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Abstract: The combination of im-
proved genomic analysis methods,
decreasing genotyping costs, and
increasing computing resources has
led to an explosion of clinical geno-
mic knowledge in the last decade.
Similarly, healthcare systems are in-
creasingly adopting robust electronic
health record (EHR) systems that not
only can improve health care, but also
contain a vast repository of disease
and treatment data that could be
mined for genomic research. Indeed,
institutions are creating EHR-linked
DNA biobanks to enable genomic
and pharmacogenomic research, us-
ing EHR data for phenotypic informa-
tion. However, EHRs are designed
primarily for clinical care, not research,
so reuse of clinical EHR data for
research purposes can be challeng-
ing. Difficulties in use of EHR data
include: data availability, missing data,
incorrect data, and vast quantities of
unstructured narrative text data.
Structured information includes bill-
ing codes, most laboratory reports,
and other variables such as physio-
logic measurements and demograph-
ic information. Significant informa-
tion, however, remains locked within
EHR narrative text documents, includ-
ing clinical notes and certain catego-
ries of test results, such as pathology
and radiology reports. For relatively
rare observations, combinations of
simple free-text searches and billing
codes may prove adequate when
followed by manual chart review.
However, to extract the large cohorts
necessary for genome-wide associa-
tion studies, natural language pro-
cessing methods to process narrative
text data may be needed. Combina-
tions of structured and unstructured
textual data can be mined to gener-
ate high-validity collections of cases
and controls for a given condition.
Once high-quality cases and controls
are identified, EHR-derived cases can
be used for genomic discovery and
validation. Since EHR data includes a
broad sampling of clinically-rele-
vant phenotypic information, it may

enable multiple genomic investiga-
tions upon a single set of genotyped
individuals. This chapter reviews sev-
eral examples of phenotype extrac-
tion and their application to genetic
research, demonstrating a viable fu-
ture for genomic discovery using
EHR-linked data.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction and Motivation

Typical genetic research studies have

used purpose-built cohorts or observation-

al studies for genetic research. As of 2012,

more than 1000 genome-wide association

analyses have been performed, not to

mention a vast quantity of candidate gene

studies [1]. Many of these studies have

investigated multiple disease and pheno-

typic traits within a single patient cohort,

such as the Wellcome Trust [2] and

Framingham research cohorts [3–5]. Typ-

ically, patient questionnaires and/or re-

search staff are used to ascertain pheno-

typic traits for a patient. While these study

designs may offer high validity and

repeatability in their assessment of a given

trait, these models are typically very costly

and often represent only a cross-section of

time. In addition, rare diseases may take a

significant time to accrue in these datasets.

Another model that is gaining accep-

tance is genetic discovery based solely or

partially from phenotype information de-

rived solely from the electronic health

record (EHR) [6]. In these models, a

hospital collects DNA for research, and

maintains a linkage between the DNA

sample and the EHR data for that patient.

The primary source of phenotypic infor-

mation, therefore, is the EHR. Depending

on the design of the biobank model, some

EHR-linked biobanks have the ability to

supplement EHR-accrued data with pur-

pose-collected research data.

The EHR model for genetic research

offers several key advantages, but also faces

prominent challenges to successful imple-

mentation. A primary advantage is cost.

EHRs contain a longitudinal record of robust

clinical data that is produced as a byproduct

of routine clinical care. Thus, it is a rich, real-

world dataset that requires little additional

funding to obtain. Both study designs share

costs for obtaining and storing DNA.

Another advantage of EHR-linked

DNA databanks is the potential to reuse

genetic information to investigate a broad

range of additional phenotypes beyond the

original study. This is particularly true for

dense genetic data such as generated

through genome-wide association studies

or large-scale sequencing data. For in-

stance, a patient may be genotyped once

as part of a study on diabetes, and then

later participate in another analysis for

cardiovascular disease.

Major efforts in EHR DNA biobanking

are underway at a number of institutions.

One of the major driving forces has been

the National Human Genome Research

Institute (NHGRI)-sponsored Electronic

Medical Records and Genomics

(eMERGE) network [7], which began in
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2007 and, as of 2012, consists of nine sites

that are performing genome-wide association

studies using phenotypic data derived from

EHR. The National Institutes of Health

(NIH)-sponsored Pharmacogenomics Re-

search Network (PGRN) also include sites

performing genetic research using EHR data

as their source of phenotypic data. Another

example is the Kaiser Permanente Research

Program on Genes, Environment and

Health, which has genotyped 100,000 mem-

bers with linked EHR data [8].

2. Classes of Data Available in
EHRs

EHRs are designed primarily to support

clinical care, billing, and, increasingly,

other functions such as quality improve-

ment initiatives aimed at improving the

health of a population. Thus, the types of

data and their methods of storing this data

are optimized to support these missions.

The primary types of information avail-

able from EHRs are: billing data, labora-

tory results and vital signs, provider

documentation, documentation from re-

ports and tests, and medication records.

Billing data and many laboratory results

are available in most systems as structured

‘‘name-value pair’’ data. Clinical docu-

mentation, many test results (such as

echocardiograms and radiology testing),

and medication records are often found in

narrative or semi-narrative text formats.

Researchers creating ‘‘electronic pheno-

type algorithms’’ (discussed in Section 6.2)

typically utilize multiple types of informat-

ics (e.g., billing codes, laboratory results,

medication data, and/or NLP) to achieve

high accuracy when identifying cases and

controls from the EHR.

Table 1 summarizes the types of data

available in the EHR and their strengths

and weaknesses.

2.1 Billing Data
Billing data typically consists of codes

derived from the International Classifica-

tion of Diseases (ICD) and Current

Procedural Terminology (CPT). ICD is a

hierarchical terminology of diseases, signs,

symptoms, and procedure codes main-

tained by the World Health Organization

(WHO). While the majority of the world

uses ICD version 10, the United States (as

of 2012) uses ICD version 9-CM; the

current Center for Medicare and Medi-

caid Services guidelines mandate a transi-

tion to ICD-10-CM in the United States

by October 1, 2014. Because of their

widespread use as required components

for billing, and due to their ubiquity within

EHR systems, billing codes are frequently

used for research purposes [9–14]. Prior

research has demonstrated that such

administrative data can have poor sensi-

tivity and specificity [15,16]. Despite this,

they remain an important part of more

complex phenotype algorithms that

achieve high performance [17–19].

CPT codes are created and maintained

by the American Medical Association.

They serve as the chief coding system

providers use to bill for clinical services.

Typically, CPTs are paired with ICD

codes, the latter providing the reason

(e.g., a disease or symptom) for a clinical

encounter or procedure. This satisfies the

requirements of insurers, who require

certain allowable diagnoses and symptoms

to pay for a given procedure. For example,

insurance companies will pay for a brain

magnetic resonance imaging (MRI) scan

that is ordered for a number of complaints

(such as known cancers or symptoms such

as headache), but not for unrelated

symptoms such as chest pain.

Within the context of establishing a

particular diagnosis from EHR data, CPT

codes tend to have high specificity but low

sensitivity, while ICD9 codes have com-

paratively lower specificity but higher

sensitivity. For instance, to establish the

diagnosis of coronary artery disease, one

could look for a CPT code for ‘‘coronary

artery bypass surgery’’ or ‘‘percutaneous

coronary angioplasty’’ disease, or for one

of several ICD9 codes. If the CPT code is

present, there is a high probability that the

patient has corresponding diagnosis of

coronary disease. However, many patients

without these CPT codes also have

coronary disease, but either have not

received these interventions or received

them at a different hospital. In contrast, a

clinician may bill an ICD9 code for

coronary disease based on clinical suspi-

cion without a firm diagnosis. Figure 1

shows the results of a study that compared

the use of natural language processing

(NLP) and CPT codes to detect patients

who have received colorectal cancer

screening, via a colonoscopy within the

last ten years, at one institution. In this

study, only 61% (106 out of 174 total) of

the documented completed colonoscopies

were found via CPT codes [20]. The most

common cause of false negatives was a

colonoscopy completed at another hospi-

tal. CPT codes, however, had a very high

precision (i.e., positive predictive value; see

Box 1), with only one false positive.

2.2 Laboratory and Vital Signs
Laboratory data and vital signs form a

longitudinal record of mostly structured

data in the medical record. In addition to

being stored as name-value pair data,

these fields and values can be encoded

using standard terminologies. The most

common controlled vocabulary used to

represent laboratory tests and vital signs is

the Logical Observation Identifiers Names

and Codes (LOINCH), which is a Consol-

idated Health Informatics standard for

representation of laboratory and test

names and is part of Health Language 7

(HL7) [21,22]. Despite the growing use of

LOINC, many (perhaps most) hospital lab

systems still use local dictionaries to

encode laboratory results internally. Hos-

pital laboratory systems or testing compa-

nies may change over time, resulting in

different internal codes for the same test

result. Thus, care is needed to implement

selection logic based on laboratory results.

Indeed, a 2009–2010 data standardization

effort at Vanderbilt University Medical

Center found that the concept of ‘‘weight’’

and ‘‘height’’ each had more than five

internal representations. Weights and

heights were also recorded by different

systems using different field names and

stored internally with different units (e.g.,

kilograms, grams, and pounds for weight;

What to Learn in This Chapter

N Describe the types of information available in Electronic Health Records (EHRs),
and the relative sensitivity and positive predictive value of each

N Describe the difference between unstructured and structured information in
the EHR

N Describe methods for developing accurate phenotype algorithms that integrate
structured and unstructured EHR information, and the roles played by billing
codes, laboratory values, medication data, and natural language processing

N Describe recent uses of EHR-derived phenotypes to study genome-phenome
relationships

N Describe the cost advantages unique to EHR-linked biobanks, and the ability to
reuse genetic data for many studies

N Understand the role of EHRs to enable phenome-wide association studies of
genetic variants
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Table 1. Strengths and weakness of data classes within EHRs.

ICD codes CPT codes Laboratory Data Medication records Clinical Documentation

Availability in EHR
systems

Near-universal Near-universal Near-universal Variable Variable

Recall Medium Poor Medium Inpatient: High
Outpatient: Variable

Medium

Precision Medium High High Inpatient: High
Outpatient: Variable

Medium-High

Fragmentation effect Medium High Medium-High Medium Low-Medium

Query method Structured Structured Mostly structured Structured, text
queries, and NLP

NLP, text queries, and
rarely structured

Strengths -Easy to query
-Serves as a good first
pass of disease status

-Easy to query
-High precision

-Value depends on
test
-High data validity

Can have high validity Best record of what
providers thought

Weaknesses -Disease codes often
used for screening
when disease not a
ctually present
-Accuracy hindered by
billing realities and clinic
workflow

-Most susceptible to
missing data errors
(e.g., performed at
another hospital)
-Procedure receipt
influenced by patient
and payer factors
external to disease
process

-May need to
aggregate different
variations of the
same data elements
-Normal ranges and
units may change
over time

-Often need to interface
inpatient and outpatient
records
-Medication records from
outside providers not
present
-Medications prescribed
not necessary taken

-Difficult to process
automatically
-Interpretation accuracy
depends on assessment
method
-May suffer from
significant
‘‘cut and paste’’
-Not universally
available in EHRs
-May be
self-contradictory

Summary Essential first element for
electronic phenotyping

Helpful addition if
relevant

Helpful addition if
relevant

Useful for confirmation
and a marker of severity

Useful for confirming
common diagnoses
or for finding rare ones

doi:10.1371/journal.pcbi.1002823.t001

Figure 1. Comparison of natural language processing (NLP) and CPT codes to detect completed colonoscopies in 200 patients. In
this study, more completed colonoscopies were found via NLP than with billing codes alone, and only one colonoscopy was found with billing codes
that was not found with NLP. NLP examples were reviewed for accuracy.
doi:10.1371/journal.pcbi.1002823.g001
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centimeters, meters, inches, and feet for

height).

Structured laboratory results are often

a very important component of pheno-

type algorithms, and can represent tar-

gets for genomic investigation [3,4,23].

An algorithm to identify type 2 diabetes

(T2D) cases and controls, for instance,

used laboratory values (e.g., hemoglobin

A1c and glucose values) combined with

billing codes and medication mentions

[17]. Similarly, an algorithm to deter-

mine genomic determinants of normal

cardiac conduction required normal

electrolyte (potassium, calcium, and

magnesium) values [16]. In these set-

tings, investigation of the determinants of

the values requires careful selection of

the value to be investigated. For instance,

an analysis of determinants of uric acid

or red blood cell indices would exclude

patients treated with certain antineoplas-

tic agents (which can increase uric acid

or suppression of erythrocyte produc-

tion), and, similarly, an analysis of white

blood cell indices also excludes patients

with active infections and certain medi-

cations at the time of the laboratory

measurement.

2.3 Provider Documentation
Clinical documentation represents per-

haps the richest and most diverse source of

phenotype information. Provider docu-

mentation is required for nearly all billing

of tests and clinical visits, and is frequently

found in EHR systems. To be useful for

phenotyping efforts, clinical documenta-

tion must be in the form of electronically-

available text that can be used for

subsequent manual review, text searches,

or NLP. They can be created via

computer-based documentation (CBD)

systems or dictated and transcribed. The

most common form of computable text is

in unstructured narrative text documents,

although a number of developers have

also created structured documentation

tools [24]. Narrative text documents can

be processed by text queries or by NLP

systems, as discussed in the following

section.

For some phenotypes, crucial docu-

ments may only be available as hand-

written documents, and thus not amenable

to text searching or NLP. Unavailability

may result from clinics that are slow

adopters, have very high patient volumes,

or have specific workflows not well ac-

commodated by the EHR system [25].

However, these hand-written documents

may be available electronically as scanned

copies. Recent efforts have shown that

intelligent character recognition (ICR)

software may be useful for processing

scanned documents containing hand-writ-

ten fields (Figure 2) [26,27]. This task can

be challenging, however, and works best

when the providers are completing pre-

formatted forms.

2.4 Documentation from Reports
and Tests

Provider-generated reports and test

results include radiology and pathology

reports and some procedure results such as

echocardiograms. They are often in the

form of narrative text results. Many of

these contain a mixture of structured and

unstructured results. Examples include an

electrocardiogram report, which typically

has structured interval durations and may

contain a structured field indicating

whether the test was abnormal or not.

However, most electrocardiogram (ECG)

reports also contain a narrative text

‘‘impression’’ representing the cardiolo-

gist’s interpretation of the result (e.g.,

‘‘consider anterolateral myocardial ische-

mia’’ or ‘‘Since last ECG, patient has

developed atrial fibrillation’’) [28]. For

ECGs, the structured content (e.g., the

intervals measured on the ECG) are

generated using automated algorithms

and have varying accuracy [29].

2.5 Medication Records
Medication records serve an important

role in accurate phenotype characteriza-

tion. They can be used to increase the

precision of case identification, and to help

ensure that patients believed to be controls

do not actually have the disease. Medica-

tions received by a patient serve as

confirmation that the treating physician

believed the disease was present to a

sufficient degree that they prescribed a

treating medication. It is particularly

helpful to find presence or absence of

medications highly specific or sensitive for

the disease. For instance, a patient with

diabetes will receive either oral or inject-

able hypoglycemic agents; these medica-

tions are both highly sensitive and specific

for treating diabetes, and can also be used

to help differentiate type I diabetes

(treated almost exclusively with insulin)

from T2D (which is typically a disease of

insulin resistance and thus can be treated

with a combination of oral and injectable

hypoglycemic agents).

Medication records can be in varying

forms within an electronic record. With

the increased use of computerized provid-

er order entry (CPOE) systems to manage

hospital stays, inpatient medication rec-

ords are often available in highly struc-

tured records that may be mapped to

controlled vocabularies. In addition, many

hospital systems are installing automated

bar-code medication administration rec-

ords by which hospital staff record each

individual drug administration for each

patient [30]. With this information, accu-

rate drug exposures and their times can be

Box 1. Metrics Commonly Used to Evaluate Phenotype Selection
Algorithms

Sensitivity Recallð Þ~ True Positives

Gold standard positives

Specificity~
True Negatives

Gold standard negatives

Positive Predictive Value PPV ,Precisionð Þ~ True Positives

True PositiveszFalse Positives

Negative Predictive Value NPVð Þ~ True Negatives

True NegativeszFalse Negatives

F{measure~
2|Recall|Precision

RecallzPrecision
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constructed for each inpatient. Even

without electronic medication administra-

tion records (such as bar-code systems),

research has shown that CPOE-ordered

medications are given with fairly high

reliability [31].

Outpatient medication records are often

recorded via narrative text entries within

clinical documentation, patient problem

lists, or communications with patients

through telephone calls or patient portals.

Many EHR systems have incorporated

outpatient prescribing systems, which cre-

ate structured medical records during

generation of new prescriptions and

refills. However, within many EHR

systems, electronic prescribing tools are

optional, not yet widely adopted, or have

only been used within recent history.

Thus, accurate construction of a patient’s

medication exposure history often re-

quires NLP techniques. For specific algo-

rithms, focused free-text searching for a

set of medications can be efficient and

effective [17]. This approach requires the

researcher to generate the list of brand

names, generics, combination medica-

tions, and abbreviations that would be

used, but has the advantage that it can be

easily accomplished using relational data-

base queries. The downside is that this

approach requires re-engineering for each

medication or set of medications to be

searched, and does not allow for the

retrieval of other medication data, such as

dose, frequency, and duration. A more

general-purpose approach can be

achieved with NLP, which is discussed

in greater detail in Section 3 below.

3. Natural Language Processing
to Support Clinical Knowledge
Extraction

Although many documentation tools

include structured and semi-structured

elements, the vast majority of computer

based documentation (CBD) remains in

‘‘natural language’’ narrative formats [24].

Thus, to be useful for data mining,

narrative data must be processed through

use of text-searching (e.g., keyword search-

ing) or NLP systems. Keyword searching

can effectively identify rare physical exam

findings in text [32], and extension to use

of regular expression pattern matching has

been used to extract blood pressure

readings [33]. NLP computer algorithms

scan and parse unstructured ‘‘free-text’’

documents, applying syntactic and seman-

tic rules to extract structured representa-

tions of the information content, such as

concepts recognized from a controlled

terminology [34–37]. Early NLP efforts

to extract medical concepts from clinical

text documents focused on coding in the

Systematic Nomenclature of Pathology or

the ICD for financial and billing purposes

[38], while more recent efforts often use

complete versions of the Unified Medical

Language System (UMLS) [39–41],

SNOMED-CT [16], and/or domain-spe-

cific vocabularies such as RxNorm for

medication extraction [42]. NLP systems

utilize varying approaches to ‘‘understand-

ing text,’’ including rule-based and statis-

tical approaches using syntactic and/or

semantic information. Natural language

Figure 2. Use of Intelligent Character Recognition to codify handwriting. Figure courtesy of Luke Rasmussen, Northwestern University.
doi:10.1371/journal.pcbi.1002823.g002
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processors can achieve classification rates

similar to those of manual reviewers, and

can be superior to keyword searches. A

number of researchers have demonstrated

the effectiveness of NLP for large-scale

text-processing tasks. Melton and Hripc-

sak used MedLEE to recognize instances

of adverse events in hospital discharge

summaries [43]. Friedman and colleagues

evaluated NLP for pharmacovigilance to

discover adverse drug events from clinical

records by using statistical methods that

associate extracted UMLS disease con-

cepts with extracted medication names

[40]. These studies show the potential

for NLP to aid in specific phenotype

recognition.

Using either NLP systems or keyword

searching, the primary task in identifying a

particular phenotype is to filter out

concepts (or keywords) within a corpus of

documents that indicate statements other

than the patient having the disease.

Researchers may desire to specify partic-

ular document types (e.g., documents

within a given domain, problem lists,

etc.) or particular types of visits or

specialists (e.g., requiring a visit with an

ophthalmologist). Some common NLP

tasks needed in phenotype classification

include identifying family medical history

context and negated terms (e.g., ‘‘no

cardiac disease’’), and removing drug

allergies when searching for patients

taking a certain medication. Recognition

of sections within documents can be

handled using structured section labels,

specialized NLP systems such as SecTag

[44], or more general-purpose NLP sys-

tems such as MedLEE [45] or HITEX

[46]. A number of solutions have been

proposed for negation detection; among

the more widespread are adaptations of

the NegEx algorithm developed by Chap-

man et al., which uses a series of negation

phrases and boundary words to identify

negated text [47]. NegEx or similar

algorithms can be used as a standalone

system or be integrated within a number

of general-purpose NLP systems including

MedLEE [48], the KnowledgeMap con-

cept identifier [49], cTAKES [50], and the

National Library of Medicine’s MetaMap

[51].

Medication information extraction is

an important area for clinical applica-

tions that benefits from specialized NLP

tools. Most general-purpose NLP systems

will recognize medications by the medi-

cation ingredient mentioned in the text

but may not identify the relevant medi-

cation metadata such as dose, frequency,

and route. In addition, a general purpose

NLP system using as its vocabulary the

UMLS will likely recognize ‘‘atenolol’’

and ‘‘Tenormin’’ (a United States brand

name for atenolol) as two different

concepts, since each is represented by

separate concepts in the UMLS. Medi-

cation-specific NLP systems focus on

extracting such metadata for a medica-

tion. Sirohl and Peissig applied a com-

mercial medication NLP system to de-

rived structured medication information

[52], which was later linked to laboratory

data and used to explore the pharmaco-

dynamics of statin efficacy (a cholesterol-

lowering medication) [53]. Xu et al.

developed a similar system at Vanderbilt

called MedEx, which had recall and

precision $0.90 for discharge summaries

and clinic notes on Vanderbilt clinical

documents [42]. Additionally, the 2009

i2b2 NLP challenge focused on medica-

tion extraction using de-identified dis-

charge summaries from Partners Health-

care, and 20 teams competed to identify

medications and their signatures. The

best systems achieved F-measures $0.80

[54]. Much work remains to be done in

this area, as extraction of both medica-

tion names and associated signature

information can be challenging when

considering the full breadth of clinical

documentation formats available, includ-

ing provider-staff and provider-patient

communications, which often contain less

formal and misspelled representations of

prescribed medications.

For more information on NLP methods

and applications, please see the article on

text mining elsewhere in this collection

(submitted).

4. EHR-Associated Biobanks:
Enabling EHR-Based Genomic
Science

DNA biobanks associated with EHR

systems can be composed of either ‘‘all

comers’’ or a focused collection, and

pursue either a conventional consented

‘‘opt-in’’ or an ‘‘opt-out’’ approach. Cur-

rently, the majority of DNA biobanks

have an opt-in approach that selects

patients for particular research studies.

Two population-based models in the

eMERGE network are the Personalized

Medicine Research Population (PMRP)

project of the Marshfield Clinic (Marsh-

field, WI) [55] and Northwestern Uni-

versity’s NUgene project (Chicago, IL).

The PMRP project selected 20,000 indi-

viduals who receive care in the geograph-

ic region of the Marshfield Clinic. These

patients have been consented, surveyed,

and have given permission to the inves-

tigators for recontact in the future if

additional information is needed. The

NUgene project, which has enrolled

nearly 10,000 people through 2012, uses

a similar approach, obtaining patients’

consent during outpatient clinic visits

[56]. Another example of an EHR-

associated biobank is the Kaiser-Perma-

nente biobank, which has genotyped

100,000 individuals [57].

The alternative ‘‘opt-out’’ approach is

evidenced by Vanderbilt University’s

BioVU, which associates DNA with de-

identified EHR data [58]. In this model,

patients have the opportunity to ‘‘opt out’’

of the DNA biobank by checking a box on

the standard ‘‘Consent to Treatment’’

form signed as part of routine clinical

care. A majority of patients (.90%) do

not check this box, indicating assent to

the use of their DNA in the biobank [58].

If the patient does not opt-out, blood

that is scheduled to be discarded after

routine laboratory testing is instead sent

for DNA extraction, which is stored for

potential future use. To ensure that no

one knows with certainty if a subject’s

DNA is in BioVU, an additional small

percentage of patients are randomly

excluded.

The BioVU model requires that the

DNA and associated EHR data be de-

identified in order to assure that the model

complies with the policies of non-human

subjects research. The full-text of the EHR

undergoes a process of de-identification

with software programs that remove

Health Insurance Portability and Account-

ability Act (HIPAA) identifiers from all

clinical documentation in the medical

record. At the time of this writing, text

de-identification for BioVU is performed

using the commercial product DE-ID [59]

with additional pre- and post-processing

steps. However, a number of other clinical

text de-identification software packages

have been studied, some of which are

open source [60,61]. Multiple reviews by

both the local institutional review board

and the federal Office for Human Re-

search Protections have affirmed this

status as nonhuman subjects research

according to 45 CFR 46 [58]. Nonethe-

less, all research conducted within BioVU

and the associated de-identified EHR

(called the ‘‘Synthetic Derivative’’) is

overseen by the local Institutional Review

Board. An opt-out model similar to

BioVU is used by Partners Healthcare

for the Crimson biobank, which can

accrue patients who meet specific pheno-

type criteria as they have routine blood

draws.

An advantage of the opt-out approach is

rapid sample accrual. BioVU began col-
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lecting DNA samples in 2007, adding

about 500 new samples weekly, and has

over 150,000 subjects as of September

2012. Since it enrolls subjects prospective-

ly, investigation of rare phenotypes may be

possible with such systems. The major

disadvantage of the opt-out approach is

that it precludes recontact of the patients

since their identity has been removed.

However, the Synthetic Derivative is

continually updated as new information

is added to the EHR, such that the

amount of phenotypic information for

included patients grows over time.

5. Race and Ethnicity in EHR-
Derived Biobanks

Given that much genetic information

varies greatly within ancestral populations,

accurate knowledge of genetic ancestry

information is essential to allow for proper

genetic study design and control of

population stratification. Without it, one

can see numerous spurious genetic associ-

ations due solely to race/ethnicity [62].

Single nucleotide polymorphisms (SNPs)

common in one population may be rare in

another. In large-scale GWA analyses, one

can tolerate less accurate knowledge of

ancestry a priori, since the large amount of

genetic data allows one to calculate the

genetic ancestry of the subject using

catalogs of SNPs known to vary between

races. Alternatively, one can also adjust for

genetic ancestry using tools such as

EIGENSTRAT [63]. However, in smaller

candidate gene studies, it is important to

know the ancestry beforehand.

Self-reported race/ethnicity data is often

used in genetic studies. In contrast race/

ethnicity as recorded within an EHR may

be entered through a variety of sources.

Most commonly, administrative staff re-

cord race/ethnicity via structured data

collection tools in the EHR. Often, this

field can be ignored (left as ‘‘unknown’’),

especially in busy clinical environments,

such as emergency departments. ‘‘Un-

known’’ percentages of patients can range

between 9% and 23% of subjects [17,18].

Among those patients for whom data is

entered, a study of genetic ancestry infor-

mative markers correlated well with EHR-

reported race/ethnicities [64]. In addition,

a study within the Veterans Administration

(VA) hospital system noted that over 95%

of all EHR-derived race/ethnicity agreed

with self-reported race/ethnicity using

nearly one million records [65]. Thus,

despite concerns over EHR-derived ances-

tral information, such information, when

present, appears similar to self-report

ancestry information.

6. Phenotype-Driven Discovery
in EHRs

6.1 Measure of Phenotype Selection
Logic Performance

The evaluation of phenotype selection

logic can use metrics similar to informa-

tion retrieval tasks. Common metrics are

sensitivity (or recall), specificity, positive

predictive value (PPV, also known as

precision), and negative predictive value

(see Box 1). If a population is assessed for

case and control status, then another

useful metric is comparing the receiver

operator characteristic (ROC) curves.

ROC curves graph the sensitivity vs. false

positive rate (or, 1-specificity) given a

continuous measure of the outcome of

the algorithm. By calculating the area

under the ROC curve (AUC), one has a

single measure of the overall performance

of an algorithm that can be used to

compare two algorithms or selection

logics. Since the scale of the graph is 0 to

1 on both axes, the performance of a

perfect algorithm is 1, and random chance

is 0.5.

6.2 Creation of Phenotype Selection
Logic

Initial work in phenotype detection has

often focused on a single modality of EHR

data. A number of studies have used

billing data, some comparing directly to

other genres of data, such as NLP. Li et al.

compared the results of ICD-9 encoded

diagnoses and NLP-processed discharge

summaries for clinical trial eligibility

queries, finding that use of NLP provided

more valuable data sources for clinical trial

pre-screening than ICD-9 codes [15].

Savova et al. has used cTAKES to

discover peripheral arterial disease cases

by looking for particular key words in

radiology reports, and then aggregating

the individual instances using ‘‘AND-OR-

NOT’’ Boolean logic to classify cases into

four categories: positive, negative, proba-

ble, and unknown [66].

Phenotype algorithms can be created

multiple ways, depending of the rarity of

the phenotype, the capabilities of the EHR

system, and the desired sample size of the

study. Generally, phenotype selection logics

(algorithms) are composed of one or more

of four elements: billing code data, other

structured (coded) data such as laboratory

values and demographic data, medication

information, and NLP-derived data. Struc-

tured data can be retrieved effectively from

most EHR systems. These data can be

combined through simple Boolean logic

Figure 3. General figure for identifying cases and controls using EHR data. Application of electronic selection algorithms lead to division of
a population of patients into four groups, the largest of which comprises patients who were excluded because they lack sufficient evidence to be
either a case or control patient. Definite cases and controls cross some predefined threshold of positive predictive value (e.g., PPV$95%), and thus do
not require manual review. For very rare phenotypes or complicated case definitions, the category of ‘‘possible’’ cases may need to be reviewed
manually to increase the sample size.
doi:10.1371/journal.pcbi.1002823.g003
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[17] or through machine learning methods

such as logistic regression [18], to achieve a

predefined specificity or positive predictive

value. A drawback to the use of machine

learning data (such as logistic regression

models) is that it may not be as portable to

other EHR systems as more simple Boolean

logic, depending on how the models are

constructed. The application of many

phenotype selection logics can be thought

of partitioning individuals into four buckets

– definite cases (with sufficiently high PPV),

possible cases (which can be manually

reviewed if needed), controls (which do

not have the disease with acceptable

PPV), and individuals excluded from the

analysis due to either potentially overlap-

ping diagnoses or insufficient evidence

(Figure 3).

For many algorithms, sensitivity (or

recall) is not necessarily evaluated, assum-

ing there are an adequate number of cases.

A possible concern in not evaluating recall

(sensitivity) of a phenotype algorithm is

that there may be a systematic bias in how

patients were selected. For example,

consider a hypothetical algorithm to find

patients with T2D whose logic was to

select all patients that had at least one

billing code for T2D and also required

that cases receive an oral hypoglycemic

medication. This algorithm may be highly

specific for finding patients with T2D

(instead of type 1 diabetes), but would

miss those patients who had progressed in

disease severity such that oral hypoglyce-

mic agents no longer worked and who now

require insulin treatment. Thus, this

phenotype algorithm could miss the more

severe cases of T2D. However, for a

practical application, such assessments of

recall can be challenging given large

samples sizes of rare diseases. Certain

assumptions (e.g., that a patient should

have at least one billing code for the

disease) are reasonable and likely do not

lead to significant bias.

For other algorithms, the temporal

relationships of certain elements are very

important. Consider an algorithm to

determine whether a certain combination

of medication adversely impacted a given

lab, such as kidney function or glucose

[67]. Such an algorithm would need to

take into account the temporal sequence

and time between the particular medica-

tions and laboratory tests. For example,

glucose changes within minutes to hours

of a single administration of insulin, but

the development of glaucoma from corti-

costeroids (a known side effect) would not

be expected to happen acutely following a

single dose.

For very rare diseases or findings, one

may desire to find every case, and thus

the logic may simply be a union of

keyword text queries and billing codes

followed by manual review of all returned

cases. Examples include the rare physical

exam finding hippus (exaggerated pupil-

lary oscillations occurring in the setting of

altered mental status) [32], or potential

drug adverse events (e.g., Stevens-Johnson

syndrome), which are often very rare but

severe.

Since EHRs represent longitudinal rec-

ords of patient care, they are biased to

recording those events that are recorded as

part of medical care. Thus, they are

particularly useful for investigating dis-

ease-based phenotypes, but potentially less

efficacious for investigating non-disease

phenotypes such as hair or eye color, left

vs. right handedness, cognitive attributes,

biochemical measures (beyond routine

labs), etc. On the other hand, they may

be particularly useful for analyzing disease

progression over time.

7. Examples of Genetic
Discovery Using EHRs

The growth of ‘‘EHR-driven genomic

research’’ (EDGR) – that is, genomic

research proceeding primarily from

EHR data linked to DNA samples – is

a recent phenomenon [6]. Preceding

these most recent research initiatives,

other studies laid the groundwork for use

of EHR data to study genetic phenom-

ena. Rzhetsky et al. used billing codes

from the EHRs of 1.5 million patients to

analyze disease co-occurrence in 161

conditions as a proxy for possible genetic

overlap [68]. Chen et al. compared

laboratory measurements and age with

gene expression data to identify rates of

change that correlated with genes known

to be involved in aging [69]. A study at

Geisinger Clinic evaluated SNPs in the

9p21 region that are known to be

associated to cardiovascular disease and

early myocardial infarction [70]. They

found these SNPs were associated with

heart disease and T2D using EHR-

derived data. Several specific examples

of EDGR are detailed below.

7.1 Replicating Known Genetic
Associations for Five Diseases

An early replication study of known

genetic associations with five diseases with

known genetic associations was performed

in BioVU. The study was designed to test

the hypothesis that an EHR-linked DNA

biobank could be used for genetic associ-

ation analyses. The goal was to use only

EHR data for phenotype information.

The first 10,000 samples accrued in

BioVU were genotyped at 21 SNPs that

are known to be associated with these five

diseases (atrial fibrillation, Crohn’s disease,

multiple sclerosis, rheumatoid arthritis,

Table 2. Methods of finding cases and controls for genetic analysis of five common diseases.

Disease Methods Cases Controls Case PPV Control PPV

Atrial fibrillation NLP of ECG impressions
ICD9 codes
CPT codes

168 1695 98% 100%

Crohn’s Disease ICD9 codes
Medications (text)

116 2643 100% 100%

Type 2 Diabetes ICD9 codes
Medications (text)
Text searches (controls)

570 764 100% 100%

Multiple Sclerosis ICD9 codes or text diagnosis 66 1857 87%* 100%

Rheumatoid Arthritis ICD9 codes
Medications (text)
Text searches (exclusions)

170 701 97% 100%

*Given the small number of multiple sclerosis cases, all possible cases were manually validated to ensure high recall.
doi:10.1371/journal.pcbi.1002823.t002
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and T2D). Reported odds ratios were

1.14–2.36 in at least two previous studies

prior to the analysis. Automated pheno-

type identification algorithms were devel-

oped using NLP techniques (to identify key

findings, medication names, and family

history), billing code queries, and struc-

tured data elements (such as laboratory

results) to identify cases (n = 70–698) and

controls (n = 808–3818). Final algorithms

achieved PPV of $97% for cases and

100% for controls on randomly selected

cases and controls (Table 2) [17]. For each

of the target diseases, the phenotype

algorithms were developed iteratively,

with a proposed selection logic applied to

a set of EHR subjects, and random cases

and controls evaluated for accuracy. The

results of these reviews were used to refine

the algorithms, which were then rede-

ployed and reevaluated on a unique set of

randomly selected records to provide final

PPVs.

Used alone, ICD9 codes had PPVs of

56–89% compared to a gold standard

represented by the final algorithm. Errors

were due to coding errors (e.g., typos),

misdiagnoses from non-specialists (e.g., a

non-specialist diagnosed a patient as

having rheumatoid arthritis followed by

a rheumatologist who revised the diag-

nosis to psoriatic arthritis), and indeter-

minate diagnoses that later evolved into

well-defined ones (e.g., a patient thought

to have Crohn’s disease was later deter-

mined to have ulcerative colitis, another

type of inflammatory bowel disease).

Each of the 21 tests of association yielded

point estimates in the expected direction,

and eight of the known associations

achieved statistical significance

[17].

7.2 Demonstrating Multiethnic
Associations with Rheumatoid
Arthritis

Using a logistic regression algorithm

operating on billing data, NLP-derived

features, medication records, and labo-

ratory data, Liao et al. developed an

algorithm to accurately identify rheuma-

toid arthritis patients [18]. Kurreeman

et al. used this algorithm on EHR data

to identify a population of 1,515 cases

and 1,480 matched controls [71]. These

researchers genotyped 29 SNPs that had

been associated with RA in at least one

prior study. Sixteen of these SNPs

achieved statistical significance, and

26/29 had odds ratios in the same

direction and with similar effect sizes.

The authors also demonstrated that

these portions of these risk alleles were

associated with rheumatoid arthritis in

Table 3. eMERGE network participants.

Institution Biorepository Overview Model Size EHR Summary
Phenotyping
Methods

Group Health1

(Seattle, WA)
GHC Biobank
Alzheimer’s Disease
Patient Registry and Adult
Changes in Thought Study

Disease specific
Cohort

4000 Comprehensive
vendor-based EHR
since 2004

Structured data
extraction, NLP

Marshfield Clinic Research
Foundation1

(Marshfield, WI)

Personalized Medicine
Research Project
Marshfield Clinic, an integrated
regional health system

Population based 20,000 Comprehensive
internally developed
EHR since 1985

Structured data
extraction, NLP,
Intelligent Character
Recognition

Mayo Clinic1

(Rochester, MN)
Disease cohort
Derived from vascular laboratory &
exercise stress testing labs

Disease specific
Cohorts

16,500 Comprehensive
internally developed
EHR since 1995

Structured data
extraction, NLP

Northwestern University1

(Chicago, IL)
NUgene Project
Northwestern affiliated hospitals
and outpatient clinics

Population based .10,000 Comprehensive
vendor based
Inpatient and
Outpatient (different
systems) EHR
since 2000

Structured data
extraction, text
searches, NLP

Vanderbilt University1

(Nashville, TN)
BioVU
Primarily drawn from outpatient routine
laboratory samples

Population based 150,000 Comprehensive
internally developed
EHR since 2000

Structured data
extraction, NLP

Geisinger Health System2

(Pennsylvania)
MyCode
Enrollment of health plan participants

Population based .30,000 Comprehensive
vendor-based EHR

Structured data
extraction, NLP

Mount Sinai Medical
Center2 (New York, NY)

Institute for Personalized
Medicine Biobank
Outpatient enrollment

Population based .30,000 Comprehensive
vendor-based EHR
since 2004

Structured data
extraction, NLP

Cincinnati Children’s
Hospital3

(Cincinnati, OH)

General and disease cohorts. Population based .3,000 Comprehensive
vendor-based EHR

Structured data
extraction, NLP

Children’s Hospital of
Philadelphia3

(Philadelphia, PA)

General and disease cohorts. Population based .100,000 Comprehensive
vendor-based EHR

Structured data
extraction, NLP

Boston Children’s3

(Boston MA)
Crimson
On-demand, de-identified
phenotype-driven collection

Disease based Virtual Comprehensive
internally developed
EHR

Structured data
extraction, NLP

Sizes represent approximate sizes as of 2012; many sites are still actively recruiting. NLP = Natural Language Processing. Sites joined with 1eMERGE-I in 2007, 2eMERGE-II
in 2011, or as 3pediatric sites in 2012.
doi:10.1371/journal.pcbi.1002823.t003
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East Asian, African, and Hispanic Amer-

ican populations.

7.3 eMERGE Network
The eMERGE network is composed of

nine institutions as of 2012 (http://gwas.

org; Table 3). Each site has a DNA

biobank linked to robust, longitudinal

EHR data. The initial goal of the

eMERGE network was to investigate the

feasibility of genome-wide association

studies using EHR data as the primary

source for phenotypic information. Each

of these sites initially set out to investigate

one or two primary phenotypes (Table 3).

Network sites have currently created and

evaluated electronic phenotype algorithms

for 14 different primary and secondary

phenotypes, with nearly 30 more planned.

After defining phenotype algorithms,

each site then performed genome-wide

genotyping at one of two NIH-supported

genotyping centers.

The primary goals of an algorithm are

to perform with high precision ($95%)

and reasonable recall. Algorithms incor-

porate billing codes, laboratory and vital

signs data, test and procedure results, and

clinical documentation. NLP is used to

both increase recall (find additional cases)

and achieve greater precision (via im-

proved specificity). These phenotype algo-

rithms are available for download from

PheKB (http://phekb.org).

Initial plans were for each site to

analyze their own phenotypes indepen-

dently. However, the network has realized

the benefits of synergy. Central efforts

across the network were involved in

harmonization of the collective genetic

data.

7.4 Early Genome-Wide Association
Studies from the eMERGE Network

As of 2012, the eMERGE Network has

published GWAS on atrioventricular con-

duction [72], red blood cell [23] and white

blood cell [73] traits, primary hypothyroid-

ism [74], and erythrocyte sedimentation

rate [75], with others ongoing. The first two

studies published by the network were using

single-site GWAS studies; latter studies

have realized the advantage of pooling

data across multiple sites to increase the

sample size available for a study. Impor-

tantly, several studies in eMERGE have

explicitly evaluated the portability of the

electronic phenotype algorithms by review-

ing algorithms at multiple sites. Evaluation

of the hypothyroidism algorithm at the five

eMERGE-I sites, for instance, noted an

overall weighted PPV of 92.4% and 98.5%

for cases and controls, respectively [74].

Similar results have been found with T2D

[76], cataracts [27], and rheumatoid ar-

thritis [77] algorithms.

As a case study, the GWAS for

atrioventricular conduction (as measured

by the PR interval on the ECG), conduct-

ed entirely within samples drawn from one

site, identified variants in SCN10A.

SCN10A is a sodium channel expressed in

autonomic nervous system tissue and is

now known to be involved in cardiac

regulation. The phenotype algorithm

identified patients with normal ECGs

who did not have evidence of prior heart

disease, were not on medications that

would interfere with cardiac conduction,

and had normal electrolytes. The pheno-

type algorithm used NLP and billing code

queries to search for the presence of prior

heart disease and medication use [72]. Of

note, the algorithm highlights the impor-

tance of using clinical note section tagging

and negation to exclude only those

patients with heart disease, as opposed to

patients whose records contained negated

heart disease concepts (e.g., ‘‘no myocar-

dial infarction’’) or heart disease concepts

in related individuals (e.g., ‘‘mother died of

a heart attack’’). Use of NLP improved

recall of cases by 129% compared with

simple text searching, while maintaining a

positive predictive value of 97% (Figure 4)

[78,72].

The study of RBC traits identified four

variants associated with RBC traits. One

of these, SLC17A1, had not been previ-

ously identified, and is involved in sodium-

phosphate co-transport in the kidney. The

latter study of RBC traits utilized patients

genotyped at one site as cases and controls

Figure 4. Use of NLP to identify patients without heart disease for a genome-wide analysis of normal cardiac conduction. Using
simple text searching, 1564 patients would have been eliminated unnecessarily due to negated terms, family medical history of heart disease, or low
dose medication use that would not affect measurements on the electrocardiogram. Use of NLP improves recall of these cases without sacrificing
positive predictive value. The final case cohort represented the patients used for GWAS in [71].
doi:10.1371/journal.pcbi.1002823.g004
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for their primary phenotype of peripheral

arterial disease (PAD). Thus, this repre-

sents an in silico GWAS for a new finding

that did not require new genotyping, but

instead leveraged the available data within

the EHR. The eMERGE study of primary

hypothyroidism, similarly, identified a

novel association with FOXE1, a thyroid

transcription factor, without any new

genotyping by using samples derived from

five eMERGE sites.

7.5 Phenome-Wide Association
Studies (PheWAS)

Typical genetic analyses investigate

many genetic loci against a single trait or

disease. Such analyses cannot identify

pleiotropic associations, and may miss

important confounders in an analysis.

Another approach, engender by the rich

phenotype record included in the EHR, is

to simultaneously investigate many pheno-

types associated with a given genetic locus.

A ‘‘phenome-wide association study’’

(PheWAS) is, in a sense, a ‘‘reverse

GWAS.’’ PheWAS investigations require

large representative patient populations

with definable phenotypic characteristics.

Such studies only recently became feasi-

ble, facilitated by linkage of DNA bior-

epositories to EHR systems, which can

provide a comprehensive, longitudinal

record of disease.

The first PheWAS studies were per-

formed on 6,005 patients genotyped for

five SNPs with seven previously known

disease associations [79]. This PheWAS

used ICD9 codes linked to a code-

translation table that mapped ICD9 codes

to 776 disease phenotypes. In this study,

PheWAS methods replicated four of seven

previously known associations with

p,0.011. Figure 5 shows one illustrative

PheWAS plot of phenotype associations

with an HLA-DRA SNP known to be

associated with multiple sclerosis. Of note,

this PheWAS not only demonstrates a

strong association between this SNP and

multiple sclerosis, but also highlights other

possible associations, such as Type 1

diabetes and acquired hypothyroidism.

Recent explorations into PheWAS meth-

ods using NLP have shown greater

efficacy for detecting associations: with

the same patients, NLP-based PheWAS

replicated six of the seven known associ-

ations, generally with more significant p-

values [80].

PheWAS methods may be particularly

useful for highlighting pleiotropy and

clinically associated diseases. For exam-

ple, an early GWAS for T2D identified,

among others, FTO loci as an associated

variant [81]. A later GWAS demonstrat-

ed this risk association was mediated

through the effect of FTO on increasing

body mass index, and thus increasing risk

of T2D within those individuals. Such

effects may be identified through broad

phenome scans made possible through

PheWAS.

Figure 5. A PheWAS plot for rs3135388 in HLA-DRA. This region has known associations with multiple sclerosis. The red line indicates
statistical significance at Bonferroni correction. The blue line represents p,0.05. This plot is generated from updated data from [78] and the updated
PheWAS methods as described in [73].
doi:10.1371/journal.pcbi.1002823.g005
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8. Conclusions and Future
Directions

EHRs have long been seen as a vehicle

to improve healthcare quality, cost, and

safety. However, their growing adoption

in the United States and elsewhere is

demonstrating their capability as a broad

tool for research. Enabling tools include

enterprise data warehouses and software

to process unstructured information, such

as de-identification and NLP. When

linked to biological data such as DNA

or tissue biorepositories, EHRs can be-

come a powerful tool for genomic anal-

ysis. One can imagine future repositories

also storing intermittent plasma samples

to allow for proteomic analyses.

A key advantage of EHR-based genetic

studies is that they allow for the collection

of phenotype information as a byproduct

of routine healthcare. Moreover, this

information collection grows over time

and is continually refined as new informa-

tion may confirm or refute a diagnosis for

a given individual. Through the course of

one’s life, a number of information points

concerning disease, response to treatment,

and laboratory and test data are collected.

Aggregation of this information can allow

for generation of large sample sizes of

patients with certain diseases or medica-

tion exposures. Moreover, once a subject

receives dense genotyping for one EHR-

based study, their genetic data can be

reused for many other genotypic studies,

allowing for relatively low-cost reuse of the

genetic material (once a given phenotype

can be found in the EHR).

Three major rate-limiting steps impede

utilization of EHR data for genetic

analysis. A major challenge is derivation

of accurate collections of cases and

controls for a given disease of interest,

usually achieved through creation and

validation of phenotype selection logics.

These algorithms take significant time and

effort to develop and often require adjust-

ment and a skilled team to deploy at a

secondary site. Another challenge is the

availability of phenotypic information.

Many patients may be observed at a given

healthcare facility only for certain types of

care (e.g., primary care or a certain

subspecialist), leading to fragmented

knowledge of a patient’s medical history

and medication exposures. Future growth

of Health Information Exchanges could

substantially improve these information

gaps. Finally, DNA biobanks require

significant institutional investment and

ongoing financial, ethical, and logistical

support to run effectively. Thus, they are

not ubiquitous.

As genomics move beyond discovery

into clinical practice, the future of person-

alized medicine is one in which our genetic

information could be ‘‘simply a click of the

mouse’’ away [82]. In this future, DNA-

enabled EHR systems will assist in more

accurate prescribing, risk stratification,

and diagnosis. Genomic discovery in

EHR systems provides a real-world test

bed to validate and discover clinically

meaningful genetic effects.

9. Exercises

1) Compare and contrast the basic

types of data available in an Elec-

tronic Health Records (EHR) that

are useful for mining genetic data.

What are some of the strengths and

drawbacks of each type of data?

2) Explain what a phenotype algo-

rithm is and why it is necessary. For

example, how can use of natural

language processing improve upon

use of billing codes alone?

3) Select a clinical disease and design

a phenotype algorithm for it.

4) How might a phenotype algorithm

be different for a very rare disease

(e.g., prion diseases) vs. a more

common one (e.g., Type 2 diabe-

tes)? How would a phenotype

algorithm be different for a phys-

ical exam finding (e.g., hippus or a

particular type of heart murmur) vs.

a disease?

5) Describe the differences between a

DNA biobank linked to an EHR

and one collected as part of a non-

EHR research cohort. What are the

advantages and disadvantages of a

de-identified DNA biobank vs. an

identified DNA biobank (either

linked to an EHR or not).

6) It is often harder to create algo-

rithms to find drug-response pheno-

types (such as adverse drug events)

than for a chronic disease. Give

several reasons why this might be.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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Glossary
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