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Abstract

Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical
phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the
coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while
allowing for switching between multiple phenotypes (network states) as occurs in development and in response to
environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have
remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance
between the two essential components of evolvability: phenotype conservation and phenotype innovation under
mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions
and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all
the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay
between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices
to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this
evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene
regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks
can emerge as a byproduct of the evolvability of the phenotypic landscape.
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Introduction

Determining the evolutionary processes that have generated

both the structural and dynamical properties observed in the gene

regulatory networks of modern organisms remains a central

problem in biology [1]. When analyzing the most complete data of

features of gene regulatory networks available to date, two striking

properties are immediately apparent. First, on the structural side,

these networks exhibit hub-like structures characterized by the

presence of few global regulators, namely, a few genes that

regulate the expression of a large fraction of other genes in the

network [2]. For instance, in the Escherichia coli gene transcription

network, seven global regulators regulate the expression of more

than 60% of the genes in the entire network [3]. Second, on the

dynamical side, recent analyses of patterns of transcriptome

changes in several organisms reveal that gene regulatory networks

operate in a critical regime, i.e. close to a phase transition between

ordered and chaotic dynamics [4–9]. However, how genetic

networks with hub-like structures and critical dynamics emerged in

evolution remains elusive. It is not known whether these two

‘‘emergent’’ properties, one structural and the other dynamical,

are related to each other or if they were directly selected for and

whether they are the result of completely independent selection

processes or constraints.

Two trade-offs related to stability and change
Several models of network growth and evolution have been

devised to generate networks with specific topological properties

(such as hub-like structures, [10,11]) or with a particular type of

dynamical behavior [12,13]. The ‘dynamics’ of a genetic network,

that is, the collective change of gene expression of all the genes in

the network, (i.e. of the gene expression pattern), is obviously the

more appropriate phenotype on which evolution acts than the

topology itself. However, networks are often, again, trained

explicitly to exhibit a particular behavior, such as robust dynamics

under certain kinds of perturbations [14–18], or to perform some

arbitrarily imposed task [19]. Usually, the training is achieved by

selecting the networks that score highest with respect to a suitable

fitness function. In contrast to such explicit targeting of particular

phenotypes as endpoints we propose that an elementary and more

encompassing set of constraints must be taken into account, which

is epitomized in these two distinct trade-offs of opposing features:
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(i) From the perspective of ontogenesis one is interested in

properties that ensure phenotypic robustness and at the same

time flexibility given the conditional need of a network to

produce multiple phenotypes (stable gene expression pat-

terns). Robustness is the resilience of a given gene expression

pattern to environmental perturbations of gene expression.

Flexibility by contrast refers to distinct changes of gene

expression patterns (phenotype switching) during develop-

ment and to cope with environmental fluctuations. We will

refer to this balance between phenotypic robustness and

flexibility as the developmental trade-off.

(ii) From the evolutionary perspective, mutational robustness

(resilience of the phenotype to alterations of the genome) is

essential in order to maintain vital traits, but at the same

time, mutations must also be able to generate new phenotypes

(phenotypic innovation). We will refer to this second balance,

consisting in the coexistence of mutational robustness and

phenotypic innovation, as the evolutionary trade-off.

The second trade-off epitomizes the two central properties that

underlie evolvability [20–22]. Concretely, the evolutionary trade-

off, the central subject of this study, implies that when new

phenotypic traits are developed, the old, useful traits do not

disappear but are conserved or transformed into something

similar. A fundamental question in evolutionary biology is whether

the evolutionary trade-off is the result of adaptation by natural

selection, or arises through non-adaptive mechanisms. There is a

great amount of evidence suggesting that evolvability itself is a

selectable trait and hence, evolvability evolves [23–26]. However,

the mechanisms through which evolvability evolves are still under

debate.

The two dualisms, the evolutionary trade-off and the develop-

mental trade-off, are of course interconnected in the sense that the

latter is an adaptive phenotype of the evolving individual, that is, it

is shaped by selection pressure. Indeed it was precisely because of

the developmental trade-off that critical dynamics has been

hypothesized to play an important role in evolution [27–29].

Critical dynamics
Critical dynamical systems operate at, or close to, a phase

transition between ordered and chaotic dynamics. They exhibit a

series of very remarkable properties that would be difficult to

explain in the absence of criticality, such as collective response to

external stimuli without saturation [30–32], optimal computation-

al capabilities [33], fast information storage, transfer and

processing [34], etc. In fact, the existence of critical dynamics in

living systems has been increasingly recognized as an important

property that confers collective behavior over many different scales

[35]. In general terms, critical dynamics in gene regulatory

networks implies that perturbations of gene expression would

neither amplify and percolate through the system (manifest by the

overwhelming divergence of the trajectories of any two initial

states, as seen chaotic systems) nor would they immediately ‘‘die

out’’ (manifest by the overwhelming convergence of the trajecto-

ries of any two initial states, as seen in ordered systems). In

computational models gene regulatory networks that operate in

the dynamically critical regime (between order and chaos) have

been shown to exhibit both homeostasis (robustness of gene

expression states) and developmental progression (change of gene

expression state), thus achieving some sort of optimization (or

balance) in the developmental trade-off [4,5,27–29]. Thus,

criticality is a mechanism that, within an organism, engenders

dynamical robustness to the network while at the same time

allowing the network to respond to developmental perturbations.

Therefore, for the development of the individual organism there

are compelling reasons to assume that dynamical criticality in their

genetic networks is a desirable property. This may explain why

experimentally observed gene expression patterns in several

organisms indicate that the regulatory networks indeed operate

in the critical regime [4–9]. However, to our knowledge in

previous work on dynamical criticality in genetic networks, this

property has either been taken for granted or externally imposed

by adjusting the value of a network control parameter that is

known to operate the order-chaos phase transition. In these studies

the networks are constructed by design to be in the critical phase,

(or in the ordered or the chaotic phase) followed by the analysis of

their properties and contribution to evolution [30–34]. In a case

where criticality in fact emerged was due to imposed explicit

‘‘rewiring’’ rules [36]. However, little is known about how

dynamical criticality emerges without such explicit enforcement

but in an evolutionary process that is inescapably subjected to the

constraints of evolvability.

Therefore, here we ask: what is the role of evolution in poising

gene regulatory networks at the critical phase? How does a gene

regulatory network evolve a structure that confers criticality in the

first place? What properties must be selected for in order for a

non-critical network to become critical?

In this work we evolve populations of simulated gene regulatory

networks and show that criticality is profoundly linked to

evolvability. More specifically, we show that critical dynamics,

and hence the developmental trade-off in genetic networks,

naturally emerge as a robust byproduct of the evolutionary

processes that select for evolvability and optimize the evolutionary

trade-off. Furthermore, the emergence of criticality occurs without

fine-tuning of parameters or imposing explicit selection criteria

regarding specific network properties.

Boolean networks as models of gene regulation
As a model for gene regulatory networks we use the Boolean

network model proposed by Kauffman [27–29,37–40]. It has been

firmly demonstrated that this model of complex networks

effectively captures essential aspects of gene regulation at the

Author Summary

Dynamically critical systems are those which operate at the
border of a phase transition between two behavioral
regimes often present in complex systems: order and
disorder. Critical systems exhibit remarkable properties
such as fast information processing, collective response to
perturbations or the ability to integrate a wide range of
external stimuli without saturation. Recent evidence
indicates that the genetic networks of living cells are
dynamically critical. This has far reaching consequences,
for it is at criticality that living organisms can tolerate a
wide range of external fluctuations without changing the
functionality of their phenotypes. Therefore, it is necessary
to know how genetic criticality emerged through evolu-
tion. Here we show that dynamical criticality naturally
emerges from the delicate balance between two funda-
mental forces of natural selection that make organisms
evolve: (i) the existing phenotypes must be resilient to
random mutations, and (ii) new phenotypes must emerge
for the organisms to adapt to new environmental
challenges. The joint effect of these two forces, which
are essential for evolvability, is sufficient in our computa-
tional models to generate populations of genetic networks
operating at criticality. Thus, natural selection acting as a
tinkerer of evolvable systems naturally generates critical
dynamics.

Evolution of Criticality in Genetic Networks
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promoter which involve highly cooperative, non-linear, condition-

al relationships. These mechanisms are adequately encoded by

logical functions that can reproduce well the observed dynamics of

real networks with partially known topology [29,39,40]. But more

important, the mapping between network architecture space and

dynamical regimes is well known for Boolean networks, such that a

randomly generated ensemble of networks can be controllably

constrained by network architecture parameters. In brief, a

Boolean network is defined by a set of nodes, s1,s2, . . . ,sN ,

representing the genes, each acquiring the values sn~1 and

sn~0, corresponding to the two states of gene expression: either

the gene is expressed (gene locus is active) or it is not expressed.

The value of each node sn is determined by a set of kn other nodes

in the network, the regulators of sn, denoted as sn
1,sn

2, . . . ,sn
kn

. The

network dynamics are then given by the simultaneous update of all

the network elements according to the equation

sn(tzt)~Fn sn
1(t),sn

2(t), . . . ,sn
kn

(t)
� �

ð1Þ

where t is an average response time (usually taken as t~1) and Fn

is a Boolean function constructed according to the activating or

inhibitory nature of the regulators of sn. For specific networks of

real organisms, the connections and Boolean functions can be

chosen to capture the molecular biology of the regulatory

mechanism that is often known in the form of a qualitative

proposition that contain logical relationships. Such modeling

approach has been shown to reproduce the observed gene

expression patterns in a variety of organisms. Since we are not

interested in a particular network of a specific organism, in the

initial population we use random networks in which the kn

upstream regulators of a given gene sn are chosen randomly. The

Boolean functions of each gene sn are also assigned randomly in a

way such that for each of the 2kn activity configurations of the kn

regulators, the Boolean function outputs to Fn~1 with probability

p and to Fn~0 with probability 1-p. The value of p, referred to as

the ‘bias’ of the Boolean function, is one of the key parameters of

the global gene network architecture that influence the dynamics.

Since the discrete valued network with N genes has a finite

number 2N of possible dynamical states which form the state

space, and since the dynamics given by Eq. (1) is deterministic, any

trajectory will eventually visit a state previously visited and enter

into a periodic pattern of expression that repeats over and over

again. More than one periodic pattern can exist for the same

network. Such periodic patterns are the dynamical attractors of the

network which thus consist of either a set of states that form a

‘‘state cycle’’ (analogous to limit cycle in continuous systems) or of

a single steady state (analogous to a fixed-point attractor). The set

of states that converge to the same attractor constitute its basin of

attraction.

Three important aspects of Boolean networks are relevant here.

First, the dynamical attractors of the network correspond to the

distinct functional phenotypic states of the cell, such as cell types,

as has now been experimentally demonstrated [39–42]. Therefore,

the set of all the dynamical attractors of a given network

constitutes its phenotypic landscape (in the sense of Waddington’s

epigenetic landscape [43]) which we refer here as the attractor

landscape. Second, two broad regimes of dynamical phases that

depend on global network topological parameters can be

identified: the ordered and the chaotic phase [7,27–29,37,38].

Networks in the ordered phase are dynamically too rigid because

in such networks any perturbation in the initial condition

eventually disappears and the networks relax back to the pre-

perturbation state. In the extreme case, all transients converge to

only one attractor state, thus permitting only one stable

phenotype. By contrast, networks in the chaotic phase typically

have large numbers of attractors and/or vastly long transients and

are extremely sensitive to small perturbations, making all network

states very unstable. And third, there is a continuous phase

transition between the ordered and chaotic phases that is

characterized by a nontrivial critical point. Networks that operate

close to this critical point display a series of interesting properties

of complex systems, such as the maximization of information

processing needed for ontogenetic complexity [34,44].

One order parameter that determines in which dynamical phase

the network operates is the average network sensitivity S defined as [45]

S~2p(1{p)K , ð2Þ

where K is the average number of upstream regulators per gene

and p is the fraction of positive (activating) regulations in the set of

all Boolean functions in the network. If Sv1 the network is in the

ordered phase, and if Sw1 it is in the chaotic phase [7,27–

29,37,38]. The critical phase is attained at S~1.

Note that the above definition of the ordered, critical and

chaotic phases refers to the level of dynamics, namely, to the

response of the network to transient perturbations. However, we

recently found that classification of networks into these dynamical

regimes has an interpretation that extends to the evolutionary time

scale. Specifically, the probability for a change of the attractor

landscape, thus of the global phenotypic behavior, following

simple mutations to the network structure is very low for networks

in the ordered phase and is very high for chaotic networks [46].

Hence, networks in the ordered regime are not evolvable because

they absorb the effect of mutations in a large space of neutral

mutations. On the other hand, those in the chaotic regime are

highly innovative in the sense that their attractor landscape

undergoes large scale changes following the small mutations—but

they lack mutational robustness. Critical networks are peculiar

because following a simple mutation, new attractors emerge with

high probability while conserving existing attractors. Thus, critical

networks are both robust and capable of useful innovation, hence

are evolvable. In view of this relationship between criticality and

evolvability, the question of how genetic networks became

dynamically critical is thus linked to the question of how

evolvability arose through evolution. Could the evolution of

evolvability account for the evolution of criticality?

Results

Evolutionary algorithm
We simulated the evolution of genetic networks in a starting

population of M0 = 1000 different random Boolean networks each

with N = 10 nodes. Initially, all nodes have exactly K0 upstream

regulators and the Boolean functions have a bias p = 0.5. Hence,

the sensitivity of the networks in the first generation is entirely

determined by the initial network connectivity K0 through

S0~K0=2 (Eq. 2). We mutate the networks in the population by

implementing a mutation algorithm that captures fundamental

properties of biological genome growth. Specifically, each node

represents a gene that is composed of a regulatory region and a

coding region, as illustrated in Fig. 1, and mutations can occur in

any of these two parts. Mutations in the regulatory region consist

in the addition or deletion of binding sites to DNA. These

mutations change the way in which the node is regulated by its

upstream regulators (see Fig. 1B and the Methods section for a

detailed description of the mutation algorithm). Briefly, mutations

in the regulatory region of a given node sn can eliminate or

Evolution of Criticality in Genetic Networks
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establish regulatory inputs from existing or new upstream

regulators, respectively, or produce changes in its Boolean

function. On the other hand, mutations in the coding region of

node sn change the spectrum of its target nodes, which translates

into the gain of new targets, loss of existing ones or changes in the

Boolean functions of the targets of sn. Finally, network growth is

implemented by simulating the evolutionary mechanism of gene

duplication followed by divergence [47]. This is done by randomly

choosing one node in the network and duplicating it, along with its

network connections, thus increasing the number of nodes in the

network from N to N+1. We then simulate gene divergence by

mutating either the regulatory or the coding regions of the

duplicated node sNz1. Due to computational limitations,

networks were allowed to grow up to a maximum size of

N = 100. It is important to mention that even if the mutation

algorithm effectively implements the random addition or removal

of input or output connections in the network or changes in the

Boolean functions of the nodes, the probabilities for these effective

mutations to occur change from one node to another and also in

time. The reason for this is that these effective probabilities depend

on the network size and on the number of binding sites that each

node has. Therefore, in the Materials and Methods section we

present the mutation algorithm in terms of the probabilities for

adding and removing binding sites to the regulatory regions of the

nodes because these probabilities remain constant throughout time

and across the network elements.

Darwinian selection
Mutations in the regulatory or coding regions of the nodes occur

randomly with a mutation rate m~0:01 per gene per network per

generation. Once a given gene is selected to be mutated, one of the

mutations [(1)–(6), as described in the Methods section] is

performed. Let Mg be the number of networks in the population

at generation g. Then, on average mNMg networks undergo

mutations in one of their genes and are subjected to selection. To

select for mutational robustness we evaluate at each generation

whether or not the mutated networks conserve the attractors that

they had before the mutation and eliminate from the population

those networks which do not conserve all their attractors. By

attractor conservation we mean strict maintenance of identity of

attractor states. If after the mutations one of the network attractors

changes even only by one bit in its binary states, that change is

enough to declare that attractor as non-conserved. Only the

networks that conserve all the attractors they had before the

mutations will pass to the next generation. We will refer to this

selection process as the attractor conservation criterion (ACC). The

elimination of the networks that do not satisfy this criterion

reduces the population size to a new value ~MMg. If ~MMgw500 the

population is still big enough and we just go to the next generation

without replicating any network. However, if ~MMgƒ500 we

replicate the surviving networks in order to restore the population

to its original size M0 = 1000 (or to a size as close as possible to

1000). For this we have to decide whether all the networks will

equally reproduce, or if some networks will reproduce more than

others. In the latter case, we have to define a fitness function which

will determine the number of copies (daughters) generated by each

of the surviving networks to maintain the population size. Let us

assume that we already have a fitness function that assigns a fitness

value ai to the ith surviving network in the population, with larger

values of ai corresponding to fitter networks. In the next section we

give a precise definition of ai based on the gene expression

variability within the attractors but for the time being let us just

assume that ai is already given. Then, if ~MMgv500 the ith surviving

network will produce mi~ Cai1000½ � daughters, where the

function f (x)~ x½ � gives the closest integer to x and the

normalization constant C~
P ~MMg

i~1 ai

� �{1

guarantees that the

new population size Mgz1~
P ~MMg

i~1 mi is as close to 1000 as

possible. (We cannot always make it exactly equal to 1000; for

instance, if ai~1 for all networks and ~MMg~300, then triplicating

each surviving network will restore the population to Mgz1~900).

Figure 1. Gene structure. (A) Schematic representation of the
network, showing that each node (circles) ‘‘contains’’ one gene (little
bars inside the circles). The arrows represent the regulatory interactions
between the genes. (B) Each gene sn is composed of a regulatory
region and a coding region. The regulatory region contains binding
sites which can be added to, or removed from, the regulatory region
with the same probability. (C) The binding sites in the regulatory region
determine the regulators of sn (its input connections). There can be
more than one binding site per regulator (as the regulator on the very
left), although at the beginning of the evolutionary process the initial
networks have only one binding site per regulator. The regulatory
region of sn determines which other genes it regulates.
doi:10.1371/journal.pcbi.1002669.g001

Evolution of Criticality in Genetic Networks
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We will refer to this replication mechanism as the a-fitness

criterion.

In order to simulate phenotypic innovation, every 2000

generations all networks in the population simultaneously undergo

a gene duplication-divergence event. Therefore, the duplication

rate is in the order of 1025 per gene per generation which is in the

broad range of estimates based on genome sequence data and

similar to numbers used in previous models of network evolution

[48–50]. After this event the only networks that survive and pass to

the next generation are the ones that, in addition to fulfilling the

ACC, also generate new attractors. We will refer to this selection

rule as the attractor innovation criterion (AIC). Therefore, under this

criterion we eliminate from the population all the networks which,

after the duplication event, either do not satisfy the ACC or do not

generate new attractors (even if some of these latter networks fulfill

the ACC). In principle, any mutation can generate new attractors.

However, we evaluate the emergence of new attractors only after

gene duplication events because it is known that the average

number of attractors increases with the size of the network N

[51,52]. Therefore, it is much more likely to find new attractors

when the network grows. It is worth noting that before the

duplication event the network had N nodes, and after the

duplication it has N+1. Hence, to compare the attractors of the

network before and after the duplication event in order to check

for conservation or innovation, we only take into account the first

N nodes of the network (genome) which are the ones common

before and after the duplication event, and ignore the value of the

(N+1)th node which represents the new gene resulting from the

duplication event. Another important point to mention is that, due

to computational limitations, in our simulations the whole set of

attractors in the attractor landscape was determined only for small

networks (N,25). For large networks (N$25) a thorough search of

the state space to find all the attractors is very time consuming and

not feasible. Therefore, to assess attractor innovation in large

networks we sampled just a subset of the V~2N possible states.

Clearly, the AIC was applied only to the attractors that were found

with this subsampling. In the Methods section we explain the

details of the algorithm to find new attractors.

Fitness function based on gene expression variability
Another aspect we took into account when new attractors

emerge is that the nodes in these attractors must contribute to a

phenotype. In other words, as the network grows and mutates, the

new nodes added to the network cannot be all frozen in state 1 or

all frozen in state 0. In the attractors some of the new nodes must

be 1 and some others must be 0 (or they can oscillate as well).

Without this condition, the growing part of the network would

carry no useful information. Networks whose attractors have no

information are biologically irrelevant, as it is known that real

organisms have gene expression profiles with high information

content [6–8]. Thus, the information content of the attractor states

can be used to define the aforementioned fitness function that

determines the replication rate of the networks. In order to do so,

we define the average gene expression variability of the network

attractors as a~
1

2
(1{Dy1{y0D), where y0 and y1 are the

average fractions of 0’s and 1’s in all the states of all the attractors

of the network (clearly, y0zy1~1). Thus, a&0 if almost all the

nodes in the attractors are in only one state (either 0 or 1), whereas

a&0:5 if more or less half of the nodes in the attractors are in the

state 1 and the other half in the state 0. In order to implement this

phenotypic fitness after the duplication event, when restoring the

population to a size close to 1000, we replicate each surviving

network by a quantity proportional to its average gene expression

variability a. This is the a-fitness parameter that we mentioned in

the previous section.

It is important to note that there are two ways to measure the

variability a, as illustrated in Fig. 2. The first way is to measure the

variability along the N nodes of each attractor state (Fig. 2A), and

then average over all the states in the attractor and over all the

attractors in the network. We will refer to this parameter as the

horizontal gene expression variability and denote it as ah. The

second way is to measure the variability of each node sn

individually along the attractor cycle (Fig. 2B) and then average

over all the nodes in the network and over all the attractors. We

will call this quantity the vertical gene expression variability and

denote it as av. These two parameters need not give the same

results, as illustrated in Fig. 2, where ah&0:5 whereas for the same

attractor av&0. In all the numerical simulations presented here

the a-fitness criterion was implemented using the horizontal

variability ah.

It is also important to stress the fact that the ACC

(corresponding to mutational robustness), the AIC (corresponding

to phenotype innovation), and the a{fitness act on the attractor

landscape, which is entirely an intrinsic dynamical property of the

network. Therefore, our selection criteria do not train the network

to perform an arbitrary task imposed externally. On the contrary,

the ACC, the AIC and the a{fitness acting together throughout

the evolutionary process optimize the networks in the population

with respect to the evolutionary trade-off by taking into account

conservation and expansion of the network’s intrinsic attractor

landscape, whatever it is.

Emergence of criticality
Fig. 3A shows the evolution of the average network sensitivity

SST of the population, where the average is taken over all the Mg

networks in the population at generation g. The four different

Figure 2. Gene expression variability a. This parameter, which
measures whether the genes are frozen in one state, either 0 or 1, or if
they more or less switch back and forth between these two states, can
be computed in two distinct ways. The first way (horizontal variability
ah) is to measure sn along each attractor state, as shown in A, and then
average over all the attractor states and over all the attractors in the
attractor landscape. The second way (variability av) shown in B, is to
measure the variability for each gene throughout time along the
attractor cycle, then average over all the genes in the network and over
all the attractors. This is illustrated by the particular example for the
same attractor where ah&0:5, whereas av&0.
doi:10.1371/journal.pcbi.1002669.g002

Evolution of Criticality in Genetic Networks
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Figure 3. Evolution towards criticality. (A) Evolution of the average network sensitivity for four different populations, each initially composed of
networks in one of the three dynamical regimes: ordered (K0~1,S~0:5, black), critical (K0~2,S~1, red), and chaotic (K0~3,S~1:5, green; and
K0~4,S~2, blue). Under the Darwinian selection given by the ACC and AIC, all the populations quickly become critical (SST?1), regardless of their
initial dynamical regime. The inset shows that convergence towards criticality occurs during the first 10000 generation steps. The control curves (in
light gray) were obtained by evolving populations without selection, and show that the mutagenic method alone drives the networks into the
chaotic regime (SST?2). (B) Distribution of sensitivities at two different generations for the population that started with K0~3 chaotic networks. In
early generations P(S) is quite broad (dashed line), reflecting a great diversity of networks. However, through evolution all the surviving networks
approach criticality and the distribution P(S) narrows down (solid line). The distribution shown here at generation g~200000 has
SST~0:998+0:035.
doi:10.1371/journal.pcbi.1002669.g003
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curves correspond to four different starting populations, each

consisting either of only ordered networks, only critical networks,

or only chaotic networks, according to the initial sensitivity

S0~K0=2. The curves that converge to SST~2 (representing

chaotic dynamics) show the effect of a control algorithm in which

mutations where applied without selection (all networks survive in

each generation). Thus, the mutation algorithm alone does not

account for the emergence of criticality because it produces

chaotic networks. By contrast, when selection is present, the

sensitivity of the networks in all populations converge, on average,

to the value SST&1, indicating evolution to criticality. Therefore,

Darwinian selection, realized by the selection filters ACC and

AIC, promotes the evolution of networks towards criticality.

Fig. 3B shows the distribution of sensitivities P(S) in one of the

populations that started with chaotic networks (S0~2) at two

distinct generation times in the simulation, early (generation

g~2|103) and at the end (g~2|105). The distribution P(S)
reveals that not only does the average SST evolves towards

criticality (mean SST~0:998) but that the initially broad diversity

decreases throughout evolution (the standard deviation decreases

almost one order of magnitude, from DS~0:247 at generation

g~2|103 to DS~0:035 at generation g~2|105). The results

reported in Fig. 3A are highly reproducible. (In Fig. S1 we present

similar plots for 30 more realizations of the evolutionary processes,

including seven realizations for which the networks in the initial

population had nodes with varying input connectivity. Addition-

ally, in Fig. S2 we present the Derrida maps of the networks that

result from the evolutionary process, which show in a more formal

way that all the networks become critical. See Text S1 for a

definition of the Derrida map.)

Another important property to look at is the gene expression

variability of the evolved networks. Since in our numerical

simulations we used the horizontal variability ah as the fitness

parameter that determines the replication rate of the surviving

networks, in the final population all the networks have ah&0:5, as

expected (data not shown). However, it turns out that the vertical

variability av is also distributed mostly around av&0:5, as Fig. 4A

shows. This is a non-trivial result first, because there is no reason a

priori to expect ah&av, as these two quantities need not bear any

relationship (see Fig. 2). But second, and more importantly,

because control networks that are explicitly constructed to be

critical de novo have a distribution of vertical variability av

dominated by av&0, as shown in Fig. 4B. Thus, the fact that

the evolved networks have both av&0:5 and ah&0:5, cannot be

trivially explained as an inherent feature of criticality nor by

selection for a-fitness alone. Rather, it is a result of the entire

evolutionary processes.

To determine how restrictive the selection criteria, ACC and

AIC, that must be satisfied for a network to survive selection, are,

we measured the survival times of the networks by tracking

individual networks (Fig. 5). We tracked all initial networks in the

population by labeling them individually with an integer ranging

from 1 to 1000 at generation g~0. When one network is

replicated into several copies the ‘‘daughter’’ networks acquire the

same label from the ‘‘mother’’. Since the networks that fail the

selection criteria are removed from the population, some labels

can disappear altogether from the population. This would

correspond to the extinction of one lineage. If at generation g

only one label is left in the entire population of Mg networks this

can be considered the ‘‘fixation’’ of a particular strain in the

population and we re-label the networks again from 1 to Mg.

Fig. 5A shows the evolution of strains (labels) through 20,000

generations. Presence of individual strains in the population is

indicated by the horizontal lines, with the longest surviving strains

defining the fixation events indicated by the vertical lines. The vast

majority of strains disappeared from the population very quickly

while only very few strains survived for long periods. Interestingly,

a goodness-of-fit test indicates that the distribution P(t) of survival

times t is highly consistent with a power-law, P(t)&t{c with

exponent c~2:235 (Fig. 5B), as observed for geological life spans

of genera from fossil records [53]. Whether or not P(t) is in fact

best fitted by a power-law is here not of fundamental relevance. Of

significance however is the broad tail exhibited by this distribution,

for it shows that the vast majority of strains disappear very quickly

from the population and only very few strains are able to survive.

Therefore, the results reported in Fig. 5 demonstrate that

evolution towards criticality via the fitness criteria of attractor

conservation and innovation, and of gene expression variability,

indeed confronts the population to a series of highly restrictive

selective filters (bottlenecks) through which only very few networks

are able to go.

The data reported in Figs. 3 and 5 also show that, even though

there is a great genotypic and phenotypic diversity in the initial

population (because initially all the networks are structurally

different and have different attractor landscapes), throughout

generations the population passes through a series of selective

filters which decrease this diversity by eliminating from the

population the majority of strains. Indeed, it is clear from Fig. 5

that several fixation events occur throughout the evolutionary

processes. Therefore, at the end of the simulation all networks in

the population come from one common ancestor. This has the

remarkable consequence that all networks in the final population

have the same phenotype (the same set of attractors), but slightly

different genotypes. These small genotypic differences are reflected

in the small, but not vanishing, standard deviation in the final

distribution of sensitivities. In the next section we will come back to

the structural differences that exist between the networks in the

final population.

Structure of the evolved networks
Of great interest is the structure (or topology) of the networks

that survive until the end of the evolutionary processes, for such

structure should encode the evolutionary trade-off that these

networks were optimized for. We started the simulation with

homogeneous random networks for which all nodes had the same

number of inputs (in-degree) K0 and where the number of outputs

(out-degree) was Poisson distributed. However, at the end of the

simulation the evolved networks contain global regulators, namely,

nodes with a large number of output connections (targets), as

illustrated in Fig. 6. In fact, the typical network structure produced

by our evolutionary process was qualitatively similar to the

structure of the giant component of the E. coli transcription factor

interaction network [2,3,46] (Fig. 6). This structure is character-

ized by short-tailed in-degree distributions (Poisson or exponential)

and long-tailed out-degree distributions. Such an outcome was

unexpected for two reasons. First, the specific structure of the

network was never explicitly considered in the selection mecha-

nism nor did we implement any explicit re-wiring rule as in other

models of network evolution [36,54,55]. Second and more

importantly, global regulators introduce strong correlations in

the network dynamics and it is not obvious that these correlations

offer an advantage in surviving the selection pressure imposed by

the ACC and AIC. Although the final networks are too small to

accurately determine the out-degree distribution resulting from

this evolutionary process (N = 100), the systematic occurrence of

nodes with a high number of output connections (hubs) suggests

that this type of network structure could also be an emergent

property intimately related to the critical dynamics and evolva-
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bility of the network, as it has been suggested for other types of

networks [56,57]. It is important to mention that the existence of

hubs in the evolved networks is not simply a consequence of the

mutagenic algorithm because control networks that ‘‘evolved’’

without selection but subjected to the same type of mutations do

not exhibit this characteristic (see Fig. S3).

As was mentioned before, although all networks in the final

population had exactly the same attractor landscape, the networks

themselves are not identical to one another. This is shown in Fig. 7,

where three networks randomly chosen from the final population

are displayed (A, B, and C). It is clear that, although similar, these

networks are not identical. The final diagram D is a superposition

of all the Mf ~505 networks in the final population. Since all the

final networks came from the same common ancestor, the genes in

all these networks have the same evolutionary history. Therefore,

it is possible to stack up these networks on top of each other and

compare them. In order to measure the degree of similarity

between these networks, we computed the fraction of occurrence

lij of the link between the nodes si and sj in the population, for all

pairs i and j. Thus, if lij~1 the two nodes si and sj were

connected in all the networks in the population, whereas if

lij~Mf
{1&0 then these two nodes were linked only in one

network of the population and disconnected in the rest of the

networks. Very remarkably, Fig. 7D shows that the more persistent

links in the networks throughout the population are the ones that

belong to the global regulators.

The existence of global regulators in the final networks raises the

question as to whether the common ancestor network (from which

all the other networks evolved) had, just by chance, some nodes

with a ‘‘special’’ topological context that predestine them to

eventually become the global regulators. For instance, it could be

the case that the common ancestor network contained nodes with

a number of output connections far above average. These initial

hubs might have played an important role in controlling the

network dynamics from the very beginning and therefore they may

have remained being hubs throughout the evolutionary processes

and end up as the global regulators observed in the final networks.

To answer this question we performed simulations in which all the

networks in the initial population were explicitly constructed with

one node with a high number of output connections. Fig. 8A

shows a typical example in which the common ancestor network

has one hub that regulates 80% of the other nodes in the network

(in this particular case the hub is node 9). However, at the end of

the evolutionary process (generation g = 200000) this initial hub

has turned into just another ordinary node in the network with no

special characteristics (Fig. 8C). This can be seen more quantita-

tively in Fig. 8D, which shows, for each link si?sj of the common

ancestor network, the fraction of occurrence lij of that link in the

entire population at two generation times: after the first fixation

event (black histogram), and in the final population (red

histogram). It is apparent from this figure that even after the first

fixation event the initial hub has lost some of its connections in

many networks of the population. At the end of the simulation

processes none of its original connections significantly occurs in the

final population. By contrast, two of the original nodes (nodes 2

and 7) without any special property become the global regulators

in the final networks. Results similar to the ones reported in Fig. 8

Figure 4. Genetic variability in the attractors. (A) Histogram P(av)
of the vertical genetic variability av in the attractors of the evolved
networks. Note that most of the genetic variability is concentrated
around av~0:5, which indicates that most of the genes in the attractors
of the evolved networks switch back and forth between 0 and 1
throughout time. There are almost no frozen genes in these attractors
(P(0) is relatively small). (B) Histogram of the vertical variability in the
attractors of de novo critical networks that were constructed to be
critical by design and did not go through the evolutionary process.
Note that in this case most of the genes are frozen in time, as the
largest peak at P(0) indicates.
doi:10.1371/journal.pcbi.1002669.g004

Figure 5. Survival times of the different strains in the
population. (A) Plot of the network labels (strains) that are present
in the population at a given generation. Each horizontal line indicates
the survival time of a particular strain. The vertical lines indicate the
fixation events in which all the networks in the population are relabeled
after only one strain was left in the entire population. (B) Distribution
P(t) of survival times computed during 2|105 generations (black
curve). This distribution was computed using logarithmic bins. Only
data for t§20 are presented because we checked the existence of
strains every 20 generations. The red dashed line is the best fit which
corresponds to the power-law t{2:235. The inset shows the correspond-
ing cumulative distribution F (t)~

Ð t

0 P(t)dt, which better reveals the
goodness of the power-law fit. The fact that P(t) has a more or less
power-law behavior implies that almost all the strains disappear from
the population very quickly, whereas only very few networks are able to
survive the Darwinian selection mechanism given by the ACC, the AIC
and the a-fitness criterion.
doi:10.1371/journal.pcbi.1002669.g005
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systematically occurred in our numerical simulations, namely, the

initial hubs in the common ancestor networks always lost their

‘‘hub’’ property throughout the evolutionary processes and ended

up just as random ordinary elements in the final networks.

Furthermore, very often the nodes that became the hubs in the

final networks were not even present in the initial networks, but

added later at some intermediate generation as a result of a

duplication/divergence event.

Importance of the a-fitness criterion
The a-fitness criterion was introduced to increase the repro-

duction rate and hence to favor those networks that exhibit high

gene expression variability (information content) in their attractor

states. If we perform the evolution of the networks solely by

applying the ACC and the AIC but without using the a-fitness in

the selection (which is equivalent to setting a = 1 for all networks),

then all the surviving networks at each generation will generate the

same number of descendants, equally contributing to the

population at the next generation. Under such circumstances,

the attractors in all the networks of the population will end with

only zero values for s, as shown in Fig. 9A (only the first 10 genes

show some activity because they were the only ones present in the

initial generation). This is mainly due to steps 1 and 3 of the

mutation algorithm presented in the Methods Section which,

together with the ACC, introduce a bias towards the state 0 in the

Boolean functions. This in turn is needed to consider the physical

meaning of the new Boolean functions: Each time a new gene

sNz1 is added to the network (through a gene duplication), the

extension of the Boolean functions of the target genes that have

accepted the new gene sNz1 as their new regulator (input) is

carried out by expanding the Boolean function’s truth tables of

each target gene as follows: Where in the configuration of the new

expanded input vector (row in truth table) the new gene has value

sNz1~1 the output of that target gene is assigned 1 or 0

randomly; whereas when sNz1~0 in the input vector, the output

is kept equal as it was before the addition of the new gene because

in that input configuration the new regulator is in the off state and

does not contribute to the regulation. Consequently, it follows that

a trivial way to fulfill the ACC and preserve the old attractors after

the duplication event is by selecting networks in which the new

gene is inactive (i. e. sNz1~0) in all the attractors, since in this

case the new part of the Boolean function is never used. Thus,

without the a-fitness filter, all the new genes would appear in the 0

state in all the attractors. (This does not mean that in the transient

Figure 6. Network structure generated by the evolutionary process. The top-left network shows the structure of the giant component of the
transcription factor interaction network of E. coli according to the RegulonDB [3]. This network has N = 101 nodes and average connectivity K = 2.46.
The structure on the top-right corresponds to the typical network that results from our evolutionary algorithm, which in this particular case has
N = 100 nodes and average connectivity K = 1.85. Note the existence of global regulators, i.e. nodes with a great number of output connections. The
bottom panel presents in a log-log plot the out-degree distribution of these two networks to illustrate their remarkable similarity.
doi:10.1371/journal.pcbi.1002669.g006
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states before the attractor is reached, the new genes cannot take,

transiently, the value 1.)

However, it should be noted that even without the a-fitness we

can still obtain critical networks as a result of the evolutionary

process. To show that criticality does not depend on a-fitness we

enforced the evolution of criticality and show that such networks

do not exhibit a-fitness. Thus, we evolved populations of networks

subjected to the ACC and the AIC as usual. But instead of using

the gene expression variability a as the additional fitness

parameter, we demanded sensitivity S to be close to 1 as a

Figure 7. Structural variability within the population. Although all networks in the final population have the same attractor landscape, they
are structurally not completely identical to each other. Here we show three networks randomly chosen from the final population (A, B and C). The
image in D is a superposition of all the Mf ~505 networks in that population. The link persistence is defined as lij~mij=Mf , where mij is the number
of networks in the final population in which the nodes si and sj were connected. The links in D have been colored according to their persistence
(white for lij~0 and red for lij~1). It is apparent that the highly persistent links mostly belong to the global regulators (hubs). This strongly suggests
that the global regulators play an important role in determining the phenotypic landscape of the population.
doi:10.1371/journal.pcbi.1002669.g007
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selection criterion. Specifically, we explicitly selected for criticality

by making the replication rate of the networks proportional to

b~1{DS{1D. Thus, networks with S<1 were replicated at a

higher rate than networks with S far from 1 (networks with

negative values of b did not replicate). Fig. 9B shows the evolution

of the average network sensitivity using this ‘‘S-fitness’’ criterion

(together with the ACC and the AIC). As expected, the average

sensitivity of the population very quickly approaches 1 and

remains close to 1 throughout the evolutionary process. Fig. 9C

shows the histogram of sensitivities in the final population

Figure 8. Evolution of the network topology. (A) The common ancestor network has 10 nodes and one of them (node number 9) is a global
regulator that regulates 8 other nodes. (B) Diagram of strain survival times showing the first fixation event at generation g = 6411 (indicated by the
red arrow). The common ancestor network is the one that gives rise to the population of the first fixation event. (C) Structure of a randomly chosen
network in the final population (generation g = 250000). The initial hub (node number 9) is the one marked with the red circle. Note that at the end
this is not a hub anymore, but just another ordinary node of the network. (D) Distribution of the link persistence lij for the 10 connections i?j of the
common ancestor. The black and red histograms represent the populations at the first fixation event and at the end of the simulation, respectively.
Even after the first fixation event, the links 9?1, 9?3 and 9?8 almost disappear from the population. Furthermore, in the final population none of
the links of the initial hub occur at significant frequency. By contrast, link 2?0 is present in all the networks of the final population because node 2
became a hub throughout the evolutionary processes. Link 2?0 is indicated with the blue bold arrow in (A).
doi:10.1371/journal.pcbi.1002669.g008
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Figure 9. Importance of the gene expression variability as a fitness criterion. (A) Typical example of the attractors obtained when the
evolution of the population is carried out without implementing the a-fitness criterion. In this particular case, instead of the a-fitness we used the S-
fitness which assigns a higher replication rate to the networks whose sensitivity is closer to 1. The final attractor landscape consisted of 91 attractors,
and only 4 are partially shown here (only the first 45 digits in each attractor state are shown; the remaining 55 digits are all 0’s). Note that only the first
10 digits in each attractor state show some activity. There are the 10 genes in the networks of the original population. (B) Plot of the average
sensitivity of the population throughout generations, showing that the sensitivity very quickly approaches 1 and remains very close to 1. This is
expected since we are explicitly selecting for networks with sensitivities S&1. (C) Histogram of sensitivities in the final population (generation
g = 200000), showing that most networks in the final population have become critical. The inset shows the structure of a typical network in the final
population. Note that this network exhibits a more homogeneous random topology with no hubs. This is always the case when a-fitness is not used
as selection criterion.
doi:10.1371/journal.pcbi.1002669.g009
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(generation g = 200000). It is clear that this process generates

critical networks with S<1, although their attractor landscape

(shown in Fig. 9A) has no information content whatsoever. Very

remarkably, however, the networks produced in this way always

exhibited random topologies with no hubs at all (see the inset in

Fig. 9C). The networks developed hubs only when the a-fitness

was used (together with the ACC and the AIC) and consequently

the attractors exhibited genetic variability distributed around

a = 0.5, as in Fig. 4A.

Robustness of the evolved networks
Since the evolved networks were selected to optimize the

evolutionary trade-off, it is important to determine the robustness

of their attractor landscapes under mutations. This robustness

should be compared against the one observed in networks that are

also critical, but that did not go through the evolutionary process.

To measure such robustness, we removed one gene from the

network and computed the probability P(q) that a percentage q of

the existing attractors is conserved as a result of this mutation. (We

also implemented other types of mutations, such as rewiring or

removing some input or output connections of one gene, or

changing its Boolean function, and the results are qualitatively

similar.) Each gene in the network and each network in the

population was subjected to such a deletion mutation and analysis

of its consequence. It should be mentioned that the networks in the

final population had between 100 and 500 attractors (most likely

the total number of attractors per network was higher but we

worked with no more than 500 attractors per network—see the

Methods section for a description about the search of new

attractors). We also computed P(q) for critical networks of the

same size (N = 100) as the evolved, but that were constructed de

novo to be critical, namely, networks that were constructed with an

initial sensitivity S&1 and did not undergo any selection process.

Fig. 10 shows the probability P(q) for the evolved networks (panel

A) and the de novo networks (panel B). Note that following deletion

of one gene, the de novo critical networks either conserve the entire

attractor landscape (P(100)&0:45), or none of the existing

attractors is conserved (P(0)&0:3). There are almost no other

choices for these networks because P(q)&0 for intermediate

values of q between 0 and 100. In contrast, the evolved critical

networks do not exhibit such all-or-none behavior. Instead, with a

very high probability all the existing attractors in the evolved

networks are conserved (P(100)w0:6), whereas for q,100 the

probability P(q), although small, was appreciably larger than zero.

Remarkably, it never happened in our simulations that all the

attractors of the evolved networks changed after the deletion of

one gene, as it is apparent from Fig. 10A, i.e., P(0)~0. This last

result indicates that, under the deletion of one gene, the evolved

networks change only one fraction of their attractors but not all of

them and that most likely, they will not change anything. The

above behavior epitomizes mutational robustness and is consistent

with knockout experiments in many organisms, which reveal that

the knockout (or mutation) of one gene (node of the network) most

of the time does not cause gross phenotype change.

Discussion

Dynamical (phenotypic) robustness, the return to attractor states

following perturbations of gene activities, and flexibility, the ability

to switch between attractors, are two central properties common to

all living organisms. While apparently opposed to each other, they

jointly guarantee developmental robustness and homeostasis while

allowing for developmental change and physiological adaptation

to (i.e. intra-individual coping with) environmental fluctuations

within the lifetime of an individual. Networks that are dynamically

in the critical phase are poised between such phenotypic

robustness and flexibility and have been shown to exhibit maximal

information diversity to cope with changing environments [27,34].

Here we show that the ontogenetically important coexistence of

dynamical robustness and flexibility (the developmental trade-off)

is related to an analogous balance between the opposing

phenomena at the phylogenetic time scale: mutational robustness

(preservation of attractor landscape following mutational network

rewiring) and innovation (expansion of the attractor landscape).

The selection for these two properties using the attractor

conservation (ACC) and innovation (AIC) criteria as biologically

plausible fitness filters in simulated network evolution led to

networks whose structural properties and Boolean functions

dictated a dynamically critical behavior (Fig. 3).

We should note that for the AIC in this evolutionary scheme,

innovation of phenotypes occurs in two distinct ways. On the one

hand, the generation of new attractors can be considered as the

emergence of new phenotypes. On the other hand, the addition of

new genes to the network also adds new information to the already

existing attractors by modifying the attractor states and their

basins. In either case, for this information to be useful and

contribute to an organism’s discriminatory response to variable

environments, the new genes must have an activity that changes

from one attractor to another. Therefore, a third ad hoc biologically

motivated selection constraint we used was that the average

variability of the genes in the attractor landscape must be

significantly different from 0. Although this constraint is biolog-

Figure 10. Robustness of the attractor landscape. Plots of the
probability P(q) that a percentage q of the network attractors is
conserved after a gene the knockout of one gene for critical networks
constructed de novo (A) and the critical networks that result from the
evolutionary process (B). The differently colored distributions in B
correspond to populations that started in different dynamical regimes
(as in Fig. 1). Note the high probability for the de novo networks to lose
all their attractors by a gene knockout (P(0)&0:3) which does not
happen for the evolved networks (P(0)&0 in all cases). Conversely the
probability to conserve all attractors is considerably larger for the latter
than for the former (P(100)&0:65 and, P(100)&0:43 respectively).
These data were computed from populations of 1000 networks and 500
attractors per network.
doi:10.1371/journal.pcbi.1002669.g010

Evolution of Criticality in Genetic Networks

PLOS Computational Biology | www.ploscompbiol.org 13 September 2012 | Volume 8 | Issue 9 | e1002669



ically important, it is not required for the evolution towards

criticality because one can construct critical networks whose

attractors have a nearly zero genetic variability (Fig. 9). However,

only when the genetic variability of the attractor landscape was

appreciably different from 0 did the networks evolve structures

with global regulators (hubs). Indeed, based on our numerical

simulations we can assert that the hubs emerge with high

probability whenever the networks are forced to conserve

attractors with high genetic variability, namely, with high

information content. At this point this provocative statement is

an empirical observation that we have not been able to fully

quantify and deserves much more study. In any case, our results

indicate that the emergence of hubs throughout the evolutionary

processes is a consequence of the constraints imposed on the

network dynamics and not of the structure of the common

ancestor network. This is consistent with studies carried out for

other types of networks in which the dynamical constraints

strongly determine the network architecture [56,57]. It is

important to mention that we have not been able to identify any

special structural property of the initial nodes of the common

ancestor network that can predict which particular nodes will

eventually become global regulators in the final networks. In fact,

when we explicitly provided some of the initial nodes with a special

property, such as with high output connectivity or a special type of

Boolean function, that property was lost through the evolutionary

process. We should also note that the mutation algorithm alone

does not generate hubs either. For networks that undergo

mutations and gene duplication events but without selection do

not acquire this topological feature (see Fig. S3).

Another remarkable property of the global regulators was the

high persistence of their links across the networks in the

population. Although the attractor landscape was the same for

all the networks in the final population (as they stem from the same

common ancestor), there were structural differences between them

(Fig. 7). These genotypic differences are reflected in the fact that

some regulatory interactions (links) between pairs of genes are

present in some networks but not in others. However, strikingly,

the regulatory links invariably present in all networks of the

population mostly belong to the global regulators, as Fig. 7D

shows. This strongly suggests that these global regulators play a

fundamental role in maintaining the phenotypic traits (attractors)

across the population in spite of the small differences in network

structure, and may be one of the reasons why this type of topology

has been developed in real genetic networks. The importance of

the hubs to maintain the phenotypic landscape across the

population, as revealed in Fig. 7, is not a trivial result. For it has

been shown that very often the hubs are not the key elements that

influence dynamics of the network [58].

It is worthwhile calling into attention that in our simulations the

attractor conservation and innovation criteria are not as stringent as

one may think. The reason is that, due to computer limitations, the

attractor landscape can be evaluated in full only for small networks

of (e.g. Nƒ20). Thus, we completely determined the attractor

landscape of all networks in the population only for the first

generation. Thereafter, identification of new attractors was

achieved by sampling a small fraction of the state space (at most

105 states for each network). Obviously we can apply the ACC and

the AIC only to the attractors identified in such sampling and

‘‘hidden’’ attractors may exist that have been destroyed or created

by mutation. In our simulations we worked with a maximum of 500

attractors per network. However, a more thorough search revealed

that at the end of the evolutionary process, the evolved networks can

have more than 104 or even 105 attractors (see Fig. S4). Thus,

apparently we applied our selection criteria ACC and AIC to a

small fraction of the attractor landscape, underestimating innova-

tion and overestimating conservation. Quite remarkably, this was

enough to generate criticality, robustness and hub-like structures.

The under-sampling of the state space in our numerical

simulations has a biological equivalent because in reality selection

does not act on all attractors which represent potentially realizable

cellular phenotypes but rather, on the effectively existing

phenotypes. For instance, for an organism like E. coli, with

N&300 regulatory genes, it is very unlikely that all the 2300

possible gene expression configurations have been explored by

evolution – consistent with the notion that evolution is a quasi-

non-ergodic process. Most likely, the search of new phenotypes

(attractors) occurs by perturbing the already existing and occupied

attractors. Thus the search is conducted in their state space

neighborhood, which precisely reflects the algorithm we used to

find new attractors (as described in detail in the Methods section).

The idea that novel attractors must be reachable from existing

ones that are already occupied by cells has wide-reaching

consequence for the evolution of multi-cellularity and develop-

ment [59].

Our approach does not study the evolution of evolvability per se

but complements several studies of this question that use gene

network-based computational models because we reverse the

question: First, we do not impose an artificial ‘‘optimal‘‘ phenotype

(such as an arbitrary ‘‘equilibrium state’’ or attractor which

networks are selected to maintain or evolve towards). Much to the

contrary, the critical dynamics of our resulting networks was not

an explicit selection criterion but is an independently known

property of some networks that exhibit naturally high fitness.

Second, we instead selected directly for properties related to

evolvability, namely conservation and innovation of attractors, of

which the former is of course directly related to phenotypic

robustness. By not selecting for a particular phenotype through an

artificially defined fitness value (as in [14–19]), we avoid exposing

mutational robustness that simply reflects the known convergent

mapping of many distinct network structures into one same

phenotype (‘‘equilibrium state’’). Third, our selection criteria

introduce the notion of global dynamics, embodied by the multi-

attractor landscape as phenotype which, in contrast to the use of a

single expression pattern as target phenotype, captures phenotypic

adaptability and versatility of an organism. Quite interestingly, the

critical networks produced by our evolutionary algorithm exhibit

considerably higher mutational robustness than critical networks

constructed de novo. Indeed, there is a high probability for the latter

to change all their attractors after a simple mutation, whereas for

the former this never happens (Fig. 4).

In conclusion, we do not present here a ‘‘molecular’’

mechanism, based on particular topological structures or muta-

tions, to generate critical networks with global regulators. Instead,

we propose a ‘‘dynamical’’ mechanism based on the conservation,

innovation and information content of the attractor landscape.

Our results show that dynamical criticality, a central property for

the functioning of a living organism, naturally emerges as a

consequence of evolution that favors evolvability. In other words,

such an evolutionary process is sufficient for and robust in

producing dynamical criticality. In our model such criticality

appears as a coextensive property of evolvability and is not a direct

adaptive phenotype. Whether evolvability in terms of our criteria

ACC and AIC is necessary remains open. Specifically, we cannot

exclude that in another evolution scenario there could be an

adaptive component in the evolution of criticality, i.e. natural

selection may directly favor networks with S&1. Then, the

resulting networks could be associated with evolvability, in which

case evolvability would be coextensive to a selected dynamical

Evolution of Criticality in Genetic Networks

PLOS Computational Biology | www.ploscompbiol.org 14 September 2012 | Volume 8 | Issue 9 | e1002669



network property, i.e. a consequence of it rather than a direct

result of selection, as proposed in other network models. The

mutual relationship between dynamical criticality and evolvability

remains thus to be evaluated carefully. But because evolution of

multi-attractor dynamics and evolvability by network growth

produces criticality, and since experimental evidence that existing

gene networks are dynamically critical continues to accumulate, it

is very likely that organisms that have evolved under the inevitable

constraints of evolvability became critical.

Methods

The following describes how the molecular nature of mutations,

which affects gene regulation and its effector function, translates

into a change in the Boolean network architecture. We describe

the two classes of mutations at the two different time scales: (a) At

the faster time scale, ‘‘point mutation’’ equivalents that alter the

interaction properties of individual genes (nodes) through changes

in either their regulatory or coding regions, which translate into

altering the input or output properties of each node, respectively;

(b) at the slower time scale the equivalent of larger scale genome

rearrangements that is manifest as gene duplication event and

corresponds to a duplication of a node that drives network growth.

Point mutations
To describe the mutagenic algorithm, in what follows we denote

as sn the gene that has been chosen for mutation and as

sn
1,sn

2,:::,sn
kn

n o
its set of kn regulators whose activities {0,1} define

the 2kn ‘‘input configurations’’ (or ‘‘entries’’) to each of which the

output value of sn is assigned: sn
1,sn

2,:::,sn
kn

n o
?sn. Each gene in

the network has two parts, a regulatory region and a coding

region, as described and illustrated in Fig. 1. The regulatory region

contains the binding sites for the regulators. Point mutations can

be divided into two types, depending on whether they affect either

the regulatory or the coding region of a gene, leading to distinct

effects on the network and will be dealt with separately below. In

the initial population, each gene has only one binding site (BS) for

each of its upstream regulators. However, this situation changes

through generations since new BS can be added, or some existing

BS can be removed. The addition or removal of BS in the

regulatory region is a mutation process that can be subdivided into

the six types of mutation described below and illustrated in Fig. 11.

Mutations in the regulatory region. For a gene sn with kn

regulators there will be kn mutational events in its regulatory

region. Each of this mutational events consists in one of the

following alternatives: (i) sn gains a new binding site in its

regulatory region with probability m=2; (ii) one of the already

existing binding sites in the regulatory region of sn is randomly

chosen and removed with probability m=2; (iii) nothing happens in

this mutational event with probability 1{m. The addition and

deletion of binding sites is carried out with restrictions as explained

in what follows.

When a new BS is added to the regulatory region of sn, we have

to decide how this new BS will be occupied (Fig. 11.A). For this, we

randomly choose one gene from the entire network as the new

upstream regulator of sn. Let sr be this new regulator that will

occupy the new BS in sn. There are two distinct possibilities for sr:

1. The new regulator gene sr already belongs to the set of

regulators sn
1,sn

2,:::,sn
kn

n o
of sn (Fig. 11.B). This occurs with

probability kn=N. Let us assume that sr~sn
i for some

sn
i [ sn

1,sn
2,:::,sn

kn

n o
. In principle, when this happens the nature

of the regulation sn
i ?sn can change from activating to

inhibitory, or vice versa. Alternatively, sn
i can become a dual

regulator, being an activator or a repressor depending on

which binding site it occupies. Therefore, this gain is

implemented in our algorithm by randomly re-assigning the

entries of the Boolean function Fn sn
1,sn

2,:::,sn
kn

n o
only in those

input configurations in which sn
i ~1. The entries of the

Boolean function that correspond to sn
i ~0 do not change.

2. Conversely, sr does not belong to the existing set of regulators

of sn (which happens with probability 1{kn=N). In this case, a

new regulatory connection is created from sr to sn (Fig. 11.C).

Consequently, the Boolean function Fn has to be extended to

contain now knz1 arguments: Fn sn
1,sn

2,:::,sn
kn

,sr

n o
. This

extension doubles the number of entries (input configurations)

of the Boolean function and the new mapping of input

configurations to output value is done in such a way that, in the

entries where sr~0, Fn has the same values it had before the

addition of the new BS, whereas the new entries for which

sr~1 are assigned randomly. The addition of a new regulatory

interaction that connects sr to sn is accepted only if sn has less

regulators than a given maximum, which in out simulations

was set as kmax~12. This yields a maximum of 212~4096
input configurations for each Boolean function. The reason for

this maximum is to keep the algorithm within the limits of

computer capacity, both in computing time and memory.

Figure 11. Mutations in the coding region of a gene. This type of
mutation affects how the regulators of a given target gene sn (inputs to
node sn) jointly control its output. (A) Gene sn has acquired a new
binding site, represented by the leftmost square in green. (B) The new
binding site is occupied by one of the already existing regulators of sn.
(C) The new binding site is occupied by a completely different gene
(green circle) that thus becomes a new regulator of sn . (D) Another
mutation in the regulatory region is the deletion of existing binding
sites. Here, the deleted site belongs to a regulator for which there are
alternative binding sites left which thus remains a regulator. (E)
Conversely, the removal of the binding site can completely break the
regulatory interaction between sn and the respective regulator.
Deletion of binding sites that can leave a given gene with no regulators
at all are not allowed.
doi:10.1371/journal.pcbi.1002669.g011
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For the removal of a BS, let us assume that the selected BS to be

removed is occupied by the regulator sn
i . Then there are two

possibilities:

3. There are additional BS for sn
i other than the one being

removed (Fig. 11.D). Then, removal of one of these BS just

changes the way in which sn
i regulates sn. Therefore, in this

case we randomly re-assign the entries of the Boolean function

in which sn
i ~1. The entries for which sn

i ~0 do not change.

4. There is only one BS left for sn
i . Therefore, removal of this BS

eliminates the regulatory connection from sn
i to sn (Fig. 11.E).

The number of regulators of sn decreases by one and the

number of entries of the Boolean function halves, retaining

only the entries for which sn
i ~0. The entries where sn

i ~1

disappear from the Boolean function. To avoid generating

genes with no regulators in the network, this mutation is

accepted only if either sn has regulators other than sn
i , or if the

number of BS for sn
i is larger than one. Thus, we do not allow

nodes with no regulators in our algorithm.

Mutations in the coding region. This type of mutation

changes the way in which sn regulates its targets. Basically, this

means that sn will gain or lose output connections, or modify some

of the ones it already has. When a mutation occurs in the coding

region of the regulator sn some other genes in the network will

either lose or gain BS for sn. First we determined how many

(potential) target genes will gain or lose BS for sn in a way that

captures the fact that different regulators may have distinct

affinities to their binding sites. To do this, let ln be the out-degree

of sn (i.e. its number of output connections). Then, we choose the

number of target genes to be affected as bln½ �, where b is a random

variable uniformly distributed in the interval 0,b,1 and x½ �
denotes the closest integer to x. In other words, the number of

target genes that will be affected by a mutation in the coding

region of sn is proportional to its out-degree. This takes into

account that highly promiscuous regulators, when mutated, will

affect a larger number of genes than regulators that are less

promiscuous and more specific. We performed simulations with

different intervals for b, obtaining qualitatively similar results even

for the narrower interval 1=10vbv1=2. Once we have deter-

mined the number of target genes to be affected, with equal

probability we decide whether all these bln½ � target genes will

either gain or lose BS for sn (one BS per target gene). Therefore,

there are two cases:

5. Each of the bln½ � target genes gains a new BS for sn. These

target genes are chosen randomly from anywhere in the

genome with uniform probability. Let st be one of these target

genes. Then, we have to consider the two following possibilities

(see Fig. 12):

5.1. st belongs to the existing set of targets of sn (which happens

with probability ln=N). This means that sn is already a

regulator of st. In such a case, we add a new BS to the

regulatory region of st to be occupied by sn (Fig. 12.B), or

we remove one of the BS in the regulatory region of st

already occupied by sn (Fig. 12.C). The addition or

removal of BS in st is done by following the rules described

in mutations (1), (3) and (4).

5.2. st does not belong to the set of targets of sn (this occurs

with probability 1{ln=N). In this case we add a new BS to

the regulatory region of st to be occupied by sn (Fig. 12.D

and E). A new regulatory connection is thus established

from sn to st, which is done as described in mutation (2).

6. Each of the bln½ � target genes loses an existing BS for sn. These

target genes are then chosen randomly with uniform

probability among the set of outputs of sn. One BS is then

removed from each of these outputs according to the rule given

in points 3 and 4 above.

Gene duplication and divergence
We implement gene duplication followed by divergence by

randomly choosing one gene in the network and duplicating it. Let

sd be the gene chosen for duplication. A duplication event

increases the number of genes in the network from N to Nz1,

and sNz1 is the duplicated copy. The duplication can be

performed in two different ways.

i. sd duplicates with its own regulatory region. In this case,

immediately after the duplication, the parent gene sd and its

duplicate sNz1 are identical in the sense that they first inherit

the regulators, the Boolean function and targets from the

parent gene. Then, we simulate genetic divergence by

mutating the regulatory and coding regions of the duplicated

gene sNz1 as described in the mutations (1)–(6) above.

ii. sd duplicates without its regulatory region. Therefore, the

duplicate copy sNz1 must be inserted into the transcription

unit of another gene sm. This means that the copy sNz1

acquires the same regulators and Boolean function as sm, but

having the coding region of the parent sd (the gene sm is not

deleted or changed in any way). Then, divergence is simulated

by mutating the coding region (and hence, altering the targets)

of sNz1 as described above. Note that when a new gene sNz1

is added to the network, the targets of this new gene acquire a

new regulator (which is the gene sNz1 itself). Therefore, the

Boolean functions of the targets have to be extended to

Figure 12. Mutations in the regulatory region of a gene. This
second type of mutation affects the way in which a given gene sn

regulates its targets. (A) If sn is one of the regulators of a target gene st.
Then mutation in the coding region of sn may afford gene sn the
capacity to bind to a new site in the regulatory region of the same
target gene st (B), or abrogate the capacity to bind to an existing
binding site of that target gene (C). Conversely a change in the coding
region of gene sn may provide new binding capacity for a site in the
regulatory region of a new target, as it is shown in (D) and (E).
doi:10.1371/journal.pcbi.1002669.g012
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incorporate the new regulator. This extension is carried out as

described in the mutation step (2). As the network grows, it

takes more and more computing time to find new attractors.

Therefore, we grew the networks by gene duplication to a

maximum of N~100 genes.

Search of new attractors
In the simulations, the entire attractor landscape was known for

all the networks in the initial population only. This is possible

because the initial networks are relatively small (N~10) and the

state space can be completely evaluated to find all the attractors.

However, as the networks increase in size eventually only a

random sample representing a small fraction of the state space can

be evaluated. The search for new attractors was conducted only

immediately after the gene duplication events, every 2000

generations. To find new attractors we dynamically explored the

neighboring states of the attractors that we already had identified.

This was achieved as follows: We set the network state to a state in

one of its attractors. Then, we randomly perturbed 10% of the

genes by bit-flips (change of activity values of the genes in that

state) and evaluated the relaxation dynamics from that ‘‘per-

turbed’’ state for 60 time steps followed by evaluation of whether

or not a new attractor was found. We performed this perturbation-

based attractor search procedure 20 times for each network state

in each of the attractors. When a maximum of Natt
mx new attractors

were found for a given network, the search was stopped for that

network and the new attractors were incorporated in the expanded

attractor landscape of that network. The attractor search was then

continued with the next network in the population. For the results

presented here we used Natt
mx~10, but similar results are obtained

for Natt
mx ranging from Natt

mx~1 up to Natt
mx~10.

The reason for stopping the attractor search (for a given network)

when at most 10 new attractors were found was to keep the

computing time within reasonable limits (the whole evolutionary

process for a population of 1000 networks took on average 1.5

weeks). However, in addition to those attractors that we found and

included in the attractor landscape of the networks, many more

attractors were created after the duplication events. To obtain an

idea of how many attractors were left out of the analysis of the

evolving attractor landscapes, at the end of the simulation we

performed a more exhaustive search by randomly sampling 106

initial states in networks randomly chosen from the final population.

Fig. S4 shows the number of attractors that were discovered in this

search as a function of the number of sampled initial states.

Surprisingly, in sampling 106 initial states almost 150000 attractors

were been found within only one network!! This number was much

larger than the ,200 attractors used to evolve these networks under

the Attractor Conservation and Attractor Innovation criteria. It is

remarkable that evaluating a small fraction of the attractor

landscape (through the ACC and ACI) was sufficient to produce

robust critical networks with global regulators. Note that this

‘‘agglomerative search’’ for new nearby attractor through single bit

flip perturbations of existing attractors automatically detects

‘‘dynamically accessible’’ attractors – precisely as evolution of new

phenotypes would have occurred that has to ensure that the latter

are developmentally realizable [59].

Supporting Information

Figure S1 Reproducibility of the results. Evolution

towards criticality, as measured by the average sensitivity S, for

30 independent populations of networks. Initially, each population

consisted of 1000 networks with exactly K0 regulators per gene,

where K0 = 1, 2, 3, 4 (first four panels). Additionally, the fifth panel

(labeled ‘‘varying connectivity’’) shows six cases in which the initial

networks had nodes with varying input connectivity, ranging from

k~1 to k~Kmax, where Kmax~2,3, 4, 5, 6, 7. If for instance

Kmax~4 for a given network, this means that each node in that

network could have 1, 2, 3 or 4 input connections with the same

probability, yielding an average network connectivity K~2:5. The

last panel (bottom right) shows the histogram of sensibilities for the

final networks in all these 30 simulations, which altogether

encompass 18420 networks each with 100 nodes.

(TIFF)

Figure S2 Measures of criticality by means of Derrida
maps. A) Derrida maps of random Boolean networks operating

in the ordered (K~1), critical (K~2) and chaotic (K~3, K~4)

regimes. B) Derrida maps for 20 networks selected at random from

the final population after 200000 generations of the evolutionary

process (with mutation and selection). Note that all the curves are

tangent to the identity close to the origin, which indicates that the

final networks are critical. The data correspond to a simulation

that started from a population consisting of ordered networks only

(K0~1). Panels C) and D) show similar results for initial

populations consisting of critical (K0~2) and chaotic (K0~4)

networks, respectively. In all the cases the Derrida maps clearly

show critical behavior.

(TIFF)

Figure S3 Network structure after evolution. Typical

examples of the topology of the networks resulting from the

evolutionary process after 200000 generations for two cases: (i)

with mutation and selection (left column), and (ii) without selection

(only mutations, right column). By ‘‘selection’’ we mean here the

fulfillment of the ACC and ACI, and the implementation of the a-

fitness. The labels K0~1, K0~2 and K0~4 indicate the

connectivity of the networks in the corresponding initial

population. At the end of the evolutionary process, all the

networks subjected to mutation and selection became critical and

presented highly connected nodes (hubs). However, when only the

mutagenic algorithm was implemented without selection, the final

network structure was much more homogeneously random and no

hubs were observed.

(TIFF)

Figure S4 Existence of hidden attractors. At the end of the

evolutionary process we randomly chose some networks of the

final population and perform a ‘‘blind’’ search of attractors, which

consisted in sampling 106 randomly chosen initial states and

determining the attractors each of these states lead to. This blind

search revealed that the evolved networks had in fact much more

attractors than the ones that participated in the evolutionary

process. This figure shows a typical example of the number of

‘‘hidden’’ attractors found during the blind search as a function of

the number of sampled initial states. In this particular case, the

network had 95 ‘‘evolved attractors’’ (the ones subjected to the

selection constraints ACC, AIC and a-fitness). However, note that

after sampling 106 initial states, almost 150000 attractors had been

found and the curve does not seem to be flattening out. Thus,

there are much more attractors in the evolved networks than the

ones targeted by the Darwinian selection (the ACC, ACI and a-

fitness) through the evolutionary processes.

(TIFF)

Text S1 Measures of criticality by means of Derrida
maps. Derrida maps give information about the temporal

evolution of the Hamming distance between two dynamical

trajectories o the network. They represent another way to
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determine the dynamical regime where the network operates (in

addition to the average network sensitivity S). Here we explain the

concept of Derrida map and apply it to the networks that result

from the evolutionary process. This analysis clearly shows that the

evolved networks are critical.
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