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Abstract

A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person’s immune cells,
particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study
is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to
be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-
compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions
at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential
equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of
parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations.
Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a
wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our
model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential
decline in the tumor population due to tumor geometry.
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Introduction

The most effective way to treat a disease is to prevent its

development in the first place. Consequently, a next generation

approach to cancer treatment envisions developing preventative

cancer vaccines that would train a person’s immune response to

eliminate tumors near inception by stimulating a person’s immune

system, especially cytotoxic T lymphocytes (CTLs), to attack

cancer cells expressing tumor-associated antigens [1]. Such an

immune response would destroy developing tumors close to

genesis, before tumor cells have acquired the ability to suppress

immune responses or metastasize to other tissues. A successful

preventative cancer vaccine would revolutionize the approach to

cancer treatment, and several experimental studies have success-

fully induced CTL responses against different types of tumor cells

[2–5].

A number of important questions need to be addressed. In

particular, is it a realistic goal to immunize a person against

cancer, and if so, how many anti-cancer CTLs would be required

to provide significant protection against cancer development?

There are several conceivable obstacles that could hinder a

memory anti-tumor CTL response from being effective. Since

cancers develop from colonies of several cells and grow much

more gradually than most infectious diseases, developing tumors

will only produce a weak antigenic signal, resulting in the

activation of only a small fraction of antigen-specific CTLs.

Furthermore, activated CTLs will have to encounter the incipient

tumor mass in the midst of a large volume of surrounding tissue. It

is conceivable that these effects could render an anti-tumor CTL

response ineffective. Consequently, the aim of this paper is to

assess the feasibility of preventative cancer vaccines from a

quantitative perspective.

A challenge to designing effective vaccines will be to understand

the quantitative dynamics of the protective anti-tumor CTL

response that initiates in the lymph node and proceeds to the tissue

containing the tumor. CTL responses almost always begin in

lymph nodes rather than the affected tissue. In particular,

unactivated CTLs spend most of the time circulating through

lymph nodes until they are stimulated by antigen-presenting cells,

at which point they proliferate and migrate to the affected tissue

[6].

To model this system, we synthesize current experimental

research of CTL dynamics into a hybrid mathematical model

consisting of a system of delay differential equations (DDEs) and

an agent-based model (ABM). Using this hybrid framework, our

model connects the fast-timescale dynamics of immune interac-
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tions within lymph nodes with the probabilistic, slow-timescale

dynamics of immune surveillance in the tumor microenvironment.

We then apply the model to investigate rates of tumor elimination

under a wide range of parameters, including tumor and CTL

proliferation rates, tumor antigenicity, CTL recruitment rates, and

initial CTL populations. In addition, the model sheds light on the

scale and nature of the dynamics relevant to an immune response

against a clinically undetectable, localized microtumor.

Mathematical modeling of tumor growth and tumor immunol-

ogy has grown rapidly in recent years and several modeling

approaches have been applied to understanding these phenomena.

For example, a large body of tumor-immune models have been

developed using ordinary differential equations (ODEs) [7–14]

and partial differential equations (PDEs) [15]. (See also [16] for a

review of ODE models of tumor-immune interactions and [17,18]

for reviews of ODE and PDE models of tumor growth.) Another

approach has focused on agent-based (or cellular automata)

models, sometimes coupled with differential equations, to simulate

tumor growth [19,20], tumor growth with angiogenesis [21,22],

and tumor growth in the presence of an immune response [23–

25]. These models focus primarily on chemotherapy, immuno-

therapy, and other treatments operating against existing tumors

following clinical detection than on protective immunity against

undetectable, developing tumors. In our model, we focus on

protective anti-tumor immunity by anti-tumor memory CTLs that

would be generated by a preventative cancer vaccine.

The ABM-DDE system we develop in the following sections is

most similar in formulation to the hybrid cellular automata-PDE

model of [24], which also considers host immune responses against

growing tumors. However, our model differs from that of [24] in

that it simulates interactions in three dimensions rather than two,

cell motion and cell contacts take place in Euclidean 3-space

rather than on a lattice, and the model simulates two compart-

ments that account for the communication between the tumor site

and the lymph node. On the other hand, since the agent-based

and cellular automata components of the two models are

comparable and simulate tumor populations of similar orders of

magnitude (fewer than 100,000 cells), we can readily compare the

results and parameter sensitivity analysis of our model with those

of [24] as we do in the Results section.

Although our model is formulated in a way that could apply to

multiple types of tumors by modifying parameters, a large body of

experimental research has been directed toward developing

treatment strategies for breast cancer, particularly by identifying

potential antigens that could be targeted by preventative breast

cancer vaccines [2,5]. In addition, key model parameters, such as

tumor growth rates, are readily available for breast cancer, e.g.,

[26–29], so for the purposes of focusing the scope of our model

formulation and parameter sensitivity analysis, we estimate tumor

parameters using breast cancer data.

The paper is organized as follows. In the Results, we discuss the

results of model simulations. In particular, we show plots of

example simulations, conduct a parameter sensitivity analysis, and

discuss the conditions under which the tumor population in the

ABM could exhibit a polynomial rate of decline, rather than

exponential, due to killing by CTLs. In the Discussion, we discuss

several natural extensions of the model and directions for future

work. In the Models, we present a two-compartment model,

consisting of the ABM of the tumor site and the DDE model of the

lymph node. We also justify the parameter estimates.

Results

The hybrid ABM-DDE model was simulated using Matlab

R2011b. Results from an example simulation are shown in

Figures 1 and 2.

As shown in Figure 1(right), the tumor begins growing in the

periphery. As the tumor size reaches approximately 1,000 cells,

more and more immature APCs in the periphery become mature,

begin presenting tumor antigen, and migrate to the lymph node

(see Figure 1(left)). The presence of mature, tumor-antigen-bearing

APCs in the lymph node causes memory CTLs to activate into

effector CTLs. These effector CTLs proliferate and migrate to the

periphery, leading to an anti-tumor CTL response at the tumor

site (see Figure 1(right)). Note that only a small fraction of

immature APCs and memory CTLs become stimulated into

mature APCs and effector CTLs, respectively, so the populations

A0 and T0 remain almost constant throughout the simulation.

Figure 2 shows snapshots of the ABM simulation at various time

points of the CTL response. The tumor begins to grow from one

cell at time 0. By day 14, the tumor has grown to 1,714 cells and

the anti-tumor CTL response has increased enough so that anti-

tumor CTLs begin to circulate around the tumor site at a

concentration of 1cell=mm3. By day 20, several CTLs have

engaged the tumor, giving rise to recruitment of additional CTLs.

By day 22, the anti-tumor CTL response has overcome tumor

growth causing the tumor cell population to decline. By day 36,

the tumor has shrunken to 191 cells, and anti-tumor CTLs

eliminate all tumor cells on day 42.

Since the system is probabilistic, each simulation produces

different results even when the underlying parameters are kept

constant. For example, a CTL response will not always eliminate a

tumor in one attempt. Indeed, when tumors decrease to tens of

cells or fewer, a moderate chance exists that all the CTLs in the

vicinity of the shrinking tumor mass may die or migrate away,

allowing the residual tumor to relapse. This phenomenon can

happen under any set of parameters, but happens more frequently

when the average time for CTL recruitment, Crecruit, is high (see

Figure 3). In Figure 3, the slow rate of CTL recruitment to the

tumor site allows the tumor to survive and relapse 11 times.

Nonetheless, the memory CTL response keeps the tumor

population below 5,700 cells.

Author Summary

An innovative approach to treating cancer envisions
developing preventative anti-cancer vaccines to train a
person’s immune cells to eliminate early-stage tumors
close to genesis. The design of such a treatment strategy
requires an understanding of the tumor and immune
interactions leading to a successful anti-cancer immune
response. To engage this problem, we formulate a
mathematical model of the immune response against
incipient tumours consisting of as low as hundreds to
thousands of cancer cells, which is far below the clinical
detection threshold of over 100,000 cells. The model
considers the initial stimulation of the immune response
and the resulting immune attack on the tumor mass and is
formulated as a hybrid agent-based and delay differential
equation model. We apply the model to test dynamics
over a wide range of dynamic parameters, including
immune and tumor cell growth rates and the size of the
initial anti-cancer immune population. Our results show
that an anti-cancer memory immune cell population of 3%
or less can successfully eradicate an incipient tumor
population over a wide range of dynamic parameters,
indicating that a vaccination approach is feasible.

Modeling Anti-Tumor Immunity via Cancer Vaccines
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These results are corroborated by the cellular automata results

of [24], in which Mallet and de Pillis observe that a relatively high

CTL recruitment rate leads to few oscillations in the tumor

population and early tumor elimination, whereas a lower CTL

recruitment rate gives rise to ongoing oscillations, during which

the tumor is nearly eliminated at several points, but manages to

relapse.

To obtain a broader view of the influence of parameter values

on the behavior of the system, we analyze the sensitivity of the

model to the following eight parameters: Tdiv, smax, Cacc, Crecruit,

Ckill, K , m, m, a. We conduct our sensitivity analysis by varying

each parameter individually over the ranges shown in Table 1,

while holding all other parameters constant at their base values.

For each set of parameters, we conduct 5 simulations. Due to the

computational cost of the ABM, we do not conduct more

simulations, but even with such few repetitions, we can observe

key trends in the influence of the parameters on the model. To

assess the influence of the parameters, we calculate the Spearman

rank-order correlation of each parameter versus the time to tumor

extinction and the maximum number of tumor cells. Table 2

shows Spearman rank-order correlations, r, and p-values for each

parameter.

One parameter that stands out as being remarkably insignificant

to the final outcome of the simulations is the time-delay parameter,

r, representing the duration of one CTL division. This parameter

has almost no correlation to both the time of tumor extinction and

the maximum tumor population. One reason for this lack of

significance is that over the entire range of r, the duration of the

CTL division program, s, varies from 2.5 to 10 days, while typical

tumor extinction times are on the order of 100 days. Hence, a

variable delay of several days hardly impacts the final outcome.

Similarly, the maximum tumor population will only be minimally

affected by a slight delay in the initiation of the CTL response.

Although a natural extension of DDE system is to consider a

distributed instead of a discrete time delay for the duration of CTL

division, the sensitivity results above imply that a variable delay

over the range 4 to 24 hours will probably hardly affect the final

outcomes. Moreover, the vast majority of CTLs are likely to have

division times within this range [6,30]

From Table 2, we see that the outcomes of the simulations are

most significantly influenced by the average tumor division time,

Tdiv; average CTL recruitment time, Crecruit; initial number of

CTL divisions upon activation, m; and the antigenicity of the

tumor, a. Figure 4 plots the outcomes of the simulations with

respect to Tdiv, Crecruit, and a.

In column 1 of Figure 4, we see that the time to tumor

extinction grows almost linearly with respect to the average tumor

division time, Tdiv. On the other hand, for tumor division times of

greater than 10 days, the maximum tumor population hardly

changes and nearly all tumors are destroyed at populations of

fewer than 1,000 cells. The reason is that the CTL response begins

to respond to tumors once they reach a certain size (approximately

several hundred cells). A more slowly growing tumor will take

proportionally longer to reach this critical size at which CTLs

respond. Interestingly, even when an incipient tumor divides at a

very rapid rate of once per day, the CTL response destroys the

tumor in under 100 days at populations of on the order of 10,000

cells. These results suggest that the immune system responds more

effectively to quickly growing tumors. However, very quickly

growing tumors can attain orders of magnitude higher populations

before being destroyed (see Figure 4 (column 1, bottom row)). As a

result, these tumors may grow large and diverse enough to develop

immune evasion and metastatic capabilities before the CTL

response can eliminate them. On the other hand, tumors that

grow very slowly could persist for several years before being

detected by CTLs. Consequently, it seems that incipient tumors

that grow very quickly or very slowly could cause the most

difficulty for an anti-tumor CTL response.

In column 2 of Figure 4, we see that both the time to tumor

extinction and the maximum tumor population increase steadily as

the average CTL recruitment time, Crecruit, increases. Nonetheless,

the maximum tumor population increases by less than an order of

magnitude over the range Crecruit~2 to 24hours. On the other

hand, the variance of tumor extinction times seems to increase

suddenly once Crecruit passes 18 hours. This sudden shift is

probably due to the increased chance of tumor survival and

relapse leading to oscillations when CTL recruitment become

sufficiently slow (for example, see Figure 3). This phenomenon

Figure 1. Time plots of cell populations for a simulation of the ABM-DDE system. See also ABM plots in Figure 2. Parameters are taken from
the base values shown in Table 1. (left) Numerical solution of the system (4). Populations displayed are A0 , immature APCs in the periphery; A1,
mature APCs in the lymph node; T0 memory CTLs in the lymph node; T1 , effector CTLs in the lymph node; and T2 , effector CTLs in the periphery.
(right) Plot of tumor cell and CTL populations at tumor site.
doi:10.1371/journal.pcbi.1002742.g001

Modeling Anti-Tumor Immunity via Cancer Vaccines
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may be akin to a Hopf bifurcation in dynamical systems. A useful

future direction would be to devise an analogous version of the

model as a dynamical system to analyze whether Hopf bifurcations

could underlie this and other shifts in the behavior of the ABM-

DDE system.

In Table 2, we also see that although the system is sensitive to

the CTL recruitment time, it is much less sensitive to the time for

CTLs to kill tumor cells. This result is reasonable, since CTLs that

ineffectively recruit additional CTLs are unlikely to eliminate the

tumor during their lifespans regardless of their killing rate.

In column 3 of Figure 4, we see that tumor antigenicity, a,

influences the behavior of the system the most. Indeed, a tumor

that is 10 times less antigenic than another would require a tenfold

higher tumor cell population to elicit a CTL response of the same

magnitude. Nonetheless, over the entire simulated range of

antigenicities, the CTL response succeeds in destroying the tumor

in under than 300 days and at populations below 30,000 cells,

corresponding to tumors of less than 0.35 mm in diameter, which

is still under the typical clinical detection limit of a few millimeters

or greater [31,32]. Therefore, although it is difficult to estimate the

level of antigenicity of an incipient tumor, it appears that an anti-

tumor memory CTL response could be reasonably effective for a

wide range of tumor antigenicities.

In Table 2, we see that the outcomes of the simulations also

depend significantly on m, the number of divisions of memory

CTLs upon activation. The plots for simulation outcomes versus m

resemble those for log(a) in column 3 of Figure 4, so we do not

show them here. The strong dependence of the system on m is

Figure 2. Progression of ABM simulation. See also time plots in Figure 1. Plots show tumor cells (black circles), CTLs that are circulating at the
tumor site (gray circles), and CTLs that are engaging tumor cells (white circles). Parameters are taken from the base values shown in Table 1. (Day 14)
Tumor grows from one cell to 1,714 cells, triggering a CTL response in the lymph node. CTLs begin circulating in the periphery and occasionally enter
the tumor site. (Day 20) Tumor has grown to 6,709 cells. CTLs discover tumor mass, begin to engage tumor cells, and recruit additional CTLs. (Day 22)
CTL population overcomes tumor growth causing tumor mass to begin to decrease. Tumor mass is currently 6,880 cells. (Day 36) CTLs continue to
engage the tumor, decreasing tumor to 191 cells. All tumor cells are eliminated on day 42.
doi:10.1371/journal.pcbi.1002742.g002

Modeling Anti-Tumor Immunity via Cancer Vaccines
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expected, because each increase or decrease in m coincides with a

twofold increase or decrease in the magnitude of the CTL

response. Nonetheless, over the range m~7 to 17, corresponding

to a 100 to 100,000-fold CTL expansion upon activation, the

maximum tumor populations remain between 5,000 and 100 cells,

and extinction times remain under 200 days for all simulations.

We also consider the sensitivity of the system to the size of the

memory CTL pool, since this parameter will inform the develop-

ment of a preventative breast-cancer vaccination strategy. Figure 5

shows simulation outcomes against the steady-state frequency of

anti-tumor memory CTLs. From the figure, we see that the time to

tumor extinction only decreases slightly as the memory CTL

population increases. On the other hand, the maximum tumor

population decreases approximately threefold as the memory CTL

population rises from 1 to 3% and then stabilizes for memory CTL

populations from 3 to 10%. Based on this result, a preventative

vaccination strategy would maximize its potential efficacy by

generating a memory CTL pool of around 2 to 3% of the steady

state CTL population. A target memory pool of that size may be

attainable by a strategic use of cellular vaccines and adjuvants [33].

The results above indicate that over the range of parameter

values considered in Table 1, the presence of anti-tumor memory

CTLs effectively restricts the maximum growth and longevity of

an incipient tumor, perhaps even to the point of preventing it from

diversifying and exhibiting immunosuppressive or metastatic

behaviors. As we see in Table 1 most of the varied parameters

were considered over a range of at least 1/2 to 2 times the

estimated value. The only parameters that were not varied over

this wide of a range were the CTL diffusion parameter, smax, and

the minimum number of CTL divisions, m, which vary over a range

Figure 3. Time plots showing oscillating tumor cell and CTL
populations at the tumor site. The average CTL recruitment time,
Crecruit, is 24 h. All other parameters are taken from the base values
shown in Table 1. The tumor population peaks and declines 12 times.
Low points of tumor remissions range from 1 to 105 residual cells. The
tumor is eliminated on day 1,600.
doi:10.1371/journal.pcbi.1002742.g003

Table 1. Table of parameters for the ABM and DDE model and estimated values.

Parameter Description Estimate (Range)

Dt Time step 1 min

r Radius of cells 5mm

Tdiv Avg. division time of tumor cell 7 (1–400) days

smax Max unit standard deviation of CTL diffusion 12(6{16)mm=min

Cacc CTL acceleration time from 0 to smax 5 (0–24) h

Cdeath Avg. CTL lifespan 41 h

Crecruit Avg. time for CTL recruitment 8 (2–24) h

Ckill Avg. time for CTL to kill tumor cell 24 (4–48) h

R Radius of region of interest 620:4mm

h Thickness of CTL cloud 3smax

ffiffiffiffiffi
Dt
p

Vratio Ratio of volume of tissue to the lymph node 1000

A0(0) Initial concentration of immature APCs 0:01k=mm3

d0 Death/turnover rate of immature APCs 0:03day{1

sA Supply rate of immature APCs A0(0)d0~0:3k=mm3day{1

d1 Death/turnover rate of mature APCs 0:8day{1

K Initial/equilibrium concentration of memory CTLs 2%(1%{10%)|200k=mm3

r Logistic growth rate of memory CTLs 0:7day{1

m Minimal number of CTL divisions 10 (7–17)

d1 Death/turnover rate of effector CTLs 0:4day{1

m Mass-action coefficient 20(2{20)(k=mm3){1 day21

r Duration of one CTL division 1/3 day (4–24 h)

s Duration of CTL division program 1z(m{1)r

a Antigenicity of the tumor 10{9 (10{11 to 10{6)

f CTLs flow rate out of lymph node to tissue 0:7 day{1

doi:10.1371/journal.pcbi.1002742.t001

Modeling Anti-Tumor Immunity via Cancer Vaccines
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of approximately +50% of the estimated value. The ranges of these

parameters were tightened, since estimates were based on direct

experimental measurements of the required quantities [34–36]. In

addition, the mass-action coefficient, m, was varied from 1/10 to 1

times the estimated value, since higher values of m would only make

the CTL response stronger and more effective. Consequently, we

decide to only consider lower values of this parameter to see

whether weaker CTL responses can result in a favorable outcome.

From these results, the model suggests that pursuing the develop-

ment of breast cancer vaccines that would boost immune defenses

against incipient tumors may be a feasible preventative treatment

strategy over a wide range of parameter values.

Conditions for tumor escape
In the results above, we do not discuss the probability of tumor

survival, because the tumor is always eventually eliminated in our

simulations. In fact, for the model as formulated, eventual tumor

elimination is highly likely and perhaps guaranteed on an infinite-

time horizon.

Several reasons why the model formulation makes eventual

tumor elimination very likely are as follows. The modeled tumor

site is a finite volume of 1 mm3, and tumor cells cannot grow

beyond this region. CTLs are continually supplied from a

regenerating memory population, so CTLs never go extinct. On

the other hand, the tumor-free state is an absorbing state from

which no new tumor cells can be generated. Over the range of

considered model parameters, CTLs proliferate and recruit

additional CTLs at a faster rate (ƒ24 hr) than tumor cells divide

(§24 hr), so once CTLs engage tumor cells, the CTL population

can always exceed or keep abreast of tumor proliferation. These

parameter assumptions seem reasonable, since the expansion rate

of proliferating memory CTLs will most likely exceed the growth

Figure 4. Plots showing tumor extinction times (top row) and log10 of maximum tumor populations (bottom row) versus
parameters, Tdiv, Crecruit, and log10 a (columns 1, 2, and 3, respectively). Black circles and solid lines represent means over 5 simulations.
Dotted lines represent minimum and maximum values obtained over the 5 simulations.
doi:10.1371/journal.pcbi.1002742.g004

Table 2. Spearman rank-order correlations and p-values between model parameters and simulation outcomes.

Extinction time log10(Max. tumor size)

Parameter Correlation r p-value Correlation r p-value

Tdiv 0.9051 1.7506 E-22 20.8586 3.3583 e-12

smax 20.2740 0.1429 20.6303 0.0002

Cacc 20.4314 0.0097 20.3409 0.0451

Crecruit 0.7990 1.9968 E-14 0.7661 9.8568 e-13

Ckill 0.2704 0.0366 0.0204 0.8773

K 20.3988 0.0041 20.4002 0.0040

m 20.0562 0.6982 20.3040 0.0319

m 20.8207 1.7165 E-14 20.9018 1.1645 e-21

r 20.0079 0.9670 0.0259 0.8918

a 20.9470 7.9114 E-23 20.9696 6.1862 e-28

Simulation outcomes are measured in terms of tumor extinction times and maximum tumor populations.
doi:10.1371/journal.pcbi.1002742.t002

Modeling Anti-Tumor Immunity via Cancer Vaccines
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rate of tumor cells (see the discussion and references in the

Parameter Estimates section).

In addition to these considerations, the probabilistic nature of

the model implies that there is always a nonzero chance that even

a few CTLs can kill a large number of tumor cells rapidly,

meaning that a chain of strongly cytotoxic events could lead to

complete tumor elimination even in unlikely circumstances.

Consequently, over an infinite-time horizon, tumor elimination

becomes more likely and perhaps even inevitable. For example, as

we see in Figure 3, the underlying dynamics appear to be

oscillatory. However, every oscillation increases the chance that

the tumor could be eliminated, which occurs on day 1,600 in the

displayed simulation.

Due to these limitations in the model, we choose to assess the

simulations based on time to tumor elimination and maximum

tumor population rather than probability of elimination. Our

focus is whether an anti-tumor CTL response can eradicate an

incipient tumor quickly and below a certain size, instead of

whether it can eventually eliminate the tumor. The reason we are

interested in a quick and decisive immune response is that tumors

that grow for a long time or to a large size most likely have a

higher probability of avoiding immune elimination by either

metastasis and migration away from the primary tumor site or by

mutating to develop immunosuppressive or immune evasive

capabilities. At this point, we do not explicitly model tumor

metastasis or adaptive mutation, so these aspects remain a key

direction for future work.

As a substitute to directly measuring the probability of tumor

elimination, one can set a criterion for failure of the immune

response and reinterpret the results. For example, a possible

criterion could be that the incipient tumor must be eliminated in

fewer than 10,000 tumor cells (*0:25 mm diameter) and in less

than 2 years. However, the probability of tumor elimination still

follows the same trends shown in Figures 4 and 5, so we do not

display additional results under this criterion.

Rate of tumor decline and elimination
In the simulations above, the tumor decline to extinction

appears to follow a curve of the form Tfit(t)~a(t0{t)3, rather

than an exponential decay, where t0 approximately coincides with

the simulated extinction time and a is constant. An interesting

observation is that, unlike an exponential decay, the cubic curve

Tfit(t) reaches 0 in finite time, meaning that the descent to tumor

elimination proceeds almost deterministically, even though the

model is probabilistic.

Figure 6(left) shows the time plots of the tumor and CTL

populations from a simulation of the ABM-DDE system, where

the tumor antigenicity a~10{11 and all other parameters are

taken from the base values shown in Table 1. Figure 6(right) shows

plots of T1=3 and ln(T) from day 190 to extinction, where T is the

tumor population corresponding to the agent-based simulation of

the tumor site.

From Figure 6(right), we see that T1=3 declines almost linearly to

the extinction time, whereas ln(T) is far from linear, indicating

that the tumor decline much more closely follows a cubic function

than an exponential decay. The linear regression for T1=3 is

T
1=3
fit ~1:05(213:6{t). (The plot of the fit is not shown, because it

overlaps the curve T1=3 very closely.)

The cubic curve Tfit(t) predicts a deterministic finite time

extinction of the tumor at time t~213:6, which is very close to the

simulated extinction time of 213 days. The cubic decline can be

explained by considering the geometry of the system. If we assume

that the growing tumor mass is approximately spherical, most

CTLs will engage tumor cells on the surface of the sphere. This is

not to say that some CTLs will not penetrate the tumor, even

causing the tumor to fragment and lose its spherical shape. Indeed,

fragmentation happens more frequently as the CTL recruitment

rate Crecruit decreases, causing the model to depart from a strictly

cubic decline. However, if for the most part, the majority of CTLs

encounter and engage the tumor near its surface, the rate that

tumor cells are killed by CTLs will be proportional to T2=3. A

system that will yield a cubic solution like the one above is a

differential equation of the form T
0
(t)~{b(C)T2=3, where the

coefficient b(C) is proportional to how thoroughly CTLs cover the

tumor surface and is a function of the total CTL population, C.

This observation implies that tumor-CTL dynamics, at least

during the decline phase could be modeled by a system of

differential equations that predicts deterministic extinction in finite

time. In fact, in a different study, a deterministic ODE model of

cancer virotherapy was formulated that predicts cancer elimina-

tion in finite time [37]. At this point, we leave a more thorough

development of a deterministic differential equation model for a

future work, but for now, we present the following simple ODE

model:

Figure 5. Plots showing tumor extinction times (left) and maximum tumor populations (right) versus frequency of memory CTLs at
steady state, i.e. K=(200k=mm3). Black circles and solid lines represent means over 5 simulations. Dotted lines represent minimum and maximum
values obtained over the 5 simulations.
doi:10.1371/journal.pcbi.1002742.g005
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T
0
(t) ~rTT2=3{rkill

:minfE,Cmaxg,
E
0
(t) ~1000T2f (E,T)VT{d1Ezrrecruitf (E,T)E,

ð1Þ

where T is the number of tumor cells and E is the number CTLs

that are close enough to engage the tumor at its surface. In

addition, VT~T(4p=3)r3 is the tumor volume, where r is the cell

radius given in Table 1, ST~4p(3VT=(4p))2=3 is the tumor

surface area, Cmax~ST=(pr2) is the maximum number of CTLs

that can be in contact with the tumor surface at the current time,

and f (E,T)~maxf0,1{E=Cmaxg is the density-dependent CTL

immigration term.

The first equation in (1) pertains to the number of tumor cells.

The first term is the growth rate of the tumor mass. We assume

that the growth rate is proportional to the surface area of the

tumor, since nearly all growth will happen at or near the surface of

the tumor. The second term is the rate that tumor cells are killed

by CTLs. The rate of tumor death is proportional to the number

of CTLs in contact with the tumor. We assume that all CTLs in

the close vicinity of the tumor are in contact with the tumor up to

a maximum number Cmax. This maximum is the ratio of the

surface area of the tumor divided by the cross-sectional area of a

CTL.

The second equation in (1) pertains to CTLs in close vicinity of

the tumor. The first term is the rate at which CTLs in the

periphery come into the close vicinity of the tumor. Since the

ODE does not account for CTL diffusion, we assume all CTLs are

evenly distributed throughout the periphery at concentration T2,

where T2 is the CTL concentration in the periphery given by the

DDE model (3). Since T2 is in units of thousands of cells per mm3,

the factor 1000 T2VT is the number of CTLs that would occupy a

region of volume VT . The density-dependent term f (E,T) ensures

that the rate CTLs come into the vicinity of the tumor decreases to

0 as the population E approaches capacity Cmax. The second term

is the death rate of CTLs and the parameter d1 is the same as the

one in Table 1. The third term is the rate at which CTLs in the

vicinity of the tumor recruit additional CTLs to the vicinity of the

tumor. This term is also modified by the density-dependent factor

f (E,T) to ensure that the CTL recruitment rate decreases to 0 as

the population E approaches capacity.

As with the ABM, the ODE system (1) for the tumor site is

coupled with the DDE system (3) for the lymph node. We

simulated the combined system using ‘dde23’ in Matlab R2011b.

Figure 7(left) shows numerical simulations of the tumor and CTL

populations given by (1). Figure7(right) shows a time plot of the

cube root of the tumor population obtained from the numerical

simulation.

From Figure 7(left), we see that the rise and fall curves of the

tumor and CTL populations exhibit similar shapes as those of the

ABM-DDE simulation in Figure 6(left). In addition, from

Figure 7(right), we see that the final decline of the cube root of

the tumor population, T1=3, closely follows a linear decline and

deterministically reaches extinction in finite time on day 19.04.

These observations suggest that the rate of CTL killing of the

tumor resembles a differential equation of the form

T
0
(t)~{b(C)Tp for p~2=3, rather than a mass-action model

given by T
0
(t)~{mCT . The reason the tumor death rate is

proportional to Tp for pv1 is that not all tumor cells are equally

accessed by CTLs due to the geometric structure of the tumor.

Because pv1, a differential equation model of CTL-tumor

dynamics could predict deterministic finite-time extinction of the

tumor, and as we see in Figure 6, the dynamics of the ABM could

closely follow this deterministic decline to extinction.

Discussion

We formulate a model of an anti-tumor memory CTL response

elicited by vaccination that will act against an incipient tumor. The

primary goal of the model is to assess whether it is realistic for a

person’s immune system to have a sufficient pool of anti-cancer

memory CTLs to significantly reduce the chances of developing

cancer. We focus our investigation on breast cancer, since

extensive experimental research has been done on growth

parameters and tumor sizes, e.g., in [26–29] and clinical detection

limits, e.g., in [31,32].

Our model suggests that protective immunity against the

development of breast cancer could be feasible, because an anti-

tumor memory CTL pool of 3% of CTLs could eliminate a

developing tumor before it reaches an average size of 1,000 cells,

and an anti-tumor memory CTL pool of only 1% of CTLs could

eliminate a growing tumor in fewer than 30,000 cells (a diameter

Figure 6. Time plots of tumor and CTL populations from a simulation of the ABM-DDE system. (left) Tumor antigenicity a~10{11. All
other parameters are taken from the base values shown in Table 1. The tumor population is extinct on day 213. (right) Plot of the cube root and

natural logarithm of the tumor population from day 190 to extinction. The numerical solution of T1=3 has a high linear correlation r~{0:9995,

implying that T decays as a cubic function of t. (The linear regression is T
1=3
fit ~1:05(213:6{t).) On the other hand, the numerical solution of ln T does

not exhibit linear behavior, showing that T does not decay exponentially.
doi:10.1371/journal.pcbi.1002742.g006
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of approximately 0.35 mm). These predictions are corroborated

by experimental results. In one mouse study, vaccination with

telomerase led to telomerase-specific T cell responses of no more

than 3% in different mouse strains and had a protective effect

against tumor growth [38], and another mouse model showed that

a 2% threshold for a vaccine-elicited T cell response predicted

efficacy in limiting tumor growth and survival [39].

In our simulations, the effectiveness of the anti-tumor CTL

response depends largely on how quickly CTLs can locate and

then eliminate an incipient tumor. The key challenges to locating

the tumor are that the incipient tumor expresses a very low

antigenic signal to the draining lymph node and it takes up a tiny

volume in the tissue. The rapidity of this phase depends primarily

on the number of CTLs that become activated and migrate to the

periphery. These dynamics are governed mostly by K , the

equilibrium memory CTL population; m, the number of divisions

undertaken by an activated CTL; and a, the antigenicity of the

tumor. Once the tumor has been located and CTLs begin to

engage tumor cells, the survival of the tumor depends mostly on

Crecruit, the rate additional CTLs are recruited to the tumor site

and, to a slightly lesser degree, Ckill, the rate at which CTLs kill

tumor cells. A future step for experimental and modeling research

will be to understand how to design an optimal vaccination

strategy that would elicit a sufficient CTL response to seed an

adequate anti-tumor memory CTL pool [33].

An additional observation from our simulations is that faster

growing tumors are often destroyed faster than more slowly

growing ones. This result agrees with experimental observations

that CTL responses react more effectively to rapidly increasing

sources of antigen than to constant or slowly increasing stimuli

[40]. In other words, for a protective immune response, a

population of rapidly growing tumor cells might not be more

difficult for the immune response to eliminate than a very slowly

growing population.

In our current study, we are interested conditions that allow the

CTL response to eliminate a tumor before it reaches a sufficient

size or diversity to effectively suppress the immune response,

metastasize, or induce angiogenesis. The question remains: At

what size or in what time frame is a tumor likely to develop these

capabilities, and how would this development impact the immune

response. Thus, a direction for future work would be to

incorporate the mutation of tumors cells to model the competition

between the CTL response and the evolution of the tumor cell

population.

Another extension of the model is to explicitly incorporate the

chemotaxis of CTLs up a signal gradient to the tumor site. We

currently model CTL recruitment using an approach analogous to

that of [24], in which new CTLs arrive at a probabilistic rate in the

vicinity of recruiting CTLs. In reality, CTLs migrate up a signal

gradient toward a region of high cytotoxic activity. However, this

process appears to happen much more quickly than the time scale

of the CTL response simulated in the model [3]. As a result, in this

study, we do not explicitly model the trajectory of recruited CTLs

toward the tumor mass. Indeed, if CTLs move at an average rate

of 12mm=min, and the radius of the simulated tumor site is

620:4mm, a migrating CTL could travel from the boundary of the

region to the center in less than an hour.

As discussed at the beginning of this paper, various models have

recently been developed for immune interactions with solid

tumors, using both probabilistic agent-based (or cellular autom-

ata), deterministic differential equation, and hybrid approaches,

e.g., [7,8,12,23,24]. A future step will be to bridge these

frameworks. In the case of our ABM, we noticed that the decline

in the tumor population could closely follow a cubic rather than an

exponential curve. Consequently, a deterministic differential

equation version of the ABM would have to account for the

tumor geometry as well as cell localization around the tumor.

Developing a differential equation version of the ABM will provide

a means of analyzing the stability of the system, particularly

around the tumor-free fixed point and determining what

conditions allow the tumor to be eliminated in finite time, see

[37]. In addition, a differential equation model will shed light on

whether a stability bifurcation underlies the rapid increase in the

amplitude of oscillations that occur as the CTL recruitment time

increases (see Figure 4(column 2)).

Characterizing tumor-immune dynamics using different model-

ing perspectives will provide a means of assessing whether it would

be feasible to prevent breast cancer using preventative vaccines.

Since nearly all relevant cell interactions for protective anti-tumor

immunity occur at a level below clinical detection, insights provided

by models of immune responses against developing tumors will

inform further modeling and experimental directions and aid the

advancement of next-generation therapeutic strategies.

Models

Our model considers two compartments of immune activity: the

site of the incipient tumor in the tissue and a tumor-draining

Figure 7. Time plots of tumor population, T , and CTL population, E, from (1). (left) Parameters rT~2=day, rkill~2=day, and rrecruit~3=day.
All other parameters are taken from the base values in Table 1. The tumor population is extinct, i.e., identically 0, on day 19.04. (right) Time plot of the
cube root of the tumor population. The final decline appears nearly linear.
doi:10.1371/journal.pcbi.1002742.g007
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lymph node. We model dynamics of the tumor compartment using

a probabilistic ABM. The advantage of the ABM is that it allows

us to capture the probabilistic nature and spatial structure of CTL-

tumor interactions. In our simulations, cell populations fall under

100,000, making an ABM computationally practical.

On the other hand, we model dynamics in the lymph node

using a system of DDEs. The advantage of the DDE system is that

it allows us to capture the dynamics of an arbitrary number of cells

efficiently. In the lymph node, immune cells interact at a faster

time scale and exist at orders of magnitude higher concentrations

than in the periphery, making an ABM formulation computa-

tionally impractical. As a result, we devise a hybrid model

connecting an ABM and a DDE system for the tumor site and

lymph node.

Agent-based model of dynamics at tumor site
The ABM simulates tumor cells and CTLs at the tumor site. All

cells are modeled as spheres of radius r in Euclidean 3-space, and

no two cells can overlap the same space. The system is updated

according to algorithmic rules at discrete time steps Dt. The rules

for each type of cell are described below.

Tumor cells. At every time step, each tumor cell divides with

probability 1{e{Dt=Tdiv , where Tdiv is the average division time of

a tumor cell. When a cell divides, it attempts to create a new cell

tangent to the original one. The location of the new cell is chosen

uniformly at random among all directions that are not currently

occupied by an existing tumor cell or CTL. If there is no space for

a new cell to appear, the dividing cell fails to divide, and no new

cell is created. Figure 8 shows examples of what could happen

when a cell attempts to divide.

In this model, cancer cells do not move, so a tumor only grows

by division, rather than migration. Since our primary focus is to

model CTL responses against clinically undetectable microtumors,

we assume cancer cells have not acquired the ability to migrate at

this stage. In addition, for simplicity, we do not model the non-

cancerous tissue surrounding the tumor. Instead, we assume that

each new tumor cell can push away the surrounding tissue as it

proliferates. Figure 9 shows an example of a growing tumor at

various time points. If a cancer cell is killed by an anti-tumor CTL,

it is removed from the system.

Anti-cancer CTLs. Unlike cancer cells, anti-cancer CTLs

continually move, and we model their movement using a 3-D

Wiener process. At each time step Dt, a CTLs location changes by

the vector ~vv~(v1,v2,v3), where each coordinate vi is an

independent random variable with normal distribution

N (0,s2Dt) and s2 is the variance per unit time of the particle’s

motion. Note that if D is the diffusion rate of the CTL, then

s2~2D [41,42]. If a CTL’s motion causes it to collide with

another cell, the CTL moves as far as possible and stops. See

Figure 10.

A CTL that is in contact with a cancer cell stops moving and

engages the cancer cell. Then, at each time step, the CTL may

perform two possible actions: (1) recruit an additional CTL or (2)

kill the cancer cell.

We model CTL recruitment in a fashion similar to that used in

the celluar automata model of Mallet et al. [24]. Specifically, when

a CTL recruits another CTL, a new CTL appears at a location

adjacent to the recruiting CTL. A CTL that is engaging a cancer

cell recruit an additional CTL with probability 1{e{Dt=Crecruit at

each time step, where Crecruit is the average time recruitment time.

As in cancer cell division, the direction of the new CTL is chosen

uniformly at random among all directions that are not currently

occupied by other cells.

This modeling approach is an approximation of CTL chemo-

taxis along a chemokine gradient toward a site of CTL stimulation

[43,44]. The approximation does not account for the actual

trajectory of recruited CTLs toward the recruiting CTL. Instead,

the model assumes that CTLs recruited in this fashion originate in

the region beyond the tumor site and end up in the vicinity of the

recruiting CTL at an average rate, 1=Crecruit. As in [24], this

process CTL recruitment is separate and independent of the

diffusive random walks (governed by 3-D Wiener processes) of

other CTLs within the modeled region of the tumor site. In this

manner, CTLs arrive in the vicinity of the tumor either through

recruitment by CTLs already engaging cancer cells or by

undirected diffusion toward the tumor via a 3-D random walk.

In addition to recruitment, at each time step, a CTL engaging a

cancer cell can kill the cancer cell with probability 1{e{Dt=Ckill ,

where Ckill are the average time for a CTL or kill a cancer cell.

When a cancer cell dies, any CTLs engaging that cancer cell

automatically disengage and begin moving again.

When a CTL starts moving, it accelerates up to the maximum

unit standard deviation smax. We model CTL acceleration as

s(t)~smax
:minft=Cacc,1g ð2Þ

where smax is the maximum unit standard deviation of a CTL and

Cacc is the time required to accelerate from stationary to the

maximum diffusion rate. A justification for this expression is given

in the subsection on CTL acceleration.

At each time step, CTLs die with probability 1{e{Dt=Cdeath ,

where Cdeath is the average CTL lifespan. Cancer cells and CTLs

that die are removed from the system. See Figure 11 for a diagram

of possible CTL actions during a time step.

For practicality, we simulate CTL-cancer dynamics in a

spherical region of radius R rather than over the entire body. As

a result, we must consider CTL immigration and emigration from

the region of interest. Outside the spherical region, we assume the

CTLs exist at a concentration C2(t) that may vary over time. The

value of C2(t) over time is governed by the DDE model.

Once we obtain C2(t) from the DDE model, we consider an

annulus of thickness h around the spherical region, which we call

the CTL cloud. Then, at the beginning of each time step, we

generate a random number of CTLs distributed uniformly at

random throughout the CTL cloud so that no two cells overlap.

The number of CTLs generated is given by a Poisson random

variable with Poisson parameter C2Vcloud, where

Vcloud~(4p=3)((Rzh)3{R3) is the volume of the CTL cloud.

Figure 8. Possible outcomes of cell division. (a) Space is available,
so the cell divides successfully, and a new cell is generated adjacent to
the old cell. (b) No space is available, so the cell fails to divide. To
simplify diagrams, figures are shown in 2-D, although the model occurs
in 3-D. package.
doi:10.1371/journal.pcbi.1002742.g008
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Next, we update the motion of all CTLs during the time step and

only keep CTLs that are inside the region of interest at the end of

the time step. We assume all CTLs originating in the cloud diffuse

at the maximum rate. See Figure 12.

The CTL cloud represents the region of CTLs that could

emigrate into the region of interest during the next time step. To

reliably capture nearly all such CTLs, we need to set the width h of

the cloud high enough such that there is low probability that a

CTL on the outside of the cloud could cross over the cloud into the

region of interest within one time step. This approach of

simulating CTL emigration is our discrete, probabilistic analog

of setting a constant boundary condition for a PDE.

Delay differential equation model of lymph node
dynamics

To investigate the possible strength of a secondary anti-cancer

CTL response, we simulate the anti-cancer immune dynamics in a

vaccinated host. The anti-tumor CTL response begins when

antigen presenting cells (APCs) bearing tumor antigen mature and

migrate to the draining lymph node, where they activate memory

CTLs that begin to proliferate and emigrate to the site of infection.

We model this process in five steps illustrated in Figure 13:

1. Tumor cells produce antigen at the tumor site,

2. APCs pick up tumor antigen and migrate to the draining

lymph node,

3. In the lymph node, mature APCs activate memory CTLs that

enter a minimal division program of m cell divisions,

4. Memory CTLs that have completed the minimal division

program become effector CTLs that continue dividing upon

further stimulation by APCs,

5. Effector CTLs continually migrate out of the lymph node to

the periphery.

The model is formulated as the following system of DDEs:

A
0
0(t) ~sA{d0A0(t){aT(t)A0(t),

A
0
1(t) ~VratioaT(t)A0(t){d1A1(t),

C
0
0(t) ~rC 1{

C0(t)

K

� �
C0(t){mA1(t)C0(t),

C
0
1(t)

~2mmA1(t{s)C0(t{s){mA1(t)C1(t)

z2mA1(t{r)C1(t{r){d1C1(t){fC1(t),

C
0
2(t) ~

fC1(t)

Vratio

{d1C2(t),

ð3Þ

where T is the tumor cell population at the tumor site modeled by

the ABM, A0 is the concentration of APCs in the periphery, A1 is

the concentration of APCs that have matured, started to present

tumor antigen, and migrated to the lymph node, C0 is the

concentration of memory CTLs in the lymph node, C1 is the

concentration of effector CTLs in the lymph node, and C2 is the

concentration of effector CTLs in the periphery. (The concentra-

tion C2 is the value used by the ABM to generate CTLs in the

CTL cloud.) Concentrations are measured in units of k=mm3

(thousands of cells per cubic millimeter). Note that 1mm3 = 1mL
(microliter).

The first equation in (3) pertains to APCs waiting in the

periphery. These cells are supplied at a constant rate, sA, and die

at a proportional rate, d0. Thus, without stimulation, the

population remains at its equilibrium level, sA=d0. The factor

aT(t) is the proportional rate that APCs take up tumor antigen,

mature, and migrate to the lymph node. Rather than explicitly

modeling antigen generation, we assume that the rate of APC

stimulation is proportional to the tumor population, T(t), where a
is a constant related to the antigenicity of the tumor.

The second equation in (3) pertains to APCs that have matured,

started to present tumor antigen, and migrated to the lymph node.

The model accounts for APC maturation, antigen presentation,

and migration as one collective event, because APCs that only

undergo one or two of the three processes are not pertinent to the

dynamics of the model, since they cannot stimulate tumor-specific

CTLs. The first term of the equation corresponds to the rate at

which these APCs enter the lymph node. The factor Vratio is the

Figure 9. Plots of tumor cells growing from one cell at days 0, 5, and 10. The average time between cell divisions Tdiv~1 day. To simplify
diagrams, figures are shown in 2-D, although the model occurs in 3-D.
doi:10.1371/journal.pcbi.1002742.g009

Figure 10. When CTLs move during a time step, two scenarios
may occur. (a) No collision – the CTL moves the entire length of~vv, (b)
Collision – the CTL moves as far as possible without colliding with
another cell.
doi:10.1371/journal.pcbi.1002742.g010
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ratio between the volumes of the tissue and the draining lymph

node. Since we measure populations in terms of concentration,

this factor is necessary to account for the change in concentration

due to traveling between regions of different volume. The second

term is the natural death rate of population.

The third equation in (3) pertains to memory CTLs in the

lymph node. The population is replenished up to an equilibrium

capacity, K , according to a logistic growth model with rate rC. The

second term is the rate of stimulation by mature APCs. The

bilinear form of this term follows the law of mass action where m is

the proportionality constant, or mass-action coefficient.

The fourth equation in (3) pertains to effector CTLs that have

finished the division program of m divisions. The first term gives

the rate at which activated memory CTLs enter the effector state,

C1. This term corresponds to the final term of the previous

equation for T
0

0(t), except that it has an additional coefficient of 2m

and it depends on cell concentrations at time t{s. The coefficient

2m accounts for the increase in population of memory CTLs after

m divisions, and the time delay, s, is the duration of the division

program. This term accounts for newly proliferated effector CTLs

that appear in the C1 population s time units after activation from

C0. The second term is the rate at which C1 cells are stimulated by

mature APCs for further division and the third term is the rate at

which dividing cells reenter the system r time units later after

undergoing one cell division. The time delay r is the duration of

one cell division. The fourth term corresponds to the death of C1

cells at rate d1. The last term is the rate at which effector CTLs

flow out of the lymph node to the tissue at rate f .

The last equation in (3) pertains to effector CTLs in the tissue.

The first term is the rate at which effector CTLs in the lymph node

flow out to the tissue. As with the inflow rate of APCs into the

lymph node, this term is scaled by the volume ratio Vratio. As

shown in the last term, effector CTLs in the tissue die at the same

rate at effector CTLs in the lymph node.

To incorporate the model (3) with the ABM, we translate the

DDE system (3) into a system of difference equations evaluated at

time steps of length Dt, the same time step for the ABM. Our

derivation of a system of difference equations from the continuous

system is comparable to the reverse process of that used in [45] to

translate an agent-based model to a partial differential equation

system. More precisely, we translate the system from DDEs to

difference equations by assuming that the population variables are

constant over intervals of length Dt and that the rates of state

transitions across time steps are governed by Poisson processes.

However, since the lymph node contains orders of magnitude

higher concentrations of immune cells than the tissue [46,47] and

hence interactions occur orders of magnitude more rapidly [48],

we additionally assume that (1) immune populations in lymph

node are continuous and (2) transition rates governed by Poisson

processes closely follow the mean field rates. In other words,

instead of using Poisson random variables Poisson(lDt), we model

transition rates using deterministic factors of the form 1{e{lDt.

As a result, we do not consider stochasticity or discrete populations

in the lymph node.

Figure 11. Possible CTL actions during a time step. At each time step, CTLs move according to a 3-D Wiener process. A CTL in contact with a
cancer cell stops moving and engages the cancer cell. A CTL engaging cancer cell may recruit an additional anti-cancer CTL with probability

1{e{Dt=Crecruit or kill the cancer cell with probability 1{e{Dt=Ckill . When the cancer cell dies, the CTL disengages and accelerates up to the maximum

rate. Although not shown, all CTLs may die with probability 1{e{Dt=Cdeath .
doi:10.1371/journal.pcbi.1002742.g011

Figure 12. Model of CTL migration between the region of
interest of radius R and the CTL cloud of thickness h. In this
example, two CTLs already exist in the region of interest, i.e., 1 and 2. At
the beginning of the time step, new CTLs are randomly generated in
the CTL cloud, i.e., 3 and 4. CTL motion is calculated for the next time
step, and at the end of the time step, CTLs beyond the region of
interest are eliminated, i.e., 2 and 4, while CTLs in the region of interest
are retained, i.e., 1 and 3.
doi:10.1371/journal.pcbi.1002742.g012
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Furthermore, we account for the time-delay terms by incorpo-

rating population values from earlier time steps into the difference

equation system. In other words, the difference equations for

populations at time (nz1)Dt may depend not only on population

values from the immediately preceding time step nDt, but also on

population values from earlier time steps mDt for mvn. The

system of difference equations that we obtain is given below.

Let An
0~A0(nDt), An

1~A1(nDt), Cn
0~C0(nDt), Cn

1~C1(nDt),
and Cn

2~C2(nDt). Then we rewrite (3) as the following analogous

difference equation system:

Anz1
0 ~sADtz(1{p(d0))An

0{p(aTn)(1{p(d0))An
0,

Anz1
1 ~Vratiop(aTn)(1{p(d0))An

0z(1{p(d1))An
1,

Cnz1
0 ~(1zp(rC(1{Cn

0=K)))Cn
0{p(mAn

1)Cn
0 ,

Cnz1
1 ~2mp(mAn{a

1 )Cn{a
0 z(1{p(d1))Cn

1{p(mAn
1)(1{p(d1))Cn

1

z2p(mAn{b
1 )(1{p(d1))Cn{b

1 {p(f )(1{p(d1))(1{p(mAn
1))Cn

1 ,

Cnz1
2 ~(1=Vratio)p(f )(1{p(d1))(1{p(mAn

1))Cn
1z(1{p(d1))C2(t),

ð4Þ

where p(y)~1{e{yDt, a~s=Dt, and b~r=Dt. Here, we assume

that a and b are positive integers.

The first equation in (4) pertains, as before, to APCs waiting in

the periphery. The first term of the equation is the rate at which

new APCs are supplied into the system during one time step Dt.
The coefficient (1{p(d0)) of the second term is the probability

that a cell survives the next time step. Hence, the second term

(1{p(d0))An
0 is the concentration of APCs that survive from time

nDt to (nz1)Dt. The coefficient p(X n)(1{p(d0)) of the third term

is the probability that an APC survives the next time step and is

stimulated to become a mature, antigen-bearing APC. The

coefficients in the the first three equations in (4) similarly express

other transition probabilities.

As before, the fourth equation in (4) pertains to effector CTLs in

the lymph node. The first term is the rate at which activated memory

CTLs enter the effector state after completing m divisions. As in (3),

this term depends on mature APC and memory CTL concentrations

An{a
1 and Cn{a

0 from a time steps earlier. The factor 1{p(d1) in the

second term is the probability that a cell survives the next time step.

The factor p(mAn
1)(1{p(d1)) in the third term is the probability that

a cell survives the next time step and gets stimulated by a mature

APC to undergo further division. The fourth term is the rate at

which dividing CTLs reenter the system b time steps later. The

factor p(f )(1{p(d1))(1{p(mAn
1)) in the final term is the probability

that a cell survives the next time step, does not get stimulated to

divide, and flows out of the lymph node to the periphery. The terms

in the final equation of (4) are similar to those already discussed.

The advantages of rewriting the DDEs (3) as the difference

equations (4) are that the difference equation can be updated in

parallel with the ABM with time steps of length Dt, rewriting

transition rates from the DDEs in terms of probabilities for the

difference equations is consistent with the probabilistic treatment

of cell behavior in the ABM, and the numerical values of the

difference equations are guaranteed to remain nonnegative. Since

the time step Dt that we use is relatively small, numerical solutions

of (3) using the Matlab function ‘dde23’ and numerical evaluations

of (4) are nearly indistinguishable. Using the ABM algorithm and

the difference equation system (4), we simulate the combined

system in the following steps:

Figure 13. Model of dynamics in the lymph node. (1) Tumor cells produce antigen at the tumor site. (2) APCs pick up tumor antigen, mature,
and migrate to the lymph node. (3) Mature antigen-bearing APCs present antigen to memory CTLs causing them to activate and enter the division
program of m divisions. (4) Effector CTLs that have completed the division program continue to divide upon further interaction with mature, antigen-
bearing APCs. (5) Effector CTLs continually migrate to the periphery. Although not indicated, each cell in the diagram also has a natural death rate.
doi:10.1371/journal.pcbi.1002742.g013

ð4Þ
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1. At time nDt, record the current total tumor cell population, Tn,

from the ABM and the current CTL concentration, Cn
2 , from

the difference equation system. These values are used as inputs

into the difference equation system and the ABM, respectively.

2. Simulate one time step of the ABM and difference equation

system.

3. Repeat from step 1 for the next time step.

Parameter estimates
Parameter estimates for the ABM are shown in Table 1. We

discuss how we obtained the estimates below.

For our simulations, we set the time step to Dt~1 min, because

1 minute is the timescale of the fastest dynamic simulated in the

model, i.e. CTL motion. For the cell radius, we estimate r~5mm,

since typical diameters of CTLs and tumor cells fall around 10mm
[12,21,24,46].

By fitting a growth model to experimental breast tumor data,

Spratt et al. estimate that the initial tumor cell doubling time is

between 30 and 4800 days (*13 years) [28]. In another study,

Weedon-Fekjær et al. obtain similar doubling times of 1.2 months

to 6.3 years [29]. Other experimental studies report long-term

doubling times of around 100 days [26,27]. However, some

mathematical models consider the possibility of aggressive early-

stage tumors with division times of under 10 days [8,24]. To model

a relatively fast-growing tumor, we estimate the tumor division

time, Tdiv, to be 7 days, but consider a range from 1 to 400 days.

As we see in the Results, this range is sufficient to clarify how this

parameter influences the model.

We model CTL motion using a Wiener process, so it is difficult

to speak of velocity. Instead, we use the standard deviation of

distance displaced per unit time as a substitute measure. Friedl and

Gunzer estimate that CTLs migrate at mean velocities of

6 to 16mm=min, and Catron et al. choose an estimate of

12mm=min [35,46]. Therefore, we set the maximum unit standard

deviation, smax, of CTL motion to be 12mm=min, but consider a

range from 6 to 16mm=min.

It is difficult to estimate how long it takes a CTL to accelerate

from stationary to its maximum diffusion rate, so we suppose that

the acceleration time, Cacc, takes approximately 5 hours and

consider a wide range from 0 to 24 hours.

The experimentally measured half-life of effector CTLs during

contraction is 41 hours, so in the model, we set Cdeath~41h [30].

We do not have clear estimates of the average times for CTL

recruitment, Crecruit, and CTL killing, Ckill. However, experimen-

tal studies show that anti-tumor CTLs can effectively recruit

additional CTLs [3,4] and rapidly kill target cells, sometimes even

killing multiple target cells simultaneously [49]. To consider a wide

range, we assume that the average CTL recruitment time, Crecruit,

is 8 hours, but we consider a range of 2 to 24 hours. Since killing

target cells may require a a long recovery period, we assume that

the average CTL killing time, Ckill, is 24 hours, but we consider a

range of 4 to 48 hours. We consider this an adequate range since

the CTL half-life is 41 hours. We do not consider rates of 0 hours,

because that would mean CTLs can recruit or kill infinitely fast.

The requirement for the region of interest is that it is large

enough to contain the relevant tumor-immune dynamics without

inducing too many effects from dynamics occurring too close to

the boundary. As a result, we set the radius of the region of interest

to be R~620:4mm, since such a region can adequately simulate a

spherical tumor of over 50,000 cells with ample surrounding

space, and the volume of the region conveniently comes out to

4pR3=3~1 mm3.

Similarly, we require the CTL cloud to be wide enough that any

CTLs that may be beyond the cloud have a very low chance of

migrating across the cloud and into the region of interest during

one time step. Since CTLs move according to a Wiener process

with unit standard deviation smax, the distance a CTL will move

orthogonally toward the surface of the region of interest in one

time step is given by the normal distribution N (0,s2Dt). Hence, if

we set the width of the CTL cloud to be h~3smax

ffiffiffiffiffi
Dt
p

, the

probability that a CTL could pass from outside the cloud into the

region of interest is 0.001.

A list of parameters with estimated values for the DDE is shown

in Table 1. We discuss how we obtained the estimates below.

An experimental study measuring the volumes of head and neck

lymph nodes in men and women estimate lymph node volumes

ranging from 0.1 to 1 mL, depending on the location of the lymph

node [50]. If we assume our lymph node compartment is

approximately 1 mL and that the breast tissue is approximately

1 L, we obtain a volume ratio of Vratio~1000.

Cell concentrations are obtained from a study by Catron et al. in

which they simulated a hypothetical, spherical, skin-draining

lymph node of radius 1 mm [46]. In their paper, they considered a

slice of about 1/500 of the total volume and estimated that the

slice contains about 1600 CTLs (CD8+ T cells) and 100 dendritic

cells (DCs) [46]. Such a slice would have a volume of

(4p=3)(1mm)3=500~8:4|10{3mm3, yielding T cell and DC

concentrations of approximately 200k=mm3 and 10k=mm3,

respectively.

We assume that the lymph node contains a population anti-

tumor memory CTLs, which were previously induced by a

preventative anti-tumor vaccine. For a base estimate, we assume

that the equilibrium memory CTL concentration, K , in the lymph

node is 2% of 200k=mm3, and we consider a range of 1 to 10% of

200k=mm3. Since we are setting initial conditions for DDEs, we

are interested in the history of cell concentrations on the time

interval ½{s,0�, so we assume that the system was at steady state

before time 0 and set T0(t)~K for tƒ0. For the logistic growth

rate, we estimate that memory CTLs replenish at rate r~0:7=day,

which corresponds to a minimum doubling time of 1 day. As seen

in the Results, only a very small fraction (less than 1%) of memory

CTLs becomes activated by the incipient tumor, so variations in

the replenishment rate of memory CTLs does not significantly

influence the outcome of the simulations (results not shown), so we

do not consider it worthwhile to vary this parameter along with the

others.

Since DCs are the primary APCs that stimulate T cells [6,

p. 319], we assume that our estimate of the DC concentration is

also a good estimate of the APC concentration. We do not know

how many APCs reside in a tissue that drains into a particular

lymph node, but we assume that it is of the same order of

magnitude as the number of APCs in the lymph node. Hence, we

estimate that the initial concentration of APCs in the tissue before

time 0 is (1=Vratio):10k=mL~0:01k=mL, i.e., A0(t)~0:01 for

tƒ0. We assume that all other cell concentrations start at 0.

Next, we estimate the death and supply rates of immature

APCs. Since we are dealing with a closed system, we recognize

that cells may leave the system due to random circulation or

emigration, but for convenience, we incorporate these cases into

the death rates. Not having explicit references for the turnover

rates of immature APCs in tissue, we assume they are similar to

those of naı̈ve T cells, which is estimated to be around 3% per day

[51]. Hence, we set the immature APC death rate, d0, to be

{ log(100%{3%)~0:03=day and calculate the steady state

supply rate to be sA~d0A0(0)~0:3k=mLday{1.
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The half-life during T cell contraction is 41 h, so we estimate an

effector CTL death rate of d1~(ln 2)=41 h{1&0:4 day{1 [30].

Furthermore, the level of antigen presentation following the third

day after infection decays with a half-life of around 19 h and

20.4 h [52]. Hence, using a half-life of 20 h, we obtain a mature

APC death rate of d1~(ln 2)=20 h{1&0:8 day{1. We note that

these APCs might not actually be dying. Instead, they might be

turning over surface molecules, but for our purposes, these APCs

can be considered eliminated.

For the minimal CTL division program, various studies estimate

that newly activated CTLs (from a naı̈ve state) undergo between 7

and 10 initial divisions [36,53], and that a responding CTL

population could expand up to five orders of magnitude [34]. This

range corresponds to between 7 and 17 cell divisions. Since

activated memory CTLs probably undergo more divisions than

newly activated naı̈ve CTLs, we assume a base estimate of m~10
divisions upon activation and consider a range from 7 to 17

divisions.

To calculate the mass-action coefficient, m, we use the estimate

that in the lymph node slice of Catron et al., one T cell and one DC

will have 0:20 + 0:06 interactions per hour, or 4:8 + 1:4
interactions per day [46]. Assuming that DCs represent the

majority of APCs that stimulate T cells, we obtain an estimate of

the mass-action coefficient m0~4:8cell{1day{1 [46]. Recalling

that the lymph node slice has a volume of 8:4|10{3mm3, we

obtain the unit conversion

m0~4:8
1

cell day
: 103cell

k
:8:4|10{3mm3~40

1

(k=mm3) day

It is unlikely that every antigen-specific CTL-APC interaction

leads to CTL stimulation, so we set the probability of successful

stimulation to 0.5 as a base estimate and consider probabilities

from 0.05 to 0.5. These estimates translate to a base estimate of

m~0:5m0~20(k=mm3){1day{1 for the mass-action coefficient

and a range of m~2 to 20(k=mm3){1day{1.

For the time delays, the duration of one division is between 6 to

12 hours (i.e., 2 to 4 times per day) [6, p. 19]. In addition, the T

cell population doubles approximately every 8 hours during

expansion [30]. We use the intermediate value of r~8h, or 1/3

day, as a base estimate and consider a range from 4 to 24 hours.

The CTL division program consists of m divisions, but the first

division does not occur until 24 hours after stimulation [54,55].

Hence, we set the duration of the division program to be

s~1z(m{1)r to account for the fact that the first division takes

one day while subsequent divisions take r days.

We do not have a good estimate of the antigenicity, a, of the

tumor, so we assume a base value of a~10{9 and consider a

range from 10{12 to 10{6. The parameter a can be understood to

represent the reciprocal of the rate at which one APCs will

encounter and take up antigen from one tumor cell in the tissue. In

other words, if we assume that the APC concentration is

0:01k=mm3 (i.e., k=mL) in the tissue and that the tissue has a

volume of 1 L, then there are 107 APCs circulating in the tissue.

As a result, if a~10{9, it will take an average of 107=a~100days
for one circulating APC to encounter antigen from a single tumor

cell in the tissue. A range of a~10{11 to 10{6 corresponds to

average discovery times of a single APC from 10,000 days

(*27:5years) to a couple of hours.

For the flow rate of effector CTLs out of the lymph node to the

tissue, we assume that effector CTLs that are not being stimulated

to divide emigrate from the lymph node at a half life of 1 day, so

that the flow rate f ~log(2)~0:7 day{1.

CTL acceleration
To derive (2), we take advantage of the connection between

random walks on a lattice and the Wiener process. Suppose that at

each time step Dt, a CTL has equal probability of moving distance

Dxmax in any of the six cardinal directions on a 3-D square lattice.

If we let Dt and Dxmax go to zero in such a way that Dx2
max=Dt

remains constant, the random walk approaches a Wiener process

corresponding to a diffusion rate Dmax~Dx2
max=(6Dt) and unit

standard deviation smax~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dmax

p
[41,42].

Suppose a stationary CTL accelerates at a constant rate and reaches

the maximum velocity at time Cacc. Hence, at time t after beginning

acceleration, the CTL has a velocity that is t=Cacc of the maximum, so

we suppose that the CTL conducts a random walk of steps size

Dxmaxt=Cacc instead of the maximum step size. The associated

diffusion rate for this random walk is D(t)~Dmax(t=Cacc)2, which

yields a unit standard deviation of s(t)~smax(t=Cmax). Since a CTL’s

motion cannot exceed the maximum rate given by smax, we obtain the

expression given in (2).
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