (Figure 4C1). In contrast, when the stimulus

was global, the entire deep population was correlated by the

stimulus (rT??~:15, Figure 4B2). This led to a dynamic, stimulus

locked EGp feedback to the superficial neuron pair (Figure 4C2).

Thus, our model captured a link between the temporal locking of

EGp feedback and the spatial extent of the external stimulus,

which has been suggested in past experiments [46,47].

Having characterized the EGp feedback, we next determined

how it shaped the responses of superficial neuron pairs. The total

input to a model superficial pyramidal neuron, from both

feedforward and feedback sources, is:

s
ffiffiffi
c
p

js(t)z
ffiffiffiffiffiffiffiffiffiffi
1{c
p

ji,n,Sf (t)
� �

{h � js(t): ð24Þ

Here s is the strength of the afferent activity to an ELL pyramidal

neuron and js and ji,n,Sf are Gaussian white noise processes

modeling stimulus locked and unlocked (noise) afferent inputs,

respectively. The parameter c is the fraction of receptor afferents

that are stimulus-locked, which determines the correlation

between the electroreceptor input to neuron pairs. The function

h is the parallel fiber feedback kernel and involves compound

processing of the stimulus by the population of deep ELL neurons,

the EGp granule cells, and finally the inhibitory feedback pathway

from the EGp to the ELL (see Methods Eq. 21). Assuming weak

stimulus correlations (small c) and weak EGp feedback, we use

linear response theory [28,31], to obtain an expression for the

stimulus gain of a superficial pyramidal neuron (see Methods):

GSf (f )~
ffiffiffi
c
p

s 1{gH(f )ð ÞASf (f ), ð25Þ

Here H(f ) is the Fourier transform of the feedback kernel h (see

Eq. 22 in Methods), and ASf (f ) is the cellular response of a

superficial neuron, which measures its response to a fluctuating

Figure 2. Shifts in stimulus gain predict spike train correlation
shaping. A, Schematic illustration of stimulus gain. The gain DG(f )D is
described as the ratio of the change in the output firing rate O of a
neuron that is evoked by an input sine wave stimulus of amplitude I . B,
Gain for neuron pairs during local and global stimulation. The signal
was assumed to have unit amplitude. C, Across-trial spike count
covariance (solid) and the prediction from a linear response theory
(dashed, see Methods Eq. 17), in both global and local stimulus
conditions. The data set consists of n = 10 pairs of neurons, and all
curves are population averages. In all panels, shaded regions denote +
standard error.
doi:10.1371/journal.pcbi.1002667.g002
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current applied directly to the neuron (see Eq. 8 in Text S1). In

contrast to the stimulus gain, the cellular response does not

depend on network feedback. The parameter g is the spatial

extent of the stimulus (0ƒgƒ1), with g&0 modeling the lack of

stimulus-coherent EGp feedback for local stimulation, and g&1

the full recruitment of EGp feedback for global stimulation

(Figure 4). With this model of how G(f ) shifts between local and

global stimulus configurations, we next build a theory for the

correlation shaping within the superficial ELL pyramidal neuron

population.

Figure 3. Open loop feedback inhibition in electrosensory neural circuitry. A, Detailed schematic of peripheral neural circuitry in the
electrosensory system. Basilar (BP) and non-basilar (nBP) pyramidal neurons in the electrosensory lateral line lobe (ELL) have their somata located in
the Pyramidal cell layer (PCL). Deep pyramidal neurons (green) have small apical dendritic arbors, projecting only to the Ventral Molecular Layer
(VML). In contrast, superficial pyramidal neurons (red) have large apical dendritic arbors, projecting to the Dorsal Molecular Layer (DML). Pyramidal
neurons receive direct and/or indirect input from feedforward electroreceptor afferent input to the Deep Fiber Layer (DFL). Deep pyramidal neurons
excite neurons in the praminentialis dorsalis (Pd), which in turn excite granule cells in the posterior eminentia granularis (EGp). The EGp projects
parallel fiber feedback along the DML exclusively targeting ELL superficial pyramidal neurons. In total the deep ELL?EGp?superficial ELL pathway is
an open loop feedback structure. Pyramidal neuron graphics were from example neurolucida traced neurons [46]. B, Stimulus correlation for pairs of
experimentally recorded deep pyramidal neurons (n = 45 pairs; 10 neurons were used) that were driven by the stimulus in local and global (bottom).
Little correlation shaping is present. For comparison purposes we show the stimulus correlation for pairs of superficial neurons (top, Figure 1C2). C,
Simplified model of the ELL-EGp circuit. Individual neurons in the deep ELL, EGp, and superficial ELL were modeled with leaky integrate-and-fire
neuron dynamics (example realizations on right). Electroreceptor input was modeled as white noise, with 5% of deep pyramidal neurons receiving a
stimulus-locked component in local and 100% in global. We studied the spike responses the pair of superficial pyramidal neurons (labeled 1 and 2)
that receive both afferent and EGp feedback inputs.
doi:10.1371/journal.pcbi.1002667.g003
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Correlation Shaping in the ELL-EGp Network Model
We used our ELL-EGp network model to relate the spatial

extent of an electrosensory stimulus and the timescale of the

pairwise correlation between spike trains from superficial BP

neurons. During local stimulation, pairs of nearby superficial

neurons received correlated electroreceptor input (Figure 3C). The

degree of correlation between the afferent input to the superficial

pair was c~cl . The EGp feedback did not exhibit a substantial

stimulus-locked component (g&0) during local stimulation, and

hence did not contribute to common fluctuations (Figure 4C1).

Thus, the stimulus gain in the local condition, denoted Gl(f ),
reduced to:

Gl(f )~
ffiffiffiffi
cl

p
sASf (f ): ð26Þ

Our theoretical Gl(f ) (see Methods) quantitatively matched

estimates from simulations of the ELL-EGp network of leaky

integrate-and-fire neurons (Figure 5a, blue curve and blue dots)

and qualitatively matched the low-pass nature of G(f ) obtained

from experiments (Figure 2B, blue). The calculation demonstrates

that the gain to local stimuli of superficial pyramidal neurons is

primarily determined by the cellular response A(f ), suggesting that

feedback network dynamics can be ignored.

The lack of network activity for local stimulation (g&0), was

contrasted with the recruitment of EGp feedback for global

stimulation (g~1). During global stimulation, we also assumed

that the receptive fields of neurons were fully saturated, rather

than being partially driven due to the limited extent of the

stimulus, as suggested by experimental estimates [53]. We

therefore increased the correlation of electroreceptor afferents in

the global state, so that cgwcl . Combining these two model

assumptions, we expressed the gain in the global configuration,

Gg(f ), as:

Gg(f )~
ffiffiffiffiffi
cg
p

s 1{H(f )ð ÞASf (f ): ð27Þ

If H(f )~1 – that is, if the negative feedback were a perfect replica

of the feedforward signal – the stimulus gain Gg(f ) would be zero,

indicating complete stimulus cancellation by the feedback path-

way. However, since the negative feedback was low-pass due to

neuronal integration and synaptic filtering along the feedback

pathway, only the low frequency components of the gain were

strongly attenuated. Consequently, Gg(f )vGl(f ) for sufficiently

low frequencies (Figure 5A, compare orange and blue curves for

f v15 Hz). However, Gg(f )wGl(f ) for high frequencies

(Figure 5A, compare orange and blue curves for f w15 Hz),

because of the increase in receptive field saturation (cgwcl ). Our

theoretical Gg(f ) matched simulations of the ELL-EGp network

(Figure 5A, orange curve and orange dots). Thus, the combination

of feedback recruitment and feedforward saturation during global

stimulation captured the experimentally determined shift in

stimulus gain known to occur between local and global stimulation

(Figure 2B and see [29,30]).

Next, we examined how this gain shift controlled correlations

across the population of superficial pyramidal neurons. Using the

linear response theory we used to predict signal correlations in the

experimental data (Figure 2, see Methods Eq. 23), we calculated

theoretically the correlations between model pyramidal neurons.

Global stimulation simultaneously increased short T correlation

and decreased long T correlation compared to local stimulation

(Figure 5B). These findings matched the experimental results

(compare Figures 1C and 5B) and are the primary theoretical

result of this study.

Our model provides clear intuition for how the combination of

receptive field saturation and the recruitment of EGp feedback

during global stimulation shapes the correlation of ELL pyramidal

neuron activity (Figure 5C). During local stimulation, EGp

feedback was not recruited and the feedback did not cancel the

feedforward signal from the electroreceptors (Figure 5C, left). This

case is contrasted with global stimulation, in which a broad

stimulus-induced synchronization of all of the deep ELL neurons

recruited a stimulus-locked EGp feedback. This feedback was low-

pass, and therefore canceled the low frequency components of the

signal (Figure 5C, middle), but not the high frequency components

(Figure 5C, right). Thus, correlations due to global stimulation

were canceled only for sufficiently long timescales T (Figure 5B,

Tw15 ms). Furthermore, the saturation of the receptive field

input (cgwcl ) enhanced the correlation r(T) for small T

(Figure 5B, Tv15 ms). In total, feedforward and feedback

circuitry shaped r(T) depending on the spatial profile of the

electrosensory signal.

Our ELL-EGp network model distills correlation shaping into

two hypotheses that link the spatial properties of an electrosensory

stimulus and the timescale of pairwise correlation between the spike

responses of ELL superficial pyramidal neurons:

1. Receptive field saturation for spatially broad signals increases

the short timescale correlation between the spike trains from

superficial pyramidal neurons.

Figure 4. Model EGp feedback is stimulus locked for global,
but not local, stimulation. A Low-pass (0–60 Hz) filtered version of
the electrosensory stimulus. Filtering was done as a visual aid in relating
the stimulus to the feedback in (C2). B1, Raster plot of the deep neuron
population during local stimulation. The signal weakly correlated only a
small fraction of the population. B2, Same as (b1), but during global
stimulation. The spatially broad stimulus correlated the entire deep
population. C1, EGp feedback current during local stimulation, showing
little stimulus locking. C2, EGp feedback was stimulus-modulated by
the global signal, due to recruitment of the deep population by the
stimulus. The inhibitory feedback is a negative image of the stimulus
(A2).
doi:10.1371/journal.pcbi.1002667.g004
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2. Recruitment of EGp feedback by spatially broad signals

decreases the long timescale correlation between the spike

trains from superficial pyramidal neurons.

To study these two components of correlation shaping in

isolation from one another, we used a combination of analysis on a

subclass of ELL pyramidal neurons and pharmacological blockade

of EGp feedback.

Correlation Shaping of nBP Neuron Responses
We first tested how short timescale correlation was affected by

receptive field saturation (Hypothesis 1). The ELL has two classes

of pyramidal neuron: non-basilar pyramidal (nBP) and basilar

pyramidal (BP) neurons, distinguished by the extent of their basilar

dendritic arbor (Figure 3A). While BP neurons respond to positive

deflections of the electric field, nBP neurons are oppositely tuned,

due to their afferent inputs arriving solely via an inhibitory

interneuron population [25]. This difference in the feedforward

afferent architecture to nBP neurons compared to BP neurons

produces nBP neuron classical receptive fields that are smaller

than those of BP neurons [26]. Despite the difference in

feedforward afferent input for BP and nBP neurons, both

superficial BP and nBP neurons receive near equivalent feedback

from EGp parallel fibers (Figure 3A). Thus, a comparison between

BP and nBP neurons is sensitive to a difference in feedforward

afferent drive, and not to EGp feedback. We hypothesized that

global inputs would not drive nBP neurons as strongly as BP

neurons because of their smaller classical receptive fields. Hence,

short timescale correlation during global stimulation for nBP

neurons should be less than for BP neurons.

We first calculated the stimulus gain for nBP neurons. The

difference in gain between local and global stimuli for nBP

neurons was different than that for BP neurons (Figure 6A1; [30]).

In particular, while nBP and BP neurons both exhibited a

reduction in low frequency gain during global stimulation, nBP

neurons exhibited little enhancement of high frequency response.

Our model network replicated this difference (Figure 6A2) when

we assumed that the nBP neurons integrate stimuli over smaller

regions of space, such that local inputs saturate the receptive field

(cg~cl ), in contrast to the BP neuron case (cgwcl ). The lack of

high frequency shaping of gain for nBP neurons across local and

global configurations predicts that the small T correlations do not

substantially increase in the global state, while EGp feedback still

attenuates low frequency gain and hence large T correlations.

Measurements of r(T) for nBP neurons in both the ELL-EGp

model (Figure 6B2), as well as nBP neurons recorded in vivo

(Figure 6B1) supported this prediction. Thus, the known

differences between the receptive field sizes of nBP and BP

neurons, provide evidence for the link between the spatial extent of

electrosensory stimuli and short timescale correlation observed for

superficial BP neurons.

Figure 5. Model ELL-EGp network captures correlation shaping between local and global stimulation. A, Stimulus gain of superficial BP
neurons in the model (compare to Figure 2B). Our analytical theory (solid) matches the simulation results from the ELL-EGp network (dots). B,
Correlation between superficial BP neuron pairs during local and global stimulation of the model (compare to Figure 1C). Since our theory predicts a
linear relationship between output correlation and input correlation, the output is shown in units of input correlation in the local state cl , which was
0.1 in simulations. C, Idealized schematic illustrating the effect of feedback on shared fluctuations. Left: local inputs fail to recruit EGp feedback via
deep population (see Figure 4), so common input arises purely through feedforward stimulus drive. Center: Low frequency global input recruits a
negative image of the stimulus, which cancels the common input to the pair of superficial pyramidal neurons. Right: The cancellation signal is weak
for high frequency global inputs due to the low-pass nature of the feedback. Hence, the common fluctuations are not cancelled.
doi:10.1371/journal.pcbi.1002667.g005
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Feedback Inhibition Cancels Long Timescale Correlations
We next tested how long timescale correlation is affected by

recruitment of EGp feedback by global stimuli (Hypothesis 2). In

our model, the EGp feedback was responsible for the decrease in

low frequency stimulus gain and long timescale correlation in the

global state. To experimentally confirm that this pathway was

responsible for these effects, we pharmacologically blocked

feedback from EGp to superficial neuron pairs (see Methods).

We first tested whether attenuation of low frequency components

of the stimulus gain was removed by the block. In experiments

with global stimulation, we found that firing rates during the block

were decreased significantly from the control condition (block:

6:7+1:1 Hz; control: 11:3+1:9 Hz, pv:05, paired t-test). We

remark that while the net impact of EGp feedback may be

excitatory, the signal locked components of EGp feedback are

thought to be inhibitory [46], consistent with our model. To

correct for the change in firing rates across control and block

conditions, we normalized the gain by firing rate to show the

relative modulation of firing rate by the stimulus. The normalized

gain increased at low frequencies, yet remained unchanged at high

frequencies (Figure 7B1, compare orange and gray curves),

consistent with model predictions (Figure 7B2). This effect was

removed after a washout of the drug (Figure 7B1, compare orange

and light orange curves).

The spike count correlations for simultaneously recorded

superficial neurons in the global state with and without pharma-

cological block of feedback verified its role in shaping long

timescale correlations. Specifically, the spike count correlations for

T~200 ms showed a significant increase during the block

(pv:02, paired t-test), while correlations for T~2 ms were similar

(Figure 7C1; left). Due to the difficulty in obtaining paired

recordings under pharmacological blockade, we further verified

our theory with units recorded individually with frozen noise in the

global state with and without pharmacological block of EGp

feedback (Figure 7C1; right). Correlations at long timescales were

increased during the block compared to control (Figure 7C1; left,

compare orange and gray curves) and recovered to control values

after drug washout (Figure 7C1; left, compare orange and light

orange curves), consistent with our model (Figure 7C2). Thus,

despite EGp feedback being a source of common synaptic input to

a pair of superficial ELL pyramidal neurons, removing it during

global stimulation increased the spike correlation between the

neuron pair. In total, these data supported our second hypothesis:

stimuli with large spatial extent recruit inhibitory feedback that

cancels the input correlation expected from feedforward afferent

projections.

Correlation Shaping and Population Coding of Natural
Electrosensory Scenes

We have presented a general mechanism for how spike train

correlations from pairs of ELL pyramidal neurons are shaped by

the spatial extent of an electrosensory signal. We explored the

mechanism with simple noise signals categorized into either

spatially local or global inputs. However, natural electrosensory

scenes are complex, with a broad range of spatial and temporal

scales. In this section, we speculate on how correlation shaping

influences the population representation of natural electrosensory

scenes.

Sensory systems must produce high fidelity representations of

biologically relevant signals, while ensuring that distractor inputs

do not contaminate the neural code. The ELL pyramidal neuron

population is responsible for coding two distinct electrosensory

inputs. First, electric fish routinely perform prey detection,

tracking, and capture, during which prey organisms produce

electric images with low frequency components (v4 Hz) that

stimulate a limited portion of the animal’s electroreceptive field

[55]. Second, electric fish use their electric organ to communicate

with conspecifics, using signals that contain primarily high

frequency components (w50 Hz) and drive a large region of the

skin [56,61]. However, these two signals often coexist with

distractor inputs that the electrosensory system must ignore.

Natural distractors arise from the superposition of background

electric fields from many neighboring fish [62], or self generated

signals from body and tail positioning [47]. These inputs consist of

mostly low to mid range frequencies (v20 Hz) and drive a broad

sensory area. A critical sensory computation in the ELL is the

pyramidal neuron population faithfully locking to prey and

communication signals, with minimal locking to distractor

electrosensory inputs. The linear response analysis of the ELL-

EGp network suggests that EGp feedback to the ELL plays an

important role in this computation.

Using our linear theory, we calculated the response of a

population of superficial BP neurons to mixed signal and distractor

input, with and without EGp feedback. The signal was either a

local 4 Hz sine wave (Figure 8A1–D1), or a 50 Hz global sine

wave (Figure 8A2–D2). In both cases, the distractor input was 0–

10 Hz broadband noise. The population response was modulated

by the signal and the distractor, with relative strengths determined

Figure 6. Saturation of the receptive field for both local and
global stimuli makes short timescale response insensitive to
the spatial extent of electrosensory stimuli. A1, Experimental
stimulus gain for nBP neurons (n = 14) in local and global stimulus
configurations. The gain for BP neurons in the global configuration is
shown for comparison (see Figure 2B). A2, Stimulus gain for model nBP
neurons (cl~cg) in local and global configurations, and the model BP
neurons (clvcg) in global for comparison. B1, Recorded spike count
correlation over windows of length T for pairs of nBP neurons. As with
BP neuron pairs, firing rates in the local and global states were similar
(15:9+1:6 Hz and 18:6+1:6 Hz, respectively). B2, Spike count
correlation for pairs of model nBP superficial neurons in the ELL-EGp
network. For the model results (A2,B2) our analytical theory (solid)
matches the simulation results from the ELL-EGp network (dots). Values
are shown in units of input correlation in the local state cl .
doi:10.1371/journal.pcbi.1002667.g006
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by the corresponding gain (Figure 8D). To test how EGp feedback

affects the coding of relevant signals, we computed the signal to

noise ratio (SNR) of this population response, defined as the ratio

of the signal power integrated over all frequencies to the distractor

power integrated over all frequencies. For both the 4 Hz local and

50 Hz global signals, the SNR was greater with feedback than

without feedback (Figure 8B,C. SNR decreased from 2.3 to 0.70

for the 4 Hz local signal and from 2.8 to 0.70 for the 50 Hz global

signal when feedback was removed). This is because EGp feedback

was recruited by distractor input, attenuating any distractor

induced correlation (low gain for distractor inputs in

Figure 8D1,D2). In contrast, prey inputs lacked sufficient spatial

power to recruit EGp feedback, meaning an EGp cancellation

signal was not passed and ELL population stimulus gain was high

(Figure 8D1). Communication calls have large spatial power, yet

their high frequency power cannot be transmitted by the low pass

parallel fiber pathway, again meaning ELL population stimulus

gain was high (Figure 8D2). The ELL-EGp network was therefore

capable of removing spurious correlations due to distractors while

still coding for relevant signals.

Discussion

Temporal shaping of correlated spiking activity has been

observed in a variety of systems [7,9,19,22–24]. We have shown

that the spatial extent of an electrosensory signal controls the

timescale of correlation between the spiking outputs of principal

neurons in the ELL of weakly electric fish. Specifically, an increase

in the spatial extent of a signal increased pairwise spike time

synchronization, while simultaneously decorrelating long timescale

rate co-variations. Using a combination of computational model-

ing and targeted physiological analysis, we identified that

correlation shaping in the ELL is mediated both by an increase

in the strength of feedforward afferent drive and the recruitment of

a feedback pathway for spatially broad signals. Electric fish offer a

neuroethologically inspired functional context for correlation

shaping, where it promotes an accurate population representation

of relevant signals, even in the presence of distractor inputs. The

generic circuit features that support correlation shaping and its use

in feature selective population temporal codes suggest that the

basic principles exposed here may be at play in other neural

systems.

Correlation Shaping with Neural Architecture in the
Electrosensory System

There has been extensive investigation of the gain shifts of single

ELL pyramidal neurons between local and global stimulus

configurations [26–30,46]. These studies have shown that both

feedforward and feedback mechanisms mediated these shifts.

Indeed, pharmacological manipulations of descending feedback to

the ELL provided strong evidence for its role in controlling gain

shifts of single unit response at low frequencies [27,29,30,46].

However, previous studies have shown that local stimuli only

excited a fraction of the receptive field center [26,29] and that

spatial saturation of the receptive field center mediated the gain

shifts of single unit response at high frequencies only by recruiting

a greater fraction of feedforward afferent input [29,30]. This

importance of feedback activity prompted network models of the

ELL and higher brain regions, and these models captured the

sensitivity of single unit dynamics to the spatiotemporal structure

of electrosensory stimuli [27,28,30,46]. However, the models

relied on heretofore untested assumptions about the population

Figure 7. EGp feedback reduces correlations on long timescales when stimuli are global. A Schematic indicating block of feedback with
CNQX in the ELL circuit. B1, Stimulus gain for individually recorded superficial BP neurons in control, block, and recovered conditions. Gain is
normalized to output firing rate in the data. B2, Stimulus gain for model superficial neurons for global stimuli when feedback was intact or absent.
C1, Left: Spike count correlation at T~2 and 200 ms for paired recordings of superficial BP neurons. Right: Spike count correlation as a function of T
for individual recordings with a frozen stimulus in control, block, and recovered conditions. The standard error bars overlap for both the pre-drug and
recovery curves, while they do not overlap with those for the block. Differences between control and recovered conditions could be due to
incomplete drug washout or the preparation being in different states before and after the application of the drug. C2, Spike count correlation as a
function of T for model neuron pairs when feedback was intact or absent. Values are shown in units of input correlation in the local state cl .
doi:10.1371/journal.pcbi.1002667.g007

Spatial Inputs Shape Temporal Correlations

PLOS Computational Biology | www.ploscompbiol.org 12 September 2012 | Volume 8 | Issue 9 | e1002667



spike train statistics of ELL pyramidal neurons. In parallel to these

single-unit studies, other work presented simultaneous recordings

from pairs of ELL pyramidal neurons showing significant stimulus

evoked correlation in spike activity [63], and that the spike train

correlation is sensitive to a stimulus’ spatiotemporal structure [37].

However, these studies did not attempt to relate the dependence of

pairwise statistics on stimulus structure to the extensive ELL single

neuron experimental gain and network modeling literature. Our

study merges the two avenues of research and shows that pairwise

correlation shaping is related to gain shifts, as our linear response

treatment of the ELL-EGp network model predicts. Thus, our

analysis directly tests the proposed feedback mechanisms for single

neuron response shifts [30].

Previous studies of the ELL have focused on the generation of

oscillations due to feedback from area nP to pyramidal neurons

(the direct feedback pathway) [27]. Theoretical studies have

demonstrated that such oscillations arise from a combination of

spatially correlated noise and delayed inhibitory feedback [28,31].

Unlike neurons receiving closed-loop inhibitory feedback from nP,

the superficial pyramidal neurons modeled in our study lack input

from this direct pathway, and hence do not exhibit oscillations.

Superficial neurons were excluded from the analysis in [27] and

[28], so that the results of our study concern a cell class that is

distinct from these previous studies. This distinction emphasizes

the qualitative differences in the dynamics induced by open- and

closed-loop feedback pathways.

We used well-characterized anatomical data and pharmacolog-

ical manipulation to study the network architecture that codes for

time-varying electrosensory stimuli. This is in contrast to

techniques such as the generalized linear model [64] that

statistically determine the spike response and network filters that

generate a response to a sensory signal with fixed statistics. Our

approach allowed us to study the response of the system in distinct

stimulus conditions, with varying input statistics. Further, network

coupling suggested clear architectural predictions for the mecha-

nisms behind correlation shaping (hypotheses 1 and 2). These

predictions were validated with a combination of the known

heterogeneity of ELL feedfoward architecture (Figure 3), and a

pharmacological blockade of feedback activity (Figure 7). Organ-

isms exist in environments with ever-changing sensory statistics yet

must code these environments, often with a single neural

population. Our study shows how neural architecture can help

shift the response dynamics of neural populations as signals change

to better meet this computational need.

Our results also highlight how architectural differences may lead

to differential population activity in different layers. Recently, it

has been shown that synchronization between neurons in visual

cortex is layer-dependent [65]. Furthermore, the cognitive

demands of a task may control the recruitment of feedback and

influence spike train correlations [66]. Our results demonstrate

that both layer-specific recruitment of feedback and connectivity

profiles influence correlated population activity.

Finally, theoretical communities have recently made some

progress in understanding how network architecture combines

with cellular dynamics to determine the correlation between pairs

of cells [44,67,68]. However, the work is general, and a clear

neural motivation to base a concrete example upon is lacking. Our

study demonstrates that the electrosensory system offers a

prototypical system where cellular dynamics, a clear feedfor-

ward/feedback architecture, and a single stimulus feature (spatial

extent) interact to shape the temporal structure of pairwise spike

train correlation.

Figure 8. EGp feedback cancels the ELL population response to
global distractor inputs but not prey or communication
signals. A1, Schematic of response to a prey signal, which occupies
a limited spatial extent and contains power at low frequencies. A2,
Schematic of response to a communication call from a conspecific,
which is a global, high frequency signal. B1, Average population firing
rate for ELL neurons responding to a local, 4 Hz signal (red) and the
same signal with 0–10 Hz distractor noise (black). The SNR was 2.3. B2,
Same as B1, but with a global, 50 Hz signal. The SNR was 2.8. C1, Same
as B1, but without EGp feedback. The SNR was reduced to 0.70. C2,
Same as B2, but without EGp feedback. The SNR was reduced to 0.70.
D1, ELL pyramidal neuron stimulus gain for local inputs (which do not
recruit feedback) and global inputs with and without feedback. The
frequency of the signal is marked. Note that because the distractor is a
global 0–10 Hz signal, its transfer will be enhanced by the removal of
feedback, reducing SNR (compare gray and orange curves). D2, Same
as D1 but with a global, 50 Hz signal. Since the signal is high frequency,
its stimulus gain is not substantially affected by feedback.
doi:10.1371/journal.pcbi.1002667.g008
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Decorrelating with Inhibition
The role of inhibition in neural circuits is a complex topic of

study. Inhibition is linked to rhythmic, temporal locking between

pairs of pyramidal neurons [32]. On fast timescales, inhibition is

often thought to synchronize the activity of pairs of pyramidal

neurons in both recurrent [10,27,33–35] and feedforward

architectures [11,32]. However, on longer timescales, inhibition

mediates competitive dynamics between populations of pyramidal

neurons, and as such may be a source of anti-correlated activity

[24]. Recently, studies of densely coupled cortical networks with

balanced excitation and inhibition [17,18] and feedforward

inhibitory cortical circuits [20,69] have provided new insights into

the role of inhibitory dynamics. In these studies, fluctuations in

correlated excitation to a pair of pyramidal neurons are cancelled

by correlated inhibitory dynamics, yielding a roughly asynchro-

nous cortical state. This cancellation of correlation is similar to the

one explored in our study responsible for the reduction of

correlation for global stimuli. However, our study was motivated

by a primarily feedforward sensory architecture in which an

external signal can drive correlated activity.

The strengths of the electrosensory preparation allowed us to

extend the correlation cancellation mechanism along two impor-

tant directions. First, the ease in controlling the spatiotemporal

properties of external stimuli allowed an analysis of the limitations

of correlation cancellation. The diffuse ELL?EGp feedforward

path restricts correlation cancellation to signals with broad spatial

scale, while the slow filtering by the parallel fiber pathway can only

cancel correlations of low frequency stimuli. Second, the well

segregated parallel fibers that mediate EGp feedback to the ELL

permitted a pharmacological blockade of inhibition, directly

providing evidence for correlation cancellation. The parallel fibers

are a source of common input to pyramidal neurons, and a naive

analysis would predict that their removal would thus decrease

pyramidal neuron spike train correlation. Nevertheless, the

blockade of parallel fiber inputs increased the spike train correlation,

suggesting that the common inhibition interacts with the common

feedforward afferent input in a destructive, rather than coopera-

tive, manner.

Studies of neural codes often investigate the distinction between

signal evoked, across-trial correlations and additional ‘noise’

induced, within-trial correlations [60]. Across-trial correlations

are attributable to a dynamic locking of the spike train pairs to the

common signal. Within-trial correlations measure the trial-to-trial

co-variability of a pair of spike trains and may be increased relative

to across-trial correlations due to common synaptic input to the

neuron pair. These common fluctuations are often deleterious to

cortical population codes [60], acting as a source of variability that

cannot be removed through population averaging. The majority of

our study presented simultaneously recorded spike train data

which contains across-trial correlation as well as additional within-

trial correlation. However, the shaping of correlation by the spatial

profile of a stimulus was explained from knowledge of only of the

across-trial correlation (Figures 1 and 2), and thus our ELL-EGp

network model ignored other sources of correlation entirely. Our

analysis did study the effects of irrelevant distractor inputs which

can act as a source of noise, though originating from external

signals rather than internal circuit mechanisms. We found that low

frequency distractors that drive a substantial portion of the

network recruit a cancellation signal. We therefore predict that

within-trial correlations may be cancelled by a similar mechanism

if they drive a large number of neurons synchronously. This may

be the case when within-trial correlations are driven by the local

field potential, which is often low frequency and widespread to

populations of neurons [70,71].

In summary, we have identified the combination of feedforward

and feedback architecture that allows the spatial extent of a

stimulus to shape the temporal correlations between the spike

trains of pairs of electrosensory principal cells. Furthermore,

correlation shaping allows populations of neurons to respond to

stimuli that match a specific spatiotemporal profile and ignore

distractor inputs. The generic architectural features of our network

and the fact that sensory systems must filter irrelevant signals

suggest that our findings may generalize to other systems.
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