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Abstract

Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-
cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive
models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput
gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to
perform a Temporal Expression-based Analysis of Metabolism (TEAM). We apply TEAM to understanding the complex
metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited
conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased
predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which
allows us to take into account the unique character of the distribution of expression of each individual gene. We further
propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold
parameter h, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing
the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of h to a
small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic
flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect
that handling such ‘‘history-dependent’’ sensitivities will be a major challenge in the future development of dynamic
metabolic-modeling techniques.
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Introduction

In response to environmental changes, microbes modulate their

metabolic activity through a complex interplay of biochemical and

regulatory networks. The dynamics of these changes is a poorly

understood process, relevant for many applications ranging from

infectious diseases to environmental remediation. With the rise of

genome-scale stoichiometric models of metabolism [1], these

challenges have been addressed through the development of

algorithms that overlay gene expression data onto these models to

quantitatively study the effects of genetic regulation on cellular

metabolism. One of the most widely used approaches for genome-

scale predictions of metabolic fluxes is Flux Balance Analysis (FBA)

[2–5]. FBA uses a steady state approximation and linear

programming to determine optimal solutions to the problem of

allocation of metabolic resources through a metabolic network.

Several FBA-based methods have been proposed to integrate

measurements of mRNA abundance, often with the goal of

improving the prediction of fluxes in a metabolic network. One

general approach is to constrain the maximum flux through

reactions whose catalyzing enzyme genes have low expression

levels. Some examples of this strategy include regulatory FBA

(rFBA) [6], steady-state regulatory FBA (SR-FBA) [7], integrative

FBA (iFBA) [8], E-Flux [9] and Probabilistic Regulation Of

Metabolism (PROM) [10]. Another way to integrate context-

specific data is to match changes in flux with statistically significant

changes in mRNA levels over time, a strategy employed by

Metabolic Adjustment by Differential Expression (MADE) [11].

Yet another strategy is not to constrain fluxes directly, but instead

to penalize reactions whose fluxes deviate from their coding genes’

expression by introducing a cost function to be minimized. Two

examples of this strategy include that of Shlomi et al. [12] and

Gene Inactivity Moderated by Metabolism and Expression

(GIMME) [13]. GIMME, the method upon which we will build

in this work, is a particular extension of FBA that maximizes

metabolic consistency with gene expression data, producing a set

of fluxes that both satisfy the stoichiometric constraints of the

metabolic model and provide a context-specific prediction that is

informed by experimental data.

These methods vary widely in the details of their implementa-

tion, but they all ultimately have to grapple with a number of

common obstacles and limitations [14]. Most notably, irrespective

of whether regulatory information is used as a constraint or as part

of the objective, these approaches require making some assump-

tions on how mRNA expression levels end up affecting fluxes. Part

of the problem is the complex relationship between mRNA
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expression and protein levels [15]. In this respect, methods that use

expression levels as part of the objective (e.g., through maximization

of consistency) rather than as hard constraints, have the advantage of

allowing a certain flexibility in the final choice of flux values. An

additional issue associated with the use of mRNA levels to inform

fluxes is the necessity (in many but not all approaches) to choose a

universal threshold below which expression can be effectively

deemed unlikely to support flux. It is also important to note that

most of the literature on integration of expression with flux balance

modeling focuses on static cases, without exploring the feasibility and

potential issues associated with the application to time course data.

Here, in an attempt to advance our understanding of the

interplay between metabolism and regulation in time-dependent

processes, we present a new algorithm named TEAM (Temporal

Expression-based Analysis of Metabolism). TEAM integrates

dynamic flux balance analysis (dFBA) [16] with time-dependent

gene expression data, using a cost minimization scheme similar to

GIMME [13]. In addition to representing a unique example of

integration of time-dependent gene expression with dFBA, the

TEAM approach introduces some important innovations relative

to the GIMME method. In particular TEAM takes advantage of

an additional large compendium of gene expression data [17] to

estimate gene-specific expression penalties, effectively taking into

account the individuality of expression patterns identifiable in

different genes. Furthermore, through TEAM, we introduce a

new, simple sensitivity analysis that helps estimate the predictive

power of the approach under different choices of parameters. For

a succinct overview of the TEAM algorithm, refer to Figure 1.

To test TEAM’s ability to predict bacterial behavior in the face

of changing environmental conditions, we apply it to data

collected during batch growth of Shewanella oneidensis MR-1 under

minimal lactate aerobic conditions [18]. S. oneidensis is a

dissimilatory metal-reducing gammaproteobacterium that was

discovered in Lake Oneida, NY in 1988 and has since been

shown to be able to utilize over 20 different electron acceptors

[19–21]. This unusual ability allows Shewanella species to adapt to

many different habitats that often contain oxic/anoxic transition

zones [19] and an abundance of various fermentation products

such as lactate, formate and hydrogen [22]. In the experiment we

use for our analysis, extracellular metabolites (high performance

liquid chromatography, HPLC), gene expression levels (Affymetrix

microarrays), and population size (optical density, OD) were

measured over the course of 50 hours (see also Materials and

Methods). Similar to previous S. oneidensis growth experiments

[23,24], these data displayed excretion and re-uptake of acetate and

pyruvate during growth, a pattern that could not be explained by

regular dFBA simulations [18]. Eiteman et al. attribute this

phenomenon, called overflow metabolism, to the imbalance

between the enzymatic capacity of the TCA cycle to fully oxidize

acetyl-CoA and the rate of carbon consumption [25]. The excess

production of NADH by the TCA cycle is thought to repress the

TCA cycle genes themselves, forcing the usage of anaerobic

pathways that do not produce NADH, such as the acetate

generation pathway. One of the goals we set in developing TEAM

is precisely to be able to reconcile gene expression data with

metabolic constraints, to help understand otherwise indecipherable

metabolic behavior, such as the metabolic overflow observed in the

HPLC data. More generally, we propose TEAM as a strategy for

marrying two often detached views of bacterial physiology:

environmental resource utilization and internal enzymatic func-

tional states. The complexity that arises when these two views are

integrated allows one to draw important conclusions about the

behavior of bacteria that may not have been previously possible.

Results

Comparing TEAM with dFBA
Our interest in exploring novel avenues for integrating dynamic

models of metabolism with measurements of gene expression was

partially motivated by the desire to account for metabolic

behaviors that could not be predicted through regular dFBA,

such as the overflow metabolism in S. oneidensis described above.

Specifically, we wanted to recapitulate three striking features of the

experiment as observed from the HPLC data: (1) the nearly

simultaneous exhaustion of all carbon sources and ammonium in

the media, (2) the excretion and subsequent re-uptake of acetate

from the media, and (3) the excretion and subsequent re-uptake of

pyruvate. These experimental measurements are shown in

Figure 2A. The results of a standard dFBA simulation for this

system are shown in Figure 2B (see Materials and Methods for

details). Using conventional dFBA we were able to qualitatively

match the predicted lactate and ammonium dynamics to those in

the collected data. However, the method failed to predict the

correct depletion times for both lactate and ammonium, and also

failed to account for the presence of acetate and pyruvate.

The failure of dFBA to capture some unique features of our

experiment led us to try to incorporate gene expression into our

simulation. We did so by merging GIMME with dFBA into a

preliminary version of TEAM. Each iteration of TEAM completes a

GIMME optimization, mathematically formulated, in analogy to

other FBA algorithms ([2]) (see Materials and Methods for details) as:

minimize :
X

ci tð Þ: Vij jð Þ

subject to : SV~0,

lbi tð ÞƒViƒubi tð Þ,

VBM§VBM, measured ,

ci tð Þ§0

for all i~1, . . . , N

Author Summary

Understanding the dynamic response of microorganisms
to environmental changes is a major challenge in systems
biology. In many cases, these responses manifest them-
selves through changes in gene transcription, which then
propagate to adjust flow through metabolism. Here, we
implement a Temporal Expression-based Analysis of
Metabolism (TEAM) by dynamically integrating a ge-
nome-scale model of the metabolism of S. oneidensis with
high-throughput measurements of gene expression and
growth data. TEAM recapitulates the complex cascade of
secretion and re-uptake of intermediary carbon sources
that S. oneidensis exhibits in the experimental data. We
show that these complicated metabolic behaviors are best
captured when TEAM explicitly accounts for each gene’s
unique transcriptional signature. Furthermore, by way of a
newly proposed sensitivity analysis, we reveal and study
the inherent difficulty of dynamic metabolic flux modeling:
small changes early in a simulation can easily spread and
lead to significant changes towards the end of it. We
expect that further development of robust dynamic flux
balance methods will need to overcome such ‘‘history-
dependent’’ sensitivities in order to achieve increased
predictive accuracy.

Temporal Expression-based Analysis of Metabolism
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where S is the stoichiometric matrix, lbi and ubi are, respectively, the

lower and upper bounds of flux Vi, VBM is the biomass production

rate (or growth flux) and ci is a penalty assigned to reaction i based on

the expression of its constituent genes.

TEAM’s implementation of GIMME diverges from the

original implementation in [13] in two ways. First, TEAM uses

experimental measurements of biologically necessary fluxes, most

notably the growth rate (or, potentially, of any exchange flux) to

impose specific magnitudes to the corresponding fluxes in the

model. This is in contrast to [13], where the minimal flux passing

through each required metabolic functionality (RMF) was

calculated as some percentage (a free parameter in the system)

of the maximal flux which could pass through that RMF (as

calculated using flux balance analysis, see Materials and

Methods).

Second, and most importantly, TEAM and GIMME differ in

how the coefficients ci of the penalty function are calculated. This

penalty was calculated in [13] by first propagating expression

measurements from each annotated gene in the model to its

corresponding reaction using the Boolean gene-to-reaction map-

ping rules. Then, if the expression associated with a reaction

exceeded a user-defined threshold p, that reaction was assigned a

penalty ci of zero. Otherwise, the reaction was assigned a penalty

equal to the difference between the threshold and its expression. In

TEAM, we modified this protocol by first calculating the penalty

of each gene, and then propagating this penalty up to each

reaction. In the following section, we will show how this small

change enabled us to incorporate more data on the expression

characteristics of each gene into TEAM to generate markedly

better predictions.

As a first trial, we assigned a common, global penalty threshold

(herein referred to as a Type 1 threshold) to all genes in the model.

We tested many thresholds, and found that the threshold falling in

the h = 70th percentile of all expression measurements from the

microarrays in our experiment appeared to give the most accurate

predictions. We will defer from commenting on the quantitative

accuracy of this version of TEAM until later on, when we will do

so not only across all possible penalty thresholds, but also across

different methods of assigning such thresholds.

As shown in Figure 2C, the TEAM simulation with Type 1

penalty threshold was able to reasonably capture the qualitative

dynamics of acetate in addition to lactate and ammonium.

Although the magnitude of TEAM’s predicted acetate dynamics

greatly overestimated the experimental data, the results were

nevertheless promising. The predicted acetate dynamics showed

significant improvement over the dFBA simulation, which

exhibited no acetate dynamics whatsoever. However, despite

testing of many penalty thresholds, we were not able to find any

TEAM simulations with Type 1 thresholding which displayed any

pyruvate secretion/uptake. This, combined with a great deal of

variability in the timing and magnitude of acetate dynamics,

prompted us to search for ways to refine TEAM.

Figure 1. Workflow for integrating multiple data types with TEAM. TEAM integrates three types of experimental data: starting media
composition, expression data, and biomass data. Pre-calculations include normalization of the gene expression data, interpolation of all data sets, and
calculation of gene penalties based on the gene expression data. For a given time interval, TEAM calculates the metabolic flux distribution most
consistent with gene expression and biomass data. It applies this result to update media conditions for the subsequent time interval.
doi:10.1371/journal.pcbi.1002781.g001

Temporal Expression-based Analysis of Metabolism
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Gene Individuality
Despite our success in using TEAM to recover acetate

dynamics, we were still unable to capture the dynamics of

pyruvate in the media. We began to consider the possibility that

assigning an identical penalty threshold to each gene in the model

was causing us to lose valuable information regarding the

likelihood that each gene was active. This motivated us to inspect

the distribution of gene expression values for each gene in the S.

oneidensis model. We assembled a compendium of gene expression

data for S. oneidensis using the M3D database [17]. For each gene

in the database, we generated a histogram of gene expression

values built from all the available microarrays in the database and

supplemented with our own microarrays from the current

experiment. A representative sampling of these gene expression

histograms is shown in Figures 3A and 3C.

It became quite clear that two genes in the model could have

significantly different expression characteristics. This is illustrated

in Figures 3A–3D, which show the distribution of expression

measurements for two enzymes essential to lactate metabolism in

S. oneidensis. The distribution of measured expression for D-lactate

dehydrogenase was found to be tightly centered around its mean

with a very small standard deviation. In contrast, expression for

acetate kinase exhibited a much broader multi-modal distribution

with a significantly higher standard deviation. This variability in

the distribution of expression values became even more striking

when plotting the distribution of the means and standard

deviations of expression measurements across all genes, shown in

Figures 3E and 3F, respectively. A gap of over two orders of

magnitude was observed over all genes in the model. Biologically,

the disparities in expression signatures among the genes in S.

oneidensis may have arisen from a variety of biological sources. One

possibility is that some genes may code for mRNAs with relatively

high translational efficiency, or for enzymes with relatively high

catalytic rates, thus requiring fewer mRNAs in order to achieve an

identical metabolic flux. Another possibility is that the products of

some genes may be constantly required for the operation of the cell

Figure 2. A comparison of results across different methods for a representative penalty threshold. The media contained 36 mM L-
Lactate, 13 mM D-lactate, 9 mM ammonium, and other minimally required nutrients. The oxygen concentration was set to 10 mM at each time point,
mimicking the controlled 100% dissolved oxygen (DO) concentration from the experiment. The resulting usage dynamics of several metabolites of
interest (including combined DL-lactate, ammonium, pyruvate, acetate, formate and glycolate) as predicted by dFBA are compared to experimental
data. (A) HPLC Data, (B) dFBA, (C) TEAM with a global penalty threshold (Type 1), (D) TEAM with a gene-specific penalty threshold (Type 2), (E) TEAM
with a gene-specific penalty threshold normalized by standard deviation (Type 3). Black dots represent hours when microarray measurements were
taken.
doi:10.1371/journal.pcbi.1002781.g002

Temporal Expression-based Analysis of Metabolism
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(such as the enzymes of central carbon metabolism), while others

are only needed in particular situations (such as transporters for

specific carbon sources).

Prompted by the observation that individual genes showed

unique expression characteristics, we developed two new methods

for calculating penalty thresholds customized to each gene in the

model. In the first (referred to herein as Type 2), we used our

compendium of gene expression data to calculate a cumulative

distribution function (CDF) for each gene in the metabolic model.

Then, a common percentile h was chosen for all genes in the

model. Next, we used each gene’s CDF to assign the expression

level corresponding to this percentile as the penalty for that

particular gene. We then calculated a penalty for each and

propagated this penalty to each reaction in the model as described

earlier and in the Materials and Methods. The second new

thresholding method (Type 3) proceeds exactly as Type 2

thresholding, except that each gene’s penalty is now normalized

by that gene’s standard deviation, as calculated from our

compendium of expression data. Upon completing TEAM

simulations with these two new thresholding methods for the

same h as the most accurate Type 1 simulation, we immediately

observed the appearance of excretion and subsequent re-uptake of

pyruvate in the media (Figures 2D, 2E).

Next, we sought to systematically assess whether our refined

penalty methods show significantly improved predictive capabil-

ities when compared to dFBA and TEAM with Type 1

thresholding. We pursued this in two ways. First, we studied

the predicted secretion patterns of all of the TEAM methods

across the entire range of potential penalty thresholds h. To do

so, we calculated the total amount of each different carbon source

found in the media over the entire course of the simulation for

each penalty threshold. We did this for each penalty threshold

and for all three TEAM methods. The results are shown in

Figures 4, S1A, and S2A. These figures highlight that only the

Type 2 and 3 TEAM methods with unique penalties for each

gene were able to predict the excretion and re-uptake of

pyruvate. The Type 1 method failed to predict any pyruvate

dynamics in the external media for the entire range of possible

penalties. Despite predicting pyruvate, in a small range of penalty

thresholds the Type 2 and 3 methods also spuriously predicted

the excretion and re-uptake of formate and glycolate, two

intermediary metabolites which we confirmed were not present in

the experiment.

As a second step towards assessing the effect of different

thresholding methods on secretion patterns, we developed a

quantitative assessment of their relative predictive accuracy. We

decided that because we were most concerned with recapitulating

the excretion and re-uptake of pyruvate and acetate, we would

focus on each method’s ability to accurately predict the dynamics

of these metabolites. For a given simulation, we calculated the

residual squared error between the predicted concentration of

acetate and pyruvate in the media and summed over all time

points. The total error was plotted against penalty threshold for all

three TEAM methods and shown in Figure 5. The results

illustrate that by accounting for the individuality of genes, the two

refined TEAM methods performed at least as well or better than

the original method for all penalty thresholds. For penalty

thresholds in the range of 30% to 70%, the refined methods

perform significantly better, while at either extreme of the

thresholds, the difference between methods is smaller. For all

three TEAM methods, we found that changing the penalty

threshold had a large impact on the quantitative accuracy of our

model, and enabled us to make an informed choice of a penalty

threshold which seemed to best match our experimental observa-

tions.

Our promising results using custom thresholds with S. oneidensis

prompted us to test whether accounting for the heterogeneity of

gene expression would also facilitate the integration of gene

expression in flux balance models across other datasets. Specifi-

cally, we tested TEAM on a yeast growth transition dataset [26],

previously used to evaluate the performance of the MADE

approach [11], as well as on experimental data on the behavior of

a synchronized yeast population undergoing metabolic oscillations

[27]. In both cases we found that gene-specific thresholds (Type 2)

improve the consistency of flux predictions with gene expression

data (Figures S4 and S5B), as well as the capacity to predict

metabolite secretion (Figure S5A).

Figure 3. Overall distribution of S. oneidensis gene expression
measurements with two individual genes highlighted. Distribu-
tions calculated using a pooled set of data from M3D [17] and time-
course experimental data [18]. For both example genes, the distribution
of gene expression measurements and the corresponding cumulative
distribution function (CDF) are shown. For each CDF, individual gene
penalty thresholds are found for common percentiles h = 25%, 50% and
75%. D-lactate dehydrogenase expression measurements (A) have a
higher mean expression and a more pronounced peak than acetate
kinase (C), which is more uniformly distributed. The corresponding CDFs
capture this variation in distribution. D-lactate dehydrogenase expres-
sion penalties (B) are higher and less distributed than those of acetate
kinase (D). Mean gene expression (E) and standard deviation (F) over all
genes for a single time point are also shown. All microarrays contain
4230 gene products, and each individual distribution contains 310 data
points; 19 come from the experimental time-course and 281 from M3D.
doi:10.1371/journal.pcbi.1002781.g003

Temporal Expression-based Analysis of Metabolism
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Examining Internal Fluxes in TEAM
Given that our refined penalization methods (Types 2 and 3)

produced quantitatively more accurate results than the original

(Type 1) method, we next inspected how varying the penalty

threshold for these refined methods influenced the predicted

dynamics of pyruvate, acetate, glycolate, and formate secretion. As

shown in Figure 4, as the Type 2 and Type 3 penalty thresholds

increase, zones of qualitatively different behavior emerge. Acetate

is always excreted regardless of the penalty threshold (Figure 4A).

Glycolate, formate and pyruvate, however, are only excreted in

the intermediate zone between penalty thresholds h = 45% and

h = 72%. Furthermore, as shown in Figure 4B, in this interme-

diate zone, lactate is completely consumed within 28 to 30 hours,

while in the peripheral zones it is consumed between 30 and

34 hours. In this intermediate zone, we find that the early

exhaustion of lactate is strongly correlated to high concentrations

of intermediate carbon sources (pyruvate, acetate, formate, and

glycolate) in the media.

In a very narrow range of thresholds, from h = 65% to h = 72%,

we observe the secretion of acetate and pyruvate, but not glycolate

and formate. This qualitative agreement led us to identify this

range of thresholds as the ‘‘optimal range’’ within which we

expected TEAM’s predictions of metabolic activity to be most

accurate. However, because we did not obtain any measurements

of internal fluxes from the experiment, we were unable to further

explore how these predictions correlated with in vivo fluxes.

Instead, we turned to studying TEAM’s novel predictions of

formate and glycolate secretion. Although these two metabolites

were not observed in the HPLC measurements, their appearance

in TEAM’s predictions suggests that S. oneidensis may be capable of

secreting the two metabolites under some as-yet unidentified

conditions.

We decided to investigate in fine detail the mechanisms linking

the secretion of formate and glycolate to lactate exhaustion. This

scenario is analyzed in Figure 6, which highlights, at the

individual flux level, several of the dramatic differences in TEAM

predictions as the penalty threshold is increased. In one of the

three qualitatively different behaviors observed (at a threshold of

65%), lactate is imported significantly faster than the measured

rate in HPLC. This excess of imported carbon is then funneled

through several pathways including the TCA cycle, the glyoxylate

shunt, a formate-producing cycle, and acetyl-CoA synthetase.

Each of these pathways results in the production of carbon

compounds (CO2, glycolate, and acetate, respectively) which are

Figure 4. Sensitivity analysis for Type 2 gene-specific threshold. (A) Total carbon concentration in media for each penalty threshold h,
summed over all time points. Penalty thresholds between 40% and 75% exhibit enrichment for intermediate carbon sources formate, glycolate,
pyruvate. (B) Extinction time of lactate and ammonium in the media. Lactate runs out significantly earlier for intermediate penalty thresholds.
Heatmap indicates the total media concentration of secreted carbon sources (acetate, pyruvate, glycolate, formate).
doi:10.1371/journal.pcbi.1002781.g004

Temporal Expression-based Analysis of Metabolism
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excreted into the media. In contrast, the simulation at a threshold

of 85% displays a more tempered rate of lactate usage, leading,

through the TCA cycle, to secretion of CO2 and acetate.

Given that our algorithm minimizes the sum of the absolute

values of fluxes, it is somehow surprising that, in the 65% threshold

regime, TEAM would predict overflow metabolism. Can this be

explained in terms of actual energetic requirements for the cell?

We found that the increase in NADH produced as a result of

importing excess lactate and metabolizing it via lactate dehydro-

genase (which produces pyruvate and NADH from lactate and

NAD+) provided adequate reducing power to the cell. The

resulting pyruvate is then converted into whichever intermediate

carbon sources (acetate, formate, or glycolate) minimize the

inconsistency between gene expression and flux. Previous studies

using isotope tracing to infer flux have reported similar increased

activity of both the glyxoylate shunt and a proposed serine

oxidation cycle producing formate in S. oneidensis in aerobic,

carbon-limited conditions [23]. Here, our simulations suggest that

the transcriptional response of S. oneidensis to changing environ-

mental conditions dictates the routing of flux into these pathways.

Our investigation of pyruvate dynamics led us to another

curious but intuitive observation: we found that the availability of

a large repertoire of intermediate metabolites early in the time

course led to a high diversity of metabolic activity later on in the

simulation. Because these metabolites can be funneled through a

larger variety of pathways than lactate, the model is able to select

from among all these pathways to find the minimally penalized

reaction path. For example, for several hours in the top panel of

Figure 6, TEAM predicts that both glycolate and formate are

secreted into the media. This means that later on, TEAM has the

option of importing either one of these carbon sources, but

actually imports glycolate first and then formate. This is a direct

result of a high penalty associated with pyruvate formate lyase

required to utilize formate and no penalty associated with the

reactions required to import glycolate. Thus, the model chooses

the sequence of carbon source usage in best agreement with the

gene expression. In contrast, for a higher penalty threshold in the

bottom panel of Figure 6, TEAM has no access to formate and

glycolate in the media. This means that while the gene expression

is identical to the intermediate zone, a different set of environ-

mental conditions results in starkly different behavior.

Discussion

The growing abundance of high throughput gene expression

datasets has led to a call for methods integrating these

experimental data with stoichiometrically based genome-scale

models of metabolism. Our implementation of TEAM explored

some of the challenges associated with developing such methods.

In particular, we found useful ways of incorporating assorted data

types (OD, microarray data) to constrain some of the otherwise

free parameters of TEAM. We discovered that accounting for the

heterogeneity of expression across different genes leads to an

increase in predictive accuracy. Most importantly, it was simple to

identify those penalty thresholds expected to be the most accurate,

simply by matching qualitative predictions (i.e. acetate and

pyruvate secretion) to experimental observations. Despite these

successes, we still observed qualitatively broad shifts in TEAM’s

predictions as certain parameters varied, and we introduced a

simple technique for sensitivity analysis which teased out precisely

where these shifts took place. This sensitivity analysis enabled us to

identify a narrow range of penalty thresholds, within which we

were confident of TEAM’s predictions. This suggests that in future

analyses, it may be more appropriate to report a summary of

results across the whole spectrum of thresholds, using a metric of

agreement with experimental data as a criterion for choosing the

‘‘optimal threshold’’. We suggest that such sensitivity analyses

should become a central component of future efforts to integrate

gene expression with flux balance models.

A common thread that ran through each of our successive

improvements to the original GIMME algorithm was the use of

experimental measurements to improve the predictive accuracy of

TEAM. Rather than use all of our data to evaluate the

performance of TEAM, we found that some types of data were

better suited to generating more informed models, while others

seemed to be more useful in validation. In particular, one user-

defined parameter from the original GIMME algorithm (the

minimal RMF flux) was completely eliminated simply by linking its

value to the observed experimental biomass flux. Another

parameter, the penalty threshold of each gene, morphed from a

common value for all genes to a quantity unique to each gene and

directly determined by prior measurements of that gene’s typical

expression behavior. The elimination of these otherwise relatively

unconstrained parameters enabled us to systematically evaluate

the performance of TEAM. Furthermore, these improvements

came at very little cost in terms of experimental effort. The

collection of OD data is standard in metabolic engineering, and

our supplementary microarray data was freely available in the

M3D database. Building on prior work on the GIMME algorithm,

Figure 5. A measure of predictive accuracy between pyruvate
and acetate excretion behavior. For all percentage thresholds h
between 1% and 99%, the quality of predictions for (A) pyruvate and (B)
acetate secretion and utilization behavior was calculated using the
residual sum of squares between the experimental HPLC measurements
and the model predictions for all three gene penalty calculation types.
Only the Type 2 and 3 penalty thresholds predict the secretion of
pyruvate, occurring between h = 55% and h = 82%.
doi:10.1371/journal.pcbi.1002781.g005
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we assessed TEAM’s sensitivity to penalty thresholds and

concluded that broad, qualitative changes in TEAM’s predictions

(such as the appearance of glycolate and formate in the media)

were not due to changes in the penalization of a single or small

group of genes. Instead, it was the total consistency of fluxes over

the entire network that led to these shifts in TEAM’s behavior. In

many cases, we found two genes in the same pathway in S.

oneidensis exhibited opposing expression behavior (i.e. one gene’s

Figure 6. A comparison of internal flux profiles for two different penalty thresholds. Superposition of metabolic flux onto central carbon
metabolism of S. oneidensis. Top panel corresponds to a Type 2 penalty threshold of 65%, and bottom panel to a Type 2 penalty threshold of 85%.
Large nodes and edges on the networks represent reactions and small nodes correspond to metabolites. The colors of the large nodes correspond to
the penalty associated with that reaction. Colored squares on the network plots identify the transport reactions for each exchange metabolite. A
network key and reaction and metabolite details can be found in Figure S3, Table S1 and Table S2 respectively. Detailed time-course flux predictions
are provided in Supplementary Dataset S1.
doi:10.1371/journal.pcbi.1002781.g006
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expression would be rising, while the other’s would simultaneously

fall). By integrating these expression measurements with a model

that enforces mass-balance constraints, TEAM was able to reconcile

otherwise conflicting signals and output a coherent pattern of

metabolic fluxes that best fit the available data. This highlighted the

value that methods integrating expression data with metabolic

models have over more classical techniques for analyzing expression

data in isolation, like simple pathway enrichment. Incompatible

trends in the expression of the enzymes of one metabolic pathway

were made much more coherent by connecting them to the

operation of the metabolic network as a whole.

Looking carefully at our predictions, we found that even the best

TEAM predictions did not precisely match the timing and

magnitude of acetate and pyruvate dynamics from the experi-

mental data. While there may be many sources for the

discrepancies between TEAM’s predictions and the data, one

prominent and unresolved question regards the error associated

with using mRNA abundance as a proxy for the activity of a

metabolic reaction (typically related to the total concentration of

enzyme in the cell). Recently, a number of experimental studies

[15,28] have addressed the question of correlation between

mRNA and protein abundance. While there is some correlation

between mRNA and protein levels, it now appears that a more

relevant question is the relationship between the half-lives and

production rates of both mRNA and protein. In particular,

Schwanhäusser et al. [15] showed that different genes displayed

characteristically different combinations of mRNA and protein

half-lives. These combinations were linked to a model of energetic

resources in the cell, based on the argument that different blends

of mRNA and protein stability may be associated with the

functional role a particular protein plays within the cell [15].

Although difficult to obtain, information about protein half-lives

could be directly integrated into TEAM by calculating a gene’s

penalty based on its expression integrated over a time interval.

This may lead to delays in the onset of a penalty, as well as

penalties that remain active for long periods of time. It is

noteworthy that such time-dependent improvements would

heavily rely on TEAM’s dynamic nature; static simulations of

GIMME would be unable to capture the diversity of dynamic

behaviors in mRNA and protein. Finally, even the integration of

precise proteomics data needs to be treated with care. Fendt et al.

[29] report cases in which changes in metabolite concentration

correlate both positively and negatively with enzyme concentra-

tion, suggesting that one should not necessarily expect strong

correlations between metabolic flux and enzyme abundance.

Our study of the predicted appearance of glycolate and formate

in the media led us to another major conclusion: a spurious

prediction about the excretion of metabolites early in a simulation

can lead to very significant qualitative errors from TEAM later on.

The difficulty was that the gene expression TEAM used was

intimately tied to very specific environmental conditions. If TEAM

predicted media conditions that included nutrients not found in

the true experimental conditions, then the simulation had access to

certain metabolic pathways (for example, C1 metabolism of

formate) which could not have been active in the experiment. We

reasoned that by imposing adequately high conformity with gene

expression with high penalties, we would be able to prevent this

spurious behavior. In fact, this is precisely what we observed: at

high levels of penalty threshold, we no longer found glycolate or

formate present in the media. The disappearance of these two

metabolites was directly linked to a reduction in the import of

lactate early in the simulation. In general, along the time course,

there is a tight mutual dependence between the rates of metabolite

uptake/secretion, and the transcriptional regulation of the

pathways for producing or utilizing those metabolites. For S.

oneidensis, this amounted to the rapid intake of lactate (faster than

required if oxidative phosphorylation were used, but slower than

required if glycolate and formate were secreted), resulting in the

overflow metabolism associated with the secretion of acetate and

pyruvate. We expect that future efforts to develop dynamic

genome-scale metabolic models will encounter similar temporal

sensitivity issues. Improvements in accuracy will depend on the

ability to prevent predictions of qualitatively spurious media

conditions.

Finally, the history-dependent sensitivity of TEAM underscores

the underappreciated interplay between gene expression and

environmental conditions. The upregulation of genes associated

with a particular pathway is frequently used as a proxy for

inferring increased metabolic activity in the pathway itself, e.g. in

the analysis of large expression datasets associated with human

disease, such as cancer. Our work with TEAM suggests that the

inference of metabolic activity directly from gene expression data

can be quite misleading. In addition to effects associated with the

delay between transcriptional and metabolic response, distinct

extracellular environments, coupled with identical gene expression

profiles, can re-organize the activity of metabolic pathways in

substantially different ways. Therefore, we would argue that future

studies of metabolism must carefully account for the environmen-

tal context within which gene expression is measured.

Materials and Methods

Data Inputs and Interpolation
TEAM uses four sets of data as inputs, in addition to the

stoichiometric model: time-dependent, OD-based, biomass mea-

surements (OD), time-dependent gene expression microarray

measurements (EXP), a reference compendium of gene-expression

data unrelated to the current experiment (in our case, obtained

from the M3D [17] database and labeled M3D) and initial

concentration of nutrients in the growth medium (MEDIA). To

make the data sets OD, EXP, M3D, and MEDIA congruent with

each other and with the algorithm architecture, the data is

interpolated for the appropriate time interval across the entire

experimental period. We used a time interval Dt of 1 hour, and

performed the interpolation using the Matlab interp1 function.

The reactions in the stoichiometric model can be characterized

as either exchange or biological fluxes. Biological fluxes are

associated with enzyme-catalyzed metabolic reactions and trans-

port reactions. Exchange fluxes act as source and sink reactions

that balance the biological fluxes. Formally we define these two

sets as follows:

Ibio ~ f i[ 1, . . . ,Nf g D V is a biological flux g ð1Þ

Iex~f i[ 1, . . . ,Nf g D V is an exchange flux g ð2Þ

By convention, a positive flux through an exchange reaction

means that a metabolite is secreted, and conversely a negative

exchange flux corresponds to uptake of a metabolite. Therefore, a

lower bound on an exchange flux is equivalent to the maximal

uptake rate of the corresponding transportable metabolite in a

time interval Dt.

Implementation of TEAM
TEAM is based on the previously described dFBA [16] and

GIMME [13] methods. For a comprehensive overview of the
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TEAM method, see Figure 1. TEAM produces a time-series of

metabolic flux predictions V(t) by identifying, at each (discrete)

time t, the metabolic flux distribution that is most consistent with

measured gene expression data at that time. The resulting flux

distribution is assumed to be valid for a time interval Dt, and is

used to update the concentrations of nutrients in the media for the

subsequent time interval. In this way, a series of static optimiza-

tions are linked to each other by the repeated updating of external

media nutrient availability.

A TEAM simulation is initialized by setting the initial

concentration of nutrients in the growth medium. Let ei(t)

represent the concentration (in mM, considering a working

volume of 1liter) of the ith component of the medium at time t.

We initialize e to reproduce the experimentally known initial

medium composition at time t = 0:

ei 0ð Þ~ MEDIAi for all i[ Iex ð3Þ

Next, we initialize the problem so that a dFBA iteration can be

completed. We use the current metabolite concentrations to infer

the lower bounds (meaning maximal possible inflow) on all

exchange fluxes:

lbi tð Þ~ ei tð Þ = Dt for all i[ Iex ð4Þ

Furthermore, we set the initial biomass concentration in TEAM

equal to the appropriately scaled experimentally measured optical

density: BM(0) = OD(0).

In order to consistently solve the problem for the total biomass

available, at each time point we convert the constraints on the

biological fluxes from specific (lb(0), ub(0)), defined per unit of

biomass, mmol/gDW?hr, as in standard FBA, to total (lb, ub, in

mmol/hr):

lbi tð Þ~ lb0
i tð Þ : BM tð Þ for all i[ Ibio ð5Þ

ubi tð Þ~ ub0
i tð Þ : BM tð Þ for all i[ Ibio ð6Þ

Next, in analogy with [13], we determine the minimal flux

through a required metabolic functionality (RMF). Imposing RMF

fluxes in TEAM is necessary in order to prevent the output of the

trivial flux distribution V = 0. Because TEAM attempts to

minimize the inconsistency between a flux distribution and gene

expression data, the trivial solution is always optimal unless the

user explicitly makes it infeasible. The only RMF used in this work

is biomass production, although the TEAM protocol will work

equally well for any other choice of RMF.

In this manuscript, measurements of the biomass flux were

collected through growth data (OD(t)). When this is the case,

TEAM can explicitly calculate the lower bound on the biomass

flux to be

VBM, measured ~ (1=Dt) : ½ OD(t z Dt) { 1-dð Þ : OD tð Þ � ð7Þ

where d is the death rate. In this work, we used d = 0.06.

The heart of the TEAM algorithm performs two optimization

steps. In the first step, following [13], we minimize the

inconsistency between metabolic flux and gene expression data.

To do so, we associate a penalty, ci(t), with every reaction i in the

model (see Gene Penalty Calculation section of Materials and

Methods). This penalty reflects our expectation, based on gene

expression, that a reaction is ‘‘inactive,’’ i.e. that it is unlikely to

carry flux. The total penalty is minimized by solving the linear

programming problem:

minimize : IC~
X

ci tð Þ:DVi Dð Þ

subject to : SV~0,

VBM§VBM,measured

lbi tð ÞƒViƒubi tð Þ,

ci tð Þ§0

for all i

ð8Þ

Because there may be many alternative optimal solutions, we

complete a secondary optimization to select the one that

minimizes the sum of absolute value of all fluxes, while keeping

the inconsistency constant. The minimization of the sum of

absolute values of fluxes had been described before [30], and can

be formulated as:

minimize :
X

Vij j

subject to : SV~0,X
ci tð Þ:DVi Dð Þ~IC

VBM§VBM, measured

lbi tð ÞƒViƒubi tð Þ,

ci tð Þ§0

for all i

ð9Þ

To complete the dFBA iteration, the media nutrient concen-

trations and the biomass are updated using the newly calculated

exchange fluxes:

ei t z Dtð Þ~ ei tð Þz Vi for all i[ Iex ð10Þ

BM tzDtð Þ~ 1-dð ÞBM tð ÞzVBMDt ð11Þ

The vector e is then used to assign lower bounds to all exchange

fluxes in the next time step of TEAM using Equation 4.

Gene Penalty Calculation
Gene penalties are used in the main optimization step of TEAM

to identify flux states that minimize the flux through reactions with

relatively low expression. As described in detail below, gene

penalties are determined by comparing the expression value of a

gene with a predefined threshold. Gene penalty calculation is done

in three steps: threshold determination, expression comparison,

and gene-to-reaction conversion.

Threshold determination. To determine either global

(xglobal) or gene-specific thresholds (xg), a cumulative distribution

function (CDF) is calculated from the union of the set of

microarray measurements taken from the M3D Database [17]

(M3D) and our experimental time-course measurements (EXP).

This is done prior to use in the TEAM algorithm. Using a

percentile value (h), we can then calculate the global expression
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threshold, i.e. a gene expression value xglobal such that h percent of

all the M3D and EXP values will be less than xglobal, which we also

express briefly in the following format:

xglobal~CDF( (M3D| EXP) , h) ð12Þ

The CDF in Equation 12 is calculated using expression data

from all genes for all experiments. In cases where we are

concerned with a unique threshold for each gene g, we can use

xg~CDF( (M3Dg|EXPg) ,h) ð13Þ

where M3Dg and EXPg correspond to the subsets of measurements

pertaining to gene g from M3D and EXP respectively. Thus in

Equation 13, the expression data used to generate the CDF only

comes from measurements of gene g. For two examples of unique

gene penalty calculation, see Figure 3A–D.

Penalty calculation. Once the gene threshold values have

been calculated, the time-dependent penalties p are calculated

during each iteration of TEAM using the experimental gene

expression data that corresponds to the current time step. Three

different penalty calculation methods were implemented: (Type 1,

Equation 14) the global threshold method, (Type 2, Equation
15) the unique threshold method, and (Type 3, Equation 16) the

unique threshold with standard deviation method:

Type 1 : pg(t)~
xglobal{EXPg(t), if xglobalwEXPg(t)

0, otherwise

�
ð14Þ

Type 2 : pg(t)~
xg{EXPg(t), if xgwEXPg(t)

0, otherwise

�
ð15Þ

Type 3 : pg(t)~
(xg{EXPg(t))=sg, if xgwEXPg(t)

0, otherwise

�
ð16Þ

Gene-to-reaction conversion. In the simple case when one

gene A encodes the enzyme responsible for a reaction i in the

model, the penalty of reaction i (ci) is precisely equal to the penalty

of gene A (pA). In general, however, since some reactions may be

catalyzed by one or more (potentially multimeric) protein

enzymes, gene penalties pi must be converted to reaction penalties

ci in order to be compatible with the TEAM calculations.

Conveniently, many stoichiometric models contain Boolean rules

that define the relationship between genes and their corresponding

reactions, making this evaluation possible. In Boolean gene-to-

reaction mappings, an AND relation, such as ‘‘reaction 1 = gene A

AND gene B,’’ describes a situation where gene A and gene B

work together in an enzyme complex to catalyze reaction 1. In this

case, we assume that the gene with the highest penalty is the one

with the lowest expression relative to its corresponding threshold,

and so will act to limit the flux through reaction 1. Our evaluation

rule is therefore:

reaction i~gene A AND gene B ? ci~max pA, pBð Þ, ð17Þ

where ci is the reaction penalty value and pA and pB are the gene

penalty values calculated above for individual genes. OR relations

such as ‘‘reaction 2 = gene A OR gene B’’ typically describe

situations in which genes A and B act as isoenzymes that catalyze

the same reaction. Because flux through reaction 2 can travel only

as fast as the enzyme that is most active, we choose the minimum

penalty value to represent the reaction penalty:

reaction i ~ gene A OR gene B? ci ~ min pA, pBð Þ ð18Þ

Experimental Data and Metabolic Model
We applied TEAM to data obtained from a growth experiment

of S. oneidensis MR-1 in carbon-limited conditions, as described by

[18]. The data set contained three types of data: a time-series gene

expression data set, a time-series media metabolite concentration

data set, and a time-series measurement of biomass. The gene

expression data was measured using an S. oneidensis MR-1

microarray Affymetrix chip platform and included 19 measure-

ments at various time points between 0 and 50 hours. To derive

the background data set used to calculate gene-specific penalty

thresholds, we combined this set of 19 microarrays with 262

compatible microarray data sets obtained from the M3D database

[17]. All gene expression data was normalized using the ‘‘affyrma’’

function in the Bioinformatics Toolbox in MATLAB [31]. The

external metabolite concentration data set was measured using

high performance liquid chromatography (HPLC), and provided

an abundance profile for various metabolites in the media over

time. This data set was not integrated directly using TEAM, but

was used to measure the performance of our method against

experimental data, as well as to define our starting media

condition. Finally, the biomass growth dataset was measured

using optical density (OD). This data was used in conjunction with

a genome-scale metabolic model iSO783 of S. oneidensis MR-1

described in [21]. This model contains 774 reactions encoded by

783 genes, and 634 unique metabolites. The model includes the

gene-to-reaction mapping used to associate gene information with

the reactions in the metabolic model, as described above.

Validation of TEAM with Supplementary Data
Data for yeast upon shift from fermentative to glycerol-

based metabolism. Gene expression data was obtained from

the Gene Expression Omnibus for the experiment from [26].

Samples from all ten time points were used to assemble a small

compendium of gene expression measurements for each gene. To

run TEAM, the yeast model iMM904 [32] was used in

conjunction with the glycerol-based media described in [26].

Since no data was provided regarding the growth rate of yeast in

this experiment, we instead elected to calculate the maximum

possible biomass flux and then enforce that the metabolic model

produce at least a minimum percentage p of this maximum. The

results in Figure S4 illustrate the results for p = 0.5, but the results

generically hold for all p that we tested.

We compared the performance of Type 1 (global) and Type 2

(gene-specific) thresholds by completing a single iteration of

TEAM for each possible penalty percentile h, from 1 to 99%.

For each h, the resulting inconsistency score (IS) was obtained and

normalized by the average penalty across all genes. Then, the

inconsistency scores for the Type 1 and Type 2 methods were

compared, shown in Figure S4. The ‘‘step-like’’ IS scores for the

Type 2 method result from the very small compendium of gene

expression measurements available to us (ten). Thus, at discrete

percentiles, the penalty threshold for each gene in the model

simultaneously changes, resulting in discrete changes in the IS.

Data on yeast metabolic oscillations. Gene expression

data was obtained from [27]. Samples from all thirty six time
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points were again used to construct a compendium of gene

expression measurements for each gene. The yeast model

iMM904 was used in tandem with a media composition

corresponding to the one described in [27]. We used gene

expression data corresponding to hour 11 in the metabolic cycle,

when the population of yeast secreted acetate and ethanol into the

medium. As before, no biomass data was provided, so we instead

chose to calculate the maximum possible biomass flux and then

enforce that the metabolic model produce at least a minimum

percentage p of this maximum. The results in Figure S5 illustrate

the results for p = 0.5, but the results generically hold for all p that

we tested. We then compared the number of percentile thresholds

h (for which Type 1 (global) and Type 2 (gene-specific) thresh-

olding predicted the secretion of acetate and ethanol. The results

are shown in Figure S5. We also repeated the inconsistency score

analysis described in the prior subsection.

Supporting Information

Dataset S1 Predictions of time-dependent metabolic
fluxes for Type 1, 2, and 3 thresholding methods across
three different percentiles h = 65%, 72%, and 85%. There

are a total of nine different Excel files, compressed into a single

zipped directory, which contains also a README file.

(ZIP)

Figure S1 Sensitivity analysis for Type 1 global thresh-
old. (A) Total carbon concentration in media for each penalty

threshold h, summed over all time points. Acetate is the only

intermediate carbon source found in the media over all penalty

thresholds. (B) Extinction time of lactate and ammonium in the

media. Lactate runs out earlier than ammonium for all penalty

thresholds. Heatmap indicates the total media concentration of

secreted carbon sources (acetate, pyruvate, glycolate, formate).

(TIF)

Figure S2 Sensitivity analysis for Type 3 gene-specific
threshold normalized by standard deviation. Results are

very similar to those in Figure 4. (A) Total carbon concentration in

media for each penalty threshold h, summed over all time points.

Penalty thresholds between 40% and 75% exhibit enrichment for

secreted carbon sources formate, glycolate, pyruvate. (B) Extinction

time of lactate and ammonium in the media. Lactate runs out

significantly earlier for intermediate penalty thresholds. Heatmap

indicates the total media concentration of secreted carbon sources

(acetate, pyruvate, glycolate, formate).

(TIF)

Figure S3 Central carbon metabolism of S. oneidensis.
For a more detailed description of the reactions and metabolites,

refer to Tables S1 and S2.

(TIF)

Figure S4 A comparison of overall inconsistency be-
tween Type 1 and Type 2 cutoffs for yeast grown on
various media. Data analyzed here was taken from [11]. For

penalty thresholds h between 1% and 99%, the total inconsistency

score (IS) between gene expression and flux was measured and

normalized by the average inconsistency among all fluxes. The

blue line represents the IS using a global threshold (Type 1), and

the green line represents the IS using a gene-specific threshold

(Type 2). For all h, the gene-specific threshold produces a flux

distribution that is more consistent with the gene expression data.

Percentiles h which trivially produced flux distributions with no

penalized reactions (resulting in an IS of zero) are not plotted.

(TIF)

Figure S5 A comparison of overall inconsistency be-
tween Type 1 and Type 2 cutoffs for yeast undergoing
metabolic cycles. Data analyzed here was taken from [27]. (A)

Occurrence of acetate excretion in the external media for both

global (Type 1, blue) and gene-specific (Type2, green) thresholds.

Flux solutions using gene-specific threshold produced roughly

twice as many correct predictions of acetate production as

compared to solutions using a global cutoff. (B) Total inconsistency

score between gene expression and flux for penalty thresholds h
between 1% and 99%. Missing values correspond to an IS value of

zero. Percentiles h which trivially produced flux distributions with

no penalized reactions (resulting in an IS of zero) are not plotted.

(TIF)

Table S1 Reactions in central carbon metabolism of S.
oneidensis.
(DOC)

Table S2 Metabolites in central carbon metabolism of
S. oneidensis.
(DOC)
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