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Abstract: Eukaryotic cell motility involves complex
interactions of signalling molecules, cytoskeleton, cell
membrane, and mechanics interacting in space and time.
Collectively, these components are used by the cell to
interpret and respond to external stimuli, leading to
polarization, protrusion, adhesion formation, and myosin-
facilitated retraction. When these processes are choreo-
graphed correctly, shape change and motility results. A
wealth of experimental data have identified numerous
molecular constituents involved in these processes, but
the complexity of their interactions and spatial organiza-
tion make this a challenging problem to understand. This
has motivated theoretical and computational approaches
with simplified caricatures of cell structure and behaviour,
each aiming to gain better understanding of certain kinds
of cells and/or repertoire of behaviour. Reaction–diffusion
(RD) equations as well as equations of viscoelastic flows
have been used to describe the motility machinery. In this
review, we describe some of the recent computational
models for cell motility, concentrating on simulations of
cell shape changes (mainly in two but also three
dimensions). The problem is challenging not only due to
the difficulty of abstracting and simplifying biological
complexity but also because computing RD or fluid flow
equations in deforming regions, known as a ‘‘free-
boundary’’ problem, is an extremely challenging problem
in applied mathematics. Here we describe the distinct
approaches, comparing their strengths and weaknesses,
and the kinds of biological questions that they have been
able to address.

Introduction

From the earliest embryogenesis, through growth and develop-

ment, cells in our body undergo programmed rearrangements and

relative motion that shapes tissues, generates the form of the

organism, and maintains its integrity despite constant environ-

mental pressures. How cells move is thus an intriguing problem in

biology, not only in the context of metazoans but also in far

simpler single-celled organisms such as amoebae. Modern biology

and advanced imaging techniques have allowed an increasingly

fine inspection of the molecular processes underlying the complex

process of cell locomotion. But as with many other biological

investigations, making sense of the voluminous data is a

challenging undertaking.

Partly for this reason, there has been increased impetus to

complement experimental observations with theoretical treatment

of the problem of cell movement, with the idea of breaking down

the very intricate mechanisms into simplified prototypes that can

be understood more readily. This review summarizes some of the

recent approaches that have addressed single cell motility from a

theoretical and computational perspective. Here we focus primar-

ily (but not exclusively) on single eukaroytic cells that undergo

chemotaxis or directed motion, rather than, for example, epithelia

or cell clusters.

Many motile eukaryotic cells described here have a thin sheet-

like front edge, the lamellipod, known to be the major determinant

of cell shape and motility. Devoid of organelles and filled with the

cytoskeletal protein actin (polymerized into filaments, F-actin), it is

the protrusion motor that extends the cell forward. Retraction of

the rear along with choreographed formation, maturation, and

breakage of cell-substrate adhesions complete the motility

machinery. Front extension and rear retraction are generally

observed to be orthogonal to the edge of the cell. Some cells are

constantly deforming, while others achieve a relatively stable

steady-state shape as they crawl (reviewed below). In the latter

case, this mandates that there be a graded distribution of extension

and retraction (‘‘graded radial extension,’’ GRE) [1] so as to

preserve the shape and size of the cell as it moves.

Cells of distinct types differ in certain respects, but all eukaryotes

contain F-actin and major signalling proteins such as small

GTPases, phosphoinositide-3-kinase (PI3K), phosphatase and

tensin homolog (PTEN), and other regulatory molecules that

impinge on the cytoskeleton. Fluorescence imaging, speckle

microscopy, total internal reflection fluorescence (TIRF), and

confocal and electron microscopy have revealed the structure of

the cytoskeleton, the spatial redistribution of actin, its nucleators

(e.g., Arp2/3), and its regulators, as well as localization dynamics

of single molecules in ever-increasing detail. In principle, data are

plentiful and should allow for an accurate understanding of the

machinery of cell motion. In practice, the presence of complex

molecular interactions, crosstalk, and feedback make it very

challenging to decipher underlying mechanisms and how they are

coordinated.

Here we survey the types of theoretical efforts that have been

devoted to gaining insight into basic aspects of cell motility. As we
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will see, most of these efforts include some consideration of (1)

cytoskeletal dynamics or (2) regulatory signalling. Many models link

that biochemistry to mechanical forces and material properties (e.g.,

viscoelasticity) of the cell material. Each aspect on its own is already

a challenging theoretical problem. The difficulties associated with

the second are lack of detailed knowledge about the molecular

interactions in signalling networks. The challenge in the first is the

issue of how to describe the cell material (elastic, fluid, or

viscoelastic). Confounding the problem even more is the fact that

biochemistry and biophysics of the cell are intimately connected to

changes in its shape and movement. This means that the combined

biochemistry/biophysics needs to be represented in a continually

deforming 2-D or 3-D domain in what is known as a ‘‘free boundary

problem’’ in applied mathematics. This significantly raises the bar

for entry into this exciting area of investigation.

In the sections that follow, we first survey some of the specific

properties of eukaryotic cells, favorite experimental subjects that are

also used as modeling prototypes. We discuss both universal features

of such cells and distinctions that affect how they are viewed

theoretically. The kinds of scientific questions driving the computa-

tional research are often cell-type specific, and especially so in recent

articles that closely link models and experiments. We then summarize

some of the recent work in which 2-D or 3-D motility is simulated and

discuss both the biological and computational complexities that must

be addressed, outlined in Figure 1 and Table 1. Particular attention is

paid to how free boundary computations have been circumvented, or

solved, and how the cell material has been represented in the wide

variety of simulations currently in use. We conclude with some

perspectives and open challenges for the future.

Universal Principles and Cell-Specific Phenomena

The goals of modelling and simulation efforts are not merely to

reproduce observed motility properties (though that in itself is a

challenge). Rather, it is to use the computational platforms to pose

and address a variety of specific questions about cell motility and

to understand the relationship between functional aspects of cell

machinery and resulting form.

The variety of motile eukaryotic cells leads to two complemen-

tary issues: (1) finding universal principles that are conserved

across species and (2) determining what is specific to a given cell

type and how to explain such unique features. A recent review

article [2] summarized major similarities and differences of cell

types in the context of polarization behaviour. Here we describe

motility differences and common features, together with some of

the major issues that are addressed by modellers.

Cell Types and Cell-Specific Modelling Questions
Budding yeast. The budding yeast, Saccharomyces cerevisiae,

exhibits polarization in mating and in the genesis of daughter cells

Figure 1. Summary of model complexity. A summary of the models on a two-axes ‘‘complexity’’ plane. The horizontal axis represents the level of
biological detail (increasing from left to right) and the vertical axis represents the computational complexity of the simulation (increasing from
bottom to top). See Table 1 for a listing of specific biological and computational aspects of these models.
doi:10.1371/journal.pcbi.1002793.g001
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by budding. Mating yeast grow into schmoo-like shapes in

response to mating pheromone gradients. The formation of buds

is associated with localized buildup of the GTPase Cdc42 in a

polar cap. Such systems have been used to motivate signalling

models [3,4], with a variety of 1-D, 2-D, and 3-D computations.

Here we do not review the extensive literature on yeast as these

cells are inherently nonmotile.

Fish keratocyte. Fish scale keratocytes have been a favourite

cell for motility studies, as they have a fairly stable shape and

persistent motion, with a broad flat front edge, and overall

‘‘canoe’’ or ‘‘D’’ shape. The relative simplicity of motion of this

type of cell has attracted many models and simulations [5–12].

Keratocyte motility has been described by the GRE scheme,

leading naturally to the question of whether GRE can be

explained based on the underlying cytoskeletal dynamics [6] and

how retraction, adhesion, and protrusion are coordinated to

maintain the shape of the cell [7]. (For example, how are the side

edges prevented from spreading outwards or retracting inwards?

How does retraction at the rear keep up with protrusion at the

front? [13]) Keratocytes are among the fastest motile cells, with

typical speeds of 10–40 mm/min. Many works have aimed at

deciphering the connections between the actin recycling and acto-

myosin dynamics and the speed of the cells [6,7,14].

Social amoeba. The Social amoeba Dictyostelium discoideum is

another popular organism for study, with known genetics and ease

of genetic manipulation. Models for the amoeboid motion of

Dictyostelium include [15–19]. These rapid chemotactic cells

respond to the chemoattractant cAMP and undergo random

motion in its absence. In contrast to stable keratocyte motion, cell

shape continually deforms, with frequent and random sprouting of

pseudopods. One recurrent question of interest to modellers has

been what mechanism accounts for the continual generation of

these protrusions [15] and how they vie for dominance to lead to

the observed motility phenotype [17,18]. Researchers have also

questioned whether signalling activity patches are a requirement

for chemotaxis or whether pseudopod mechanics suffices to

account for it [17]. Biologically, it has been found that the

pseudopod that senses highest cAMP levels usually becomes the

dominant one [20], allowing cells to easily change direction in

response to changing cues. Due to ease of mutant and genetic

manipulation, the PI3K-PTEN and phosphoinositide (PI) path-

ways have been well-studied in these organisms. One of the earliest

works showed that these proteins and lipids polarize rapidly in

response to cAMP gradients, even when the actin cytoskeleton is

disrupted by drugs such as latrunculin. These findings engendered

many models for the signalling and gradient-sensing aspects of

these cells, primarily in 1-D computations [21–24].

Neutrophils. Neutrophils, a component of the white blood

cells, are rapid responders to pathogen-associated stimuli. They

are expert chemotactic cells, with crawling speeds up to 10–

20 mm/min and persistent motility once stimulated. The role of

the small GTPases (Cdc42, Rac, Rho) in polarization and

signalling to actin had been investigated fairly early experimentally

[25,26] and led to a number of recent modeling studies. These

addressed a number of questions, including how internal signalling

systems interface with the deforming cell shape [8,12,27,28], how

they lead to robust polarization [8,29], and how cells with such

internal signalling can remain sensitive to new stimuli [8].

Neutrophil shape is more fluid than that of keratocytes, with a

fairly symmetric resting state and a highly polarized shape when

stimulated. In the absence of pathogen stimuli, neutrophils ‘‘roll’’

along the endothelial lining of blood vessels, but they change shape

Table 1. Summary of published motility models.

Model Reference Model Components Computational Methods

CD CF SD MM AD Boundary PDE

1D Neilson 2011 [17] x x LSM FEM

Hecht 2011 [18] x x LMP FDM

Kabaso 2011 [43] x x x LMP FDM

Stephanou 2008 [33] x x x LMP FDM

2D Bottino 2002 [34] x LMP FEM

Herant 2003 [30] x x LMP FEM

Doubrovinski 2011 [64] x x x LMP FDM

Rubinstein 2005 [7] x x LMP FEM

Rubinstein 2009 [9] x x N/A FEM

Wolgemuth 2010, 2011[13,48] x x x LSM FVM

Levine 2012 [11,52] x x x x PFM FDM

Vanderlei 2011 [28] x x x LMP FDM

Marée 2006, 2012 [8,12] x x x x CPM FDM

Kuusela 2009 [63] x x x LSM FDM, FVM, FEM

3D Novak 2008 [70] x N/A FVM

Ditlev 2009 [72] x N/A FVM

Herant 2010 [10] x x x LMP FEM

Model components and computational methods of articles surveyed in this review. In columns 2–6 an ‘‘x’’ indicates inclusion (to some extent) of a given layer of
biological complexity. Column heading abbreviations are as follows: CD, cytoskeleton dynamics; CF, cytosolic flow; SD, signaling dynamics; MM, membrane mechanics;
AD, adhesion dynamics. The boundary treatment column (column heading Boundary) indicates the method used to handle the moving boundary of the cell: LMP, LSM,
PFM, or the CPM. The PDE Methods column (column heading PDEM) indicates the procedure used to discretize model PDEs: Finite Difference Method (FDM), Finite
Volume Method (FVM), or Finite Element Method (FEM).
doi:10.1371/journal.pcbi.1002793.t001
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and invade the tissues by extravasation when encountering

inflammatory or pathogenic signals. Neutrophils are also well-

known phagocytes. The actin cytoskeleton plays a vital role in both

motility and phagocytosis. Models addressing neutrophil behav-

iour have been aimed at understanding how these cells modulate

their cortical tension to organize motility and phagocytosis [30],

and how details of the cytoskeletal mechanics (e.g., network

swelling, mechanical repulsion, contractile forces, etc.) can be

reconciled with the expanding local surface area [30–32].

Fibroblasts. Fibroblasts are cells of the connective tissue

responsible for wound healing. By comparison with the previously

described cells, their motion is sluggish, with speeds of only 1 mm/

min. The shapes of these cells are largely dictated by their strong

adhesion to the substrate, mediated by large complexes called focal

adhesions. A question investigated by [33] is how hydrostatic

pressure, actin-mediated contraction, and focal adhesion forma-

tion relate to the traction forces exerted by the cell. A recent 3-D

model that investigates the genesis of a typical fibroblast shape is

[10].

Nematode sperm. The nematode sperm is a crawling cell,

with a flat lamellipodium, a dome-like cell body, and an elongated

shape in the direction of crawling. This cell has a simplified

cytoskeleton consisting of the major sperm protein (MSP) whose

assembly and disassembly appears to be influenced by an internal

pH gradient. While detailed biology of this cell and biopolymer are

still vague, these have been the subject of several modeling articles

[34–36]. One of the earliest 2-D computational articles on cell

motility [34] addressed the issue of how MSP contributes to

motility. The effect of MSP properties (e.g., stiffness and

anisotropy) and of the cell size and shape on crawling speed were

investigated in [36].

Overarching Modelling Goals
From the above list, it is clear that motile cells include both fast

and slow, persistent moving and static resting phenotypes, with

either stable shapes, or frequent and randomly distributed

protrusive activity. Hence, in considering models for cell motility,

it is clear that goals and questions posed have been, to some extent,

specific to cell type. At the same time, a few questions of more

universal applicability recur as themes in some of the modeling

articles. These include some of the following: (1) What is the

relationship between actin dynamics, cell shape, and movement

[7]? (2) How does the acto-myosin network self-organize? What

accounts for the distribution of myosin and the flow of actin

observed in crawling cells [9]? (3) How do distinct processes such

as myosin contraction, transport-limited G-actin polymerization

into F-actin, vesicle delivery by microtubules (MTs), and GTPase

signalling contribute to cell shape generation [13]? (4) How can

cells make decisions when multiple conflicting cues are presented

to them? How can cells navigate in complex environments

[12,19]? (5) What accounts for morphology differences between

cell types [10,37]?

Roughly speaking, the theoretical models can be classified into

several types. (1) Some models are concerned exclusively with

biophysical aspects of the actin cytoskeleton in varying degrees of

detail. These are aimed at understanding how distribution of actin

and its effectors such as myosin and adhesion complexes affect the

shape and locomotion speed of cells. (2) Other models have a

greater focus on signalling and chemotactic orientation. Often the

details of the cytoskeleton are omitted and signalling activity is

implicitly linked to forces causing protrusion and retraction. (3) A

few efforts combine aspects of both these approaches. (4) In some

cases, phenomenological or rule-based computations are used to

generate cell shape, using a highly abstracted representation of the

cell.

Cell-Shape Models in One Spatial Dimension (1-D)

Here we survey several influential models that describe ‘‘cell

shape’’ effectively in a single spatial dimension. Some models

depict only the leading edge, while others are perimeter models

that represent the cell as a closed curve (that is, a periodic 1-D

domain). That boundary curve is then identified with the cell

‘‘membrane,’’ and the 2-D interior of the shape is identified as the

‘‘cytosol,’’ generally assumed to be spatially uniform. Two major

model categories are noteworthy. In the first, particular attention

is paid to steady cell motion and the role of mechanical forces on

cell shape and locomotion speed. These models pertain primarily

to keratocytes (i.e., to cells whose shapes are preserved as they

move). They incorporate various biophysical elements such as

actin growth, adhesion dynamics, membrane curvature, and

tension. A second model category pertains to the more dynamic

amoeboid motion, typical of Dictyostelium. Most such models

eschew cytoskeleton dynamics and consider mainly the dynamics

of signalling in an attempt to understand the feedbacks responsible

for the formation and interaction of pseudopods. Whereas in

category I, the goal of modelling is to understand how individual

biophysical attributes contribute to steady-state cell shape and

motility, in class II, the goal is to investigate how signalling and

pseudopod dynamics contribute to chemotaxis.

Biophysics of Steady Motion
Keratocyte motion. The fact that the shape of a keratocyte is

intimately linked to the F-actin distribution across its lamellipod is

well-recognized [38,39]. As previously noted, protrusion of a

keratocyte perimeter satisfies a GRE property [1]. Let s be arc-

length distance along the cell’s front edge with 2L#s#L spanning

that edge from left to right. Then GRE states that the protrusion

rate (orthogonal to the edge) at s satisfies V(s) = V(0)cos(h(s)), where

h(s) is the angle between the edge normal at s and the direction of

motion, as shown in Figure 2a. This has led to the obvious

question of how this is achieved via cytoskeletal growth at the

leading edge. A subset of the class of models for the leading edge of

keratocytes are aimed at understanding F-actin distribution, force

velocity relationships, and their role in the GRE and steady

motion. These models consider only the leading edge of such cells,

with a domain 2L#x#L where 2L is the cell diameter.

In a pioneering article, Grimm et al. [6] proposed a simple 1-D

model for short, straight actin filaments growing at 635u along a

relatively flat leading edge. The edge shape is described by a

function y = f(x). Projected along a single (x) axis, the two filament

density classes (r+(x,t), r2(x,t)), black and white tips, respectively, in

Figure 2b) appear to move laterally with velocity 6v. Filaments in

a given class produce daughters in the other class, an approxima-

tion of the Arp2/3 branching nucleation. Filaments also appear to

decay as they are capped and prevented from keeping up with the

steady motion of the cell edge (in the ‘‘y’’ direction). The resulting

model, a pair of partial differential equations of hyperbolic type, is

elegant in its simplicity, allowing for explicit solutions in several

limiting cases. The effects of capping and local versus global

competition for Arp2/3 could then be carefully dissected.

Predicted actin profiles are symmetric, with a peak at the center

of the front edge. The local-Arp2/3 model compares well with

experimental observations for keratocyte cell-edge actin distribu-

tions. The GRE results in a relationship between the protrusion

velocity Vn(x) and slope of the edge at x, (Vn(x)~V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z(f ’(x)2

q
).

The authors used this, together with experimental actin density, to
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arrive at an approximate relationship between protrusion velocity

and local total actin density, Vn(x)<V0 exp(2v/(r(x)2r0)). The

model is fit to experimental data, and best fits correspond to

relatively low capping rate. In this case, the filaments persist longer

and average out local density fluctuations better. Thus, one of the

insights gained by the model is that relatively low capping is

consistent with shape stability, whereas a high rate of capping is not.

The model of [6] later engendered more detailed experiment-

theory rounds such as [40]. There, the role of the actin-associated

protein Ena/VASP was investigated experimentally and theoretically

to test its proposed role as a capping competitor/inhibitor. Equations

of [6] were accordingly modified to track barbed ends associated with

VASP (hence protected from capping). The model was used to

establish that a high level of VASP at edge relative to interior leads to

a greater population of pushing barbed ends, and thus lower

membrane resistance per actin filament, and faster protrusion.

Experimentally, the authors identified both canoe-shaped, ‘‘coher-

ent’’ cells, with a smooth edge, and stable persistent motion and

decoherent D-shaped cells (with ruffled edge and wobbly motion).

The former were observed to have higher VASP level at the edge.

The model predicts that at the range of lower resistance per filament,

protrusion is limited by G-actin (barbed ends compete for resources),

rather than F-actin, whereas resistance limits protrusion at the sides of

the cell when the F-actin density is lower. All in all, this article is an

example of the adoption of a theoretical model as a tool in

experimental research, and it provides support for the anti-capping

role of VASP.

In fact, several other works that will be described more fully as

2-D investigations were also linked to 1-D reductions, used to gain

valuable insights about the role of the cytoskeleton in motility.

Among these, we mention the simulated nematode sperm and

keratocyte motility (reviewed further on) [7,34] as notable

examples. The elastic and gel swelling forces due to MSP were

explored in [34] to analytically establish the stress distribution

across the cell. In [7], a 1-D reduction was used to obtain the

distribution of myosin and contractile forces at the rear of the cell,

again using analytic solutions to reduced 1-D partial differential

equations (PDEs). Such reductions only treat simplified limiting

cases or special systems where notable tricks can be used to

transform and solve the system (as in [6]). But they provide

additional insights for how various parameters (capping, nucle-

ation rates, binding, or unbinding rates) influence qualitative

behaviour in the models.

So far, we have surveyed 1-D models that represent part or all

of the cell perimeter, as these blend well into a discussion of cell

shape. Another large class of 1-D models focuses on a transect of

the cell from the edge inwards (parallel to the direction of motion).

Such models are less suited for describing cell shape and are

primarily focused on addressing how actin, myosin, and/or other

cell constituents are distributed away from the cell edge. An

example includes [14], reviewed later, and others too numerous to

list here. The two examples [41,42] emphasize continuum

mechanics. The former treats a 1-D cell as a viscoelastic material

with active stresses and interaction with the substrate to compute

cell speed in a fibroblast cell type. The latter similarly considers

actomyosin as a treadmilling viscoelastic 1-D strip where

contraction is assumed to be proportional to myosin density.

The F-actin density determines the elastic, viscous, and adhesion

properties of the cell. One result obtained is that lower adhesion

strength and gel elasticity, together with stronger contractility,

merely shortens the ‘‘cell’’ but does not strongly affect its speed.

Such early models have simple geometry and simple constitutive

relations, and so lead at best to qualitative, rather than

quantitative, agreement with observed cell behaviour.

Perimeter models with membrane curvature and

adhesion. Another subset of models describing steady motion

are less concerned with the GRE mechanism associated with

keratocytes and concentrate more on the role of membrane effects

and adhesion dynamics. These consider a 1-D periodic domain

representing cell perimeter. The work by [43] presents a 1-D

model for the periphery of a 2-D cell based on the idea that

proteins (with BAR domains) interact with membrane curvature to

localize and direct actin growth, edge protrusion, and adhesion.

They show that feedback between the distribution of convex

proteins and protrusive activity leads to symmetry breaking

Figure 2. Graded Radial Extension Model. (a) To preserve the
shape of the cell as it moves, forward extension has to be graded along
the front (rear) edges of the cell. In the GRE model [1], the velocity at a
point on the cell edge is perpendicular to the edge and of magnitude
V(s) = V(0)cos(h(s)), where s is arclength along the cell front edge
(2L#s#L) and V(0) is the translocation velocity of the cell. (b) In Grimm
et al. [6], only actin filament barbed ends at the leading edge are
modeled. These are approximated by two populations, representing
ends moving right (black dots) and those moving left (white dots).
Arp2/3-mediated branching of one type gives rise to the other type.
The cell edge is approximated as nearly flat (nearly rectangular shaped
cell), and the evolving density of the actin filament tips is modeled in 1-
D using a continuum (partial differential) equation.
doi:10.1371/journal.pcbi.1002793.g002
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instabilities (analyzed by linear stability analysis) and probe the

respective roles of actin protrusion strength versus adhesion

strength on cell shape.

In this relatively complex 1-D model, both curvature and

tension effects are incorporated in a Helfrich free energy

functional. Curvature-associated proteins are assumed to decrease

local membrane tension by promoting adhesion formation and/or

by increasing local intrinsic curvature. (This leads to positive

feedback as proteins induce curvature and are at the same time

drawn to regions of high curvature.) The authors consider two

limiting cases of protrusion versus adhesion strength. In the case of

strong adhesion activity with no actin activity, cells take on an

elongated shape with a single high curvature peak. In the opposite

regime (high actin activity and no adhesion), the result is a broadly

distributed flat front with two high curvature peaks.

Another work that explores the role of adhesion is that of [33].

This 1-D periphery model describes the interplay of hydrostatic

pressure, actin-mediated contraction, focal adhesion formation,

and traction forces in fibroblast motility. Three adhesion states are

considered: spots, focal complexes, and focal adhesions. These

differ in lifetime, with only the latter capable of producing traction

forces for motility. It is assumed that stresses lead to the maturation

of focal adhesions and that focal adhesions themselves result in

larger stresses, creating positive feedback. Model results are

compared to experiments reported in the same article, with cell

speed and area being compared. One finding is that cell speed is

maximal at some intermediate adhesion strength, in agreement

with experiments. Another is that cell speed is directly related to

adhesion lifetime and inversely related to recycling time.

Signalling and Dynamic Cell Motility
The above class of models was largely aimed at understanding

steady cell motion. In this section, we consider a second class of 1-

D models for amoeboid motion that treat a cell as a 1-D periodic

domain representing the cell edge. The motion of amoeboid cells is

much less regular than that of keratocytes. For example,

Dictyostelium chemotaxis is driven by the formation, retraction,

and splitting of pseudopods. Hence models of amoeboid motion

have a greater focus on explaining transient signalling activity on

the membrane, on production and competition of pseudopods,

and on the role of pseudopod dynamics in chemotaxis, rather than

internal cytoskeletal function or steady motility.

Recall that in Dictyostelium cells, the response to chemoattractant

gradients is a rapid formation of patches of activity of proteins

(PI3K, Ras) and lipids (PIP3) at the edge corresponding to the

gradient direction. This is evident even in cells whose cytoskeleton

is frozen by drugs such as latrunculin. The same components also

concentrate at the leading tips of pseudopods during cell motion.

Hence, a central concern in many such models is what sets up and

accounts for the dynamics of such activity patches, a problem of

chemical pattern formation on the 1-D cell perimeter. Because the

details of the molecular interactions and the roles of distinct

players are still controversial, many models are based on

hypothetical pattern-formation systems. Underlying such models

are reaction diffusion (RD) equations for the concentrations of two

or more reactants (activator u, inhibitor v) of the form:

Lu

Lt
~Du+2uzf (u,v), ð1Þ

Lv

Lt
~Dv+2vzg(u,v), ð2Þ

where Du,Dv (necessary for pattern formation) and f,g are

nonlinear interactions that lead to some type of spontaneous

pattern formation. In some cases, the inhibitor is viewed as global

(DvR‘). In these models, the perimeter is parameterized by

0,x#c, where c is the cell circumference and periodic boundary

conditions u(0,t) = u(c,t), v(0,t) = v(c,t) are imposed. In this view, only

the edge of the cell is considered, and no dorsal/ventral membrane

or cytoplasm is included. (Later 2-D models will implicitly account

for these structures.) Below, we describe examples of this type of 1-

D model.

Static perimeter models. The idea that intracellular chem-

ical signalling patterns can dictate the polarization and orientation

of cells can be found in early articles by Gierer and Meinhardt

such as [44,45]. Here, the concept of lateral inhibition was used to

show that local activation together with long-ranged inhibition can

produce activity peaks of chemicals. The locations of those peaks

could be biased externally by a stimulus, represented, for example,

by a random input in the RD system. The interacting activator-

inhibitor system is then interpreted as a cellular signalling system

governing the polarization response of cells (reviewed in [2]).

As the activator-inhibitor systems described in early articles tend

to lock into a fixed pattern, modifications were made to account

for the sensitivity of a cell to new stimuli. Among such work, a

more recent highlight is the article of Meinhardt [15] where a local

inhibitor (to unfreeze pattern) was added to the previous local

activator, and global inhibitor. In [15], the activity of reacting

chemicals is concentrated at the circumference of a static disk, with

a uniformly distributed global inhibitor. The solutions to the set of

RD equations are taken to indicate the nascent sites of pseudopod

extension. Of specific interest in this work is the exploratory

formation of pseudopods in cells such as Dictyostelium discoideum and

in neuronal growth cones. An external gradient biases the RD

system, promoting a patch of activator that polarizes the cell.

Multiple filopodia can be generated if the spatial range of the

inhibitor is smaller than the cell perimeter, whereas a single

‘‘front’’ occurs when the inhibitor is global. The retraction of old

filopods and creation of new ones mandates the presence of a third

species that acts as a long time scale local inhibitor. In [15],

gradient sensing by oscillating RD systems, competition of multiple

sites for filopodia, and generation of traveling waves along the cell

perimeter were shown as proof of principle for the capacity of such

systems to mimic cell behaviours. This article was a precursor to 2-

D motility modelling. It sparked much interest and led to a

resurgence of research on the orientation and direction-sensing of

chemotactic cells.

Recent work of a similar flavour but distinct in the details

includes the models for coupled local excitation global inhibition

(LEGI, see [21]) modules describing PI3K, its downstream

effector, the PI PIP3, and the phosphatase tensin homology

protein (PTEN) on the perimeter of Dictyostelium [22]. These

models are geared at understanding direction sensing and

adaptation during chemotaxis and are not concerned with patterns

of spontaneous activity or pseudopod generation. Some of the

models compared well with experiments on immobilized Dictyos-

telium amoebae responding to cAMP [23].

Deforming cell edge perimeter models. More recently,

similar ideas about activator–inhibitor interactions on the perim-

eter of a domain have advanced to track a deforming cell edge. A

RD system capable of producing chemical patterns is postulated as

before to account for cell signalling. The boundary curve is

discretized, the motion of its nodes, and hence the deformation of

cell shape, is then related to the chemical activity pattern by

linking either forces or velocities to the active signal concentra-

tions. In some cases, additional representations of the cell edge
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mechanics are included. The models then investigate the feedback

between the chemical patterning and cell shape. The models are

concerned with the formation, retraction, and splitting of activated

regions (pseudopods), and most are focused on Dictyostelium as the

model organism. One technical issue that arises with these models

is the need to remesh the boundary due to spreading or

compression of nodes.

One example of perimeter modelling with deformable cell edge

was provided by [46], which used a so-called ‘‘shape machine’’ to

link the deformation of the domain to activity on its perimeter.

This technique for computing the deforming boundary is based on

spokes radiating outwards from a center of mass whose position is

updated as the cell deforms. The rules for membrane deformation

do not take into account forces, tension due to perimeter

stretching, nor conservation of area (or volume) of the cell, which

means that the motility mechanism is somewhat abstract.

Nevertheless, this model fits into a class of models where

membrane protrusion is directly linked to the signalling activity.

The rule-based computation of [46] proceeds from a local-

stimulation-global-inhibition system, with positive feedback in the

protrusion signals and retraction signals that track some overall

average (integral) of the protrusion signals. The local protrusive

signals obey a (discretized) RD equation with stochastic input. The

model consists of some 10 variables with 11 free parameters. The

parameter space is wide enough to allow for a variety of motility

phenotypes that resemble evolving shapes of real cells (fibroblasts,

keratocytes, and neuronal growth cones).

In the above models for Dictyostelium, the signalling system is

invoked to act as an internal compass, and all other processes are

assumed to be downstream ‘‘readouts’’ of this information

processing. However, Insall and Mackenzie [16,17] model

intrinsic cyclic growth of pseudopods and assume that external

gradients and the internal signalling bias some steps in that cycle

(not merely the initiation stage). They adopt a system of local

activator, local inhibitor, and global inhibitor, similar to [15].

Their additional equation for the signal that induces activity is

related to local receptor occupancy, in contrast to [15]. In these

simulations, the cell perimeter moves out in a direction normal to

the cell edge, with local speed proportional to the level of the

activator. A phenomenological equation for ‘‘cortical tension’’ that

tracks the changes in cell area was used to compute the velocity of

retraction. A challenge is to track the expanding edge on which

reaction and diffusion take place, and this is handled by remeshing

and by implementing an equation that results in area preservation.

A goal of this study was to test previously proposed models

hypothesizing an intrinsic pseudopod cycle and whether these can

predict chemotaxis behaviour in Dictyostelium. The results compare

experimental and theoretical cell shapes and motility behaviour in

response to manipulated gradients. These include initial polariza-

tion to a graded cue, persistent locomotion, as well as reorientation

to new applied stimuli. A novel prediction of this work is that the

direction of motion relative to the applied gradient will influence

the angle at which new pseudopods split off from preexisting ones.

This was found to agree well with experiments of real cells.

In a similar treatment of the same target organism, Dictyostelium

discoideum, Hecht et al. [18] implemented a two-component

excitable RD model (with an activator satisfying cubic kinetics

and a first-order kinetics inhibitor) on a deforming 1-D periodic

membrane (see also [24] for proposed excitable system governing

cell navigation). This system is meant to describe stochastic,

transient patches of activity governing membrane protrusions. The

activator was meant to mimic RasGTP, observed experimentally

to spatially colocalize with membrane protrusions. A separate

model component leads to the determination of the cell front and

rear based on external attractant field and internal ‘‘compass’’

with superimposed noise. Here the RD system determines only the

location of activity patches that form pseudopods, not the

direction-sensing of the cell. The force on the membrane depends

on activator levels, cortical tension, and membrane curvature. For

example, an expression of the form:

Ftot~f uð Þ{c(k{k0){C A{A0ð Þ{lv,

was used to represent the force orthogonal to the edge. Here u is

the local activator concentration, k is local membrane curvature in

2-D, A the area of the cell, and l is a drag coefficient. Varying the

excitability parameter across the cell perimeter then provides for

cells that have a more sensitive (excitable) front. Results were

compared with cells that were vertically restricted so that

fluorescent membrane patches could be imaged readily. Inclusion

of a noise term in the RD equations leads to spontaneous splitting

of pseudopods, with no additional splitting mechanism required,

and the model could reproduce observed cell shapes and

chemotaxis behaviour.

The models [17,18] address an issue that has been somewhat

controversial in Dictyostelium motility, namely whether chemotaxis

of these cells necessitates the formation of highly localized patches

of special signalling agents such as PI3K, Ras, or their effectors,

regulated by some signalling circuits. Localized patches are seen,

and [18] explains how these could give rise to chemotaxis, but

experimental literature has dealt several blows to claims that these

are ‘‘essential.’’ The model in [17] demonstrates that chemotaxis

may be possible without signalling proteins or signal processing

separate from pseudopods.

As in many models for cell motility, special problems arise when

multiple spatial cues are presented to the model cell. In [18], the

original model is unable to account for winner-take-all pseudopod

tug of war, so the authors adopted a second module that includes

the availability of a ‘‘limited resource’’ G(t) for protrusion. The

same type of model was also used by Hecht et al. [19] to describe

cells moving through more complex environments, such as mazes.

The authors showed that cells that secrete a repulsive chemical are

better able to navigate through mazes. Both issues have also been

addressed in a recent 2-D model [12], reviewed further on.

All in all, most models with 1-D domains either target the

cytoskeleton and its distribution across the front edge in

keratocytes, or the signalling and evolution of dynamic patterns

along the cell perimeter, but not both. As we shall see, more

complex models that consider rheological aspects, cytoskeleton,

and/or signalling pathways have been developed in the context of

2-D simulations, as described in the next section.

Simulations in Two Spatial Dimensions (2-D)

Computationally, we can group the 2-D models into classes of

increasing complexity. Some are essentially simulations with

irregular but fixed cell shapes. Those that do allow for deformation

and evolution of the cell shape do so by one of several techniques.

In principle, two separate aspects require special treatment. First, a

method of choice has to keep track of the moving boundary. And

second, some technique must be used to solve the interior

problem, usually (but not always) a set of RD transport equations.

We review specific computational methods below.

Moving Boundary Formulation
The single most difficult aspect of motility modelling is the

treatment of a moving deformable domain. There are four basic

techniques for handling the boundary description and motion in
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these problems: (1) Lagrangian marker method, (2) level sets, (3)

phase fields, and (4) Cellular Potts Model (CPM), alternatively

known as the Glazier-Graner-Hogeweg Model (GGH) after the

innovators who first adapted its use to biology. Each of these has

its strengths and weaknesses. We briefly describe these before

discussing specific models. In Table 1, we also indicate the method

used in each of the models under review.

Lagrangian marker point (LMP). The most natural

method of dealing with a moving deformable domain is to define

the boundary by a set of LMPs that are advected with some

velocity inherent to the problem. The strengths of this method are

its intuitive simplicity and the ability to compute local tension

when the edge is deformed. This can be an important aspect of

force balance at the cell edge. The downside of this treatment is

the difficulty associated with application of boundary conditions

and problems that arise when domains become either highly

curved or stretched in a local region, requiring remeshing of the

boundary. An example of this type of method is the immersed

boundary method, where a fluid velocity field advects material

marker points on the boundary.

Level set method (LSM). In the LSM, pioneered by Osher

and Sethian [47], there are no explicitly tracked material points on

the cell edge. Instead, the boundary is considered to be a level set

of a function describing the distance of any point in the 2-D

domain from the boundary (see Figure 3). As a matter of

convention, points inside the boundary are assigned a positive

distance and points outside a negative distance value. The motion

of this level set is described by an auxiliary ‘‘level set equation,’’

which incorporates a velocity determined by the problem. The

benefits of this method are its ability to handle highly irregular

shape changes with ease and to naturally incorporate boundary

velocities in the level set equation. The downside of this method is

that maintaining and propagating a high-quality level set function

can be difficult. See [48] for further discussion and solutions to

these issues.

Phase field method (PFM). The PFM is different from the

previous methods in that it is a diffuse interface method [49].

Here, a complex geometry is embedded into a larger regular

domain such as a rectangle. A ‘‘phase field’’ (w) is then defined to

take distinct constant values inside (w = 1) and outside (w = 0) of the

embedded domain. This phase field is smoothed so that the

boundary is smeared over a (user determined) width e. Thus, the

boundary is represented by a region where =w is large. The PFM

does not track individual boundary points. Instead, boundary

mechanics are computed based on the phase field itself.

In this framework, the PDEs are augmented to incorporate

terms that account for the original boundary conditions. (A similar

idea appears in the immersed boundary method.) If the domain is

static, it is straightforward to solve the RD equations (see [50,51]).

For moving boundary problems, an evolution equation for the

phase field w is prescribed. This evolution equation can include a

standard advective term to represent internal flows as well as a

variation component determined by the variational derivative of a

free energy functional with respect to w. This free energy

functional can encode curvature and other interface stresses that

mainly affect the interface region where =w is large. See [11,52]

for a brief description of this type of moving boundary calculation.

A primary benefit of this method is that the problem is redefined

on a rectangular geometry, which eliminates issues associated with

boundary conditions on an irregular boundary. A substantial

difficulty is the inclusion of terms such as =w that are O(1/e) in the

augmented PDEs. This requires small mesh sizes in both time and

space, increasing computational times.

CPM and/or Metropolis based simulations. The CPM is

also known as the GGM. This method implements a Metropolis

algorithm or its variants to control the expansion or retraction of the

Figure 3. LSM. (a and b) Examples of the level set formalism, showing a characteristic level set function w(x,y,t) at two time points. The level set
(intersection of surface with the w = 0 plane) represents the boundary of the cell at the given time points. (c and d) Two successive time points in a
simulation of a crawling nematode sperm, analogous to Figure 7 from [48]. Curves are several level sets (contours) of the distance function, and
arrows represent the velocity of the boundary. Original figure (panels c and d) was kindly supplied by Charles Wolgemuth and Mark Zajac.
doi:10.1371/journal.pcbi.1002793.g003
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edge of the cell domain. In its basic form, that algorithm consists of

the following steps: (1) A randomly chosen ‘‘cell edge’’ site is selected

to either protrude outwards into a neighbouring empty site or

retract inwards, leaving an empty site. (2) A term that corresponds

roughly to an ‘‘energy’’ (the Hamiltonian, H) is calculated, based on

an average over the entire cell edge and compared with that energy

before the random move. The difference DH is then considered. (3)

Whenever the ‘‘energy’’ is found to decrease (DH,0), the move is

accepted and the calculation continues to another randomly

selected site. In the opposite case (DH.0), the move is accepted

with probability exp(2DH/kBT) where kB is Boltzman’s constant

and T the effective ‘‘temperature,’’ a parameter that governs

fluctuations of the edge.

The Hamiltonian H is composed of a variety of terms specific to

the problem under investigation. A typical example, from [12], is:

H~
X

JCMzla a{Að Þ2zlp(p{P)2: ð3Þ

Here the constant JCM is an energy per boundary site, (a{A) the

deviation of the cell area a from a target area A, and similarly

(p{P) the perimeter deviation from some target length, a term

describing an interfacial tension. Parameters such as la and lp

depict the resistance to stretching the cell or its perimeter.

The resulting simulations have an inherent stochastic character,

leading to a fluctuating cell edge and abstract membrane ruffling.

In general, the method does not aim to represent the complex

physics of membrane fluctuations, being more concerned with

motility of the cell as a whole. However, cytoskeletal fluctuations

can be depicted and linked empirically to the actin polymerization

ratchet mechanism as described in [12]. RD equations can be

solved on the interior sites, though no fluid flows nor internal

stresses or viscoelastic properties are then represented. The

method makes for easier and faster computations for internal

RD processes, allowing for more constituents to be simulated.

PDE Integration/Solution Methods
The above methods describe ways to pose the moving boundary

problem in mathematical language. Once this is accomplished, it is

necessary to solve the PDEs describing reacting/diffusing/

advecting quantities along with any auxilary equations describing

boundary motions. The three techniques used to discretize model

equations (whether singly or in some combination) are (1) finite

differences (FDM), (2) finite volumes (FVM), and (3) finite elements

(FEM). Each has its advantages and disadvantages. While FDM is

the simplest, it does not readily handle irregular shapes and fails to

conserve material (e.g.,
Ð
V c(x,t)dx, where c(x,t) is concentration of

some conserved quantity) when the domain deforms. By compar-

ison, FVM is a naturally conservative discretization method and

more readily handles boundary conditions on irregular domains

(see Figure 4 for an example). It is somewhat harder to implement

than FDM and still has difficulties with irregular shapes. The FEM

easily handles irregular shapes and boundary conditions but is by

far the most complex of the three to implement. FEM also requires

expensive remeshing with domain deformation to maintain a

quality triangulation, as shown in Figure 5a–c. See Table 1 for the

implementation method used in articles discussed here.

2-D Flattened Geometry Models
A diverse class of cell-shape simulation models fall into true 2-D

computations. In contrast to the periodic 1-D domains described

previously, such simulations describe thin cells or cell fragments

where variations in the depth direction are negligible. Here, every

point in the 2-D domain represents both dorsal and ventral cell

membranes with the cytosol sandwiched in between. While

physically separate compartments are not generally modelled,

chemical species can be endowed with different properties (such as

diffusivities) depending on whether they are membrane bound or

cytosolic.

These models can be placed in several broad categories, as

reviewed below. (1) Discrete cytoskeleton models: These models

view the cytoskeleton as a (viscoelastic) network and describe it by

a set of nodes connected by force elements such as springs and

dashpots. (2) Continuum mechanical cytoskeleton models: These

describe the cytoskeleton with continuous fields satisfying mass and

momentum conservation. Forces such as adhesion and contraction

are included via a stress tensor in the momentum equations. (3)

Signalling models: Here the major concern is with hypothesized or

biological regulators of the cytoskeleton and the RD equations

they satisfy. As in previous examples, these tend to pay less

attention to the cytoskeleton, linking signals to forces directly. (4)

Hybrid models that consist of several aspects of the above.

Actin Cytoskeleton in a Static Cell Shape
As noted above, the steady-state shape of keratocytes lends itself

particularly well to investigations of actin growth, disassembly, and

recycling in a fixed domain with varying degrees of detail of the

biochemistry. While early models [14] considered the distributions

of G- and F-actin, profilin, cofilin, thymosin, Arp2/3, and/or

similar actin-associated proteins versus distance from the leading

edge of the cell (in 1-D), more advanced computations have

enabled similar investigations in 2-D and 3-D. Simulation

platforms such as Virtual Cell (VC) can handle RD computations

Figure 4. Finite volume 2-D simulations. Concentration of active
GTPase tracks the changing cell shape in this simulation by Strychalski
et al. [27]. The cut cell finite volume method is used together with the
LSM. The velocity field is user-prescribed. RD equations for the GTPases
are solved on the deforming domain, with particularly good
performance for mass conservation (a technical issue plaguing many
free boundary RD computations). Original figure kindly provided by
Wanda Strychalski.
doi:10.1371/journal.pcbi.1002793.g004
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in irregular domains. We review this work in a concluding section

on 3-D simulations.

A notable simulation employing static cell shape appears in [36] for

the crawling speed of a nematode sperm cell. In this model-

experiment work, realistic shapes of cells were used as 2-D

computational domains, and results of the simulations were validated

against experimental data. Assuming steady-state crawling of these

cell shapes, the authors applied a multiphase fluid computation

(reviewed below) to compute driving forces needed to produce

observed cell speeds in cells of various sizes and shapes. One major

finding is that such cells must have anisotropic MSP stiffness

properties if model and data are to agree. Two further predictions

were that larger cells crawl faster than smaller cells and that cells

elongated along the axis of motion are faster than round cells.

A third computation on a static (keratocyte-shaped) cell domain

is exemplified in Rubinstein and Mogilner [9]. Here the authors

include viscoelastic actin mechanics, actin–myosin interactions

with myosin flows, and cell-substrate adhesion. Model results for

flow velocities and traction forces were compared with experi-

mental data to show that the sweeping of myosin to the rear of the

cell is important for the maintenance of the fan shape in motile

keratocytes. In addition to 2-D fixed boundary simulations, several

1-D reductions of this model are proposed and analyzed (but one

solution, for myosin distribution in the anterior-posterior axis is

unfortunately incorrect), yielding analytical insights into the

observed 2-D behaviour. The actin-myosin treatment here is

more elaborate than that of [7]. (By comparison, the actin-myosin

treatment is simpler in [11,52].)

Cytoskeletal Mechanics in a Deforming Cell Shape
Among the earliest examples of deforming cell calculations are

those from the 1980s that treat cell sheets rather than individual

cells. Oster and Odell [53,54] and, later, Weliky and Oster [55,56]

used mechanically based spring-dashpot arrays to model a layer of

epithelial cells. These were among the first simulations of their

kind where the deformation of the domain was linked to specific

mechanical forces. In [53,54], for example, a simple bistable

signalling system was invoked to regulate the rest length of a

contractile element, thereby producing active contraction in

response to a chemical or mechanical stimulus.

Bottino et al. [34] produced the first substantial 2-D simulation

of a motile cell, based on the crawling motility of nematode

sperm. It utilized a Lagrangian marker treatment of the

boundary, tracking individual boundary nodes that were linked

by Hookian springs (i.e., where force is proportional to

deformation). The simulation incorporates a deforming lamelli-

podium attached to a nondeformable cell body. The essential

result of this investigation is that bundling/swelling stresses of

MSP can account for both protrusion and retraction. It is

assumed that an imposed pH gradient affects MSP cross-linking.

Near the front, strong cross-linking causes bundling and increases

the persistence length of MSP polymers, creating a protrusive

force. The bundling also stores energy. When the polymer gel is

swept to the rear due to retrograde flow, cross-linking weakens,

causing contraction and release of energy as the polymers

contract to their shorter free persistence length. Computationally,

the simulation is based on a collection of nodes linked by spring-

dashpot branches representing bulk MSP properties with

numerous rules controlling the behaviour of these nodes and

force elements. The actual computation uses a set of Delaunay

triangles (finite element method; FEM) and their associated

Voronoi polygons. A 1-D reduction of this model was also

analyzed to understand how the strain profile varies with respect

to position in the lamellipodium.

Figure 5. Finite element 2-D simulations. (a–c) An illustration of remeshing in a FEM computation. An initial domain (a) is subdivided into a
triangular mesh, but as the domain deforms, the mesh becomes low quality (leading to poor accuracy) and too fine (increasing computational costs)
in some parts. (b). The remeshing (c) is used to create a better and more regular mesh. (d–f) FEM simulations by Rubinstein et al. [7]. (Left to Right)
Snapshots at three successive times, showing the free G-actin in a 2-D keratocyte turning simulation analogous to Figure 10 in [7]. The simulation
depicts an experiment in which caged thymosin is photoactivated in the left part of the cell, causing G-actin depletion and cell turning. Colour bar:
concentration of profilin-bound G-actin. Original figure (panels d–f) kindly provided by Boris Rubinstein.
doi:10.1371/journal.pcbi.1002793.g005
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In a paper with spirit similar to [34], Rubinstein et al. [7]

presented a fully deforming 2-D moving keratocyte-shaped cell, as

shown in Figure 5d–f. As with [34], this model utilizes a

Lagrangian marker method with a finite element treatment of

the advection-diffusion processes. Here the actin cytoskeleton and

its properties are considered. The model is based on assuming that

protrusion is normal to the leading edge, proportional to the local

G-actin level and to a graded force-dependent factor. This is based

on the GRE hypothesis. The authors assume uniform adhesion at

the front and contraction due to myosin restricted to the 1-D rear

edge. G-actin satisfies diffusion-transport in the free-boundary

domain. F-actin is taken as a fixed graded density along the front

edge, with constant depolymerization away from that edge that

replenishes the G-actin pool. The cell domain is approximated as a

thin sheet-like porous elastic solid with fluid flows satisfying

D’Arcy’s law [57]. G-actin pools in both polymerization-compe-

tent (profilin bound) and sequestered (thymosin bound) forms are

tracked. An interesting finding is that local sequestration of G-

actin by thymosin can give rise to turning behaviour, as observed

experimentally (see simulation sequence in Figure 5d–f). The

subsequent work by the same group [9], reviewed in a previous

section, considers a fully viscoelastic actin network (but in a static

domain).

Building on [36], Wolgemuth et al. [48] present a related model

of nematode sperm crawling but in a level set computational

framework (see Figure 3c–d) with additional biological features. As

in [36], the cytoskeletal stress and cytosolic pressure produce force

that powers forward pseudopod extension and cytoskeletal

disassembly drives contraction. Cytosolic effects and MSP

assembly are not explicitly modelled (rather, the MSP assembly

is replaced by appropriate boundary conditions). Adhesion

between the cell and substrate, incorporated as a resistive drag

force, was assumed to differ sharply from front to back, with much

lower adhesion values at the rear, where the cell body is located.

By varying the point at which the transition occurs from high to

low drag, the authors were able to obtain cell shapes that were

either tear-drops or crescents. As in [36], an important feature of

the model was the assumed anisotropic stiffness of the MSP

polymer network, with higher front to back stiffness than side-to-

side stiffness resulting from the observed anisotropic bundling

structure of the MSP network.

Shao et al. [11,52] developed a model similar to [9] using the

PFM. They incorporate a viscoelastic treatment of the actin

network, a drift-diffusion treatment of myosin that acts on that

network, and discrete adhesion sites that can exist in either stick

(spring force applied to the network) or slip (drag force applied to

the network) states. The model includes effects due to tension and

curvature of the cell edge (using phase field formalism to do so)

and spontaneous polarization (by the wave pinning model [58], as

in [13,28]) in the actin kinetics. The authors concentrate on the

effects of myosin contraction and adhesion strength. They track

cell area and aspect ratio as a function of these strengths and verify

experimental observations such as an inverse relationship between

cell area and myosin activity.

Each of these investigations is aimed at understanding the

balance between protrusion and contraction and how they give

rise to shape change and motion. However, the biophysical

elements incorporated vary greatly between one model and

another. Bottino et al. [34] are primarily interested in the

properties of the MSP polymer gel and how they give rise to

both protrusive and contractile forces. The model in Wolgemuth

et al. [48] focuses on how MSP gel anisotropy and graded

adhesion affect cell shape. Rubinstein et al. [7] include both actin

protrusion and myosin contraction but are more focused on

biochemical details of actin recycling and G-actin sequestration.

Shao et al. [11,52] forgo such molecular details and instead

concentrate on complex boundary mechanics and adhesion

dynamics. A unifying model could be conceived with all or most

of these elements. This would have been technically difficult to

create de novo, and the role and importance of specific elements

would have been obscured. Now that such separate components

have been investigated on their own by various researchers,

creating such unifying model to show how these modules interact

becomes more tractable. For this reason, there is significant value

in this diversity of investigations.

The Evolving Cell as a Complex Fluid
The previous models characterize the cytoskeleton either using

discrete viscoelastic spring/dashpot elements or with a continuum

equation for F-actin. An alternative approach treats the cell

interior as a complex multiphase fluid (see [59] for an excellent

review). This approach was pioneered in a series of articles by

Dembo, Alt, and coworkers [60–62]. Here, the cell interior is

modelled as a two-phase interpenetrating flow, where the phases

represent cytosol and cytoskeleton, each endowed with its own

properties. The phases interact through drag and interconversion

(representing production and degradation of the cytoskeleton).

The cytosol and cytoskeleton are assumed to be viscous and visco-

elastic, respectively, with hydrodynamic equations being used to

encode their properties. This class of models is particularly suited

for looking at the internal stresses in the cell and transmission of

those stresses to the membrane.

In [32], this formalism was implemented with a finite element

Lagrangian boundary method to investigate cytoskeletal force

production in neutrophils. Two possibilities were considered. In

the first, it was assumed that the cytoskeleton acts as an isotropic

fluid where forces are based on hydrodynamic pressure. In the

second, it was assumed that the cytoskeleton acts as an elastic

scaffold capable of transmitting directed forces. In silico experi-

ments were performed and compared with in vivo data.

Experiments included neutrophil aspiration into a micropipette

(negative pressure) as well as chemotaxis in a tube against an

applied pressure (positive pressure). In the neutrophil chemotaxis

experiment, the comparison of model and data for cell velocity as

a function of applied pressure showed that the cytoskeleton

behaves like a fluid rather than an elastic structure.

In [63], the same two phase fluid platform was applied to

exploring dynamics, interactions, and feedback between cytoskel-

eton and adhesion in keratinocytes. Here it was assumed that

adhesions influence the cytoskeleton through a drag force and that

rupture of adhesions takes place due to cytoskeletal stresses.

Similar to [33], this work was directed at understanding dynamic

properties of cell shape. The authors showed that ruffling and

periodic cycles of protrusion and retraction can result solely from a

feedback loop between adhesion and cytoskeletal dynamics. A

related article [10] is described in more detail in the section on 3-D

models.

Intracellular Signalling and Cell Shape Models
A few recent articles have concentrated on signalling dynamics

in deforming 2-D domains. To depict the polarization of a cell,

one or another set of RD equations is used to set up the initial

intracellular chemical polarization that determines the front and

back. One example is the simple two-component RD system based

on GTPase signalling [58]. This tracks the concentration of a

single GTPase in one of two states, an active (membrane-bound)

and inactive (cytosolic) form, and polarizes by a ‘‘wave-pinning’’

mechanism. This RD system model can represent signal-induced
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transition to a robust persistent polarization. Hence, 2-D cell

motility simulations based on it will generally result in a stable

shape and persistently moving model cell.

The three articles [11,13,28] all similarly implement the same

signalling model [58] in one or another way, but with distinct

computational platforms. Vanderlei et al. [28] used Lagrangian

immersed boundary formulation for a mechanical treatment of the

cell edge, with a purely viscous cytosol. Wolgemuth et al. [13] used

the LSM with a D’arcy flow representing the cytosol, and Shao et

al. [11] include other cytoskeletal components with a more

complex treatment of acto-myosin dynamics and cell edge

mechanics. Cell shapes obtained in [13,28] differ, being more

tear-drop shaped in [28] and more oval in [13] due to a simple

difference in the link assumed between active signal level and force

on the cell edge. In [28], subthreshold signalling level was assumed

to create active contraction (forces towards the cell interior),

whereas in [28], only absence of an active force was assumed in

such a case.

Other models with a significant signalling dynamics focus

include [8,12,27,64]. In [27], a finite volume-based LSM is used to

investigate the effect of geometry changes on a GTPase like

signalling model (Figure 4). Here, however, cell shape changes are

user-prescribed rather than driven by internal chemistry. As the

others [8,12,64] also include cytoskeletal aspects, we have classified

them as hybrid models and these are discussed in the next section.

Hybrid Models
Up to this point, we have mainly described models based on

either cytoskeletal or signalling dynamics but not both. Here we

discuss in more detail several recent models that include both

aspects in some form. In [13] the LSM was applied to dissecting

four possible models for 2-D motility of keratocyte-shaped cells.

Cell shape was used as a readout. The conservation of chemicals

and preservation of the cell’s target area were given special

consideration. The first model is based on G-actin diffusion and its

polymerization into F-actin. The authors start with an initially

polarized cell and assume that actin is polymerized close to the

leading edge and depolymerized in a small elliptical region

(defined ad hoc) near the rear. Cell area expansion is prevented by

an effective restoring force.

In their second model, the authors consider MT-directed vesicle

traffic that supplies membrane to the expanding cell edge. They

assume that rate of edge protrusion is proportional to the flux of

vesicles for which the local MT tip density is a proxy. The MT

organizing center (MTOC) from which MTs emanate as well as

the MT parameters determine the polarity and motion of the cell.

The third model, purely based on signalling, has been described

and compared with analogous efforts [11,28] in the previous

section. In their final model, the authors consider acto-myosin as a

viscous fluid with internal stress due to myosin (see Figure 6).

Myosin exists in bound and unbound forms (with the former

exerting forces). Bound myosin convects with the cell velocity, and

its total is conserved in the cell. The cell velocity stems from the

protrusion due to actin polymerization and the inward flow of

actin due to myosin contraction. As an intermediate step, forces

are considered for the myosin contraction model, and then

converted to a velocity formulation. (A force velocity relation is not

actually used.) The model has similarities to that of [9], but with a

deformable cell edge. Interestingly, the first three models could, on

their own, account for stable cell shapes, while the last, on its own,

fails to do so. Coupled to the actin treadmill or the GTPase

polarization model, the latter can replicate the stable and robust

keratocyte motility phenotype. This is one of very few articles that

uses a common platform to compare the performance of several

biophysical models with important conclusions.

Two recent models in the literature [8,12] have been assembled

with more detailed and biologically explicit signalling dynamics. In

[8], simulated keratocyte shapes were produced by coupling

Arp2/3 activation to the activities of diffusing small GTPases,

Cdc42, and Rac, interacting mutually and with Rho. Rho was

used as a proxy for myosin activation and contractility. The

growth and orientation of F-actin, the density of actin barbed

ends, and those that impinge on the edge to cause protrusion

forces were tracked. It was shown that this system would polarize

to a small but finite transient-graded stimulus in the Cdc42

activation rate, and that the model cell would initiate and maintain

polarization, while remaining sensitive to new stimuli.

Both [8,12] use the CPM as a computational platform (see

Figure 7). The effect of internal forces due to the cytoskeleton is

incorporated by adjusting the Hamiltonian to include the pushing

of actin filament barbed ends P at the edge, or the contraction due

to local myosin activity M. Thus, the modified Hamiltonian was

defined as DH ’~DH{
P

m PzjM when the cell extends and

DH ’~DHz
P

m P{jM when the cell retracts. In this way, the

presence of pushing forces biases against contraction, whereas the

presence of myosin biases against protrusion. In both articles, the

local activity of the GTPase Rho (r) above some threshold was

used as a stand-in for myosin activity; i.e., M<(r2rth).

In [12], a new layer of signalling, comprised of PIP2 and PIP3

(and their crosstalk with small GTPases), was added. One specific

focus of that work was on how feedback from PIP3 to Cdc42 and

Rac affects the cell’s responses. When this feedback is absent, cells

exposed to two opposing localized stimuli (e.g., at opposite poles)

tend to produce two ‘‘fronts’’ that move in opposite directions.

The cell takes on a dumb-bell shape, leading to significant

deformation to the point of fission. Appropriate feedback from

PIP3 leads to a ‘‘winner take all’’ decision, where one of the two

fronts overtakes and dominates the other (Figure 7d). Such fine

tuning also helps cells encountering an obstacle, so that a

determination of direction of motility can be rapidly made. Too

much feedback, it was shown, is also bad, as this tends to produce

such high localized GTPase activity that the cell tends to freeze

against an obstacle, rather than being able to navigate around it.

A second notable feature of [12] was the interplay between cell

shape and internal signalling, a relatively less explored topic.

Those articles that have explored such links [65–69] have

predominantly focused on how the changing length, width, or

height of a deforming cell results in better gradient sensing or in

effective dilution or concentration of receptors or active signalling

molecules. But the idea that regions of high curvature can

accelerate the internal RD dynamics was shown in [12] to have

significant impact on the speed of reorientation of a cell to new

gradient directions.

In many previous models, signalling chemistry is upstream of

(and unaffected by) cytoskeletal reorganization. Doubrovinski et al.

[64] propose an alternative setting where signalling and cytoskel-

etal dynamics mutually affect each other. They explore the

formation of dynamic actin structures such as travelling waves and

spots. Two modules, representing F-actin dynamics and nucleation

promoting factors (NPFs), are considered. The NPFs are assumed

to nucleate F-actin (from a fixed G-actin pool), which in turn

inactivates NPFs, creating a negative feedback loop. The authors

use a Lagrangian marker method with a potential based free

energy formulation to account for transmission of internal forces to

protrusion when such transient actin structures interact with the

cell edge. They show that a Turing instability of the NPF

equations spawns a variety of spatio-temporal F-actin patterns that
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lead to interesting cell behaviours such as directed motion,

breathers (rhythmic cycles of expansion and contraction of the cell

area), and rotating protrusions.

Cell Motility and Shape in 3-D Computations

Cytoskeleton Assembly in Static Cell Shape
Extensions of 1-D models for actin assembly in [14] to static 3-D

domains with keratocyte shape have been performed in [70]. This

investigation uses the freely available VC environment [71]

capable of simulating reaction/drift/diffusion equations on

arbitrarily shaped but (so far) static domains in 2-D and 3-D.

The model consists of diffusion-drift-reaction equations that

describe G-actin cycling with spatially distributed assembly and

disassembly of F-actin. This platform was used specifically to

address questions about the effect of local versus global F-actin

turnover.

In [72], an even larger and more biochemically detailed VC

simulation includes numerous nucleotide states for actin mono-

mers and actin binding proteins such as profilin, thymosin, cofilin,

and capping protein. Arp2/3 is activated by membrane-bound N-

WASP, and the polymerized actin experiences retrograde flow due

to an imposed internal velocity field. Kinetic parameters are based

on biological literature, and the steady-state distribution of all

substances is visualized in a 3-D cell-shaped domain. One finding

that emerges from this model is existence of a sharp transition

layer between the zone where actin assembles and disassembles.

Another finding is that cofilin can act as both enhancer and

inhibitor of actin polymerization, depending on the level of

capping protein. Finally, a sensitivity to Arp2/3 debranching

emerges as one key parameter.

The model in [72] consists of around 50 PDEs and another 10

or so algebraic equations for biochemistry on its own, without

mechanics nor viscoelastic behaviour. This means that the

simulation requires tens of days of computation time per run

(but smaller 2-D versions are faster). One of the attractive features

of VC is that it is amenable to experimentation by non-

mathematicians. Thus, such open models may allow for translat-

ability of the research from modellers to biological researchers.

One difficulty, however, is that the assembly of such large models

entails combinatorial points of decisions about implementation

details. These are hard to describe in full detail, let alone change or

manipulate. Thus, to some extent, the platform has aspects of a

black box that may be challenging to comprehend by outside

researchers.

Hybrid models of these kinds have seen increased interest

recently, as researchers have moved from investigating the

functions of individual elements underlying motility to interactions

Figure 6. Keratocyte motility by LSM. The polarization and motility of a keratocyte-shaped cell similar to Figure 4 (E–F) and Movie S10, both in
[13]. This model includes actomyosin contraction as well as the two-variable GTPase signaling module [58]. Bright colour indicates a high level of the
signalling protein (left) and bound myosin (right), and the arrows indicate actin flow. Original figure kindly supplied by Charles Wolgemuth and Mark
Zajac.
doi:10.1371/journal.pcbi.1002793.g006
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between these elements. The increased complexity of these models

comes with increased diversity owing to the combinatorial ways

that various biological aspects can be included and computational

methods used. Further development of these hybrid platforms will

need to be undertaken to begin to investigate more elaborate

cellular functions, such as the ability to navigate in complex

environments and to resolve multiple conflicting stimuli.

Deforming 3-D Cell Shape with Internal Cytosol and
Cytoskeleton

A pioneering article for fully deforming 3-D free boundary

problem for cell shape in cytokinesis was [61], based on this idea of

multiphase fluids. One of the recent remarkable contributions to the

field has been the deformable 3-D simulations of [10,73] (see

Figure 8). These articles are based on low-Reynolds number

hydrodynamic finite element simulations of cytoskeletal rheology

and protrusive activity leading to 3-D cell shapes (Cytopede)

[10,73]. The model assumes a thin (but dynamically changing) cell

geometry. A highly specialized finite element procedure is employed

where the cell is endowed with an anisotropic mesh that treats the

cell depth differently than the planar direction parallel to the

substrate. Included in the model are the two-phase fluid equations

(mass and momentum balance) together with constitutive equations

(for network polymerization), vertical contractile forces (to keep the

lamellipod flat), and boundary conditions (to depict actin nucleation

factors at a leading edge). A single diffusible ‘‘messenger’’ is

activated along some fraction of the leading edge to nucleate actin

polymerization. Stress terms are used to represent protrusion of the

front (as a cytoskeleton-membrane repulsion term) and adhesion to

the substrate. The cytoskeleton is assumed to stick to the ventral

(substratum) cell surface, whereas surface tension controls the top

(free) cell surface.

The output reveals detailed cytoskeletal velocity fields as well as

cytoskeletal volume fractions over the cell as it polarizes and

deforms (starting from a disk-shaped resting cell). Remarkably, this

article shows that fibroblast and keratocyte morphology and

motion can be achieved by modifying two parameters: the fraction

of the cell perimeter at which actin is polymerized (50% in

keratocytes versus 25% in fibroblasts) and adhesion at the rear of

the cell, which is weaker in keratocytes.

Influence of Modelling Efforts

Although it may be difficult to pinpoint direct connections

between specific simulations and experimental tests, the modelling

efforts reviewed here have influenced the exploration and

understanding of underlying biological mechanisms. Perhaps the

clearest example of synergistic cycles of modelling and experiment

is the work of Mogilner, Theriot, and coworkers on keratocyte

shape/motion. Spawned by the seminal article by Grimm et al. [6]

and carried on in [40,74], for example, this investigation

demonstrates a clear collaborative path incorporating theory and

experiment that has spanned nearly a decade.

Other examples are more abstract. Rubinstein et al. [7,9]

suggested that cytosolic flows are important for motility. This work

motivated the quantification of the fluid flows in keratocytes, as

described, for example, in [75]. Prass et al. [76] also took on the

challenge of directly measuring forces of protrusion in keratocytes.

The simulation studies of Herant and Dembo on neutrophil

Figure 7. CPM simulations. In computations based on the CPM, a 2-D cell shape (a) is represented by a planar grid (b) using rectangular or, in this
case, hexagonal elements that have two states: ‘‘inside’’ and ‘‘outside’’ the cell (blue and white, respectively). A Hamiltonian-based calculation
(caricature in c) is used to determine if any of the edge sites change state. The transition shown in (b) depicts a retraction event where one cell
interior site turns into an exterior site. This is favoured if the cell area is too large or if there is local contraction (presence of myosin or Rho GTPase). In
[8,12], each hexagonal site stores densities of actin filaments and barbed ends at six orientations. Also computed are the GTPases Cdc42, Rac, Rho,
Arp2/3, and in [12] the phosphoinositides PIP1, PIP2, PIP3. In (d), a typical two-stimulus experiment is shown as a time sequence from left to right, as in
Figure 6b of [12]. The appropriate level of feedback from PIP3 to Cdc42 and Rac makes for a smooth transition to a single ‘‘front.’’.
doi:10.1371/journal.pcbi.1002793.g007
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aspiration and phagocytosis were influential in bioengineering

works such as [77,78]. The original simulation of the nematode

sperm motility [34] was followed up by the experimental-

theoretical work in [35]. Investigation of the roles of GTPases

described in [8] led to links with analogous proteins important in

plant development (ROPs) [79] and cell division (PARs) [80].

Discussion

As evident from this survey, simulations of cell motility have a

wide-ranging set of goals, from conceptual proof of concept to

detailed biological comparisons. Two sources of complexity arise

when approaching this problem, namely biological complexity and

computational complexity. Our survey of the literature has been

organized along these two themes, as captured in Figure 1. Other

reviews [59,81,82] concentrate on different but complementary

aspects of motility modelling (from single actin filaments to whole

cell models).

Models that simplify the biological details, or consider a 1-D

spatial setting, can in some case be analytically treated and

generally lead to simpler computations. This leads to more

complete parameter studies and understanding of model proper-

ties. However, these models may be difficult to link to the biology

and generally provide only qualitative agreement with observa-

tions. Such 1-D models and models with fewer components

provide good stepping stones for more detailed and complete

treatments. Building in successive layers of detail gradually allows

the researcher to understand the effect and role of each piece more

thoroughly. This helps to build an understanding that is rarely

possible when a highly complex model is the starting point of an

investigation. That said, this progression does not necessarily lead

to a hierarchy of models per se, since simple models have many

distinct starting points and hypotheses. As evident from this

review, there are many approaches, and they all bring something

to the table.

As we have noted, a number of sources of computational

complexity arise in the development of 2-D simulations, even of

the biologically simple models. One source is the inevitable

challenge of the free boundary problem linked to deforming cell

simulations. In the case of 1-D perimeter models, formal analysis

can be done in some cases, but the free boundary problem still

provides technical challenges. The technical challenges and shear

computational costs increase dramatically when moving to 2-D

(and even more so subsequently in 3-D). As outlined, a number of

platforms are currently being considered for dealing with these

challenges. Examples include force-based models (e.g., [17,18]) or

energy-based models [8,12]. This issue is somewhat independent

of the biological content of the model.

Attempting to include more biological detail also presents

computational challenges. The issues, as we have discussed, reside

both in the calculation of RD systems or viscoelastic fluid flows in

deforming domains, as well as treatment of the boundary itself. A

detailed model for signalling pathways results in a large system of

RD PDEs. These models tend to have large numbers of

parameters, only some of which are constrained by data. Similarly,

behaviour of these models can be sensitive to particular

mathematical assumptions that make it challenging to map

interesting parameter regimes using traditional techniques. (See,

however, a new analysis method [69] that provides an efficient tool

for this purpose in cases where there is a large membrane/cytosol

diffusion disparity.) The treatment of viscoelastic flows is a bit

more standard given the huge computational fluids literature.

Treatment of boundary mechanics has proven to be more

problematic and is a source of differences among models. Due

to these complexities, all methods devised to date take certain

shortcuts on some aspects, while handling other aspects effectively.

This has resulted in a wide diversity in the modelling literature.

Many computations impose material conservation correction [48]

on an otherwise nonconservative computational scheme. Others

impose an area constraint in lieu of describing membrane tension

[52].

What emerges from this area of research so far? One universal

theme is that there are many ways of accounting for keratocyte

shapes and steady motion. Very diverse models with distinct

components and simulation platforms have reproduced this kind

of cell shape and gliding movement pattern. A second is that any

number of simple signalling systems can mimic cell polarization

and active patches on cell perimeters. A third is obvious

disagreement between practitioners as to what are the fundamen-

tal activators/inhibitors (or similar signalling components) that

control amoeboid motility (in the favorite organism, Dictyostelium)

and whether they initiate pseudopods or affect the pseudopod

competition cycle. A fourth theme, and second example of

diverging views is the basic view of a cell and its cytoskeleton,

whether as interpenetrating fluids, viscoelastic material, collection

of discrete filaments and linkers, or some other entity. This greatly

colours the approaches, the types of simulations, as well as the

questions addressed.

What are other issues and challenges we face in carrying out this

kind of research? One problem, as hinted above, is that we are still

far from understanding how to best describe the ‘‘material’’ that

cells are made of. Even if we could compute in detail the spatio-

temporal distribution of the cytoskeleton, its regulators, and

motors that act on it to create stresses, we would still be far from

answering this question fully. We still do not have adequate ways

of linking the density and structure of the cytoskeleton to

macroscopic parameters such as viscosity, elasticity, and internal

Figure 8. A 3-D simulation. A simulation of a fibroblast cell shape in
3-D analogous to that of [10]. Two-phase fluid modeling of a fibroblast-
like cell with Cytopede [73]. (a) Rendering of the cell surface. (b)
Exploded surfaces with coloring by level of cytoskeletal density. Original
figure kindly produced and provided by Marc Herant and Micah
Dembo.
doi:10.1371/journal.pcbi.1002793.g008
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stress distributions. A more practical challenge is the high entry fee

to this realm of research. At the moment, every group has to build

complex software from scratch leading to fragmentation and

difficulty comparing results. Further, the skills needed to develop

simulation software are largely disjointed from those needed for

model development and biological exploration. The VC project

[71] has mitigated this in the static cell modelling world, but no

such project is available for dynamic cell modelling so far.

Moving forward in the face of such complexities, there are a

number of ways models have and can continue to advance

understanding. (1) Models that maintain a close link to biology via

experiments have helped to bootstrap advanced experimental

techniques. Especially notable are contributions with cycles of

model and experiment that complement one another. (2) Models

that can rule out biological hypotheses on the basis of physical

principles or predictions are also extremely helpful, as they provide

definitive conclusions. (3) Failing such direct links to data, models

that gradually build complexity, illustrating what new behaviour

stems from additional detail are particularly helpful in gradually

building a mechanistic understanding of the processes that

underlie motility.

As far as future challenges, we point to one obvious gap. There

has been no computation so far for cell shape changes during

motion on a 3-D collagen network or navigating in 3-D. There is

much new evidence that this type of cell motility differs

substantially from the flattened motility seen in vitro. This remains

a challenging visualization and computational problem for the

future. Models have already been used as experimental tools, in

aid of answering clearcut biological questions (e.g., ‘‘Is it

reasonable to consider VASP as an anti-capping agent?’’ [40]).

In the next years, closer model–experiment links will be important

to move this field forward. We need experiments to help narrow

the focus on competing mechanisms, to provide narrower

parameter regimes, and to test and validate models so that we

can gradually build more detailed understanding based on solid

facts. We need models to suggest conceptual frameworks, to

organize disparate biological findings, and to provide a rigorous

platform for testing ideas.
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