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Abstract

The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into
a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial
information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast
responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict
image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain
a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on
multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of
more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar
evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as
different categories, whereas images with little differences were confused. These findings suggest that statistics derived
from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of
visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-
order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate
image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging
computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that
corresponds with perceived visual similarity in a rapid, low-level categorization task.
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Introduction

Complex natural images are categorized remarkably fast [1,2],

sometimes even faster than simple artificial stimuli [3]. For animal

and non-animal scenes, differences in EEG responses are found

within 150 ms [4] and a correct saccade is made within 120 ms

[5]. This speed of processing is also found for other scene

categories [6] and may require less attentional resources compared

to artificial images [7,8]. This suggests that relevant visual

information is rapidly and efficiently extracted from early visual

responses to natural scenes. However, the neural computations

involved in this process are not known.

Importantly, natural images differ from other image types such

as white noise in low-level properties (e.g., sparseness), leading to

the suggestion that the visual system has adapted to these low-level

properties [9]. This idea paved the way for optimal coding models

for natural images [10,11] and successful predictions of response

properties of visual neurons [12]. Recent work identified statistical

properties that differ even within the class of natural images, e.g.

between natural scene parts [13,14] or natural image categories

[15], showing that image statistics such as power spectra of spatial

frequency content or distributions of local image features are

informative about scene category.

The fact that it is mathematically possible to distinguish

categories based on image statistics, however, does not imply that

they are used for categorization in the brain. Image statistics may

not be sufficiently reliable, or their computation may not be

suitable for neural implementation [12,16]. We recently showed

that statistics derived from the frequency histogram of local

contrast – summarized by two parameters of a Weibull fit, Fig. 1A
– explain up to 50% of the variance of event-related potentials

(ERPs) recorded from visual cortex [17]. These parameters inform

about the width and shape of the histogram, respectively, and

appear to describe meaningful variability between images

(Fig. 1B). Importantly, we found that these parameters can be

reliably approximated by linear summation of the output of

localized difference-of-Gaussians filters modeled after X- and Y-

type LGN cells, suggesting that this global information may be

available to visual cortex directly from its early low-level contrast

responses [17].

Moreover, we found that output of contrast filters with a larger

range of receptive field sizes captures additional image information

[18]. This is not surprising since objects in natural scenes appear at

many distances and hence spatial scales [19]. In the present

implementation, the model first estimates at which scale relevant

contrast information is present, as well as characteristics of the
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distribution of contrast strengths at those scales. This model, which

approximates early visual population responses based on spatially

pooled contrasts, was able to explain almost 80% of ERP variance

to natural images [18].

These previous findings suggest that images with more similar

contrast response statistics evoke more similar early visual activity.

Could these responses already contain relevant information about

the stimulus for rapid categorization? The two parameters appear

to index meaningful information such as degree of clutter, depth

and figure-ground segmentation [17], but how the two dimensions

in Fig. 1B influence perception has not been examined. The goal

of the current study was thus to explore what type of visual

information is contained in the variance of the earliest visual

contrast responses that is so well described by these two

parameters. Specifically, we were interested in whether these

parameters cannot only predict variance in visual activity, but also

‘variance in perception’. In other words, do images with more

similar contrast statistics also lead to more similar perceptual

representations, and perhaps ultimately, to similar images being

considered a single category?

We aimed to answer this question in a data-driven manner, by

investigating 1) which images group by similarity early in visual

processing and 2) whether this grouping matches with perceived

similarity of those images. For the first part of this question, we

obtained reliable evoked responses to individual images. The

advantage of this approach relative to traditional ERP analysis

(which is based on averaging many trials across individual images

within an a priori determined condition) is that it provides much

richer data [20–24] that can be used for model selection. We used

these single-image evoked responses to compute dissimilarities in

‘neural space’, similar to the pattern analysis approach used in

fMRI [25,26]. This allowed us to track, over the course of the

ERP, to what extent the representation of an image is (dis)similar

to all images in the data set.

For the second part of the question, we needed to obtain an

image-specific behavioral judgment of perceived visual similarity.

However, simply judging similarity of natural scenes is problem-

atic, because these images obviously contain rich semantic content:

there are many features of natural scenes that can be similar or

dissimilar, which is likely to lead to different categorization

strategies by different subjects. Also, it is uncertain to what extent

specific semantic tags that are provided by the researcher (e.g.

‘openness’ or ‘naturalness’, [27]), can be uniformly interpreted as a

relevant stimulus dimension that has a linear mapping to

processing in early vision. Therefore, to explore the variance

explained by contrast response statistics in a bottom-up way, we

used stimuli that were simplified model images of natural scenes

(‘dead leaves’, Fig. 2A), which have similar low-level structure as

natural scenes (e.g. 1/f power spectra) but are devoid of semantic

content. These images are created by filling a frame with objects -

much like fallen leaves can fill a forest floor – and are used in

computer vision to study, for example, how the appearance and

Figure 1. Contrast histograms of natural images follow a
Weibull distribution. (A), Three natural images with varying degrees
of details and scene fragmentation. The homogenous, texture-like
image of grass (upper row) contains many edges of various strengths;
its contrast distribution approaches a Gaussian. The strongly segment-
ed image of green leaves against a uniform background (bottom row)
contains very few, strong edges that are highly coherent; its distribution
approaches power law. Most natural images, however, have distribu-
tions in between (middle row). The degree to which images vary
between these two extremes is reflected in the free parameters of a
Weibull fit to the contrast histogram: b (beta) and c (gamma). (B), For
each of 200 natural scenes, the beta and gamma values were derived
from fitting the Weibull distribution to their contrast histogram. Beta
describes the width of the histogram: it varies with the distribution of
local contrasts strengths. Gamma describes the shape of the histogram:
it varies with the amount of scene clutter. Four representative pictures
are shown in each corner of the parameter space. Images with a high
degree of scene segmentation, e.g. a leaf on top of snow, are found in
the lower left corner, whereas highly cluttered images are on the right.
Images with more depth are located on the top, whereas flat images
are found at the bottom. Images are from the McGill Calibrated Colour
Image Database [86].
doi:10.1371/journal.pcbi.1002726.g001

Author Summary

Humans excel in rapid and accurate processing of visual
scenes. However, it is unclear which computations allow
the visual system to convert light hitting the retina into a
coherent representation of visual input in a rapid and
efficient way. Here we used simple, computer-generated
image categories with similar low-level structure as natural
scenes to test whether a model of early integration of low-
level information can predict perceived category similarity.
Specifically, we show that summarized (spatially pooled)
responses of model neurons covering the entire visual field
(the population response) to low-level properties of visual
input (contrasts) can already be informative about differ-
ences in early visual evoked activity as well as behavioral
confusions of these categories. These results suggest that
low-level population responses can carry relevant infor-
mation to estimate similarity of controlled images, and put
forward the exciting hypothesis that the visual system may
exploit these responses to rapidly process real natural
scenes. We propose that the spatial pooling that allows for
the extraction of this information may be a plausible first
step in extracting scene gist to form a rapid impression of
the visual input.

Contrast Responses Predict Perceptual Similarity
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the distribution of these objects influences the low-level structure of

natural scenes [28]. By manipulating properties of the objects in a

controlled manner, we created distinct image categories, and then

tested whether differences between these categories in contrast

statistics matched with behaviorally perceived similarity by letting

human observers perform a same-different categorization task on

all combinations of image categories.

Specifically, we used the space formed by the two Weibull

parameters to compute geometric distances between images in

contrast statistics, and used these distances as quantitative

predictors of dissimilarity [29–31]. We thus tested whether these

parameters can predict the extent to which image categories

induced dissimilar single-image EEG responses (experiment 1) and

whether they match with perceptual categorization at the

behavioral level (experiment 2). We predicted that images with

very different Weibull statistics would appear less similar, i.e. be

less often confused than images from categories with similar

statistics.

By using controlled images that we quantified using a model

originally derived from contrast responses to natural images, we

aim to build a bridge between findings obtained with systematic

manipulation of artificial stimuli and those obtained with more

data-driven natural scene studies. For purpose of comparison, and

to better understand which statistical information is captured by

the Weibull parameters, we also tested two other global contrast

statistics (Fig. 2C). Following [32] we calculated the intercept and

slope of the average power spectrum to parameterize spatial

frequency information, a commonly used measure of low-level

information in scene perception. In addition, we followed [33] to

derive the skewness and kurtosis of the contrast distribution for a

range of spatial scales: these higher-order properties of distribu-

tions have previously been suggested (e.g. [34,35] to reflect low-

level differences between images that are relevant for perceptual

processing.

We find that Weibull statistics explain substantial variance in

evoked response amplitude to the dead leaves images, predicting

clustering-by-category of occipital ERP patterns within 100 ms of

visual processing. In addition, they correlate with human

categorization behavior: specific confusions were made between

categories with similar Weibull statistics. By comparison, Fourier

power spectra and skewness and kurtosis can be used for accurate

classification of image category, but fail to predict neural clustering

and behavioral categorization. These convergent results provide

evidence for relevance of pooled contrast response statistics in

rapid neural computation of perceptual similarity.

Materials and Methods

Ethics statement
The experiments reported here were approved by the Ethical

Committee of the Psychology Department at the University of

Amsterdam; all participants gave written informed consent prior

to participation and were rewarded with study credits or financial

compensation (7 euro/hour).

Stimuli
Gray-scale dead leaves images (5126512 pixels, bit depth 24)

were generated using Matlab. Images contained randomly placed

disks that were manipulated along 4 dimensions (opacity, depth,

size and distribution) to create 16 categories. Disks were either

Figure 2. Example stimuli and computation of contrast statistics. (A), Example images of each of the 16 categories used in the behavioral
and EEG experiment. Images contained randomly placed disks that differed in distribution, opacity, depth and size. Each category contained 16
unique images. (B), Consecutive steps in computing various contrast statistics. Weibull statistics are computed by filtering the image with a range of
contrast filters with LGN-like scale- and gain properties, after which for each image location, the filter containing the minimal reliable response is
selected. Responses of all selected filters are summed in a histogram to which the Weibull function is fitted, from which the beta and gamma
parameters are derived using maximum likelihood estimation. (C), Power spectra parameters (top row) are extracted by taking the Fourier transform,
averaging across directions, and computing the intercept and slope values of a line fitted to the average power spectrum. Higher-order properties of
the contrast distribution (bottom row) are computed by filtering with a single-scale center-surround filter, after which skewness and kurtosis of the
resulting contrast distribution are derived. Weibull statistics (multiscale local contrast) presumably contain information present in Fourier parameters
(scale statistics) as well as local contrast distribution parameters (distribution statistics).
doi:10.1371/journal.pcbi.1002726.g002

Contrast Responses Predict Perceptual Similarity
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opaque or transparent; intensity at the outer edges of the disk was

either constant (leading to a 2D appearance) or decaying (3D

appearance), and disk size was determined by drawing randomly

from a range of small, medium or large diameters (exact settings as

in [28]. Twelve categories were created by systematically varying

these properties of power-law distributed disks. Four more

categories were created using medium-diameter, exponentially

distributed disks that could be 2D or 3D and opaque or

transparent. For each category, 16 images were created using

these category-specific settings: the random placement and use of

ranges of diameter sizes ensured that each of these 16 images was

unique. This procedure thus resulted in a total of unique 256

images, divided into 16 distinct categories, which were used for

experimentation (Fig. 2A).

Computation of contrast statistics. In the Weibull model,

local contrast is computed at multiple spatial scales, after which a

single optimal scale for each image location is selected. Subse-

quently, contrast responses are collected in a histogram that is

summarized using a Weibull fit, yielding two statistical parameters:

beta and gamma (Fig. 2B). For comparison with other contrast

statistics, we computed spatial frequency statistics (using power

spectra) and higher-order statistics (third moments of the contrast

distribution) for various receptive field sizes (Fig. 2C). The

computational steps of each method are described in detail below.

Weibull contrast statistics. We computed image contrast

according to the standard linear-nonlinear model. For the initial

linear filtering step we used contrast filters modeled after well-

known receptive fields of LGN-neurons [36]. As described in detail

in [18] each location in the image was filtered using Gaussian

second-order derivative filters spanning multiple octaves in spatial

scale [37]. Based on our previous result [17] that the beta parameter

was best approximated by a linear summation of X-like receptive

field size output, whereas the gamma parameter correlated highest

with Y-like receptive field size contrast, two separate spatial scale

octave ranges were applied to derive the two summary parameters

in the present multi-scale model. For the beta parameter, a bank of

filters with 5 octave scales (4, 8, 16, 32, 64) standard deviation in

pixels was used; for the gamma parameter, the filter bank consisted

of octave scales 5, 10, 20, 40 and 80. The output of each filter was

normalized with a Naka-Rushton function with 5 semi-saturation

constants between 0.15 and 1.6 to cover the spectrum from linear to

non-linear contrast gain control in LGN.

From the population of gain- and scale-specific filters, one filter

response was selected for each location in the image using

minimum reliable scale selection [38], a spatial scale control

mechanism in which the smallest filter with output higher than

what is expected to be noise for that specific filter is selected. The

rationale behind this approach is that to arrive at a faithful scale-

invariant contrast representation, the visual system selects spatial

scale by minimizing receptive field size while simultaneously

maximizing response reliability. Noise thresholds for each filter

were determined in a separate set of stimuli (1800 natural images

from the ImageNet natural scene database, [39]) and set to half a

standard deviation of the average contrast present in that dataset

for a given scale and gain. Applying the selected filter for each

location in the image resulted in a 5126512 pixel contrast

magnitude map, which was converted in a 256-bin histogram

summarizing the contrast distribution of the image, to which the

Weibull function was fitted by a maximum likelihood estimator

(MLE). The Weibull function is given by:

p(r)~ce
r{m

b

� �c

ð1Þ

where c is a normalization constant and m, ß (beta) and c (gamma)

are the free parameters that represent the origin, scale and shape

of the distribution, respectively. The value of the origin parameter

m is influenced by uneven illumination and generally close to zero

for natural images. To achieve illumination invariance, this value

was estimated and averaged out, leaving only the beta and gamma

values as free parameters for each image.

Fourier power statistics. A two-parameter Fourier statistic

was derived for each image by computing the intercept and slope

of a line fitted to its power spectrum. We determined the power

spectrum of the largest concentric square portion of the image (in

this case, the entire image), excluding its outer edges to prevent

edge artifacts. The cropped image was transformed into the

frequency domain using the Fast Fourier Transform. Slope and

intercept were estimated from the regression line fitted to the log-

log representation of the power law-dependence:

SI (f )~cf {a ð2Þ

The rotationally averaged power-law spectrum SI (f ) is defined as

SI (f )~SD(FI (f ,h)D2Th ð3Þ

where FI (f, h) is the Fourier transform spectrum of the input

image I; (f, h) are the cylindrical polar coordinates in Fourier space

and Æ æh denotes averaging over h.

Contrast distribution statistics. Following [33], we used

center-surround difference-of-Gaussian (DoG) filters to extract

contrast values. Center receptive field sizes ranged between 2 and

4 pixels, and surround-to-center size ranged between 3 and 9,

resulting in 21 different combinations of center size and surround-

to-center ratio, referred to as receptive-field models. For each

model, a scaling factor was used to set the integrated sensitivity of

the surround to be 85% of that of the center. Per image, contrast

responses were computed by convolving each pixel value with

each of these 21 models separately. Responses were normalized

using center-surround divisive normalization, where the difference

in output of the center and surround is divided by their summed

output. From the response distribution of responses across the

image one skewness and one kurtosis value was derived for each

image and for each receptive field model, resulting in 21 skewness

and kurtosis values per image. Of these 21 values, results are

reported for the skewness and kurtosis values that explained most

EEG variance (center radius of 4 pixels with surround-center ratio

3); see next section (Experiment 1: EEG). This measure, computed

exactly as reported in [33], has two important distinctions with the

Weibull model, namely 1) the method does not incorporate scale

selection; each receptive field model has one specific receptive field

size that is used across the entire image and 2) only one parameter

(skewness or kurtosis) is used to describe the response distribution

that results from contrast filtering, compared to the separate scale

(beta) and shape (gamma) parameters used in the Weibull model.

Experiment 1: EEG
Experimental procedure. Nineteen subjects took part in

this experiment. The dead leaves images were presented on a 19

inch Ilyama monitor, whose resolution was set at 10246768 pixels

with a frame rate of 60 Hz. Subjects were seated 90 cm from the

monitor such that stimuli subtended 11611u of visual angle.

During EEG acquisition, a single image was presented in the

center of the screen on a grey background for 100 ms, on average

every 1500 ms (range 1000–2000 ms; Fig. 3A). Each stimulus was

presented twice, in two separate runs. Stimuli were presented

Contrast Responses Predict Perceptual Similarity
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intermixed with phase-scrambled versions of grayscale natural

images; subjects were instructed to indicate which type of image

they were shown. This instruction was intended to ensure that

subjects attended to the stimuli: the required discrimination

between the dead leaves and phase-scrambled natural images did

not correspond to any distinction between the categories of dead

leaves themselves. Examples of the two types of images were

displayed prior to the experiment. Each run was subdivided in 8

blocks across which response mappings were counterbalanced.

Stimuli were presented using the software package Presentation

(www.neurobs.com).

EEG data acquisition. EEG Recordings were made with a

Biosemi 64-channel Active Two EEG system (Biosemi Instrumen-

tation BV, Amsterdam, NL, www.biosemi.com), with sintered Ag/

AgCl electrodes at scalp positions including the standard 10-10

system along with intermediate positions and two additional

occipital electrodes (I1 and I2), which replaced two frontal

electrodes (F5 and F6). During recording, a CMS/DRL feedback

loop was used as an active ground, followed by offline referencing

to electrodes placed on the earlobes. The Biosemi hardware is

completely DC-coupled, so no high-pass filter is applied during

recording of the raw data. A Bessel low-pass filter was applied

starting at 1/5th of the sample rate. Eye movements were

monitored with a horizontal electro-oculogram (hEOG) placed

lateral to both eyes and a vertical electro-oculogram (vEOG)

positioned above and below the left eye, aligned with the pupil

location when the participants looked straight ahead. Data was

sampled at 256 Hz.

EEG data preprocessing. The raw data was pre-processed

using Brain Vision Analyzer by applying a high-pass filter at

0.1 Hz (12 dB/octave) and a low-pass filter at 30 Hz (24 dB/

octave). Since this low-pass filter has a graded descent, it cannot be

guaranteed that all high-frequency noise is removed; therefore, we

additionally applied two notch filters at 50 (for line noise) and

60 Hz (for monitor noise). Deflections larger than 300 mV were

automatically removed. Trials were segmented into epochs

starting 100 ms before stimulus onset and ending at 500 ms after

stimulus onset. These epochs were corrected for eye movements by

removing the influence of ocular-generated EEG using a

regression analysis based on the two horizontal and vertical

EOG channels [40]. Baseline correction was performed based on

the data between 2100 ms and 0 ms relative to stimulus onset;

artifacts were rejected using maximal allowed voltage steps of

50 mV, minimal and maximal allowed amplitudes of 275 and

Figure 3. Methods and experimental design. (A), Experimental set-up of experiment 1 (EEG experiment). Subjects were presented with
individual images of dead leaves while EEG was recorded. Single-image evoked responses (ERPs) were computed for each electrode, by averaging
two repeated presentations of each individual image. Regression analyses of ERP amplitude on contrast statistics were performed at each time
sample and electrode. (B), Representational dissimilarity matrices (RDMs) were computed at each sample of the ERP. A single RDM displays Euclidean
distance (red = high, blue = low) between multiple-electrode patterns of ERP amplitude between all pairs of stimuli at a specific moment in time. The
(cartoon) inset demonstrates how dissimilarities can cluster by category: all images from one category are in consecutive rows and can be ‘similarly
dissimilar’ to other categories. (C), Experimental set-up of experiment 2 (behavioral experiment). On each trial, subjects were presented with a pair of
stimuli for 50 ms, followed by a mask after an interval of 100 ms. Subjects were presented 8 times with all possible pairings of stimuli and were
instructed to indicate whether stimuli were the same or different. (D), Cartoon example of leave-one-out classification based on contrast statistics.
One stimulus is selected in turn, after which the median (thumbnail) of the remaining stimuli of its category is computed, as well as the median of
other categories (here, just one). Classification accuracy reflects how many stimuli are closer to the median of other categories instead of its own
category in terms of distance in image statistics.
doi:10.1371/journal.pcbi.1002726.g003

Contrast Responses Predict Perceptual Similarity
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75 mV and a lowest allowed activity of 0.50 mV (median rejection

rate across subjects was 7%, with a range of 1%–38%). The

resulting event-related potentials (ERPs) were converted to

Current Source Density (CSD) responses [41]. This conversion

results in a signal that is more localized in space, which has the

advantage of more reliably reflecting activity of neural tissue

underlying the recording electrode [42].

Trials in which the same individual image was presented were

averaged over the two runs, resulting in a single event-related

potential (ERP) for each image and each subject. To address the

concern that regression results (see below) might be artificially high

due to averaging of ERPs over repetitions, we also conducted all

analyses using first-trial estimates only; these are reported in Fig.
S4 and S5; the results were very similar to those obtained with

repetition-averaged ERPs.

Regression on single-image ERPs. To test whether differ-

ences between evoked neural responses could be predicted by

differences in contrast statistics between images, we conducted

regression analyses on the single-image ERPs (Fig. 3A). The

preprocessed ERPs were read into Matlab, where we conducted

linear regression analyses of ERP amplitude on image parameters

using the Statistics Toolbox. For each subject, each channel and

each time-point, two image parameters (Weibull parameters;

Fourier parameters; skewness/kurtosis) were entered together as

linear regressors on ERP amplitude. This analysis results in a

measure of model fit (r2) over time (each sample of the ERP) and

space (each electrode) for each individual subject.

To compare the results between different sets of statistics

directly (within each subject), we used the Akaike information

criterion (AIC, [43] which measures the information contained in

each set of predictors. In this procedure, we transformed the

residual sum of squares (RSS) of the regression analysis based on

each set of statistics into AIC-values using AIC = n*log(RSS/n)+2k

where n = number of images and k is the number of predictors.

AIC can be used for model selection given a set of candidate

models of the same data, where the preferred model has minimum

AIC-value [44].

To test whether the various image parameters explained any

unique variance, we ran an additional regression analysis using a

full model in which all three sets of image statistics were entered

simultaneously (resulting in a 6 parameter model). We compared

the results obtained with the full model with models for which, in

turn, each parameter was left out; by subtracting the r2 values of

each of these partial models from the full model, we quantified

unique variance explained by individual predictors.

To correct for multiple comparisons, the p-values associated

with the regression results were FDR-corrected at a= 0.05, unless

stated otherwise.

Representational similarity analysis. To examine how

variance between individual visual stimuli arises over time and

space, we computed representational dissimilarity matrices

(RDMs; [25]) based on spatial patterns of evoked ERP amplitude.

In this type of analysis, dissimilarity between patterns of activity

evoked by individual images (measured as 1-correlation or

Euclidean distance) is determined across multiple recording sites

simultaneously (e.g., voxels in fMRI, [45]). Here, we computed

RDMs based on ERP amplitude at each time-point, using the

spatial pattern of evoked activity across multiple electrode sites; we

did this for each subject separately. Only electrodes showing

substantial variance across the entire stimulus- and dataset were

included (Fig. S1); these were I1, I2, Iz, O1, O2, Oz, POz, PO7,

PO8, P6 and P8. Based on this multi-electrode data, we computed

(per subject and time-point) for all pairs of images the Euclidean

distance between their evoked ERP amplitude patterns. As a

result, we obtained RDMs containing 2566256 ‘dissimilarity’

values at each time-point of the ERP (Fig. 3B). Within one RDM,

each cell reflects similarity in ERP amplitude patterns of the

corresponding two images indicated by the row- and column

number. We used Euclidean distance to quantify dissimilarity

rather than the 1–correlation measure recommended for fMRI

data [45] because it corresponds more closely to the distance

measure taken for the contrast statistics matrices (see below).

Comparison with distance matrices based on contrast

statistics. To examine whether the dissimilarities between ERP

patterns evoked by individual images could be predicted based on

differences in contrast statistics, we computed pair-wise dissimi-

larity matrices based on the three sets of parameter values (Weibull

statistics; Fourier statistics; distribution statistics). We computed

the sum of the absolute differences between the (normalized)

parameter values of each pair of images (reflecting distance in the

parameter space formed by the image parameters, Fig. 1B),

resulting in one difference value between those two images. The

matrices based on contrast statistics were compared with the

RDMs based on the ERP data using a Mantel test for two-

dimensional correlations [46,47], denoted as rm. We computed

these correlations for the average RDM across subjects as well as

for single subjects RDMs. For the former, 95% confidence

intervals for each correlation were assessed using a percentile

bootstrap on the dissimilarity values [48] with number of

bootstraps = 10.000 (,40 * number of images).

Experiment 2: Behavior
Behavioral data acquisition. Twelve participants took part

in the behavioral experiment; none of them had participated in the

EEG experiment. The dead leaves images were presented on a 19-

inch Dell monitor with a resolution of 128061024 pixels and a

frame rate of 60 Hz. On each trial, a fixation cross appeared at the

center of the screen; after an interval of 500 ms, a pair of images

was presented simultaneously for 50 ms, separated by a gap of 236

pixels (Fig. 3C). A mask followed after 100 ms, and stayed on

screen for 200 ms. Participants were seated approximately 90 cm

from the monitor; the stimulus display subtended 27611u of visual

angle. Subjects were instructed to indicate if the images were from

the same or a different category by pressing one of two designated

buttons on a keyboard (‘z’ and ‘m’) that were mapped to the left or

the right hand. They completed four blocks of 256 trials each. In

each block, the 256 trials were determined as follows: of the 16

images per category, 15 were paired with a randomly drawn image

from another category (different-category comparisons); the 16th

was paired with a randomly drawn image from the other 15 of its

own category (same-category comparisons). Images were drawn

without replacement, such that each image occurred only once in

each block (with exception of the images that were selected for the

same-category comparisons, which therefore occurred more

often). Every possible different-category comparison thus occurred

twice per block, and the ratio of different-category vs. same-

category comparisons was 15:1.

Before testing, subjects were informed that for most trials the

stimuli were different, and that only some were the same,

preventing them from adopting a balanced response (50-50)

strategy. Also, subjects were shown a few example stimuli and

performed 20 practice trials (none of which appeared in the main

experiment) before starting the actual experiment. Masks were

created by randomly placing four mini-blocks of 16616 pixels

from each of the 256 stimuli in a 5126512 frame. Unique masks

were randomly assigned to each trial. The same mask was

presented at the location of both stimuli. Stimuli were presented

using the Matlab Psychophysics Toolbox [49,50].

Contrast Responses Predict Perceptual Similarity
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Behavioral data analysis. In total, each possible combina-

tion of the 16 categories was presented 8 times in 4 consecutive

blocks. Trials at which the subject failed to respond (,1% for all

subjects) within 1500 ms were discarded. Accuracy was deter-

mined by averaging across the four blocks. A mean confusion

matrix was calculated by averaging accuracies across subjects

separately for each specific combination of categories; we also

calculated these matrices for each individual subject. We

correlated both the mean confusion matrix and the individual

matrices with classification accuracy based on contrast statistics

(see below) using the Mantel test, resulting in one ‘mean’ and 12

individual correlation values. For these comparisons, the same-

category comparisons were excluded (the Mantel test requires

zero-values on the diagonal); they are included in the overall

accuracy scores. Confidence intervals were determined using a

percentile bootstrap (with number of bootstraps = 1000), which

results in a 95% confidence interval along with the correlation.

Classification analysis on contrast statistics. To com-

pare the behavioral performance with distance in contrast

statistics, we performed leave-one-out classification analyses based

on the parameter values of each set of contrast statistics (Weibull

statistics; Fourier statistics; skewness/kurtosis). We used a simple

algorithm that determines a single measure of classification

accuracy based on the amount of overlap between different

categories in parameter values. This involved the following steps:

First, the median parameter values of each category were

calculated. In turn, one of the 256 stimuli was selected, after

which a temporary median of other 15 stimuli of its own category

was determined. Next, the difference between its parameter values

(beta and gamma for Weibull statistics; intercept and slope for

Fourier statistics; skewness and kurtosis for distribution statistics)

and the temporary median of its own category was calculated, as

well as the difference with the median of all other categories. If the

difference with its own category was less than the difference with

any other category, this stimulus was counted as a ‘hit’, otherwise

it was assigned a ‘miss’ (a cartoon example is shown in Fig. 3D).

Classification accuracy was determined by counting the percent-

age of hits out of all comparisons. To determine significance,

binomial density probabilities across all combinations in the

dataset were calculated (the likelihood of a hit occurring rather

than a miss) based on which an FDR-threshold was established

that was used to correct the pair-wise classification accuracy values

for multiple comparisons. Using the mean values for each category

rather than the median to determine distances between images

between yielded very similar results as those reported here.

Results

Contrast statistics
If we set out all 256 dead leaves images against the three sets of

image statistics (Weibull parameters, Fourier parameters and

skewness/kurtosis), stimuli cluster by category in all cases, with

Fourier parameters leading to the most separable clusters

(Fig. 4A–C). There were considerable correlations between the

various parameters (Fig. 4D; individual correlations plots in Fig.
S2). Skewness and kurtosis correlated highly (r= 0.91, p,0.0001),

but other significant correlations are observed as well, for example

between Fourier slope and the Weibull beta parameter (r= 0.57,

p,0.0001) and also between the two Weibull parameters

(r= 0.48, p,0.001). A correlation of similar magnitude was also

observed [17] for natural scenes, supporting the notion that the

dead leaves stimuli used here have similar low-level structure as

natural stimuli.

Interestingly, however, the ‘similarity spaces’ formed by each set

of parameters are quite different between the various models. If

Weibull parameters determine the axes of the similarity space

(Fig. 4A), highly cluttered images with many strong edges (e.g. 2D

opaque stimuli with small disks) are located in the upper right

corner (high gamma, high beta); images containing fewer edges

(e.g. with larger disks) are found more on the left (low gamma); and

most of the transparent stimuli, with weak edges, cluster together

in the bottom of the space (low beta). For Fourier intercept and

slope (Fig. 4B), transparent categories are highly separated across

the space: however, most images with strong edges end up in a

similar part of the space (low slope, high intercept). Based on either

skewness or kurtosis (Fig. 4C), a few categories are distinct, but

Figure 4. Stimuli set out against their respective contrast statistics. Each data-point reflects parameter values for a single image, color-coded
by category. Individual images are displayed against their (A), Weibull parameters beta and gamma, (B), Fourier parameters intercept and (increasing
negative) slope and (C), distribution properties skewness and kurtosis. In all cases, clustering by category based on parameter values is evident. (D),
Non-parametric correlations between the six image parameters: Beta (B), Gamma (G), Fourier Intercept (Ic), Fourier Slope (S), Skewness (Sk) and
Kurtosis (Ku).
doi:10.1371/journal.pcbi.1002726.g004
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most tend to cluster together. These qualitative results suggest that

all parameters are informative about clustering of image catego-

ries, but that they index different image properties.

Importantly, they give rise to different predictions about which

categories should lead to similar evoked responses based on

overlapping parameter values. We tested these predictions using

the single-image ERP data.

Experiment 1
Contrast statistics explain variance in occipital

ERPs. Regression of single-image ERP amplitude (per subject,

electrode and time-point) on contrast statistics showed that

Weibull statistics explain a substantial amount of variance between

individual images. Highest values were found at occipital channel

Oz, where explained variance for all subjects reached a maximum

between 100 and 210 ms after stimulus onset; maximal values

ranged between r2 = 0.12–0.80 (Fig. 5A) and were highly

significant (all p,0.0001, FDR-corrected). For Fourier parameters

(Fig. 5B), somewhat lower values were found (max r2 between

0.08–0.59, 100–210 ms; all p,0.0001). For skewness and kurtosis

(Fig. 5C), explained variance was much lower and did not reach a

consistent maximum during a specific time frame (max r2 between

0.02–0.23 at 78–421 ms; maximal values were significant for 11

out of 19 subjects).

If we average the explained variance across subjects for each

electrode separately at the time-points of maximal explained

variance (113 ms for Weibull and Fourier statistics, 254 ms for

skewness/kurtosis), we see (insets Fig. 5A–C) that for all three sets

of statistics, explained variance clusters around the midline

occipital channels (Oz). Two weaker clusters were located near

parietal electrodes, likely reflecting a dipole effect: both the early

and late signals appear to originate from early visual areas

(Fig. 5D).

These results demonstrate substantial differences in maximum

explained variance between individual subjects. Inspection of the

ERP recordings of each subject revealed a similarly large

variability in subjects’ signal-to-noise ratio (SNR, measured as

the difference in ERP amplitude relative to pre-stimulus variabil-

ity, reflecting the degree to which an evoked response is present).

Indeed, the rank correlation between SNR and maximal explained

variance by Weibull statistics was r= 0.69, p,0.0014; see Fig. S3,

which includes examples of subject-specific r2 values alongside

their single-image ERPs). This suggests that the observed

variability in maximum explained variance is related to these

subject-specific differences in SNR, which are in turn likely due to

individual differences in cortical folding, scalp conductivity and

recording conditions.

In an alternative analysis performed on single-trial rather than

single-image data (in which repeated presentations of the same

stimulus were averaged, see Materials and Methods), we found

slightly lower explained variance for all models (maximal r2 values:

0.71 for Weibull statistics, 0.52 for Fourier statistics, and 0.16 for

skewness/kurtosis, respectively; see Fig. S4). Importantly, how-

ever, the relative differences between the sets of image parameters

were fully consistent with those reported here.

Overall, the regression results show that Weibull contrast

statistics, but also Fourier statistics, reliably predict activity evoked

by individual dead leaves images at the individual subject level. To

investigate differences between the contributions of the different

image predictors, we ran several additional analyses that are

described below.

Comparisons between different image parameters. In

order to compare differences in explained variance for Weibull

statistics compared to the other statistics (Fig. 6A), we used

Akaike’s information criterion (AIC) to evaluate the relative

‘goodness of fit’ of each of the three sets of contrast statistics. AIC

is computed from the residuals of regression analyses (see Materials

and Methods) and can be used for model selection given a set of

candidate models of the same data, where the preferred model has

minimum AIC-value. If we compare the mean AIC-value across

individual subjects of Weibull, Fourier and skewness/kurtosis

Figure 5. Regression analysis of EEG data: single subject
results. Explained variance of ERP amplitude at channel Oz over time,
for each individual subject (colored thin lines) and mean across subjects
(black thick line), using as regressors either (A), Weibull parameters beta
and gamma, (B), Fourier parameters intercept and slope and (C),
skewness and kurtosis; single-trial results of these analyses can be
found in Fig. S4. Insets display scalp plots of r2 values for all electrodes
at the time of maximal explained variance averaged over subjects
(113 ms for Weibull/Fourier, 254 ms for skewness/kurtosis. (D), Grand
average ERP amplitude (averaged over all subjects and all images) for
an early and a late time-point of peak explained variance displayed in
A–C.
doi:10.1371/journal.pcbi.1002726.g005
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parameters over time, we find that the model fits start to diverge

around 100 ms, with Weibull statistics leading to the lowest values

(Fig. 6B). It thus appears that Weibull parameters provide a better

fit to the data than the other two sets of statistics. This could be

related to the fact that the Weibull parameters characterize the

histogram of contrast responses at a selected spatial scale, and may

thus contain information reflected in both Fourier power spectra

and higher-order properties of the contrast distribution. Therefore,

we also computed AIC-values for intercept, slope, skewness and

kurtosis combined into one regressor (Fig. 6B, black line); the

obtained values from this regression analysis are however still

higher than those obtained from the Weibull parameters

(significant differences between 117–140 ms, all t(19),22.8, all

p,0.01). At the time-point of (mean) maximal explained variance

(113 ms), the ordering of the different models in terms of AIC-

values is consistent over subjects (Fig. 6C): in all subjects, Weibull

parameters lead to the best model fit, although differences are

minimal for low SNR subjects. Interestingly, for subjects with high

SNR, the distance between AIC-values for the Weibull model

compared to the other contrast statistics appears to increase. These

findings suggest that Weibull statistics capture additional variance

relative to the other contrast statistics parameters considered here.

To demonstrate this in a different way, we computed the unique

variance contributed by each set of contrast statistics (r2
unique) by

comparing partial models with a full model consisting of all 6

parameters (see Materials and Methods). Unique explained

Figure 6. AIC (Akaike information criterion) and unique explained variance analyses at channel Oz. (A), Mean explained variance across
single subjects for Weibull (red), Fourier (blue) and skewness/kurtosis (green), respectively; shaded areas indicate S.E.M. (B), Mean AIC-value across
single subjects computed from the residuals of each of the three regression models, as well as an additional model (black) consisting of Fourier and
skewness/kurtosis values combined, showing that Weibull parameters provide the best fit to the data (low AIC-value); shaded areas indicate S.E.M.
(C), Single subject AIC-values for the models displayed in B at the time-point of maximal explained variance for Weibull and Fourier statistics
(113 ms); subjects are sorted based on independently determined SNR ratio (reported in Fig. S2). (D), Unique explained variance by each set of
contrast statistics. (E), Absolute, non-parametric correlations (Spearman’s r) with ERP amplitude for the individual image parameters: Beta (B), Gamma
(G), Fourier Intercept (Ic), Fourier Slope (S), distribution Skewness (Sk) and Kurtosis (Ku). Absolute values are plotted for convenience; shaded areas
indicate S.E.M. (F), Unique explained variance by each individual parameter. Results for A–E based on single-trial rather than single-image data were
highly similar (Fig. S5).
doi:10.1371/journal.pcbi.1002726.g006
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variance for each set of statistics was low (r2
unique for Weibull

parameters reached a maximum of 0.07 at 109 ms; for Fourier,

max r2
unique was 0.05 at 180 ms; for skewness/kurtosis, max

r2
unique was 0.04 at 203 ms), but clearly highest for the Weibull

parameters in an extended early time interval (,100–180 ms;

Fig. 6D). Given the substantial correlations between the various

image parameters (reported in Fig. 4D), we also tested the

contribution of each parameter individually. From the correlations

of individual parameters with ERP amplitude (Fig. 6E), it can be

readily seen that out of all parameters, the Weibull beta parameter

correlates highest with the evoked activity in the early time-

interval (max r= 0.57 at 121 ms, p,0.001 in 18 out of 19

subjects, FDR-corrected); it also has highest unique explained

variance (r2
unique reaching a max of 0.05 at 109 ms, Fig. 6F),

whereas the gamma parameter contributes unique variance

somewhat later in time (max r2
unique was 0.04 at 164 ms), just

before the Fourier parameters (a max of 0.03–0.04, around 175–

180 ms).

Taken together, these additional analyses suggest that the

differences in regression results between the various sets of contrast

statistics reflect reliable and consistent differences in information

about the stimulus carried by these statistics, with Weibull statistics

resulting in the best fit to the differences observed in the neural

data.

Clustering-by-category of ERPs is predicted by Weibull

statistics. The regression results indicate that the Weibull

parameters are predictive of ERP amplitude, but do not reveal

whether any categorical differences between ERPs are reflected in

these parameters. To address this, we constructed representational

dissimilarity matrices (RDMs) based on EEG activity. In this

analysis, we computed RDMs of ERP amplitude using multiple

electrodes as input (see Materials and Methods) for each subject

separately. This approach is akin to performing multi-voxel

pattern analysis in fMRI and calculating the dissimilarity between

these activity patterns, but now comparing ERP amplitude

differences across electrodes instead of voxels. We computed one

RDM for each time-point of the ERP and averaged RDMs over

subjects.

To demonstrate how these matrices can convey information

about categorical properties of evoked responses, we selected the

Figure 7. Results of RDM analysis. (A), Maximum and mean Euclidean distance for the subject-averaged RDM: for both measures, highest
dissimilarity between images was found at 101 ms after stimulus-onset. (B), Mean RDM across subjects at the moment of maximal Euclidean distance.
Each cell of the matrix reflects the dissimilarity (red = high, blue = low) between two individual images, whose category is indexed on the x- and y-
axis. (C), Dissimilarity matrices based on difference in contrast statistics between individual images. Color values indicate the summed difference
between two individual images in beta and gamma (Weibull statistics), intercept and slope (Fourier statistics), skewness and kurtosis (distribution
statistics). (D), Correlation between the RDM and each of the three dissimilarity matrices at each time-point. Highest correlation is found for Weibull
statistics at 109 ms. Shaded areas reflect 95% confidence intervals obtained from a percentile bootstrap on the dissimilarity values.
doi:10.1371/journal.pcbi.1002726.g007
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time-point at which maximal dissimilarities were found (Fig. 7A;

101 ms after stimulus-onset). In this subject-averaged RDM

(Fig. 7B), we observe clustering by category: the matrix appears

to consist of small blocks of 16616 images that are minimally

dissimilar amongst themselves (diagonal values), but that tend to

differ from other categories (off-diagonal values). Moreover,

differences between these blocks show that some categories are

more dissimilar than others. Specifically, opaque categories (upper

left quadrant) differ from one another and from transparent

categories (lower left/upper right quadrant) whereas the transpar-

ent categories themselves tend to be minimally dissimilar (lower

right quadrant).

Next, we tested to what extent these category-specific differ-

ences between images in the ERP were predicted by contrast

statistics. We calculated 2566256 distance matrices for each set of

image parameters, in which we subtracted the parameter values of

each image from the values of each other image (Fig. 7C, see

Materials and Methods). For example, for the first cell in the upper

left corner of the Weibull statistics distance matrix, we summed the

difference in beta and gamma values between image 1 and 2

(bim12bim2+gim12gim2), for the cell next to it between image 1 and

3, etc. For the other two sets of statistics, beta and gamma were

replaced by intercept and slope or skewness and kurtosis.

By visual inspection alone, it is clear that distances between

individual images in Weibull statistics are most similar to the ERP

dissimilarities. Inter-matrix correlations (Mantel tests, [44]) reveal

that at nearly all time-points there is a substantially higher

correlation of the RDM of the ERP signal with the distance matrix

based on Weibull, relative to the other two statistics (Fig. 7D).

The highest correlations for Weibull and Fourier are found shortly

after 100 ms (Weibull: rm = 0.67, 109 ms; Fourier: rm = 0.22,

113 ms) and are both significant after FDR-correction (p-

values,0.001), whereas the correlation between the RDMs and

the skewness/kurtosis distance matrix does not reach significance.

We also correlated the distance matrices based on contrast

statistics with the subject-specific RDMs, confirming this result to

be consistent over subjects; see Fig. S6. RDMs at all ERP time-

points are provided in Video S1 in the form of a short movie clip.

These results show that differences between image categories in

ERP amplitude map onto differences in underlying Weibull

Figure 8. Behavioral results and comparison with classification. (A), Accuracy of behavioral categorization (open circles: single subjects, filled
circle: mean) and of classification based on Weibull parameters, Fourier parameters or skewness and kurtosis. (B), Behavioral confusion matrix,
displaying mean categorization accuracy for specific comparisons of categories. For each pair of categories the percentage of correct answers is
displayed as a grayscale value. (C), Comparison of mean behavioral confusion matrix with classification results based on the three sets of contrast
statistics. (D), Inter-matrix correlations of the classification errors for each set of statistics with the mean behavioral confusion matrix (left, mean) as
well as those of individual participants (right, single subjects). For the mean correlation, error bars indicate 95% confidence intervals obtained using a
percentile bootstrap on values within the mean confusion matrix.
doi:10.1371/journal.pcbi.1002726.g008
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statistics of individual images. Throughout the ERP, this model of

low-level visual responses provides a better prediction of differ-

ences between images in neural response patterns than the other

image parameters considered here. Moreover, the highest

correlation between differences in Weibull statistics and ERP

amplitude is near the time-point of maximal dissimilarity, where

clustering by category in the ERP is clearly present. This clustering

corresponds to the categorical organization in Weibull parameter

space (Fig. 2A), in which transparent categories were largely

overlapping whereas stimuli with strong edges were more

differentiated. In the next experiment, we asked whether this

similarity space could not only predict early differences in ERP

amplitude, but also behaviorally perceived similarity: do image

categories with overlapping parameter values also look more alike?

Experiment 2
Prediction of behavioral confusions. Participants indicat-

ed for each possible combination of the 16 dead leaves categories

whether these were the same or different category. Behavioral

accuracy was high across all subjects (mean 93% correct, range

0.88–0.98), suggesting that subjects were well able to categorize

these stimuli (Fig. 8A). To generate specific predictions about

categorical similarity based on contrast statistics, we conducted

classification analyses using the distance between images in each of

the three similarity spaces, testing how often proximity in

parameter values resulted in classification of an image to another

category than its own (see Materials and Methods and Fig. 3D).

Mean classification accuracy based on distance in contrast statistics

was high for all three sets of contrast statistics, with highest

accuracy for the Fourier parameters (99%), subsequently for the

Weibull parameters (94%) and finally for skewness/kurtosis (93%).

Despite these high accuracies, errors were made in both behavior

and classification: to test whether these errors occurred for specific

combinations of categories, we summarized the average number of

errors for each specific combination of categories in confusion

matrices.

From the mean behavioral confusion matrix (Fig. 8B), it is clear

that subjects systematically confused certain categories more often

than others. Specifically, transparent two- and three- dimensional

images (dark squares in lower right quadrant) are more often

confused than their opaque counterparts, although there were also

some specific errors within opaque categories (upper left quad-

rant). Few errors were made between transparent and opaque

categories. Although mean classification performance based on the

Fourier parameters is highest, it is clear that the pattern of

classification errors based on Weibull statistics most resembles the

pattern of categorical confusions in behavior (Fig. 8C). As

expected, the behavioral confusion matrix correlated significantly

with classification errors made based on Weibull parameters

(rm = 0.46, p,0.001), whereas classification based on differences in

Fourier parameters or skewness/kurtosis did not correlate with

human performance (rm = 0.07, p = 0.21 and rm = 20.20,

p = 0.03, respectively; although significant, a negative correlation

indicates that classification errors are opposed to categorization

errors made by human participants). Correlations of individual

confusion matrices confirm this result across all subjects (Fig. 8D;

range individual Weibull rm-values 0.33–0.46, all p,0.005, FDR-

corrected).

These results show that perceived similarity of dead leaves

image categories can be predicted based on differences in statistics

of low-level contrast responses. Whereas mean classification

accuracy for all image parameters was high, the different image

parameters yielded different predictions about expected errors if

categorization were to be based on these values. In the case of

Fourier statistics, classification predicted that subjects would

hardly confuse any categories at all, whereas skewness/kurtosis

classification predicted that other categories would be confused

with each other than those that subjects actually judged as similar.

Only the Weibull parameters correlated with specific errors made

by human subjects during rapid categorization.

This suggests that out of the three similarity spaces presented in

Fig. 4, the arrangement of categories in Weibull space

corresponds most closely to the actual perceptual similarity

experienced by human subjects during a rapid categorization task.

Discussion

Low-level contrast statistics, derived from pooling of early visual

responses, can predict similarity of early visual evoked responses as

well as perceptual similarity of model natural scene images. We

show that Weibull statistics, derived from the output of contrast

filters modeled after LGN receptive fields, correlate with perceived

similarity of computationally defined dead leaves categories. These

statistics explain a significant amount of variance in the early visual

ERP signal and correlate with behavioral categorization perfor-

mance. Based on differences in these statistics, we were able to

predict specific dissimilarities in the neural signal as well as specific

category confusions.

Interestingly, if we compare the results of experiment 1 and 2,

we observe that subjects confused categories that were minimally

dissimilar in ERP amplitude, which in turn were minimally

different in Weibull statistics. Conversely, subjects accurately

distinguished categories that were separable in their statistics,

which was mirrored in high ERP dissimilarities. Also, correlations

between Weibull statistics and neural responses were highest

between 100 and 200 ms, well within the time frame that rapid

categorization of natural images is thought to be constrained to

[51].

This work extends recent findings that statistical variations in

low-level properties are important for understanding categorical

generalization over single images [13]. It has been demonstrated

before that behavioral categorization can be predicted using

computational modeling of low-level information: a neural

network consisting of local filters that were first allowed to adapt

to natural scene statistics could predict behavioral performance on

an object categorization task [52], and a computational model

based on texture statistics accurately predicted human natural

scene categorization performance [53]. Here, we expand on these

results by showing that a geometric ‘similarity space’ formed by

low-level contrast statistics can predict a complex pattern of

categorization confusions of model natural scene images.

Implications for processing of real natural scenes
Whether low-level statistics are indeed actively exploited during

scene or object categorization is a topic of considerable debate.

Whereas some studies report that manipulation of low-level

properties influences rapid categorization accuracy [54,55] as well

as early EEG responses [56,57], other studies have shown that not

all early visual activity is obliterated by equation of those

properties [58–60] and, conversely, that early sensitivity to

diagnostic information is revealed in stimuli that do not differ in

low-level statistics [20,61]. We find that, at least for our set of

simplified models of natural scene images, early differences in

ERPs are correlated with low-level contrast statistics that are

themselves also directly predictive of perceptual similarity.

It is however likely that the degree to which low-level properties

are relevant for processing of natural image categories is highly

dependent on stimulus type and context, even within actual
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natural scene stimuli: for example, low-level information may

influence rapid detection of faces to a larger extent than objects

[22] and the effects of low-level statistics on animal detection may

interact with scene category (man-made vs. natural) [62]. In

addition, the present work is very different from these previous

reports in that our experiments did not require formation of a

high-level representation but only a same-different judgment.

There are also notable differences between our ERP effects and

those obtained with standardized object/scene categories: our

maximum explained variance was found at around 100 ms,

whereas those studies report sensitivity starting at 120 ms and

onwards [63–66]. Maximal sensitivity of evoked activity to faces

and objects is found at lateral-occipital and parietal electrodes

(PO, e.g. [58]), whereas our correlations are clustered around

occipital electrode Oz. This suggests that the dead leaves images

may mostly engage mid-level areas of visual processing, such as

those sensitive to textural information, e.g. V2 [24,67–69]. Our

results implicate that clustering of image similarities at this level of

processing can, in principle, already predict perceptual similarity –

in turn, these similarities can be derived from Weibull contrast

statistics. Given that for natural scenes, the Weibull statistics

explain similar amounts of variance in EEG activity as reported

here, we can hypothesize that image similarities as predicted by

Weibull statistics are also present in evoked activity to actual

natural scenes.

Information contained in contrast statistics
If Weibull statistics indeed approximate meaningful global

information in natural images, which image features do they

convey? By manipulating computational image categories in their

perceptual appearance, we were able to get a better understanding

of the information contained in the Weibull parameters. They

appear to index the amount of clutter, i.e. are related to occlusion

and object size. These properties may be relevant for natural scene

categorization: a forest has a higher degree of clutter (high gamma)

and lower mean edge strength (high beta) compared to a beach

scene. An image containing a few strong edges (low beta) that are

sparsely distributed (low gamma) has high probability of coinciding

with a single salient object, for example a single bird against an

empty sky, suggesting that these statistics may be relevant for

object detection in natural scenes. Here, behavioral confusions

(and corresponding dissimilarities in ERP signals) were found

between stimuli without coherent edge information (transparent

stimuli with either large or small disks), or that were highly

cluttered (opaque stimuli with small disks) which were exactly the

categories that overlapped in Weibull parameter values.

For comparison, we computed Fourier power spectra and

higher-order properties of the contrast distribution (skewness and

kurtosis), two sets of statistics that each index different sources of

information in natural images: spatial frequency content and

central moments of the contrast distribution, respectively. Devi-

ations in the power spectra of natural images inform about

variations in contrast across spatial scales: the slope and intercept

parameters describe the ‘spectral signature’ of images [32] which is

diagnostic of scene category [15]. Skewness and kurtosis were

proposed to be relevant for texture perception [35,70] which in

turn can be important for feature detection [53,71] and the

presence of featureless regions of images [34,72]. Our results

confirm that both frequency content and central moments of the

contrast distribution inform about image properties: both lead to

accurate image classification. However, in the present study they

did not predict neural and behavioral categorization patterns,

suggesting that these statistics may not be plausible computations

involved in visual processing of the dead leaves images.

Even though we used controlled, computationally defined image

categories, it is still possible that an image property other that the

contrast statistics tested here will provide a better prediction of the

(neural and behavioral) data, for example one of the manipulations

used to create the image categories (e.g., opacity). However,

neither the observed clustering-by-category of ERPs in the RDM,

nor the pattern of categorization errors in behavior mapped

clearly onto one of the manipulations used to create the categories

(e.g., opaque vs. transparent; as is visible in Fig. 7B, there are also

differences within opaque and transparent categories, and this

complex pattern of clustering is only predicted by Weibull

statistics).

Explaining the advantage of Weibull statistics
Why is the Weibull model better than widely used contrast

statistics in predicting early neural and perceptual similarity?

Although higher order moments of distributions can be diagnostic

of textural differences, they may in practice be difficult for the

visual system to represent [35]. In addition, it has been suggested

that rather than amplitude spectra, phase information derived

from the Fourier transform [73,74], or the interaction between

these two [75,76] contains diagnostic scene information. The

reason that higher-order statistics derived from the phase spectrum

may contain perceptually relevant information [77] is that they

carry edge information. In the Weibull model, contrasts, i.e. non-

oriented edges, are explicitly computed (as the response of LGN-

type neurons) and evaluated at multiple spatial scales. The model

may thus be able to capture information contained both in power

spectra (scale statistics) as well as central moments (distribution

statistics). The Weibull parameters appear to reflect different

aspects of low-level information: the beta parameter varies with

the range of contrast strengths present in the image, reflecting

overall contrast energy, whereas the gamma parameter varies with

the degree of correlation between local contrast values, reflecting

clutter or spatial coherence.

Obviously, the Weibull fit is still a mathematical construct.

However, the two parameters can also be approximated in a more

biologically plausible way: with our previous single-scale model

[17], we demonstrated that simple summation of X- and Y-type

LGN output corresponded strikingly well with the fitted Weibull

parameters. Similarly, if the outputs of the multi-scale filter banks

used here (reflecting the entire range of receptive field sizes of the

LGN) are linearly summed, we again obtain values that correlate

highly with the Weibull parameters obtained from the contrast

histogram at minimal reliable scale (S. Ghebreab, H.S. Scholte,

V.A.F. Lamme, A.W.M Smeulders, under review). This suggests

that Weibull estimation can in fact be reduced to pooling of

neuronal population responses by summation, which is a

biologically realistic operation.

Why would summation of contrast responses of low-level

neurons convey the same information as the Weibull parameters?

This is likely a result of the structure of the world itself:

distributions of contrast in natural images tend to range between

power-law and Gaussian, which is the family of distributions that

the Weibull function can capture [78]. It appears that this statistic

simply provides a good characterization of the dynamic range of

the low-level input to the visual cortex when viewing natural

images. Since our brain developed in a natural world, early visual

processing may take advantage of this regularity in estimating

global properties to arrive at a first impression of scene content.

Outlook
The present results extend our previous findings [17,18] with

natural images to other image types (computational categories)
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and to prediction of behavioral categorization. Interestingly, even

though the subjects in experiment 1 (EEG) were not engaged in

categorization of the dead leaves images, their results generalize to

the behavioral categorization patterns that were found in

experiment 2, suggesting that similarity of bottom-up responses

measured in EEG - in a different person - can be predictive of the

perceived similarity during categorization of these images. This

observation is now restricted to computationally defined catego-

ries. An interesting question for future work is whether in

construction of high-level categorical representations of natural

stimuli - considered a computationally challenging task - the brain

actively exploits the pattern of variability of the population

response to low-level information, estimated from early receptive

field output. Contrary to the classical view of the visual hierarchy

(e.g., [79]) it has been proposed that a rapid, global percept of the

input (gist) precedes a slow and detailed analysis of the scene [80–

83]. Natural image statistics provide a pointer to information that

could be relevant for such a global percept [84,85]. However, the

mechanism by which global information can be rapidly extracted

from low-level properties is not directly evident from natural

image statistics alone. As explained above, in our model, the

statistics are derived from a biologically realistic substrate (the

response of early visual contrast filters). We suggest that to build a

realistic model of natural image categorization, it is essential to

understand how statistics derived from very early, simple low-level

responses can contribute to gist extraction.

In conclusion, our findings suggest that global information

based on low-level contrast can be available very early in visual

processing and that this information can be relevant for judgment

of perceptual similarity of controlled image categories.

Supporting Information

Figure S1 Selection of electrodes (Iz, I1, I2, Oz, O1, O2, POz,

PO7, PO8, P6, P8) that were used as input to compute RDMs

(dissimilarity matrices). Selection was based on standard deviation

in ERP amplitude across the whole data set (all subjects and all

images). Each line corresponds to a single electrode: only

electrodes whose standard deviations crossed the dashed line were

selected.

(TIF)

Figure S2 Correlations of individual image parameters Weibull

beta (A) and gamma (B) with Fourier intercept, Fourier slope,

skewness and kurtosis values.

(TIF)

Figure S3 Left: Correlation between subject-specific signal-to-

noise ratio (SNR) and maximal explained variance (across all

electrodes). SNR was computed by 1) per electrode, averaging the

mean ERP amplitude across the 256 images over all post-stimulus

time-points, 2) dividing the absolute value of this average by the

standard deviation of all pre-stimulus time-points and 3) averaging

the resulting SNR values over electrodes. The SNR-values thus

reflect the degree to which stimulus-related ERP amplitude is

present relative to baseline fluctuations. Right: two examples of

evoked responses (CSD-transformed) for the 256 individual stimuli

and corresponding explained variance values at channel Oz. Top:

example of high SNR single-subject data; an ERP is clearly visible

in individual trials; explained variance based on contrast statistics

is high. Bottom: example of low SNR single-subject data; an

evoked response is hardly discernable in the individual trials;

explained variance based on contrast statistics is low. This result

elegantly shows that if there is no evoked response present in the

EEG signal, there is no stimulus-related variance to be explained

by differences in contrast statistics.

(TIF)

Figure S4 Explained variance values at channel Oz as reported

in Fig. 5A–C, but now computed based on non-averaged single-

trial ERPs (compared to single-image ERPs that are averaged over

repeats). As regressors, we used either (A), Weibull beta and

gamma, (B), Fourier intercept and slope and (C), skewness and

kurtosis. Colored thin lines: r2 values for individual subjects. Black

thick line: mean r2 across subjects.

(TIF)

Figure S5 AIC and unique variance analyses at channel Oz as

reported in Fig. 6, but now computed based on non-averaged

single-trial ERPs (compared to single-image ERPs that are

averaged over repeats). (A), Mean explained variance across

subjects for Weibull (red), Fourier (blue) and skewness/kurtosis

(green); shaded areas indicate S.E.M. (B), Mean AIC-value across

single subjects computed from the residuals of each of the three

regression models, as well as an additional model (black) consisting

of Fourier and skewness/kurtosis values combined, shaded areas

indicate S.E.M. (C), Single subject AIC-values at the time-point of

maximal explained variance for Weibull and Fourier statistics

(113 ms); subjects are sorted based on SNR ratio (reported in Fig.
S2). (D), Unique explained variance by each set of contrast

statistics. (E), Absolute, non-parametric correlations (Spearman’s

r) with ERP amplitude for the individual image parameters: Beta

(B), Gamma (G), Fourier Intercept (Ic), Fourier Slope (S),

distribution Skewness (Sk) and Kurtosis (Ku). Absolute values

are plotted for convenience; shaded areas indicate S.E.M. (F),

Unique explained variance by each individual image parameter.

(TIF)

Figure S6 Single-subject correlations of dissimilarity matrices

(RDMs) of ERPs with distance matrices based on the three sets of

contrast statistics: (A), Weibull parameters, (B), Fourier parameters

and (C), skewness and kurtosis.

(TIF)

Video S1 Representational dissimilarity matrices at each sample

in time of the ERP, starting 50 ms before until 350 ms after

stimulus-onset. Dissimilarity between stimuli is measured as

Euclidean distance (red = maximal, blue = minimal values in entire

data set) between ERP patterns across occipital electrodes (see

Materials and Methods). Categories are labeled on the x- and y-

axis; each cell of the matrix indexes the dissimilarity between two

individual stimuli. Differences between images suddenly emerge

around 90 ms after stimulus-onset and disappear again about

60 ms later. These differences cluster in 16616 blocks, suggesting

that categorical information is present in this time period. Later in

time, weaker differences arise, but not as large as before,

suggesting that category-specific dissimilarities between stimuli

are evoked early in time.

(MPG)
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