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Abstract

As animals move through the world in search of resources, they change course in reaction to both external sensory cues
and internally-generated programs. Elucidating the functional logic of complex search algorithms is challenging because
the observable actions of the animal cannot be unambiguously assigned to externally- or internally-triggered events. We
present a technique that addresses this challenge by assessing quantitatively the contribution of external stimuli and
internal processes. We apply this technique to the analysis of rapid turns (‘‘saccades’’) of freely flying Drosophila
melanogaster. We show that a single scalar feature computed from the visual stimulus experienced by the animal is
sufficient to explain a majority (93%) of the turning decisions. We automatically estimate this scalar value from the
observable trajectory, without any assumption regarding the sensory processing. A posteriori, we show that the estimated
feature field is consistent with previous results measured in other experimental conditions. The remaining turning decisions,
not explained by this feature of the visual input, may be attributed to a combination of deterministic processes based on
unobservable internal states and purely stochastic behavior. We cannot distinguish these contributions using external
observations alone, but we are able to provide a quantitative bound of their relative importance with respect to stimulus-
triggered decisions. Our results suggest that comparatively few saccades in free-flying conditions are a result of an intrinsic
spontaneous process, contrary to previous suggestions. We discuss how this technique could be generalized for use in
other systems and employed as a tool for classifying effects into sensory, decision, and motor categories when used to
analyze data from genetic behavioral screens.
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Introduction

Active movement is one of the defining features of animals, and

the use of locomotion to search for resources within the

environment is likely among the most ancient of behaviors.

Observations on motile organisms, ranging in scale from bacteria

to whales, indicate that search patterns are structured by a

combination of internal processes and external cues [1,2]. Sensory

systems enable organisms to detect favorable objects at a great

distance [3–5] and they use this ability to localize resources by

either directed motion (taxis) or changes in locomotor statistics

(kinesis). Prior research suggests that, in the absence of external

cues, the animal behavior is generated by internal processes, and

that the overall animal fitness is sensitive to the exact character-

istics of this internal process (e.g., Levy statistics) [6–18]; it has also

been questioned whether observed large-scale statistics can give

any insight on an internal process that generated the behavior, and

whether the internal processes can dominate over stimuli-elicited

behavior [19–22]. As for the internal processes, these can be

divided into truly stochastic sources, and deterministic results of a

deliberate, but unobservable, internal mechanism based on

internal metabolic/neural states. When observing an intact motile

organism, it is not easy to determine which components of its

locomotion behavior are triggered by internal processes versus

external cues, yet such classification is essential for deciphering the

underlying logic of its movement and search behavior. The task is

further complicated by the fact that an external observer might not

be able to distinguish between truly stochastic processes and the

deterministic results of a deliberate, but unobservable, internal

mechanism. For example, software pseudo-random number

generators produce strictly deterministic sequences, which appear

to be random to an external observer who does not have access to

the internal state of the system [23]. A major goal of both cell

biology and neuroscience is explaining the molecular and cellular

bases of these three qualitatively different processes (sensory-

driven, purely stochastic, and deterministically based on internal

states).

If the salient features of the external world are known, it is

possible to gain insight into sensory-driven behaviors through

the use of sensory-response correlation [24]. The analysis of the

internally-driven processes is much more challenging. Given

uncertainty in measurement and the inability to perfectly
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reproduce experimental conditions from trial to trial, variability

in the results of behavioral experiments has often been treated

as a limit on our ability to measure stimulus-driven behavior. In

this view, variability in responses from trial to trial reflects

irrelevant components of behavior, which are averaged until the

mean—interpreted as the response the animal ideally would

have produced—becomes clear [25]. From the opposite

perspective, many researchers have attempted to artificially

remove all relevant sensory input to an animal and measure

behaviors in conditions of sensory deprivation to reveal intrinsic

properties, especially the statistical distributions of behaviors

[26–28]. Although focusing in isolation on either the stochastic

[9,29,26] or the sensory components [30] of search behavior

have provided key insights, neither of these extremes is sufficient

to capture the full range of processes at play as an animal moves

under natural conditions. Attempts to investigate the interaction

of internal and external processes include studies of bacteria

[31] and nematode worms [32,33], organisms for whom

chemicals provide the most salient cues for food search. For

larger animals with image-forming eyes, vision may provide

another essential cue in search algorithms, because vision is the

only sense which allows to perceive remote parts of the

environment. Often vision cannot be considered separately

from the mechanics of locomotion [34].

Flies are a model of computational efficiency and robustness, to

date not equaled by artificial systems, which often seek to imitate

nature [35,36]. Much is known about fly vision [37,38]. Since the

pioneering work of Kennedy [39] and Mittelstadt [40], the

behavioral responses of flies to experimenter-defined visual stimuli

have been extensively investigated. Electrophysiological recordings

have complemented and extended our knowledge of phenomena

such as the neural basis of motion detection [41–44] and other key

aspects of sensory processing, such as receptive field tuning [45].

However, there are many challenges in the identification of neural

processing and how it produces complex behavior, especially as

regards the characterization of ‘‘discrete’’ behaviors, such as the

rapid turns (‘‘saccades’’) of Drosophila, which are the object of this

study. In fact, many studies which offered complete characteriza-

tion of the animal response are limited to ‘‘continuous’’ behavior,

for which they provide linear (or ‘‘linearized’’) models [46–49]; this

allows using techniques such as linear system identification.

Identifying the neural causes for ‘‘discrete’’ behavior involves

solving a different set of problems. Firstly, there are the problems

of segmentation and classification of behaviors (including the

definition of what ‘‘behavior’’ and ‘‘a behavior’’ are), for which it

is often necessary the use of nonlinear machine learning methods

[50]. Then, there is the problem of building models that can

correlate the stimulus with the behavior(s). While it is possible to

postulate models that also integrate well with our understanding

of lower-level behavior [51,52], it is not clear how such methods

can be identified from the data. On the practical side, it is evident

that discrete decisions, such as turning decisions, are meant to

guide exploration and therefore should be investigated in

naturalistic situations. This poses practical problems of tracking

the animal position in a large environment, and it also precludes

(at the current level of technology) the uses of direct neural

recording. In fact, comparatively few attempts have been made to

correlate parameters of visual stimulus with behavioral responses

in unrestrained conditions [53–56].

In this work, we present an analysis that can quantitatively

discriminate the effect of visual stimulus as opposed to internal

processes in the generation of saccades in the fruit fly. Our

conclusions are that visual stimulus has a dominant role. One

important message of our work is that it is very difficult to

identify models of complex behavior that can explain every-

thing, often because insufficient data can be collected. There-

fore, it is important to ‘‘search for simplicity’’ [57], for example

by framing the problem as dimensionality reduction, and to use

models that a posteriori can justify their assumptions. While we

describe this analysis for visual processing in Drosophila, our

goal is to construct a general method that can be used for other

sensory systems, other animal species, or in the context of

genetic screens.

Methods

Fly care and experimental treatment
Flies from the laboratory stock derived from 200 wild-caught

females were reared on a 16 h:8 h light dark cycle under standard

laboratory conditions. Three day old adult female flies were

anesthetized with cold and individually housed within centrifuge

tubes containing a moist tissue paper. Flies were starved (but

provided with water) in the tubes for four to six hours before being

released into the flight arena. Most flies would immediately begin

flying, and we terminated tracking after the fly landed. We then

removed each fly with a wand attachment of a vacuum cleaner

before introducing another fly. Thus, each recorded trajectory is

derived from a fly’s initial experience exploring the novel

environment.

The flight arena was a 2 meter diameter, 80 cm high

cylinder (see Figure 1A). 10 cm610 cm red and green gel

filters (Roscolux) were attached to the arena in a regular

checkerboard arrangement and provided a high contrast visual

stimulus to flies near the wall. One meter from the wall (i.e., at

the center of the arena), the angular wavelength of this pattern

was ,11u, and consequently would be twice the inter-

ommatidial spacing of a ,5.5u in Drosophila [58]. The

particular red and green filters were chosen to have similar

infrared transmission to facilitate tracking using cameras

outfitted with long (IR) pass filters. The arena was illuminated

from outside with a circular array of eight 750W Fresnel stage

lights pointing towards the arena center. These lights provided

both visible and infrared light for fly visual responses and

machine vision tracking, respectively.

Author Summary

Researchers have spent considerable effort studying how
specific sensory stimuli elicit behavioral responses and
how other behaviors may arise independent of external
inputs in conditions of sensory deprivation. Yet an animal
in its natural context, such as searching for food or mates,
turns both in response to external stimuli and intrinsic,
possibly stochastic, decisions. We show how to estimate
the contribution of vision and internal causes on the
observable behavior of freely flying Drosophila. We
developed a dimensionality reduction scheme that finds
a one-dimensional feature of the visual stimulus that best
predicts turning decisions. This visual feature extraction is
consistent with previous literature on visually elicited fly
turning and predicts a large majority of turns in the tested
environment. The rarity of stimulus-independent events
suggests that fly behavior is more deterministic than
previously suggested and that, more generally, animal
search strategies may be dominated by responses to
stimuli with only modest contributions from internal
causes.

External and Internal Factors in Search Flights
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Fly tracking
A detailed description of our tracking system may be found in

[59]. Briefly, we used 11 cameras (6 monochrome Pt. Grey Firefly

MV USB cameras and 5 monochrome Basler A602f cameras) with

wide-angle lenses and infrared pass, visible cut filters (R72, Hoya

Filters) to view the interior volume of the flight chamber. The

cameras were positioned so that a fly within the tracking volume was

viewed by 2 or more cameras at any given time, enabling a 3D

estimate of its position (Figure 1Bi). The cameras were first

calibrated to compensate for image warping non-linearities

(deviations from the pinhole model) and then the extrinsic and

intrinsic parameters describing the pinhole model were found. Flies

were tracked with an extended Kalman filter (EKF), in which the

motion model was a linear constant velocity model, and fly

maneuvering is captured by the stochastic component of the

Kalman filter. Because tracking updates occurred at a high rate (60

fps) relative to fly maneuvering, we found this simplification to work

well in practice. The 3D estimate of the fly position is recovered by

triangulation from the 2D tracking data of each camera, and taking

into account the relative uncertainty of each observations.

Figure 1. Data collection, saccade detection, reduced coordinate space, time histogram, number of saccades histogram. Panel A
shows the experimental setup: the fly is tracked in a circular arena of 1 m radius. The retro-illuminated checkerboard pattern gives a uniform stimulus
to the fly. Panel B-i shows some of the trajectories recorded in the arena. The trajectory can be interpreted as a mix of smooth turns and rapid turns,
called ‘‘saccades’’, which are responsible for most of the total angular displacement of the animal. We wrote software to detect these saccades events,
based on two different algorithms, documented in the Supplemental Materials. In this paper, we only consider these discrete saccade events (Panel
B-ii). Panel C shows the two coordinate systems we use in this paper. We take advantage of the circular symmetry of the environment, along with a
hypothesis of planarity, to reduce the degrees of freedom to 2. Panel C-i shows the choice of the axis-angle/distance from the wall coordinates. Panel
C-ii shows the ‘‘fly-centric view’’. The fly configuration is reduced to 2 spatial coordinates by rotating the configuration so that the animal points ‘‘up’’
with respect to the diagram. We remark that all the results in this paper do not depend on the choice of coordinates. Panel D shows a density plot of

Tk, which is the time spent at each configuration ck. Panel E shows the number of saccades (both left and right) detected at each configuration.
doi:10.1371/journal.pcbi.1002891.g001

External and Internal Factors in Search Flights
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Saccade detection
Many species of flies, including Drosophila, exhibit rapid changes

in heading as they fly, termed ‘‘saccades’’ [53]. Between saccades,

flies tend to maintain an approximately straight course, and

saccades account for at least 80% of the total net change in

heading during flight [60]. There is little doubt that saccades can

be triggered by visual stimuli, but the degree to which visual

feedback plays a role in determining the velocity, duration, and

amplitude of the resulting turn is unclear. Experiments using a

magnetic tether, which permits free rotation about the yaw axis,

suggest that flies do not respond to visual feedback during a

saccade [61]. On the other hand, Stewart et al. [56] have observed

a rebound effect after saccades in free flight, which they suggest is

consistent with active optomotor feedback during the maneuver.

This discrepancy is not of direct interest here, however, as we deal

exclusively with the decision of initiating a saccade.

To analyze saccades within a flight trajectory, one should

choose a detection algorithm that, given the trajectory data,

returns a series of saccade events, possibly with other attributes

such as direction, amplitude, velocity, etc. In the past, several

detection algorithms have been proposed, each one implicitly

using a slightly different definition of saccade, and each one able to

compensate for different sources of noise. In practice, large

saccades are such distinct events that all algorithms agree with

respect to most classifications, but different algorithms may

disagree on detection of small saccades. We make sure that our

results are robust to the choice of the algorithm, by using two

distinct algorithms based on different principles. The two

algorithms are described in detail in Text S1 and their source

code is available on line. Briefly, the Geometric Saccade Detector

(GSD) detects saccades from the x-y planar trajectory. The

Angular-Velocity based Saccade Detector (AVSD) works primarily

by considering the smoothed angular heading rather than the

planar position. Unless otherwise noted, the statistics shown

through the paper are derived using GSD, which is a posteriori

shown to be better suited for these particular experimental

conditions and equipment. Alternative figures showing the same

statistics obtained from the AVSD algorithm are available as part

of Text S1.

Capturing behavior determinism and randomness using
rate-variant Poisson processes

Figure 2A illustrates the conceptual approach of our analysis.

We denote by x(t) the animal’s physical spatial configuration (its

position and velocity in a fixed reference frame). The stimulus y(t)
is the set of all sensory cues perceived by the animal, and it is a

function of both the spatial configuration x(t) and the appearance

of the world W . Whereas x(t) is a concrete variable that we can

possibly measure, the stimulus y(t) and the world W are

placeholders for things that, in general, are unknown. The actions

u(t) (e.g. saccades in our case) are the external manifestations of

the internal neural processing, which depend both on the

instantaneous stimulus as well as on j tð Þ, another placeholder

variable that represents the animal’s internal state (metabolic

states, neural states, etc.), and which has dynamics of its own. We

assume that it is possible to observe the spatial configuration x tð Þ
as well as infer the actions u tð Þ from the observations, but that the

internal state j(t) is not observable.

We make a distinction between obtaining a functional model of

an animal’s behavior and identifying the underlying neural

processes. Obtaining a functional description of behavior means

obtaining a model that can predict the actions u(t) given the

spatial configuration x tð Þ and a description of the world W . In

principle, we can do this by observing an animal’s behavior with

enough samples of x tð Þ, W and u(t). In general, however, there

are a variety of neural models that could produce the same
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Figure 2. General reference models for the animal behavior and decision making. Panel A illustrates the nomenclature that we use in this
paper: x(t) is the animal configuration (position/velocity), which ultimately depends on the past history of the animal decisions, the body dynamics,
and environmental effects, here abstractly represented by the variable W . The stimulus y(t) perceived by the animal is a function of the animal
configuration x(t) and the geometry/textures of the environment. In the most general terms, the actions of the animals, u(t), are generated on the
basis of the instantaneous stimulus y(t) as well as the internal state j(t), which includes, for our purposes, everything which is not observable,
including metabolic and neural states. Panel B illustrates the specialization of the model that we postulate. The decisions of the animals are
represented by series of observable events belonging to a fixed set of classes; in our case these are left and right body saccades. The events are
assumed to be generated by a set of interacting rate-variant Poisson processes. The instantaneous rates ri(t) depend on several factors, including the
unobservable states, and the external stimulus. The main hypothesis of this paper is that the contribution of the stimulus on the rate can be written
as a function of a low-dimensional feature z(t) computed from the stimulus. The inference problem in this paper consists in identifying the functions
fi that best explain the rates as a function of the stimulus (ri(t)~fi(z tð Þ)). The diagram also shows the impact of other unmodeled neural processing
based on internal states, acting as a disturbance in the model. We do not infer a functional description of this modeling, but we are able to bound its
contribution and show that it is small with respect to the stimulus-induced contribution. The diagram also shows the reduced configuration c(t), the
subset of x tð Þ on which the stimulus actually depends. The reduced configuration depends on the particular experimental settings; in our case, we
postulate that in a circular arena the stimulus is dependent on only two degrees of freedom. This is a hypothesis that can be verified a posteriori.
doi:10.1371/journal.pcbi.1002891.g002

External and Internal Factors in Search Flights

PLOS Computational Biology | www.ploscompbiol.org 4 February 2013 | Volume 9 | Issue 2 | e1002891



functional model. For example, many behaviors appear to be well-

localized in time, suggesting an ‘‘action potential’’ neural model,

but the underlying neural model can have very different properties

[62] (in other words, the microscopic explanation might be quite

different than what the macroscopic observations suggest). The

model that we now describe and that we will identify should be

interpreted as a purely functional model, which can inform the

search for neural models, to make sure that they are compatible

with the externally observable free flight behavior.

Figure 2B shows the particular model that we use in this paper.

It is a particular form of the general model discussed above

(Figure 2A). In this model, we propose that the animal’s actions

u(t) can be summarized by the saccade events. We divide the

saccade events in two classes: left and right saccades. In principle,

one would want to consider additional attributes of the saccades,

such as speed, duration, and amplitude. The analysis might also be

expanded to consider other easily identifiable events [63].

However, limiting ourselves to a binary characterization of

saccades allows us to model the behavior generation as Poisson

processes, which offers relatively easy inference. We model saccade

generation using rate-variant Poisson processes, i.e., we assume

that, for each class of events, internal and external factors influence

a time-varying event rate according to a quantitative relation that

we will attempt to identify.

The most important assumption of our method (which can and

will be verified a posteriori) is that, for the purpose of generating the

behavior, the high-dimensional output y(t) can be compressed

down to a low dimensional ‘‘feature’’ z(t). This assumption is

implicit in many other previous studies, and it is informed by the

knowledge of the underlying neurobiology: the first level of sensory

processing in flies and other animals consists in taking a very high-

dimensional sensory stream and computing the few behaviorally-

relevant features from it. Our only assumption is that this low-

dimensional feature exists - we do not assume that we know this

feature. However, we can attempt to automatically identify this

feature from the observable data. It is important to note that we do

not assume to know how this feature is computed from the

stimulus. Indeed, the advantage of our method is that it allows

identifying this feature based only on the observable behavior,

without postulating anything on the sensory processing.

Figure 2B also shows explicitly that, in addition to the feature-

dependent pathway in our model, other unmodeled processing

influences the behavior. The effect of this unmodeled processing

will be quantitatively estimated as well. The saccade events are

assumed to be generated by a set of interacting Poisson process

with variable rate ri tð Þ,i[fL,Rg. The index i stands for either one

of the two classes of events (L: left, R: right). The variable rate ri(t)
is assumed to depend both on the stimulus y(t) and the internal

state j(t), thus incorporating both random and deterministic

effects. We write ri(t) as the sum of three factors:

ri tð Þ~fi z tð Þð ÞzrI
i j tð Þð ÞzrR

i , ð1Þ

where the term fi(z) is the contribution of the external stimulus

through the feature z; the term rI
i jð Þ is the contribution of the

internal state j; and the term rR
i represents the contribution of a

purely random stochastic process that does not depend either on

an internal state or the stimulus. By omitting some of the terms in

the equation above, one can recover many other simpler models.

For example, purely random behavior is obtained by setting

ri tð Þ~rR
i .

The Poisson processes interact by inhibition. If any process

generates an event, then any event generated from that process or

any other process for a period of length D is ignored. This is meant

to model a feature of many fixed action patterns that, once

initiated, must run to completion before a different motor program

can be initiated.

Finally, Figure 2B shows another variable c(t), which we call

‘‘reduced configuration’’. We define c(t) as the subset of the spatial

configuration variables that actually influence the stimulus, for a

particular class of environments W �. In general, for a freely flying

animal, x(t) is at least a 12 dimensional quantity, including the 6

degrees of freedom for position/orientation and the corresponding

6 for velocities (additional degrees of freedom in the animal spatial

configuration would be derived from the positions of body joints,

such as the neck and wing positions). For particular environments,

however, the stimulus is only dependent on a subset of x(t). For

example, if the environment is distant enough, then the visual

stimulus does not depend on the forward velocity. Therefore, even

though the spatial configuration x(t) is at least 12-dimensional,

actually the stimulus depends on a smaller variable c(t), i.e., the

reduced configuration.

We will show that it is possible to identify all unknowns in this

model. In particular, we will identify how the feature z depends on

the reduced configuration c, and how the rates depend on the

feature. Remarkably, it is possible to do this without assumptions

on how the feature z is computed from the stimulus y or how the

stimulus y depends on the reduced configuration c. We only

assume to be able to observe the reduced configuration c(t) and

the generated saccade events. Before describing the method, we

first discuss how this model based on rate-variant Poisson processes

allows us to represent different functional models.

Predictions of different functional models
In Figure 3 we illustrate the predictions of four qualitatively

different functional models in terms of the observed statistics. On

the left side we show the functional model, and on the right we

show the expected observed event rates fi zð Þ as a function of the

feature z. This exercise assumes that we know how to estimate the

feature, which we will show later. Here we describe what we would

expect to find, before embarking on the actual computation of z.

Figure 3A shows a ‘‘hard threshold’’ model, based on the

computation of a single feature z, which is then thresholded to

obtain the event rate. A Poisson process then generates the events

based on this time variant rate. The ‘‘stochastic trigger’’ in the

figure masks the fact that there are two processes generating two

classes of events, and that these processes are interacting (see

discussion above), which is not relevant to the present discussion. If

the absolute value of the feature is below a threshold, no event is

generated; otherwise, saccades to the left and right are generated

at a fixed rate. A large fixed rate would mean that the model is

practically deterministic, with a large stimulus feature z resulting in

a behavioral event with only rare failures. On the right side of the

figure, we show the observed event rates as a function of the

feature z. For this simple model, the observed rates as a function of

the feature are straight steps. We remark that our analysis does not

assume necessarily that the feature exhibits a hard threshold as in

this simple model. We choose this shape merely because it allows

visualizing the effect of different sources of noise.

In particular, we are interested in understanding the implica-

tions of a noise source that acts on the computation of the feature

(sensory noise) compared to noise that generates behavior in a

parallel process independent of the stimulus-computed feature

(decision-making or motor noise).

Figure 3B shows the effect of measurement noise on the hard

threshold model. Random fluctuations in the feature turn the hard

threshold into a soft threshold.

External and Internal Factors in Search Flights
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Figure 3C shows the effect of adding a spontaneous generation

process in parallel to the feature pathway. This has the effect of

raising the predicted event rate by a constant value, as the

parallel process is independent of the feature. A parallel

generation process that depended on an unobservable internal

state would have the same expected statistics if the internal state is

uncorrelated with the feature. This means that a constant

baseline event rate that is independent of the feature must be

interpreted as the joint contribution of a purely stochastic

spontaneous event generation together with a deterministic

response based on internal states.

It is also important to consider the effect of another unmodeled

feature z0 on the event rate statistics, if we only model the

dependence of one feature z. This stems primarily from practical

concerns, because the dimensionality of the feature that it is

possible to identify depends primarily on the amount of data

available. Therefore, once the dimensionality of the feature is

fixed, we need a way to judge whether that dimension is sufficient

to describe the behavior.

Figure 3D augments the model of Figure 3A with an

additional pathway that uses a different feature z0. In such a

case, if we plot the rates versus the feature, we will not find a clear

functional dependency, indicating that the feature z is no longer

sufficient to explain the event rates. Conversely, if we find a clear

functional dependency, then we can say that the feature z is

sufficient to capture the influence of the sensory stimulus on the

behavior. This does not imply that z is the only behaviorally

relevant feature of the stimulus, because there could be other

features that are relevant for other behaviors not considered in

the analysis.

Our identification algorithm, described in the next section,

recovers the best one-dimensional feature z that explains the event

rates. This permits constructing a function in which the

experimental event rate is plotted against the feature curve.

However, we anticipate that the experimental results, being

dependent on experimental data, will have error bars both for

dependent and independent variables. Strictly speaking, even if

one finds a one-dimensional feature that uncovers a deterministic

dependency between feature and rates compatible with the error

bars, it is not possible to conclude that there is only one feature,

because the effect of a second feature might be masked by the

measurement noise. In this sense, our claims that one feature is

sufficient is an application of parsimony.

In summary, we can identify the contributions of several

qualitative factors by plotting the event generation rates as a

function of z. Measurement noise will soften the curve (e.g., a hard

threshold is turned into a soft threshold). A parallel purely

stochastic event generation process has the same effect of a

deterministic process based on an internal state uncorrelated with

the feature, namely it raises the curve by a fixed baseline rate

Figure 3. Simple models of decision making processes and relative experimental predictions. This figure shows, on the left, several
simplified saccade generation schemes, and their prediction in terms of the observed statistics. All models assume that the visual stimulus y(t) is
processed as to extract a one-dimensional feature z(t) on which the animal decisions are based. The models presented are meant to represent a
sample of qualitatively different functional models of behavior generations, and not necessarily biologically plausible models of neural computation.
Panel A-i shows a ‘‘hard threshold’’ model: if the feature z(t) is below a threshold, no event is generated, otherwise, the event is generated
stochastically with a certain rate. Panel A-ii shows what would be the prediction of the model if we were to plot the saccade generation rate (an
observable quantity) as a function of the feature z(t), assuming we knew how to compute z. Panel B shows the same model, but with noise affecting
the computation of the feature. The effect on the observed rate would be to transform the hard threshold in a soft threshold. Panel C shows a model
in which there is a parallel saccade generation mechanism, which generates saccades randomly independently of the stimulus. The effect of this on
the measured rate is to raise uniformly the curves. Also the contribution of some internal processing based on internal neural states which were not a
function of the instantantaneous stimulus would have the same effect on the rate statistics. Panel D shows the case where the behavior depends also
on some other feature of the stimulus z0 in addition to z. In this case, if we plotted the rates as a function of z, ignoring the dependency on z0 , we
would see that it is not possible for z to explain the rates by itself. Therefore, once we have identified the curves fL, fR , and the feature z, we are able
to identify the contribution of a random generation process (or based on an internal state) as a uniform baseline saccade rate; and we can infer
whether another feature is necessary to explain the behavior by the vertical spread of the rates.
doi:10.1371/journal.pcbi.1002891.g003
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independent of z. If another unmodeled feature z0 influences the

behavior, there is not a strict functional dependence between the

rates and the feature z.

Identification of the feature z
We devised a procedure that obtains an estimate of the best one-

dimensional feature of the input that predicts the observed event

rates. We explain here the basic idea, and provide details in Text

S1. Intuitively, the feature and event rates can be obtained from

the spatial statistics of the observed behavioral output. With

respect to the discussion so far, the main conceptual step consists in

translating the problem from the time to the space domain. So far,

we have written the feature z(t) as a time-varying quantity. We

have also assumed that z tð Þ depends on the stimulus y(t), and that

the stimulus depends on the animal spatial configuration x(t), or

more precisely, on the reduced configuration c(t). Therefore, we

rewrite our model writing z(c) instead of z(t). The quantity z(c) is

a spatial field that we interpret as the feature computed from the

typical stimulus experienced at the reduced configuration c. We

will fit a model of the kind:

ri cð Þ~fi z(c)ð Þzr0
i , i[ L,Rf g ð2Þ

where ri(c) is the average event rate for the i-th class (L: left, R:

right) observed at the reduced configuration c; fi(z) denotes the

event generation rates for left and right saccades as a function of

the feature, and r0
i is constant term that we call baseline event rate.

Note the differences with respect to the previous model (Eq. 1).

First, we have written the rates as a function of the reduced spatial

configuration instead of time. Moreover, we do not model

explicitly the contribution of the internal state. As argued above,

given that we cannot measure the unobservable internal states

j(t), we cannot distinguish between a purely stochastic contribu-

tion and the contribution of an internal state

Therefore, the constant term r0
i will be an estimate of the joint

contribution of the two terms that we cannot distinguish:

r0
i ~rR

i zE rI j tð Þð Þ
� �

, ð3Þ

where Efg indicates the expected value taken over the whole

trajectory.

We summarize here the three main phases for estimating z(c)
from the behavioral data, while leaving the details to Text S1.

First, the reduced configuration space c(t) is discretized into spatial

cells with a resolution that depends on the amount of data

available. For each of these cells, basic statistics are computed,

such as the average time spent in each cell, as well as the observed

event rates in the cell. One advantage of the algorithm is that these

spatial statistics, averaged over the whole trajectory, are intrinsi-

cally robust to measurement noise and uncertainty in the event

detection algorithm. Next, the event generation rates ri(c) are

computed from the observed rates. Because we assume that the

Poisson processes interact with each other, and therefore the

statistics of each process cannot be processed separately, and

appropriate steps are required to take into account the interaction.

Once the average event generation rates rL cð Þ, rR cð Þ are

estimated, then we find the feature field z cð Þ that explains both

event generation rates, in the sense that there exist two functions

fL and fR such that the constraint described by equation (2) holds.

Writing the constraint explicitly for each cell ck, and letting

zk~z ck
� �

the value of the feature to estimate, we can see that we

have a system of constraints of the kind:

rL ck
� �

~fL zk
� �

zr0
L

rR ck
� �

~fR zk
� �

zr0
R:

(
for k~1, . . . ,#cellsð Þ

The generated event rates rL ck
� �

and rR ck
� �

on the left side have

already been estimated, while both the feature value zk and fL and

fR have to be estimated. The constants r0
L and r0

R can be

incorporated as part of fL and fR. Note that this can be interpreted

as a dimensionality reduction problem, because we have to find

one cause (the feature z) that explains two effects (left and right

event rates) at the same time.

In our case, we solve a relatively simple instance of the problem

in which z is assumed to be a scalar function. Therefore, the

constraints can be algebraically manipulated to obtain a closed

form solution, which also takes into account the uncertainty in all

the data and provide error bars for the estimated feature. The

details are given in Text S1. Our approach is very generic, and can

be extended to scenarios with more than 2 behaviors and more

than 1 feature.

The feature z should be considered a dimensionless quantity of

arbitrary scale. In fact, the equations that define it have multiple

solutions. For example, suppose that z,fL,fRð Þ is one solution of the

system of equations given by (Eq. 2). If a is any invertible function,

then one can verify that a zð Þ,a{1 fLð Þ,a{1 fRð Þ
� �

is a solution as

well. Therefore, once we have obtained a solution for z, we can

rescale it using any function a that we find convenient. In the

following, we choose the rescaling function such that z is uniformly

distributed in the interval ½{1,z1�.

Results

Event statistics and estimated feature
We tracked 88 flies for a total of 5130 seconds or approximately

1.4 hours. Of the total recorded time, we considered only the

4814 seconds of data in which the flight speed exceeded 5

centimeters per second. This threshold on the linear velocity

allowed working on tracks for which saccades were easier to detect.

We detected a total of 6613 saccades with this criterion, giving an

average saccade rate of 1.37 saccades per second.

We chose a reduced configuration c(t) that is two-dimensional.

This follows from considering only planar motion (which reduces

the effective degrees of freedom to 3), and using the symmetry of

the circular arena (which reduces the degrees of freedom to 2). An

implied assumption (which can be verified a posteriori) is that the

fly’s response is not dependent on the variables not considered in

the analysis; for example, even though it is known that flies [64]

and other insects [65] use gaze to stabilize vision, there is no gaze

variable in our model. This is because the resolution of our

measurements is not enough to observe directly the relative pose of

head and body, in terms of pitch, roll, or yaw. All components of

the spatial configuration that are theoretically relevant for the

stimulus, but cannot be measured, are ‘‘hidden’’ states whose

contribution is lumped into the constant term in (2).

The two-dimensional reduced configuration can be parameter-

ized in different ways, the results being independent of the

particular parameterization. The primary parameterization that

we use for computation uses (d,Q) for coordinates: d is the distance

to the wall and Q is the angle that the fly heading forms with

respect to the axis of the arena (Figure 1Ci). We chose this

parameterization because it corresponds to two behaviorally

relevant variables. We preferred the axis angle Q over other

potentially valid representations for the heading (e.g., approach
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angle) because the representation is not singular, as Q[½{180 deg,
z180 deg� for any value of d.

We compute all statistics in the (d,Q) space, but we also use

another choice of coordinates to visualize the same data. We

rotate the original (x,y,h) configuration of the fly around the

center of the arena, such that the new coordinates are

(x’,y’,z90deg). These ‘‘fly-centric’’ coordinates are displayed

using a top-down view of the arena, in which the fly always points

up (Figure 1Cii).

The reduced configuration c(t) was discretized in a grid with

sides of 36 cells (for Q) and 20 cells (for d) (Figure 1Di). The angle Q
was discretized in 36 cells of equal size 10 deg. The distance d was

discretized in 20 unequal intervals (note the unequal y axis in

Figure 1Di). Intervals for d are smaller at the center of the arena

and larger near the border, in such a way that each annulus of

radius 1{d and width Dd had the same area. To compensate for

the sparseness of the data, each cell extends 50% into the

neighbor’s area. Although these choices were somewhat arbitrary,

we obtain qualitatively similar results if we vary the number of the

cells.

Figure 1D shows the distribution of time spent at each point of

the arena, and Figure 1E shows the distribution of the detected

saccades using the GSD algorithm (see Text S1 for figures using

the saccades detected by the alternative AVSD algorithm). As

clearly evident in Figure 1Eii, most of the detected saccades

correspond to the fly avoiding the walls on the left or on the right.

However, those are the configurations where the flies spent more

time (Figure 1D). Therefore, we need to normalize this data to see

the behavioral patterns.

Figure 4A shows the estimated saccade generation function

ri(c) across the reduced configuration space. These rates are

obtained by first computing the observed generation rates mi cð Þ

by averaging the number of saccades (Figure 1E) by the time

spent in each cell (Figure 1D). Then the rates ri(c) are obtained

from mi cð Þ by correcting for an estimated inhibition interval

D~0:1 s. Panels B and C show the data separately for left and

right saccades (rL and rR). The most evident phenomenon is that

the fly tends to turn left when the wall is on the right (and vice

versa), however, there are many saccades of the opposite

direction initiated, even when the turning would orient the fly

towards the wall rather than away from it. This is the

phenomenon that we want the feature z(c) to explain: we want

to find the best spatial scalar value z(c) such that both rL(c) and

rR(c) can be written as a function of z. Figure 5Ai-ii shows the

estimated feature z(c) as a function of the reduced configuration

c. This is the unidimensional feature that best explains both the

left and saccade rates. The estimated feature using the alternative

saccade detector is qualitatively similar (Figure S1). We now have

the spatial feature z(c) as well as the rates r cð Þ as a function of the

reduced configuration c and can now plot r as a function of z
(using c as an implicit variable). This is shown in Figure 5B,

which shows, for each cell k, the value of ri(c
k) as a function of

z(ck). Figure 5Bi shows the data as a scatter plot, while Figure 5Bii

shows the error bars on the estimated rates ri(c) at the 95%

significance level.

Predictive power of the estimated feature
The data in Figure 5B indicate the predictive power of the

feature. If the feature was perfectly predictive of the event rates,

then ri(c) would be a function of z(c). In this case, taking into

account the error bounds on the rates, it is possible to find two

functions fL,fR that predict the event rates in approximately 93%

of the environment. More specifically, given a generic cell

corresponding to the spatial configuration ck, we find that the

Figure 4. Estimated saccade generation rates. This picture shows basic statistics of the processed data. Panel A shows the estimated saccade
rate in polar coordinates (i) and fly-centered spatial coordinates (ii), indicated in the text as rk . This density is obtained by taking the raw number of
saccades in each cell nk(Figure 1, Panel E), normalizing by the time spent in each cell Tk (Figure 1, Panel D), and then compensating for the
interacting nature of the Poisson processes. Panels B–C show the rates for left and right saccades (rL

k and rR
k , respectively), which we plot in red in

Panel B (left saccades) and in blue in panel C (right saccades). Note that the left and right saccade ratios appear roughly symmetric.
doi:10.1371/journal.pcbi.1002891.g004
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predicted event rates fL ck
� �

and fR ck
� �

are compatible with the

observed rates rL(c) and rR(c) at the 95% level of significance. In

practice, this means that the data in Figure 5B can be explained by

two smooth curves (fL and fR) that intersect 93% of the confidence

intervals corresponding to each spatial configuration. In the

remaining cells (51 of 720 cells), the rates cannot be predicted by

this feature alone. Further inspection (data not shown) reveals that

such points correspond to configurations with the fly pointing

directly against the wall at a small distance (,0.3 m). Note that

being able to predict the rates from the feature does not mean that

one is able to predict the direction of each single saccade event.

For example, in the middle of the arena the probability of left and

right saccade is 50%, and this percentage is perfectly predicted by

the feature; however, it is impossible to predict the direction of the

single saccade better than chance.

Bounds on the contributions of random process and
internal states

As explained before, using only external observations of the

animal spatial configuration, we cannot distinguish among the

contribution of a purely random endogenous saccade genera-

tion process, a deterministic process based on an internal state,

any unmodeled features computed from the stimulus, and any

unobservable spatial configuration that we cannot observe due

to the limited resolution of our instruments. These contribu-

tions are lumped together in a baseline saccade rate. By

examining the curves in Figure 5Bi we can estimate a baseline

event rate ri
0 of about *0:4 saccades/sec. By comparing with a

maximum estimated event rate of *4 saccades/sec, we can

estimate that roughly 90% of the saccades are stimulus-driven

in the regions of maximum stimulus. This value depends on the

geometry and texture of this particular arena (e.g., it would be

different if the arena was larger or smaller). However, we

predict that the baseline rate of *0:4saccades/sec that we

measure at the center of the arena should be independent of the

geometry, as the size and textures of this arena were chosen

such that the fly cannot perceive significant visual contrast from

the center.

We can make some informed guesses for the contribution of

the various possible processes by considering circumstantial

evidence from other experiments. In tethered flight experiments,

deliberately performed in the absence of salient visual stimuli,

spontaneous saccade rates are on the order of *0:3 saccades/sec

[66]. If we assume that these values obtained in tethered

experiments are a good approximation of an assumed spontane-

ous generation process in free-flight, then we can account for

approximately 75% of the unexplained 0.4 saccades/sec as the

joint contribution of a random process and unobservable internal

states. This leaves roughly 25% of unexplained data, which could

possibly be explained by estimating an additional feature z0(c),
perhaps dependent on components of the spatial configuration

that we cannot observe, such as the gaze direction. The

contribution of a hypothetical feature z
0

is therefore very small

with respect to the contribution of the estimated z, as z
0

could

possibly explain about 0.1 saccades/sec versus the 4 saccades/sec

explained by z.

Figure 5. The estimated decision feature z. Panel A shows the estimated one dimensional feature z. This is the best one dimensional spatial
feature that explains the left and right saccade rates. It is a dimensionless quantity, which we normalize in the interval ½{1,z1�. Panel B-i shows, for
each cell k, the rates rk

i as a function of the estimated feature zk; Panel B-ii shows the same data, but with error bars corresponding to 95%
confidence intervals (the bars are not symmetric because the posterior distribution of the estimated rates is not Gaussian; see Supplemental Materials
for details). The single feature z is sufficient to predict the rate in *93% of the environment, in the sense that *93% of the rates can be considered
(with the error bars) as lying on the same curve; these curves are the functions f L and f R discussed previously that allow predicting the rates from
the feature. The remaining *7% of data that this model cannot fit correspond to configurations with the fly pointing directly against the wall at a
small distance (,0.3 m).
doi:10.1371/journal.pcbi.1002891.g005
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Figure 6. Receptive fields of wide-field motion detection consistent with the feature z. These pictures show several receptive fields of
wide field motion sensitive cells, the spatial feature that they compute, as well as a comparison with the feature z identified from the data. The
pictures in first column show the kernel A(h); the pictures in the second column show the corresponding feature field. The panels A through D show
the kernels obtained as solutions of an optimization problem, respectively by solving a linear least-squares problem (panel A), and three different
regularization problems: by penalizing the norm of the solution (panel B), by penalizing the norm of the spatial derivative (panel C), and by penalizing
the curvature of the solution (panel D). Note all solutions are asymmetric due to the noise in the data. Panel E shows the kernel cos hð Þz0:2, which is
the closest harmonic function to the regularized solution in panel D. Panel F shows the result obtained by setting to zero this kernel in the back of the
field of view. This shows that the contribution of the back of the field of view is necessary to recreate the small sidelobes of the estimated feature
field.
doi:10.1371/journal.pcbi.1002891.g006
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We conclude that the saccade behavior of Drosophila that

depends on external visual stimulus appears to depend for the

most part on only a one-dimensional feature of the stimulus. These

conclusions must be limited to the particular experimental

condition, as we cannot exclude that more complex environments

would elicit more complex responses that require a higher

dimensional feature to be explained. However, even in our

relatively simple flight environment, our analysis implies that the

vast majority of saccades we observed are stimulus-driven and are

not due to an internal, stimulus-independent search algorithm (e.g.

Levy flights), as has been suggested for Drosophila and many other

species [6–18].

Approximating the feature field using known parametric
structures for visual processing

We have been able to compute the feature field z from the

observable fly trajectory, without any assumptions on the fly visual

processing. Nevertheless, it is interesting to test whether this

independently identified feature is compatible with existing models

of the first stages of visual processing in flies. In particular, we test

the hypothesis of whether the identified feature can be expressed

as a linear function of the perceived optic flow.

We assume the following generative model for z:

z tð Þ~a

ð
OF h,tð ÞA hð Þdh

� �
, ð4Þ

where OF h,tð Þ is the optic flow, or angular velocity, at the retinal

angle h at time t, and A hð Þ is a retinal input kernel. The value

h~0 corresponds to the animal’s center front visual field.

The function a is an arbitrary nonlinear function that we

include in the model, because the identification procedure allows

us to know z only up to a monotone transformation (i.e., if z(c) is a

solution of the constraints system, then also a z cð Þð Þ is a valid

solution). We can characterize the optimal A hð Þ as the solution of

an optimization problem:

A� hð Þ~arg min
A

E A,að Þ, ð5Þ

where the error function E is given by:

E A,að Þ~
X

k

½z ck
� �

{a

ð
OF h,ck
� �

A hð Þdh

� �
�2: ð6Þ

In this last expression, OF h,ck
� �

is the typical optic flow that the

animal experiences at the reduced configuration ck. By solving this

optimization problem, we try to best approximate the estimated

feature over the whole environment, assuming it can be expressed

as a linear function of the optic flow.

Unfortunately, we found that this optimization problem is ill

posed given our data. In particular, z is known only at a discrete

set of values ck (720 cells — the density of these is constrained

by the finite amount of data that we have), and it is quite noisy,

whereas the unknowns (A,a) are of high dimension. Given that

the resolution of the fly’s visual system is around *5deg, it

makes sense to use at least 70 numbers (,330/5) for

representing A. Furthermore, a can be any monotonic nonlinear

function.

We tried to improve the results by penalizing large values and

large spatial variations of A (measured either by the spatial

derivatives LA=Lh or L2A=Lh2). The modified error function is:

E0~E A,að Þzb

ð
Lm

Lh mð Þ A hð Þ
����

����
2

dh, ð7Þ

for m~0, 1, 2 and different values of b. In general, by varying m
and b, we found a multitude of solutions, all very different from

each other, having approximately the same predictive power

(Figure 6). We noticed that for increasing regularization values the

estimated linear kernel tended to be shaped as an harmonic

function, as illustrated by the kernel obtained by regularizing the

second derivative (m~2) and using a large value of b (b~105),

shown in Figure 6D. This kernel is still asymmetric. If we impose

that the kernel must be symmetric, we find that the best

approximation using one harmonic is:

A hð Þ!cos hð Þz0:2: ð8Þ

This kernel and relative feature field is shown in Figure 6E, and it

is a good approximation of the feature estimated from the data.

We conclude that the identified feature can be expressed as a

simple function of the optic flow. However, while obtaining the

behaviorally relevant feature z from the external observations

alone is a well-posed mathematical problem, finding the function

that maps the stimulus y to the feature z is an ill-posed problem,

because the set of possible models is of very high dimension

compared with the data that we have. Note that these issues are

already evident when considering only linear functions of the optic

flow, and would be even more pressing if we were to add other

nonlinear components to the model that are known to exist in the

neural circuits of the fly.

Most of the estimated kernels obtained using some form of

regularization share a particular feature: A(h) is never 0 for h
corresponding to the back of the animal, but has opposite sign in

the front of the animal (Figure 6B,C,D,E). Further investigation

shows that these non-zero values in the caudal region are

responsible for the two small side lobes that appear in the feature

field when plotted in fly-centric coordinates. If the kernel is set to

zero in the back, these side lobes disappear. This is apparent by

comparing the feature field in Figure 6F (corresponding to the

kernel max cos hð Þz0:2, 0f g) with that in Figure 6E. These results

suggest that the optic flow in the back of the animal influences the

fly’s turning decisions. This response cannot be interpreted as pure

obstacle avoidance, given that flies tend to fly forward and

obstacles in the back are not expected to represent a threat for

collision. For convex environments, the saccades initiated from this

response would tend to align the fly’s course in parallel to the

environment boundaries and the overall result is to follow walls

rather than completely avoid them (similar behavior has been

observed in bees [67]). Such a visuo-motor system might provide a

functional advantage with respect to the balance of collision

avoidance and object search. An animal that balances attraction

and obstacle avoidance would tend to remain relatively close to

interesting visual features, whereas an animal whose primary reflex

is to fly away from visual features would tend to find itself in large

open areas, far from potential landmarks or food sources. The only

way of quantitatively verifying this attraction-deflection hypothesis

would be to obtain data from experiments within larger

environments with more varied visual features. These results are

also compatible with the observation in previous experiments on

tethered flies that the optomotor response can be written as the

function of a kernel in which the rear and front visual fields give

opposite contributions [68], suggesting that a similar visual feature

might be used for both behaviors.
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Discussion

In this paper, we introduced a novel method to obtain an

estimate of a low-dimensional feature of the stimulus that best

predicts the observable behavioral event generation rates. The

feature can be obtained from observable quantities, such as the

recording of the trajectory of the animal, without any assumption

on the nature of the stimulus and its underlying neural processing.

Using this method, we have concluded that most of the saccade

events generated by fruit flies exploring a structured laboratory

environment are induced by visual stimuli, and that the

instantaneous stimulus can be compressed down to a one-

dimensional feature, while still being predictive of the event rates

in *93% of the environment. Using this method, it is not possible

to distinguish between the contribution of an endogenous random

process and a deterministic contribution dependent on an

unobservable state. However, we can bound the contributions of

these two terms in a baseline saccade rate that we estimate at 0.4

saccades/sec, roughly a tenth of the maximum rate. The strength

of this method is that the feature z can be estimated working

backwards from an animal’s actions, rather than forward by

postulating a model for the stimulus y(t) and guessing what is the

relevant feature. Once we know z, as a second step, it is possible to

attempt to fit a parametric representation of neural processing to

find the forward function from y to z, based on other assumptions

about sensory processing, though this is not guaranteed to be a

well posed problem, as one must optimize over all plausible models

compatible with the animal’s biology. In this particular case, we

have shown that the feature z responsible for turning decisions in

Drosophila can be written as a linear function of the optic flow, and

that the particular linear kernel we obtain is compatible with that

identified in tethered conditions, for a particular choice of

regularization penalty to make the problem well posed. Converse-

ly, finding z from the behavioral data is a well posed and intuitive

problem, because it can be understood as a dimensionality

reduction problem (find the one feature that explains multiple

behaviors).

The main advantage of this approach, compared with previous

methods, is that it can be applied to freely moving animals, and

thus permits asking about responses to naturally important stimuli.

Moreover, it does not need any assumption of linearity between

some aspect of the stimulus and response, a precondition strongly

needed in techniques such as reverse correlation [48]. Even

advanced reverse correlation techniques in single sensory neurons

[69] are not easy to generalize into models of network functionality

that could be used to predict behavior.

In the future, this method could be applied to different

behaviors of the fruit fly and other animals [70]. The formalization

is quite generic, though some generalizations are possible. The

algorithm documented in Text S1 assumes that the feature is one-

dimensional in order to obtain a closed-form solution. To identify

a feature of higher dimension, this must be generalized, for

example by using one of the various more computationally

expensive dimensionality reduction algorithms in machine learn-

ing (e.g., [71]). In any case, the rate-variant interacting Poisson

process model seems apt for modeling many other behaviors (e.g.,

landing, taking off) that can be reliably localized in time (i.e., they

have a clear beginning and end), and that can be caused by both

external and internal causes.

Thinking in terms of the feature z as a proxy of the stimulus can

potentially be useful in understanding how different sensory

modalities contribute to the same behavior. The feature is

independent of the sensory modality because it is just a function

of the animal configuration, and it is a proxy of the typical stimulus

perceived at the location, so it could be used to study, for example,

the influence of olfaction instead of visual processing on turning

behavior, or their interaction, which has been the object of much

research [72–75][56]. Note, however, that we do have the strong

assumption that the stimulus is a constant function of the

configuration, so the framework cannot be easily extended to

time-varying stimuli.

This approach might also be useful to study different behaviors

at the same time. Drosophila has a large repertoire of behaviors/

reflexes which are stimulus-triggered, such as landing, take-off,

chasing mates, and escaping from small targets. In this case, we

focused on saccades, and we found the feature z encoding the

relevant function of the stimulus for saccade decisions. If one

repeated the analysis for a different behavior (e.g., landing), there

would likely be another feature z00, that would be different from z.

However, if this was repeated for all fly behaviors, one would find

that at some point the new identified features would be redundant;

for example, in the case of vision, the number of features is upper

bounded by the number of upstream signals towards the lobula.

Ultimately, this exercise might provide a prediction of whether two

behaviors are likely to share the same neural pathways.

Potentially, this technique could help in quantifying the

behavioral differences of different genotypes. This model makes

a distinction between the feature z and the event generation rate

functions fi . Whereas z is assumed to be correlated with

computed percepts, fi might be correlated more with the motor

functions. This distinction could be used to obtain insight

regarding the function of genetic manipulations such as a screen

in which populations of neurons are ‘‘silenced’’ with a hyperpo-

larizing ion channel or synaptic release blockade. For example, if

a modified animal gives the same feature z but modified rate

functions fi, it would be evidence that the silenced neurons are

involved with motor generation rather than with stimulus

processing. Consequently, with a large-scale screen [76,77], it

might be possible to obtain a classification of phenotypes into

sensory, decision making, and motor deficits. Similarly, we could

use this feature to quantitatively compare the properties of

different species.

Another interesting but more substantial extension of this work

would be to expand the mathematical formalism to incorporate

measurements of neuronal activity into the internal processing

structure. This is now done in freely moving worms [78,79,32] and

zebrafish [80]; in adult flies, most neural recording during

behavior is being done on fixed flies [81–83,42].

Supporting Information

Figure S1 The estimated decision feature z (results
obtained with alternative detection algorithm). This

figure shows the equivalent results of Figure 5 using the AVSD

algorithm for saccade detection instead of GSD. Compared with

Figure 5, the graphs are similar in many respects. Panel A shows

the estimated one dimensional feature z as a function of the

reduced configuration. Note that there are only two areas,

corresponding to positive and negative z, instead of four, as in

Figure 5A. Panel B shows the observed event rates as a function of

the estimated feature. Compared to Figure 5B, in this case the

estimated feature zk is slightly less predictive of the rates rk
i . This

means that the events detected by the AVSD algorithm cannot be

correlated with the stimulus as well as those detected by AVSD.

This suggests that, for this particular data, the GSD algorithm is

able to better detect behaviorally relevant events in the trajectory

data.

(EPS)
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Text S1 Mathematical details of the identification
technique and implementation details of the saccade
detection algorithms.
(PDF)
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Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and

deer. Nature 449: 1044–8. doi:10.1038/nature06199.

30. Nevitt G a, Losekoot M, Weimerskirch H (2008) Evidence for olfactory search in

wandering albatross, Diomedea exulans. Proceedings of the National Academy

of Sciences of the United States of America 105: 4576–81. doi:10.1073/

pnas.0709047105.

31. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by Three-

dimensional Tracking. Nature 239: 500–504.

32. Piggott BJ, Liu J, Feng Z, Wescott SA, Xu XZS (2011) The Neural Circuits and

Synaptic Mechanisms Underlying Motor Initiation in C. elegans. Cell 147: 922–

933. doi:10.1016/j.cell.2011.08.053.

33. Kawano T, Po MD, Gao S, Leung G, Ryu WS, et al. (2011) An Imbalancing

Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C.

elegans for Forward Locomotion. Neuron 72: 572–86. doi:10.1016/j.neu-

ron.2011.09.005.

34. Cowan NJ, Fortune ES (2007) The critical role of locomotion mechanics in

decoding sensory systems. The Journal of neuroscience : the official journal of

the Society for Neuroscience 27: 1123–8. doi:10.1523/JNEUROSCI.4198-

06.2007.

35. Beyeler A, Zufferey J-C, Floreano D (2009) Vision-based control of near-obstacle

flight. Autonomous Robots 27: 201–219. doi:10.1007/s10514-009-9139-6.

36. Conroy J, Gremillion G, Ranganathan B, Humbert JS (2009) Implementation of

wide-field integration of optic flow for autonomous quadrotor navigation.

Autonomous Robots: 1–10.

37. Borst A, Euler T (2011) Seeing things in motion: models, circuits, and

mechanisms. Neuron 71: 974–94. doi:10.1016/j.neuron.2011.08.031

38. Borst A (2009) Drosophila’s view on insect vision. Current biology 19: R36–47.

doi:10.1016/j.cub.2008.11.001.

39. Kennedy JS (1940) The visual responses of flying mosquitoes. Proceedings of the

Zoological Society of London Series A 109: 221–242. doi:10.1111/j.1096-

3642.1940.tb00831.x.

40. Mittelstaedt H (1949) Telotaxis und Optomotorik von Eristalis bei Augeninver-

sion. Naturwissenschaften 36: 90–91.

41. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A (2011) Internal structure of

the fly elementary motion detector. Neuron 70: 1155–64. doi:10.1016/

j.neuron.2011.03.028.

42. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR (2011)

Defining the computational structure of the motion detector in Drosophila.

Neuron 70: 1165–77. doi:10.1016/j.neuron.2011.05.023.

43. Reiff DF, Plett J, Mank M, Griesbeck O, Borst A (2010) Visualizing retinotopic

half-wave rectified input to the motion detection circuitry of Drosophila. Nature

neuroscience 13: 973–978. doi:10.1038/nn.2595.

44. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010) ON and OFF

pathways in Drosophila motion vision. Nature 468: 300–304. doi:10.1038/

nature09545.

45. Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow

processing in single visual interneurons. Nature 384: 463–6. doi:10.1038/

384463a0.

46. Roth E, Reiser MB, Dickinson MH, Cowan NJ (2012) A Task-level Model for

Optomotor Yaw Regulation in Drosophila Melanogaster: A Frequency-Domain

System Identification Approach. In: Proceedings of the Conference on Decisions

and Controls (CDC), Maui, Hawaii.

47. Aptekar JW, Shoemaker PA, Frye MA (2012) Figure Tracking by Flies Is

Supported by Parallel Visual Streams. Current biology 22: 482–487.

doi:10.1016/j.cub.2012.01.044.

48. Theobald JC, Ringach DL, Frye MA (2010) Dynamics of optomotor responses

in Drosophila to perturbations in optic flow. The Journal of experimental

biology 213: 1366–75. doi:10.1242/jeb.037945.

External and Internal Factors in Search Flights

PLOS Computational Biology | www.ploscompbiol.org 13 February 2013 | Volume 9 | Issue 2 | e1002891



49. Mronz M, Lehmann F-O (2008) The free-flight response of Drosophila to

motion of the visual environment. The Journal of experimental biology 211:

2026–45. doi:10.1242/jeb.008268.

50. Braun E, Geurten B, Egelhaaf M (2010) Identifying prototypical components in

behaviour using clustering algorithms. PloS one 5: e9361. doi:10.1371/

journal.pone.0009361.
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