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Abstract: Most methods for large-
scale gene expression microarray
and RNA-Seq data analysis are de-
signed to determine the lists of
genes or gene products that show
distinct patterns and/or significant
differences. The most challenging
and rate-liming step, however, is to
determine what the resulting lists of
genes and/or transcripts biologically
mean. Biomedical ontology and
pathway-based functional enrich-
ment analysis is widely used to
interpret the functional role of tightly
correlated or differentially expressed
genes. The groups of genes are
assigned to the associated biological
annotations using Gene Ontology
terms or biological pathways and
then tested if they are significantly
enriched with the corresponding
annotations. Unlike previous ap-
proaches, Gene Set Enrichment Anal-
ysis takes quite the reverse approach
by using pre-defined gene sets.
Differential co-expression analysis
determines the degree of co-expres-
sion difference of paired gene sets
across different conditions. Out-
comes in DNA microarray and RNA-
Seq data can be transformed into the
graphical structure that represents
biological semantics. A number of
biomedical annotation and external
repositories including clinical re-
sources can be systematically inte-
grated by biological semantics with-
in the framework of concept lattice
analysis. This array of methods for
biological knowledge assembly and
interpretation has been developed
during the past decade and clearly
improved our biological understand-
ing of large-scale genomic data from
the high-throughput technologies.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

One of the challenges in DNA micro-

array and RNA-Seq data analysis is to

extract biological meanings from the mas-

sive amounts of transcriptome expression

data. Most of the microarray and RNA-Seq

data analysis methods are designed to

determine the lists of genes or gene

products that show distinct patterns and/

or significant differences. Clustering and

differential expression analysis, for exam-

ple, typically generate lists of ‘significantly’

clustered and Differentially Expressed

Genes (DEGs), respectively. The most

challenging and rate-liming step, however,

is to determine what the resulting lists of

genes or gene products biologically mean.

The first analytic approach for the

biological interpretation of obtained gene

lists was to manually collect and put down

all available descriptive information con-

cerning each gene next to it and to try to

infer the collective meaning of the textual

descriptors for the group of genes under the

biological systems context. The assumption

here is that if a certain keyword is

significantly over-represented or a mean-

ingful pattern is found among the textual

descriptors for a gene group, then the

keyword or the pattern can be regarded as

the semantic interpretation of the gene

group.

It seems that Tavazoie et al. [1] was first to

formally analyze the over-representation of

‘functional annotations’ for the lists of genes

with semantic interpretations. By means of

partitional clustering and motif discovery,

given genome-wide gene-expression clusters,

he analyzed significantly over-represented

regulatory motifs in the upstream sequences

of clustered yeast genes for uncovering new

‘regulons’ (i.e., sets of co-regulated genes)

and their putative cis-regulatory elements.

Here, the discovered motifs seem to be

regarded as functional annotations to the

corresponding genes. Many Functional An-

notation Analysis (FAA) methods have been

developed to test whether certain Gene

Ontology (GO) terms [2] or biological

pathways are significantly enriched within

a particular list of genes. Many GO and

biological pathway-based tools for gene

expression analysis have been developed

and proven to be useful [3–9].

FAA is an attempt to extract biological

semantics from given lists of genes that are

determined without considering any bio-

logical meaning but by a quantitative

statistical analysis like clustering and

DEG analysis methods. Gene Set Enrich-

ment Analysis (GSEA) [10,11], however,

takes quite the reverse way. GSEA uses

pre-defined gene sets with a priori estab-

lished biological meanings like biological

pathways. For each pre-defined gene set,

GSEA tries to determine if it shows

significant expression change. Therefore,

what GSEA essentially tests is if the pre-

defined ‘biological meaning’ assigned to

the gene set shows significant change or

not. It has been successfully demonstrated

that GSEA can successfully detect subtle

but set-wise coordinated expression chang-

es that cannot be detected by individual

gene tests [10].

The gene-set approach greatly improves

biological interpretability by using pre-

defined gene sets with established biological

meanings. The same strategy can be applied

Citation: Kim JH (2012) Chapter 8: Biological Knowledge Assembly and Interpretation. PLoS Comput Biol 8(12):
e1002858. doi:10.1371/journal.pcbi.1002858

Editors: Fran Lewitter, Whitehead Institute, United States of America and Maricel Kann, University of Maryland,
Baltimore County, United States of America

Published December , 2012

Copyright: � 2012 Ju Han Kim. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: This work was supported by the basic science research program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0028631). The
funders had no role in the preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: juhan@snu.ac.kr

PLOS Computational Biology | www.ploscompbiol.org 1 December 2012 | Volume 8 | Issue 12 | e1002858

27



for the analysis of differential co-expression

analysis. Cho et al. proposed dCoxS algo-

rithm that determines if a pair of gene sets’

coordinated co-expression patterns shows

significant changes across different condi-

tions [12]. If a pair of gene sets (or pathways)

shows a positive co-expression pattern in

normal tissue but a negative co-expression

pattern in cancer cells, then it can be

assumed that the pair of gene sets may play

an important role in the cancerous trans-

formation. This dyadic relation can easily

be extended to create a network of gene sets

showing differential co-expression patterns

across different conditions.

Sometimes, given the genomic scale,

even the extracted list of biological mean-

ings and significant functional annotations

are too big and complex such that they

need to be systematically organized. Or-

dering of obtained semantics using con-

cept lattice analysis improves biological

interpretation of microarray gene-expres-

sion data. BioLattice considers gene ex-

pression clusters as objects and annota-

tions as attributes and provides a graphical

‘executive summary’ (i.e. the context of the

whole experiment) of the order relations

by arranging them on a concept lattice in

an order based on the set inclusion theory

[13].

A wide range of tools and resources in

microarray and RNA-Seq data analysis

have a potential impact on personalized

medicine and are invaluable in biomedical

research. Integrative analysis of heteroge-

neous biological and clinical data is

essential to discover meaningful knowl-

edge. The construction of semantic rela-

tionships of biological resources makes it

possible to unify multi-layered and hetero-

geneously formatted data from genome to

phenome. Semantic analysis integrating

gene expression profiles and annotations

into a unified framework enables us to

interpret complex biomedical data in a

comprehensive and organized fashion.

The outline for this chapter is as follows.

In Section 2, a comprehensive survey of

biomedical annotation resources will be

given with major ontology and biological

pathway-based analysis methods. Section

3 describes gene set-wise differential ex-

pression analysis methods with its semantic

interpretation power. Section 4 describes

differential co-expression analysis. Finally,

in Section 5, application of formal concept

analysis for systematic semantic interpre-

tation of gene expression profiles will be

introduced with the following summary in

section 6.

2. Pathway and Ontology-Based
Analysis

GO and biological pathway-based anal-

ysis is one of the most powerful methods for

inferring the biological meanings of ob-

served expression changes (Figure 1). It

enables us to analyze a list of interesting

genes resulting from microarray and RNA-

Seq experiments, without molecular biolo-

gist’s help. The genes in the list may be the

ones statistically significantly up or down

regulated between conditions (i.e. DEGs),

where the number of the genes belong to a

list depends on the threshold of signifi-

cance. Another method is to perform a co-

expression (or clustering) analysis grouping

genes with similar expression patterns

across different experimental conditions.

Many genome databases provide GO

annotations to their genes and gene prod-

ucts, which are also members of biological

pathways. FAA determines which biological

pathways or GO terms are significantly

overrepresented in a given list of genes. GO

annotation and pathway membership fre-

quencies for a list of genes obtained by

differential expression analysis (Figure 1 (a))

or co-expression analysis (or clustering)

(Figure 1 (b)) are input to statistical analyses

to test if they are significantly over-repre-

sented. For example, in Figure 1, the genes

in the gene list (i.e. selected genes) are

significantly enriched with a GO term,

GO:000123, but not with GO:000126. It

means that the genes are significantly

associated with the biological meaning of

the GO term, GO:000123.

In principle, any attribute of a gene can

be applied for FAA including transcription

factor binding sites [1], clinical phenotypes

like disease associations, MeSH (Medical

Subject Heading) terms, microRNA bind-

ing sites, protein family memberships,

chromosomal bands, etc. as well as GO

terms and biological pathways. Moreover,

these features may in turn have their own

ontological structures as illustrated in

Figure 2. GO and MeSH have a ‘tree-

ish’ graph structure, which is more

formally a DAG (Directed Acyclic Graph),

in which each term may be a child of one

or more parents. Pathways have directed

graph structures. Clusters may also be

organized into a hierarchical tree or a

graph structure. ArrayXPath [6,9] pro-

vides one of the most comprehensive

collections of these structured features for

annotation analysis [14].

Differential expression analysis deter-

mines significantly down- or up-regulated

genes (or DEGs) between two conditions,

i.e. control and treatment groups to

explore the effect of a drug. Student’s t-

test, Wilcoxon’s rank sum test and AN-

OVA may be applied to detect DEGs.

Given the huge number of genes to be

tested, multiple-hypothesis-testing prob-

lem should be properly managed. Co-

expression analysis puts similar expression

profiles together and different ones apart,

returning lists of co-expressed genes that

are assumed to be tightly co-regulated.

Clustering algorithms can be classified into

hierarchical-tree clustering and partitional

clustering. While some partitional cluster-

ing algorithms do not impose a structure

to the clusters, others like Self Organizing

Feature Maps (SOM) organize clusters

into a grid structure. Imposing a structure

based on cluster similarity may be per-

formed after clustering.

Although DEGs are different from

clusters, biological interpretation of the

resulting lists of significantly up- or down-

regulated DEGs (Figure 1(a)) may also be

benefited by the same ontology and

pathway-based annotation analysis. Clus-

What to Learn in This Chapter

N How to find genes associated with a particular disease (or condition) from
microarray or RNA-Seq data

N How to find biological pathways and/or biomedical ontology terms for the
interpretation of particular gene groups associated with a particular disease

N How to characterize biological properties of a particular list of genes

N Which data resources are useful for interpreting large-scale gene expression
profiles

N What are the limitations of individual gene-based analysis for determining
differentially expressed genes (even with multiple hypothesis correction)

N How to identify gene groups that are differentially expressed or differentially
co-expressed between normal and disease samples

N Compare in terms of semantic interpretation the functional annotation analysis
methods for co-expressed genes as in clustering and for pre-defined gene sets
as in GSEA

N How to organize and visualize a massive and redundant annotation list of genes
or gene sets into a unified framework of biological understanding
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tering is classified as an unsupervised

method. Results from supervised methods

for a variety of classification tasks can

sometimes be organized into a list based

on, for example, their contributions to the

task. In principle any list of genes can be

carefully applied to ontology and pathway-

based annotation analysis.

Metabolic pathways like KEGG and

MetaCyc and signaling pathways like

BioCarta are very powerful resources for

the understanding of shared biological

processes of a group of genes. Pathways

are commonly presented as directed

graphs, where nodes mainly represent

molecules such as proteins and com-

pounds, and edges represent relation types

between two nodes. MetaCyc is an

experimentally determined non-redundant

metabolic pathway database. It is the

largest collection containing over 1400

metabolic pathways [15]. It is a part of the

BioCyc collection of pathways and genome

databases developed by SRI International.

The pathway figures of MetaCyc are not

static diagrams so that it can be updated

and expanded while KEGG provides static

collections of pathway diagrams.

One major goal of ontology is to

provide a shared understanding of a

certain domain of information. GO was

first created as controlled vocabularies for

standardized annotation of genome data-

bases. Genes and gene products are

annotated by GO as well as free text

input by curators. DAG structures are

imposed to the three controlled vocabu-

laries of GO; Molecular Function (MF),

Cellular Compartment (CC), and Biolog-

ical Process (BP). To each node (or GO

term), a set of genes are annotated. MIPS

began as a source for data on yeast

biology, and now provides an integrated

source for experimental, literature and

computationally-predicted protein proper-

ties for a variety of complete genomes as

well. MeSH has many clinical terms

including disease names. Other knowledge

resources like OMIM (Online Mendelian

Inheritance in Man) Morbid Map can also

be used to associate genes to MeSH disease

names. GO and MeSH are now parts of

UMLS (Unified Medical Language System)

which has a semantic network structure. In

principle, any biomedical ontology can be

systematically applied for improving bio-

medical understanding of gene expression

microarray and RNA-Seq data.

Once the genes of interest are success-

fully associated with correct functional

annotations, the next step is to examine

if there are any GO terms that have a

larger than expected subset of listed genes

in their annotation list. For example, if

20% of the genes in a gene list are

annotated with a GO term ‘apoptosis’ while

Figure 1. Functional annotation analysis based on biological pathways and GO terms. Annotation frequencies for a list of genes obtained
by differential expression and co-expression analyses of microarray and RNA-Seq data are input to a statistical analysis of significant over-
representation within the selected group. C: conditions, g: genes, s: gene groups.
doi:10.1371/journal.pcbi.1002858.g001
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only 1% of the genes in the whole human

genome fall into this functional category,

then the gene list can be regarded as

strongly related with the functional anno-

tation. Most statistical tests like Chi-square,

binomial and hypergeometric tests can be

applied. Chi-square test cannot be used to

test data of small sample size. Hypergeo-

metric test is widely used for functional

enrichment analysis of gene lists, but it is

computationally more intensive.

Suppose we have a total of N genes with

n genes belonging to a group of interest

(cluster or DEGs). Among them M genes

are annotated to a specific GO term and k

genes belong to the interest group and are

annotated to the specific GO term. The

probability of having at most k genes can

be calculated by hypergeometric distribu-

tion according to the following:

P Xƒkð Þ~
Xk

y~0

h yjN; M; nð Þ

~
Xk

y~0

M

y

 !
N{M

n{y

 !

N

n

 !

Hypergeometric distribution is a dis-

crete probability distribution describing

the number of successes by a serial

sampling from a finite population. It is

equivalent to a one-tailed Fisher’s exact

test. One should consider the choice of

universe (or background), that makes

substantial impact on the result. All genes

having at least one GO annotation, all

genes ever known in genome databases, all

genes on the microarray, or all transcripts

of RNA-Seq data that pass non-specific

filters can be candidate universe. One

more problem comes from the hierarchi-

cal tree (or graphical) structure of GO

categories (or pathways) while the hyper-

geometric test assumes independence of

categories. A parent term can simply be

rated as significant because of the influ-

ence from its significant children. More-

over, more general statements require

stronger evidence that is required to prove

more specific statements. Conditional

hypergeometric testing methods [16,17]

exclude GO terms if there is no evidence

beyond that provided by its significant

children. Because many tests are per-

formed, p-values must be interpreted with

caution.

Pathway and ontology-based analysis con-

sist of database mapping, statistical testing,

and presentation steps [18]. Mapping gene

lists to GO terms or pathways requires

resolving gene name ambiguities and incon-

sistencies (not discussed here) using a wide

range of genomic resources and techniques.

Visual and textual presentation helps users

to understand biological semantics and

contexts. A number of analysis tools with

these steps have been introduced: ArrayX-

Path, Pathway Miner, EASE in pathway

analysis, GOFish, GOTree Machine, Fa-

tiGO, GOAL, GOMIner, FuncAssociate

in ontology analysis and GeneMerge,

MAPPFinder, DAVID, GFINDer, Onto-

Tools in both analyses [14].

3. Gene Set-Wise Differential
Expression Analysis

Researcher’s primary interest with

DNA microarray and RNA-Seq data is

to identify differentially expressed genes

(DEGs). To this aim, a number of

statistical methods have been introduced,

evaluating statistical significance of indi-

vidual genes between two conditions.

Gene set-wise differential expression anal-

ysis method, however, evaluates coordi-

nated differential expression of gene

groups, the meaning of which are previ-

ously defined as those of biological path-

ways. The first developed in this category

is the Gene Set Enrichment Analysis

(GSEA) that evaluates for each a priori

defined gene set the significant association

with phenotypic classes in DNA micro-

array experiments [10].

Figure 2. Collection of biological knowledge-based annotation resources for genes and gene clusters. The right panel shows an
example of GO enrichment analysis result for a yeast cell division experiment.
doi:10.1371/journal.pcbi.1002858.g002

PLOS Computational Biology | www.ploscompbiol.org 4 December 2012 | Volume 8 | Issue 12 | e1002858



While FAA tries to determine over-

represented GO terms or biological pathways

after determining significant co-expression

clusters or DEG lists (Figure 3(a) and (c)),

GSEA takes the ‘reverse-annotation’ or ‘gene

set-wise’ approach (Figure 3(b)). This gene

set-wise differential expression analysis meth-

od successfully identified modest but coordi-

nated changes in gene expression that might

have been missed by conventional ‘individual

gene-wise’ differential expression analysis.

Moreover, gene set-wise approach provides

straightforward biological interpretation be-

cause the gene sets are defined by biological

knowledge. GSEA’s success clearly demon-

strates that many tiny expression changes can

collectively create a big change that is

statistically significant. Another advantage is

that utilizing pre-defined and well-established

gene sets rather than finding or creating novel

lists of genes markedly improves semantic

interpretability and computational feasibility.

It is believed that functionally related genes

often show a coordinated expression pattern

to accomplish their functional role.

GSEA first creates a ranked list of genes

according to their differential expression

between experimental conditions and then

determines, for each a priori defined gene

set, whether members of a gene set tend to

occur toward the top (or bottom) of the

ranked list, in which case the gene set is

correlated with the phenotypic class dis-

tinction. With the interesting gene set, S,

Enrichment Score (ES) is calculated by

evaluating the fractions of genes in S

(‘‘hits’’) weighted by their correlation and

the fractions of genes not in S (‘‘misses’’)

present up to a given position i in the

ranked gene list, L, where N genes are

ordered according to the correlation,

r(gj) = rj of their expression profiles with

interest gene set:

Phit S,ið Þ~
X
gj[S

jƒi

rj

�� ��p
NR

, where NR~
X
gj[S

rj

�� ��p

Pmiss S,ið Þ~
X

gj 6[S

jƒi

1

N{NHð Þ

where NH indicates the number of genes in

S and is an exponent to control the weight

of the step. The ES is the maximum

deviation from zero of Phit – Pmiss. It

corresponds to a weighted Kolmogorov-

Smirnov-like statistic.

GSEA assesses the significance by

permuting the class labels. Concerning

the definition of the null hypothesis,

methods can be classified into competitive

and self-contained tests [19]. A competi-

tive test compares differential expression of

the gene set to a standard defined by the

complement of that gene set. A self-

contained test, in contrast, compares the

gene set to a fixed standard that does not

depend on the measurements of genes

outside the gene set. The competitive test

is more popular than the self-contained

test.

Figure 3. Differential expression analysis for individual genes and predefined gene sets. C: conditions, c: condition sets, g: genes, s: gene
groups, S: predefined gene sets. (Modified from [30]).
doi:10.1371/journal.pcbi.1002858.g003
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Typical gene sets are regulatory-motif,

function-related, and disease-related sets.

MSigDB (Molecular Signatures Database)

is one of leading gene set databases (http://

www.broadinstitute.org/gsea/msigdb) con-

taining a total of 6769 gene sets which are

classified into five different collections

(positional, curated, motif, computational

and GO gene sets). Several interesting

extensions were proposed in terms of

sample level applications. For example,

researchers developed genomic signatures

to identify the activation status of on-

cogenic pathways and predict the sensiti-

vity to individual chemotherapeutic drugs

[20,21]. Significance Analysis of Function

and Expression (SAFE) [22] extends

GSEA to cover multiclass, continuous and

survival phenotypes. It also provides more

options for the test statistic, including

Wilcoxon rank sum, Kolmogorov-Smirnov

and Hypergeometric statistic.

4. Differential Co-Expression
Analysis

Co-expression analysis determines the

degree of co-expression of a group (or

cluster) of genes under a certain condition.

Unlike co-expression analysis, differential

co-expression analysis determines the degree

of co-expression difference of a gene pair or

a gene cluster across different conditions,

which may relate to key biological processes

provoked by changes in environmental

conditions [12,23–25]. Differential co-ex-

pression analysis methods can be catego-

rized into three major types (Figure 4): (a)

differential co-expression of gene cluster(s)

[26], (b) gene pair-wise differential co-

expression [24] and (c) differential co-

expression of paired gene sets [12].

To identify differentially co-expressed

gene cluster(s) between two conditions, (C1

and C2 in Figure 4 (a)), a method determines

whether a cluster shows significant condi-

tional difference in the degree of co-

expression. An additive model-based scoring

can be used based on the mean squared

residual [26]. Let conditions and genes be

denoted by J and I, respectively. The mean

squared residual of model is a measurement

of co-expression of genes:

S’ I ,Jð Þ~
1

Ij j{1ð Þ Jj j{1ð Þ
X
I ,J

aij{ai:{a:j{a::
� �2

where an entry aij is the expression level of

gene i in condition j, ai. is the mean

expression level of gene i in conditions, a.j
is the mean expression level of genes in

condition j, a..is the mean expression levels

of genes in conditions. A group of gene with

a low score S9 means high correlation of

genes. Given two groups J1 and J2, e.g.

Figure 4. Differential co-expression anslyses. Differential co-expression (a) of clusters can be detected by a method proposed by Kostka and
Spang [26], (b) of gene pairs can be detected by a method proposed by Lai et al. [24], and (c) of paired gene sets by a method proposed by Cho et al.
[12]. C: conditions, g: genes, s: gene clusters, S: a priori defined gene sets. (Modified from [30]).
doi:10.1371/journal.pcbi.1002858.g004
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disease and control, the method minimizes

the score, S (I) of a set of genes, I:

S Ið Þ~ S’ I ,J1ð Þ
S’ I ,J2ð Þ

~
J2j j{1

J1j j{1
:

P
I ,J1

aij{a
1ð Þ

i: {a
1ð Þ
:j {a

1ð Þ
::

� �2

P
I ,J2

aij{a
2ð Þ

i: {a
2ð Þ
:j {a

2ð Þ
::

� �2

A greedy downhill approach finds local

minima of the score. Another approach

uses t-statistic for each cluster to evaluate

the difference of the degree of co-expression

between conditions, after creating gene

expression clusters [27]. These methods

can be viewed as an attempt to find gene

clusters that are tightly co-regulated (i.e.

highly co-expressed) in one condition (i.e.

normal) but not in another (i.e. cancer).

To identify differentially co-expressed

gene pairs in Figure 4(b), F-statistic can be

calculated as expected conditional F-sta-

tistic (ECF), a modified F-statistic, for all

pair of genes between two conditions [24].

A meta-analytic approach can also detect

gene pairs with significant differential co-

expression between normal and cancer

samples [25]. These methodologies can be

regarded as an attempt to discover gene

pairs that are, in principle, positively

correlated in one condition (i.e. normal)

and negatively correlated in another (i.e.

cancer). Identification of differentially co-

expressed gene clusters or gene pairs

usually do not use a priori defined gene

sets or pairs but try to find the best ones

among all possible combinations without

considering prior knowledge. Thus the

biological interpretation of the clusters or

pairs may also be improved by ontology

and pathway-based annotation analysis.

The idea of finding gene clusters that show

positive correlation in one condition and

negative correlation in another condition

sounds very interesting. However, it seems

that there is very little chance for such a

cluster to exist. Similarly, one can hardly find

such a set among a priori defined gene sets

(i.e. biological pathways). It is even difficult to

expect a biological pathway whose members

are all highly positively (or negatively) co-

expressed in a condition because a biological

pathway is a complex functional system with

interacting positive and negative feedback

loops. Thus, members of a biological

pathway may not be contained in a single

co-expression cluster, especially when the

cluster is not very big, but be split into

different clusters.

The dCoxS (differential co-expression

of gene sets) algorithm identifies (a priori

defined or semantically enriched) gene set

pairs differentially co-expressed across

different conditions (Figure 4 (c) and

Figure 5) [12]. Biological pathways can

be used as pre-defined gene sets and the

differential co-expression of the biological

Figure 5. The dCoxS algorithm. Expression matrices of two gene sets (upper panel) are transformed into Renyi relative entropy matrices by all
sample pair-wise comparisons (middle panel). For each condition, Interaction Score (IS), a kind of correlation coefficients, between a pair of entropy
matrices is obtained. Upper diagonal heat maps in the middle panel are transformed into scatter plots in the lower panel where ISs are depicted as
fitted lines. (Modified from [12]).
doi:10.1371/journal.pcbi.1002858.g005
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pathway pairs between conditions is ana-

lyzed. To measure the expression similarity

between paired gene-sets under the same

condition, dCoxS defines the interaction

score (IS) as the correlation coefficient

between the sample-wise entropies. Even

when the numbers of the genes in different

pathways are different, IS can always be

obtained because it uses only sample-wise

distances regardless of whether the two

pathways have the same number of genes

or not.

IS~ P
ivj (REG1 {REG2 )(REG1 {REG2 )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ivj (REG1 {REG1 )2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ivj (REG2 {REG2 )2
q

where RESi and RESj are the matrices of the

Renyi relative entropy of gene sets, Si and Sj.

When estimating the relative entropy, mul-

tivariate kernel density estimation was used

to model gene-gene correlation structure.

For example, when we compute the IS

of a pair of pathway expression matrices

with dimensions 20 (genes) by 25 and by

15 (samples) for a condition, we calculate

190 ( = (20*19)/2) sample pair-wise entro-

py distances for each pathway expression

matrix. The IS is obtained by calculating

the correlation coefficient between the two

entropy vectors. Finally, the statistical

significance of the difference of the Fisher’s

Z-transformed ISs between two conditions

is tested for each pathway pair.

Zf ~
1

2
|ln

1zIS

1{IS

� 	

The p-value of the difference in the Zf

values is calculated using the standard

normal distribution in equation.

P(Z§D
(Zf1{Zf2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1= N1{3ð Þz1= N2{3ð Þ
p

Zf1 and Zf2 are the Fisher’s Z-trans-

formed values of the IS under two

different conditions and N1 and N2 are

the numbers of upper-diagonal elements,

which is calculated by n(n21)/2 (n = num-

ber of samples) for each condition.

For the purpose of comparison, all gene

pair-wise Zf values are calculated for each

condition and the conditional difference of

the Fisher’s Z-transformed correlation

coefficients is tested for each gene pair as

follows,

Zf ~
1

2
|ln

1zCC

1{CC

� 	

p(Z§D
(Zf1{Zf2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1= N1{3ð Þz1= N2{3ð Þ
p

where CC indicates the correlation coeffi-

cient of a gene pair, Zfi Fisher’s Z-

transformed correlation coefficient and Ni

the number of samples in conditions i. The

p value for differential co-expression is

obtained according to the difference

Figure 6. Concept lattice. The binary relation set R = { (C1,b), (C1,f), (C1,j), (C2,b), (C2,d),…, (C5,e), (C5,h)} can be represented as (a) a relation matrix,
(b) a directed bipartite graph, and (c) a concept lattice. Colored rectangles in the relation matrix represent concepts. The same color represents the
same concept in (a) and (c). (Modified from [13]).
doi:10.1371/journal.pcbi.1002858.g006
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between the Z values from the normal

distribution. For each gene pair, three p

values are obtained, one from each

condition and another from the difference

between the conditions. Bonferroni cor-

rection is applied.

5. Biological Interpretation and
Biological Semantics

Biological interpretation of genomic

data requires a variety of semantic knowl-

edge. Biomedical semantics provides rich

descriptions for biomedical domain knowl-

edge. Biomedical semantics is a valuable

resource not only for biological interpre-

tation but also for multi-layered heteroge-

neous data integration and genotype-

phenotype association. Symbolic inference

algorithms may add further values.

Although GO and pathway-based anal-

ysis of co-expressed gene groups is one of

the most powerful approaches for inter-

preting microarray experiments, they have

limitations. The result, for example, is

typically a long unordered list of annota-

tions for tens or hundreds of gene clusters.

Most of the analysis tools evaluate only

one cluster at a time in a sequential

manner without considering the informa-

tive association network of clusters and

annotations. It is very time-consuming to

read the massive annotation lists for a

large number of clusters. It is unthinkably

hard to manually assemble the ‘puzzle

pieces’ (i.e., the cluster-annotation sets)

into an ‘executive summary’ (i.e., the

context of the whole experiment). Many

annotations are redundant such that many

clusters share the same annotations in a

very complex manner. Ideally, the assem-

bly should involve eliminating redundant

attributes and organizing the pieces in a

well-defined order for better biological

understanding and insight into the under-

lying ‘context’ of the experiment under

investigation.

BioLattice is a mathematical framework

based on concept lattice analysis to

organize traditional clusters and associated

annotations into a lattice of concepts for

better biological interpretation of micro-

array gene-expression data [13]. BioLat-

tice considers gene expression clusters as

objects and annotations as attributes and

provides a graphical summary of the order

relations by arranging them on a concept

lattice in an order based on set inclusion

relation. Complex relations among clusters

and annotations are clarified, ordered and

visualized. Redundancy of annotation is

completely removed. It also has an

advantage that heterogeneous biological

knowledge resources (such as transcription

factor binding, chromosomal co-location

and protein–protein interaction networks)

can be added to better explore the

underlying structures. The representation

of relationship between clusters can give

more insight to interpret functions of

interesting genes.

Figure 6 demonstrates a context (or a

gene expression dataset) with clusters and

annotations. Note that the relation matrix

between objects (i.e., rows or clusters) and

attributes (i.e., columns or annotations)

can be represented by a bipartite graph

(Figure 6(b)) or a concept lattice

(Figure 6(c)). A concept lattice organizes

all clusters and annotations of a relation

matrix into a single unified structure with

no ‘redundancy’ and no loss of informa-

tion. It is worth noting that the cluster

labels, C1 to C5, and the annotation labels

appear once and only once in the lattice

diagram (Figure 6(c)). Now one can

interpret the whole experimental context

(Figure 6(a)) by reading the ordered

concepts with clusters and annotations.

Structural analyses methods like prom-

inent sub-lattice analysis and core-periph-

ery structure analysis may help further

understanding [13]. Figure 7 shows a

BioLattice for a mouse anti-GBM glomer-

ulonephritis model [28]. Genes showing

significant time-dose effect were clustered

Figure 7. BioLattice of mouse renal inflammation induced by glomerular basement membrane (GBM) antibody.
doi:10.1371/journal.pcbi.1002858.g007
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into 100 clusters and annotated with GO

terms. The whole complex clusters and

annotations are organized into a single

unified lattice graph, providing an ‘executive

summary.’ The Ganter algorithm [29] can

be used to construct BioLattice. A web-based

tool using Perl, JavaScript and Scalable

Vector Graphics are available at http://

www.snubi.org/software/biolattice/. Prom-

inent sub-lattice analysis reveals a mean-

ingful sub-structure converging into clus-

ter 85, which has the GO term

‘chemotaxis’ and inherits ‘proteolysis and

peptidolysis’ (clusters 58 and 96), ‘inflam-

matory response’, ‘immune response’, ‘protein

amino acid phosphorylation’, and ‘cell surface

receptor linked signal transduction’ (cluster 60),

‘signal transduction’ (cluster 19), ‘intracellular

signaling cascade’ (cluster 65). It is clearly

visualized that cellular immune response

system activation is the core pathological

process in the IgA nephropathy model of

kidney and clusters 19, 58, 60, 65, 5 and

96 are within those concepts.

Context in concept lattice analysis is a

triplet (G, M, I) consisting of two sets G and M

and a relation I between G and M. The

elements of G and M are called objects and

attributes, respectively. We denote gIm or (g,

m) M I to show that object g has attribute m. For

a set A # G of objects, we define A9: = { m M M

| gIm for all g M A } (i.e., the set of attributes

common to the objects in A). Corresponding-

ly, for a set B#M of attributes, we define

B9: = { g M G | gIm for all m M B } (i.e., the set of

objects that have all attributes in B).

Concept lattice analysis models concepts

as units of thought, consisting of two parts.

A concept of the context (G, M, I) is a pair

(A, B) with A#G, B#M, A9 = B and B9 = A.

We call A and B the extent and the intent,

respectively, of concept (A, B). The extent

consists of all objects belonging to the

concept while the intent contains all

attributes shared by the objects. The set of

all concepts of the context (G, M, I) is

denoted by C(G, M, I). A concept lattice is

drawn by ordering (A, B), which are defined

as concepts of the context (G, M, I). The set

of all concepts of a context together with

the partial order (A1, B1)#(A2, B2): u A1

# A2 (which is equivalent to B1 $ B2) is

called a concept lattice.

We regard A as defining gene expression

clusters that share common knowledge

attributes and B as defining the knowledge

terms that are annotated to the clusters.

The concepts are arranged in a hierarchi-

cal order so that the order of C1#C2 u
A1 # A2 u B1 $ B2 is defined at

C1 = (A1, B1), C2 = (A2, B2). The top

element of a lattice is a unit concept,

representing a concept that contains all

objects. The bottom element is a zero

concept having no object.

6. Summary

This chapter has shown major compu-

tational approaches to facilitate biological

interpretation of high-throughput micro-

array and RNA-Seq experiments. The

enrichment analysis with ontologies, bio-

logical pathways or external resources is

widely used to interpret the functional role

of correlated genes or differentially ex-

pressed genes. In analysis steps, the groups

of genes are assigned to the associated

biological annotation terms using GO

terms or biological pathways. Then it is

necessary to examine whether gene mem-

bers are statistically enriched in each of the

annotation terms or pathway by compar-

ing background set by measuring statistical

test such as Chi-square, Fisher’s exact,

binomial and hypergeometric test. Unlike

previous approaches identifying a set of

significant genes, Gene Set Enrichment

Analysis uses pre-defined sets to search for

groups of functionally related genes with

coordinated expression across a list of

genes ranked by differentially expression.

Differential co-expression analysis deter-

mines the degree of co-expression differ-

ence of a gene set pair across different

conditions. The dCoxS algorithm identi-

fies differentially co-expressed gene set

under different conditions. Outcomes in

microarray and RNA-Seq data can be

transformed into the graphical structure

that represents biological semantics. A

number of biomedical annotation and

external repositories including clinical

resources can be integrated by biological

semantics analysis tools such as BioLattice.

7. Exercises

1) Select significantly DEGs from the train

dataset of AML (Acute Myelocytic

Leukemia) and ALL (acute lympho-

blastic leukemia) expression data

(http://www.broadinstitute.org/cgi-

bin/cancer/publications/pub_paper.

cgi?mode = view&paper_id = 43) and

find enriched GO terms from an

ontology analysis tool. Dataset and

analysis functions are also included in

R statistical package, golubEsets in

Bioconductor.

2) List significantly enriched pathways

using a pathway analysis tool with

the dataset in Exercise 1.

3) Find KEGG pathways significantly

associated with leukemia subtype in

the 2-sample comparison of AML

and ALL by GSEA through the

Kolmogorov-Smirnoff test. Analysis

and data set are provided by SAFE R

(http://bioconductor.org/packages/

2.0/bioc/html/safe.html).

4) Identify the differentially co-ex-

pressed gene set pairs using dCoxS

with simulated data in (http://www.

snubi.org/publication/dCoxS).

Compute interaction score between

matrix M and M1 using ias function.

And, compute interaction score be-

tween M and M2. Finally, using

compcorr function, estimate signifi-

cance of difference of ias. Note that in

compcorr function, n1 and n2 is the

number of all possible sample pairs.

5) Report semantic relationships of

pathways and GO terms using Bio-

Lattice (http://www.snubi.org/

software/biolattice/). Use the result

of k-means clustering (k = 10) with
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DEG in Exercise 1. Select Category

as ‘biological process,’ p-value,0.05.

Answers to the Exercises can be found

in Text S1.
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apart.
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thousands of genes at once to create a global picture of cellular function using
DNA microarray technology.

Gene set: a meaningful grouping of genes like biological pathways, genes
sharing certain regulatory-motifs, genes sharing certain functional annotations,
and certain disease-related gene sets.

Gene Set Enrichment Analysis: an algorithm to determine whether an a priori
defined set of genes shows statistically significant coordinated differential
expression between conditions.

Gene Ontology: a set of controlled vocabularies in molecular function,
biological process and cellular component for the standardized annotations of
genes and gene products across all species.
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Kolmogorov–Smirnov test (K–S test): a nonparametric test for the equality of
continuous, one-dimensional probability distributions that can be used to
compare a sample with a reference probability distribution (one-sample K–S test),
or to compare two samples (two-sample K–S test).
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