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Abstract

Flocks of starlings exhibit a remarkable ability to maintain cohesion as a group in highly uncertain environments and with
limited, noisy information. Recent work demonstrated that individual starlings within large flocks respond to a fixed number
of nearest neighbors, but until now it was not understood why this number is seven. We analyze robustness to uncertainty
of consensus in empirical data from multiple starling flocks and show that the flock interaction networks with six or seven
neighbors optimize the trade-off between group cohesion and individual effort. We can distinguish these numbers of
neighbors from fewer or greater numbers using our systems-theoretic approach to measuring robustness of interaction
networks as a function of the network structure, i.e., who is sensing whom. The metric quantifies the disagreement within
the network due to disturbances and noise during consensus behavior and can be evaluated over a parameterized family of
hypothesized sensing strategies (here the parameter is number of neighbors). We use this approach to further show that for
the range of flocks studied the optimal number of neighbors does not depend on the number of birds within a flock; rather,
it depends on the shape, notably the thickness, of the flock. The results suggest that robustness to uncertainty may have
been a factor in the evolution of flocking for starlings. More generally, our results elucidate the role of the interaction
network on uncertainty management in collective behavior, and motivate the application of our approach to other
biological networks.
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Introduction

Flocks of birds and schools of fish exhibit striking and robust

collective behaviors despite the challenging environments in

which they live [1–9]. These collective behaviors are believed to

emerge from simple, local interactions among the individuals

[10–14]. Significantly, such groups are able to maintain cohesion

and coherence even when every individual is subject to uncertain

information about the behavior of its neighbors (those in the

group that it can sense) as well as disturbances from the

environment. However, it is not well understood if and how this

robustness to uncertainty depends on the structure of the

interaction network of individuals, that is, on who is sensing

and responding to whom.

Recent analysis of position [1] and velocity [2] correlations in

empirical data collected for large flocks of starlings (Sturnus vulgaris)

has shown that each bird responds to a fixed number, seven, of its

nearest neighbors. This work suggests that following a topological

interaction rule (i.e. interacting with a fixed number of neighbors)

provides important robustness benefits for group cohesion com-

pared to a metric rule (i.e. interacting with neighbors within a fixed

distance) [1]. In addition, work is underway on techniques that can

reveal in greater detail the precise nature of the inter-individual

interactions [15,16]. However, these analyses do not yield an

explanation for why the starlings interact with seven neighbors,

rather than some other number of neighbors.

Here, we address the question of what is the connection

between the number of neighbors used by each bird for social

information and the robustness of the flock as a whole. We

evaluate robustness for starling flocks using three-dimensional

positions of birds studied in [1,2] and a metric that quantifies, as a

function of the interaction network, the ability of a group to

achieve consensus in the presence of uncertainty. Our metric

derives from the common assumption that each individual bird

carries out a consensus-type behavior in response to its neighbors,

and that a linear dynamical system describes how the interaction

network allows the group to reach consensus. We introduce noise

into the linear dynamical model and quantify robustness to

uncertainty by the resulting disagreement within the group.

Our systems-theoretic approach makes it possible to evaluate

robustness to uncertainty over a parameterized family of

hypothesized individual sensing strategies given observations of

the group. For the starling flocks we evaluate the set of strategies

corresponding to each individual sensing and responding to a fixed

number of closest neighbors. Since the interaction structure of

each starling flock network is determined by the measured spatial
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distribution of the birds and the strategy that each bird uses to

determine which neighbors it senses, we can apply our metric to

the starling flock data to distinguish which strategy (i.e., which

number of neighbors), among a parameterized family of strategies

(i.e., the family parameterized by number of neighbors), minimizes

the influence of uncertainty on how close the birds come to

consensus.

Assuming that every bird in a flock responds to a fixed number

of neighbors (m) and that each interaction poses some cost in effort

to the bird, we compute the per-neighbor contribution to

robustness as a function of m. The interaction cost, accounted

for by the per-neighbor calculation, is associated with the

understanding that achieving consensus is not the only behavior

undertaken by the birds: in addition to remaining with the flock,

each bird must watch for and avoid predators, seek food or a

roosting site, etc. Thus, the flock must be responsive to external

signals in addition to remaining cohesive, and this requires that

each individual use as little effort as possible for maintaining

cohesion. We show that across all flocks in the data set, interaction

networks with six or seven neighbors maximize the per-neighbor

contribution to robustness.

By analyzing variations between different flocks, we show

further that for the range of flocks observed the optimal number of

neighbors (m*) does not depend on the size of a flock (N). Instead,

both the optimal number of neighbors and the peak value of

robustness per neighbor depend on the shape (in particular the

thickness) of the flock.

Methods

Most models of flocking are based on consensus behavior

[5,6,8,17–19]. Accordingly, we define our robustness metric for a

flock carrying out linear consensus dynamics [20–22] on some

quantity of interest, such as a direction of travel. It should be noted

that the following analysis applies equally to any variable of

interest. Each individual maintains a copy of the variable to be

agreed upon. In a group of N individuals, the ith individual then

evolves its own variable (xi) over time t according to the weighted

sum of the differences between its variable and those of its

neighbors, according to

dxi

dt
~
X

j[Ni

ai,j(xj{xi)zji, ð1Þ

where Ni is the set of neighbors of the ith individual, ai,j is the

weight given by individual i to information from individual j, and

ji is a source of noise [23].

Recent work has shown that Eq. (1) is the minimal model

consistent with experimental correlations in natural flocks of birds

[2]. Even though directions are inherently nonlinear quantities,

linear consensus is a good model for consensus on direction of

travel when the relative differences in directions are small [20].

Representing each individual as a node, and a directed edge with

weight ai,j from node i to node j whenever ai,j is non-zero, we

obtain a weighted, directed sensing graph that encodes all

information transfer between individuals within the flock and thus

defines the interaction network. The properties of this sensing

graph are intimately related to the ability of the group to achieve

consensus; for example, consensus can be reached when noise is

absent if and only if the graph is connected [20–22].

By defining an N-dimensional state vector x, containing the

variables xi from each individual in the network, we can combine

Eq. (1) from each individual into the vector equation

dx

dt
~{Lxzj, ð2Þ

where j is a vector containing the individual noise terms ji and L

is known as the Laplacian matrix of the graph [21–23]. The

Laplacian matrix is commonly used to encode a graph: the (i,j)th

element of L for i=j is equal to {ai,j , the negative of the weight

on the (i,j)th edge (or 0 if this edge is not present), and the ith

diagonal entry of L is the out-degree for the ith node,
P

j[Ni
ai,j ,

i.e., the sum of the weights on all edges leaving the ith node.

In this setting, consensus corresponds to x having every entry

equal, i.e., x is a scalar multiple of the vector containing all ones.

The set of every possible consensus state is thus a one-dimensional

subspace of the N-dimensional state space. The disagreement in

the system is measured by the minimum distance (in N-

dimensional space) from the state to this ‘‘consensus’’ subspace.

When noise is present, the system will conduct a random walk,

which may or may not remain close to consensus. Our robustness

metric quantifies how close to consensus this random walk remains

as a function of the interaction network encoded by L.

We measure the robustness of consensus to noise by the

expected steady-state disagreement when every agent has a unit-

intensity i.i.d. source of white noise (ji for the ith agent) [23–25].

We can analyze the disagreement dynamics by defining an

(N{1)-dimensional vector y~Qx, where Q is a matrix with rows

that form an orthonormal basis for the subspace orthogonal to the

consensus subspace. This leads to the following dynamics for y:

dy

dt
~{QLQT yzQj: ð3Þ

We define �LL~QLQT , which we call the reduced Laplacian

matrix.

The disagreement in the system is the length of y, and we seek

to compute the expected value of this length as time goes to

infinity, i.e., at steady state. When the graph is connected, the

reduced Laplacian will be a stable matrix [23], and hence y will

converge to a stationary distribution. The covariance matrix of this

Author Summary

Starling flocks move in beautiful ways that both captivate
and intrigue the observer. Previous work has shown that
starlings pay attention to their seven closest neighbors,
but until now it was not understood why this number is
seven. Our paper explains the mystery: when uncertainty
in sensing is present, interacting with six or seven
neighbors optimizes the balance between group cohe-
siveness and individual effort. To prove this result we
develop a new systems-theoretic approach for under-
standing noisy consensus dynamics. The approach allows
the evaluation of robustness over a family of hypothesized
sensing strategies using observations of the spatial
positions of birds within the flock. We apply this approach
to experimental data from wild starling flocks, and find
that six or seven neighbors yield maximal robustness. The
implication that robustness of cohesion may have been a
factor in the evolution of flocking has significant conse-
quences for evolutionary biology. In addition, the results
and the versatility of the approach have implications for
uncertainty management in social and technological
networks.
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distribution is the solution, S, to the Lyapunov equation

�LLSzS�LLT~I , ð4Þ

and hence the steady-state disagreement, or H2 norm, is given by

[23]

H2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trace(S)

p
: ð5Þ

Given an interaction network, encoded by L, the reduced

Laplacian �LL can be computed and the covariance metric S
determined from Eq. (4). The steady-state disagreement is

computed from Eq. (5) in the case that every agent’s response is

corrupted by noise with intensity 1. If the noise has some intensity

other than 1, the resulting H2 norm is simply scaled by the

intensity of the noise.

The metric depends on N since it is a distance in N-dimensional

space. This dependence is removed by dividing by the square root

of N, to obtain the expected disagreement due to each individual.

By inverting this quantity, we obtain an ‘‘H2 nodal robustness’’

which is small (large) when individuals contribute a large (small)

amount of disagreement. The robustness is zero precisely when the

graph is not connected, and the individuals are unable to reach

consensus even in the absence of noise [23].

Our robustness metric is most suitable to our purposes: since the

metric only depends on the sensing graph, we can evaluate

robustness for different sensing strategies (e.g., choice of m

neighbors), provided we can construct the resulting graphs.

Previous analysis of the observed positions of starlings within

large flocks (440 to 2600 birds) has shown that the birds interact

with seven nearest neighbors, irrespective of flock density [1,2].

Since the starling data were collected during flocking events with

no apparent direct targets or threats to the birds [1], we assume

that a primary goal of each bird was to remain with the flock, i.e.,

to maintain consensus on a direction of flight. In more

complicated scenarios, such as goal-oriented behavior, different

metrics may be used to evaluate individual performance, such as

an individual’s average speed in the direction of the goal [26]. In

addition, other robustness measures, such as the H? norm, may

be more relevant if the disturbances in the system are non-

random. However, in our scenario, it is most natural to use the H2

nodal robustness to obtain a measure of how well the starling flock

networks managed uncertainty: first we re-construct the sensing

graph by applying to the three-dimensional positions of birds the

strategy in which each bird uses information from its seven closest

neighbors, and then we compute the robustness metric for that

graph. We can likewise compute and compare the sensing graph

and robustness metric corresponding to any interaction strategy by

applying it to the same position data; here we focused on the

strategies in which each bird uses information from its m closest

neighbors, and we examined the set with m ranging from 1 to 11.

It is possible that the birds weight the information from different

neighbors differently, for example, depending on their distance or

how well they are sensed. To be conservative and consistent, we

consider that each individual uses an unweighted average of the

information from its m nearest neighbors, so ai,j equals 1
m

when an

edge is present. In fact, preliminary calculations using other

plausible weighting schemes suggest that equal weights lead to

better robustness and that the weights must vary significantly

between neighbors in order to change our results (Fig. S1).

Further, our calculations evaluate robustness at steady-state for

fixed sensing graphs; however, the steady-state assumption in our

computation is only required to remove transient dependence on

initial conditions. Hence for a group already close to consensus but

with a time-varying graph, our steady-state calculation reflects the

instantaneous performance of the flock.

The cost for an individual starling to sense the behavior of each

neighbor comes from sensory and neurological requirements as

well as time lost for watching for predators or searching for a

roosting site, etc. It is known that birds have a limited and thus

costly capability for tracking multiple objects [27]. To account for

these costs, which increase with increasing m, we evaluated the

‘‘robustness per neighbor’’ for each value of m, which is computed

as the H2 nodal robustness divided by the number of neighbors m.

This allows us to identify ranges of m of increasing (decreasing)

return, where the robustness per neighbor increases (decreases)

with m. We define the optimum m for robustness, m*, as the value

that maximizes the robustness per neighbor.

We computed robustness per neighbor (H2 nodal robustness

divided by m, number of neighbors sensed by each bird) for data

sets from twelve starling flocks: all ten flocks that were studied in

[1] and two additional flocks that were studied in [2]. From each

flock there were between 16 and 80 snapshots over time for a total

of 394 snapshots. The number of birds in these flocks ranged from

440 to 2600.

Results

For small values of m, robustness will be zero since the sensing

graph will not be connected [28]. Robustness per neighbor will

increase with increasing m to non-zero values when m is sufficiently

large for the graph to be connected. Further, robustness is

bounded above by the value for the complete graph (in which

every individual can sense every other individual), and so

robustness per neighbor can be expected to be a decreasing

function of m for large values of m. Thus, a priori we can expect a

peak in robustness per neighbor as a function of m.

For all ten flocks studied in [1] and two additional flocks studied

in [2], we computed the robustness per neighbor for each snapshot

for m~1, . . . ,11. The average robustness per neighbor for each

flock is shown in Fig. 1, along with the average of the twelve flock

averages, as a function of m. In every case, the graphs remained

disconnected for m equal to 1 and 2, but almost all graphs were

connected when m was equal to 5. Each flock attained its peak

robustness per neighbor value for m between 5 and 9 (Fig. 1), i.e.,

at higher values of m than were required for connectivity; this

demonstrates that our robustness measure is not simply recording

the onset of connectivity. The average robustness per neighbor

across all flocks reached its peak value at either m~7 or m~6
(Fig. 1). Therefore, the observed behavior of the starlings (m~7)

from [1,2] places them at a point that maximizes the robustness

per neighbor.

We further investigated observed variation in the value of m* for

different flocks. When the average robustness was computed by

averaging every snapshot from every flock, rather than by

averaging the flock averages, we obtained almost identical results

(Figs. S2 and S3). This suggested that we could treat all 394

snapshots as independent data points and strengthened the

generality of the result in the case in which we treated the flocks

as the independent observations.

In a fully random group, the number of neighbors required for

connectivity, and hence m*, grows weakly with the size of the

group (on the order of log N [28]). However, even when

connectivity is attained, noise has a crucial role in determining

whether or not global order can be reached. First, above a certain

noise threshold (critical temperature), global order is lost, whether

or not the network is connected. Second, even in the low noise

Starling Flock Networks Manage Uncertainty
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phase and on a connected static network, depending on the

physical dimension of space and on the topology of the network

[29,30] there are cases where order can be reached only if the

number of neighbors scales with N. Given that our method is static

in nature (it does not take into account birds’ motion) and that the

topology of flocks’ network is nontrivial, the dependence of m* on

N may be a concern. However, the variation observed here in m*

was not a result of varying flock size since neither the value of m*

nor the peak robustness per neighbor showed a significant

dependence on the number of birds in the flock (Fig. 2). In both

cases, the best linear fit to the data has negligible slope with an R2

value of 0.0178 in the case of m* and 0.0230 in the case of peak

robustness per neighbor.

Instead we observed a strong dependence of both m* and peak

robustness per neighbor on flock thickness (Fig. 3). We measured flock

thickness as the ratio of smallest to largest dimension of an ellipsoid

having the same principal moments of inertia as the flock. Thus a

two-dimensional flock has a thickness of 0 while a flock with an equal

spread of birds in all directions has a thickness of 1. We found that the

starling flocks had thicknesses between 0.13 and 0.44, with most

between 0.13 and 0.27. Across this range, both the variation in m*

and the average value of m* decreased significantly with thickness.

The best linear fit to the data displays a negative slope with an R2

value of 0.1816, which is relatively low due to the changing variance.

Furthermore, the peak robustness per neighbor increased significantly

with thickness (Fig. 3). The best linear fit to the data has a positive

slope and an R2 value of 0.6435. No such dependencies were

observed with the width of the flock (Figs. S4 and S5).

To further understand the dependence on thickness, we generated

random flocks of varying thickness (with 1200 individuals). For

uniformly distributed flocks, m* initially decreased with thickness

before leveling out, while peak robustness per neighbor showed an

increase with thickness according to a sigmoidal shape (Fig. 3).

Similar behavior, although with less pronounced variation in m*,

was observed when using different distributions that have more

ordering; with increased ordering the trends show lower values of m*

and higher values of peak robustness (Figs. S6 and S7). The fact

that the values of m* for the starlings tend to be slightly lower than

those of uniformly distributed flocks, while peak robustness tends to

be slightly higher, is consistent with the fact that starlings have a

more regularly separated distribution than uniformly distributed

points.

Discussion

Our analysis shows that the size (seven) of each starling’s

neighborhood [1,2] optimally trades off gains from robustness with

costs associated with sensing and attention; this suggests that

robustness to uncertainty may have been a factor in the evolution

of flocking. The fact that the same number of neighbors is optimal

over a range of flock sizes and densities (as well as, to a certain

extent, typical flock thicknesses) suggests that the number of

neighbors that a bird interacts with could be an evolved trait. This

is consistent with the fact that the ability to follow more neighbors

requires additional sensory and cognitive apparatus. A bird that

fully utilizes whatever capability it has will contribute most to

maximizing the absolute robustness of the group; however, our

results provide an explanation for why the evolved capacity of

starlings should be limited to seven neighbors. Further investiga-

tion is required to discern whether evolutionary processes could

Figure 1. H2 nodal robustness per neighbor as a function of the number of nearest neighbors (m) used to form the graph, for
twelve separate flocks as well as an overall average. For each flock the curve shown is the average of all snapshots taken of that flock, with
error bars showing the standard deviation. The overall average, shown as the blue curve, is an average of the twelve flocks, with error bars showing
the standard deviation. If, instead, an average is taken of every snapshot (394 in total), the resulting curve and standard deviations are almost
identical (see Fig. S2), although the error is greatly reduced (see Fig. S3). On the left is shown a snapshot of starling flock 25-08 in flight and the
corresponding tracked positions, rotated to fit inside a rectangular bounding box.
doi:10.1371/journal.pcbi.1002894.g001

Starling Flock Networks Manage Uncertainty
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lead to the optimization of efficient robustness at the level of the

group.

The trade-off seen here between robustness and sensing cost is not

observed for performance metrics related to responsiveness, such as

the speed of convergence to consensus (Fig. S8). Although

responsiveness is an important property of group behavior, our

results correspond with the previous observation [1] that the primary

benefit of the observed interaction rule within starling flocks is to

improve robustness. Other aspects of behavior, such as the way in

which individuals respond to external signals, may be required for an

analysis that seeks to explain the responsiveness of flocks.

Although we observed variability in our computed values of m*

across different flocks, and variability was also observed in the

estimated number of interacting neighbors for each flock in [1], no

correlation can be seen between these two values across flocks (Fig.

S9). This is not surprising, since any correlation would imply that

all (or most) of the birds in a flock simultaneously change their

number of interactions over time.

Although here we have focussed on the sensing strategy of

interacting with m nearest neighbors, our methods can also be

applied to networks resulting from any sensing strategy. For

example, our methods could be used to evaluate the robustness to

noise of zonal sensing strategies like those used in [5,8,17] as a

function of a parameter such as zone size. Provided that a real or

hypothesized sensing network can be constructed, its robustness

can be calculated. However, care must be taken when comparing

Figure 2. Dependence of the optimum number of neighbors (m*) and the peak value of robustness per neighbor on the number of
birds in the flock (N). Different snapshots from the same flock have different numbers of birds due to occlusions. Results for each snapshot are
shown rather than averaged across flocks since we can take each snapshot to be an independent observation (see Fig. S2). Under each plot are the
bird positions (rotated to fit inside a rectangular bounding box) for two snapshots corresponding to the smallest and largest flocks studied.
doi:10.1371/journal.pcbi.1002894.g002

Figure 3. Dependence of the optimum number of neighbors (m*) and the peak value of robustness per neighbor on the thickness
of the flock. Flock thickness is defined as the ratio of smallest to largest dimension of an ellipsoid having the same principal moments of inertia as
the flock. Results are shown in blue from each snapshot of starling data and in red from flocks randomly generated from a uniform distribution within
a rectangular prism. Each data point shown from the random flocks is the average result from generating 100 separate flocks, each containing 1200
individuals. The error bars shown for peak values are the standard deviation, while the error bars for m* show the range of values for which the
robustness per neighbor is within 90% of the peak. Under each plot are the positions of two randomly generated flocks, with thicknesses of 0.15 and
0.85.
doi:10.1371/journal.pcbi.1002894.g003

Starling Flock Networks Manage Uncertainty
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different strategies. For consistency, the weights in (1) should be

scaled so that the sum of ai,j over all the neighbors of any

individual (when neighbors are present) is equal to 1.

The nonlinear dependence on thickness observed in the random

flocks suggests that a transition between ‘‘2-d’’ and ‘‘3-d’’ behavior

takes place as thickness increases, with a flock behaving as fully 3-d

when its thickness is above about 0.4. There appear to be

aerodynamic reasons why starling flocks should be thin and sheet-

like [5], and it is telling that the observed thicknesses lie near the

transition point to fully three-dimensional behavior in terms of

robustness. This suggests that groups with different characteristic

thicknesses, such as schools of fish, swarms of insects, and herds of

animals (with a thickness of zero), should interact with more

(fewer) neighbors if they have a larger (smaller) thickness. Testing

this hypothesis would provide important insight into the generality

of this work for the analysis of animal groups. It should be noted,

however, that factors that were not significant for starling flocks,

such as flock width (Figs. S4 and S5) or distribution (Figs. S6 and

S7) could play a larger role in 2-d groups.

More generally, our work demonstrates the significant role of

who is interacting with whom in the ability of a network to

efficiently manage uncertainty when seeking to maintain consen-

sus. This suggests possibilities for understanding and evaluating

uncertainty management in other social and technological

networks. Our systems-theoretic approach to evaluating robust-

ness to uncertainty in consensus can be applied to interaction

networks in these other contexts; distinguishing interaction

strategies that yield networks that optimize robustness can be

useful both for better understanding observed group behavior and,

when control is available, for designing high performing groups.

Supporting Information

Figure S1 Average H2 nodal robustness per neighbor as
a function of the number of nearest neighbors (m) used
to form the graph for two different flocks, with the edge
weights computed in three different ways. Although equal

edge weights were used throughout this paper, a plausible

alternative is that greater weight is given to closer neighbors. In

each case, the edge weights in the sensing graph are normalized so

that the sum of all weights used by any individual bird is 1. The

blue curves show results with equal edge weights (i.e. ai,j~
1
m

when

an edge is present), as used in the rest of this paper. The green

curves show results with edge weights inversely proportional to the

distance between birds (i.e. ai,j! 1
di,j

when an edge is present,

where di,j is the distance between birds i and j). The red curves

show results with edge weights decreasing linearly according to the

ordering of the neighbors from closest to furthest, such that the

(mz1)st neighbor has a weight of 0. Both additional weighting

schemes decrease the importance of neighbors that are further

away, although the order-based scheme is more ‘‘radical’’ since

neighbors tend to be spaced closer than in a geometric

progression. In every case, decreasing the weight given to further

neighbors tends to decrease the overall robustness, but the location

of the peak remains unchanged except for the order-based scheme

in flock 17-06. These results suggest that a substantial variation in

edge weights is required to move the peak of the robustness per

neighbor curve, and furthermore that overall robustness is

decreased by doing so.

(EPS)

Figure S2 Average H2 nodal robustness per neighbor as
a function of the number of nearest neighbors (m) used
to form the graph, with the average taken in two

different ways. The blue curve shows the average of the twelve

flock averages (as in Fig. 1 from the main text), while the red curve

shows the average of the 394 snapshots taken across all flocks. In

each case, the error bars show standard deviation. Since the results

of the two averages match so closely while the number of

snapshots taken of each flock varied between 16 and 80, this

suggests that each snapshot may be taken to be an independent

observation.

(EPS)

Figure S3 Average H2 nodal robustness per neighbor
with standard error as a function of the number of
nearest neighbors (m) used to form the graph, with the
average taken in two different ways. The blue curve shows

the average of the twelve flock averages (as in Fig. 1 from the main

text), while the red curve shows the average of the 394 snapshots

taken across all flocks. In each case, the error bars show standard

error. By treating each snapshot as independent (see Fig. S2), the

standard error is reduced and we can be more certain that the

peak robustness per neighbor occurs at m~6 or m~7.

(EPS)

Figure S4 Dependence of the optimum number of
neighbors (m*) on the width of the flock. Flock width is

defined as the ratio of intermediate to largest dimension of an

ellipsoid having the same principal moments of inertia as the flock.

No significant dependence on width is observed, with the best

linear fit having negligible slope and an R2 value of 0.0064.

(EPS)

Figure S5 Dependence of the peak value of robustness
per neighbor on the width of the flock. Flock width is

defined as the ratio of intermediate to largest dimension of an

ellipsoid having the same principal moments of inertia as the flock.

No significant dependence on width is observed, with the best

linear fit having a slight positive slope and an R2 value of 0.0635.

(EPS)

Figure S6 Dependence of the optimum number of
neighbors (m*) on the thickness of the flock. In addition

to starling data plotted in blue, results are shown from flocks

randomly generated from three different distributions within a

rectangular prism. These distributions are as follows: points

arranged in a grid and then perturbed with Gaussian noise (in

magenta), points generated from Halton sequences (in green) and

points taken from a uniform distribution (in red). Each data point

shown from the random flocks is the average result from

generating 100 separate flocks, each containing approximately

1200 individuals. The error bars show the range of values for

which the robustness per neighbor is within 90% of the peak. As

the random flocks become more ordered, the m* values decrease

and there is less of a dependence on thickness, with the most

ordered flocks showing no thickness dependence. Compared to

these three distributions, the starling flocks appear closest to

uniform, with slightly more ‘‘order.’’

(EPS)

Figure S7 Dependence of the peak value of robustness
per neighbor on the thickness of the flock. In addition to

starling data plotted in blue, results are shown from flocks

randomly generated from three different distributions within a

rectangular prism. These distributions are as follows: points

arranged in a grid and then perturbed with Gaussian noise (in

magenta), points generated from Halton sequences (in green) and

points taken from a uniform distribution (in red). Each data point

shown from the random flocks is the average result from

generating 100 separate flocks, each containing approximately
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1200 individuals. The error bars show standard deviation. As the

random flocks become more ordered, the peak values increase but

the same thickness trends are apparent, i.e., the curves all show a

sigmoidal shape in the increase in peak value with increasing

thickness. The starling flocks are close to the uniform flocks in

most cases, with higher robustness values in other cases.

(EPS)

Figure S8 Speed of convergence to consensus (in the
absence of noise) per neighbor as a function of the
number of nearest neighbors (m) used to form the
graph, for one starling flock containing approximately
1300 birds. Speed is computed as the real part of the second-

smallest eigenvalue of the Laplacian matrix – this is the

exponential rate of convergence for the system in Eq. (2) of the

main text. The units of speed are normalized with the fastest

possible speed (in the case of every individual sensing every other

individual) being 1. The thin lines show results for each snapshot,

while the thick blue line shows the average over all snapshots. On

average, speed per neighbor increases with m, with no maximum

observed for mv20. In fact, when m is equal to the number of

birds in the flock, the speed per neighbor will be approximately

7:7|10{4, significantly larger than the values for small m.

(EPS)

Figure S9 A comparison between the optimal number of
neighbors (m*) and the observed topological range (nc)
from [1,2] for each flock studied in this paper. The vertical

error bars show the range of values for which the robustness per

neighbor is within 90% of the peak and the horizontal error bars

show the error in the estimates of nc. No significant correlation is

observed between these two measures, with a correlation

coefficient of approximately {0:24 and a p-value of approxi-

mately 0.46. This is not surprising since it seems unlikely that

individual starlings would interact with more or fewer neighbors

based on the thickness of the flock (or any other bulk flock

parameter). In addition, this suggests that the two analyses are

independent and there is no underlying mathematical reason why

m* should be so close to nc.

(EPS)
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