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Abstract

The functional significance of correlations between action potentials of neurons is still a matter of vivid debate. In particular,
it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the
connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to
model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic
afferents and synchronized inputs each contribute to correlated spiking on a fine temporal scale between pairs of neurons.
We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling,
allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the
transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input
covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low
correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically
smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high input correlation, in the
presence of synchrony, a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the
output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a
direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals
benefit from these generic properties present in cortical networks.
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Introduction

Simultaneously recording the activity of multiple neurons

provides a unique tool to observe the activity in the brain. The

immediately arising question of the meaning of the observed

correlated activity between different cells [1,2] is tightly linked to

the problem how information is represented and processed by the

brain. This problem is matter of an ongoing debate [3] and has

lead to two opposing views. In one view, the high variability of the

neuronal response [4] to presented stimuli and the sensitivity of

network activity to the exact timing of spikes [5] suggests that the

slowly varying rate of action potentials carries the information in

the cortex. A downstream neuron can read out the information by

pooling a sufficient number of merely independent stochastic

source signals. Correlations between neurons may either decrease

the signal-to-noise ratio [6] or enhance the information [7] in such

population signals, depending on the readout mechanism.

Correlations are an unavoidable consequence of cortical connec-

tivity where pairs of neurons share a considerable amount of

common synaptic afferents [8]. Recent works have reported very

low average correlations in cortical networks on long time scales

[9], explainable by an active mechanism of decorrelation

[10,11,12]. On top of these correlations inherent to cortex due

to its connectivity, a common and slowly varying stimulus can

evoke correlations on a long time scale.

In the other view, on the contrary, theoretical considerations

[13,14,15,16] argue for the benefit of precisely timed action

potentials to convey and process information by binding elemen-

tary representations into larger percepts. Indeed, in frontal cortex

of macaque, correlated firing has been observed to be modulated

in response to behavioral events, independent of the neurons’

firing rate [17]. On a fine temporal scale, synchrony of action

potentials [18,19,20] has been found to dynamically change in

time in relation to behavior in primary visual cortex [21] and in

motor cortex [17,22]. The observation that nearby neurons

exclusively show positive correlations suggests common synaptic

afferents to be involved in the modulation of correlations [23]. In

this view, the measure of interest are correlations on a short

temporal scale, often referred to as synchrony.

The role of correlations entails the question whether cortical

neurons operate as integrators or as coincidence detectors [18,24].

Recent studies have shown that single neurons may operate in
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both regimes [25]. If the firing rate is the decisive signal, integrator

properties become important, as neural firing is driven by the

mean input. As activity is modulated by the slowly varying signal,

correlations extend to long time scales due to co-modulation of the

rate. Integrators are thus tailored to the processing of rate coded

signals and they transmit temporal patterns only unreliably.

Coincidence detectors preferentially fire due to synchronously

arriving input. The subthreshold membrane potential fluctuations

reflect the statistics of the summed synaptic input [26], which can

be used to identify temporally precise repetition of network activity

[27]. A direct probe for the existence of synchronous activity are

the resulting strong deflections due to synchronous arrival of

synaptic impulses. Such non-Gaussian fluctuations have indeed

been observed in auditory cortex in vivo [28] and in the barrel

cortex of behaving mice [29]. In this regime, coincidence detector

properties become crucial. Coincidence detectors are additionally

sensitive to stimulus variance [25,30] and correlations between

pairs of neurons in this regime arise from precisely timed firing.

This type of correlation is unaffected by firing rate, can encode

stimulus properties independently and moreover arises on short

time scales [25].

The pivotal role of correlations distinguishing the two opposing

views and the appearance of synchrony at task-specific times

[17,21,22] suggests to ask the following question, illustrated in

Fig. 1A: Can the experimentally observed synchrony between the

activity of two neurons be explained solely by to the convergent

connectivity with independently activated shared inputs or are in

addition correlations among the afferents to both neurons

required? If shared input is sufficient, synchrony is just a side

effect of the convergent connectivity in the cortex. However, if

synchronous activation of common afferents is required, it is likely

that spike synchrony is used to propagate information through the

network. A functional interpretation is assigned to synchrony by

the picture of the cell assembly [13,14,31,32], where jointly firing

neurons dynamically form a functionally relevant subnetwork.

Due to the local connectivity with high divergence and conver-

gence, any pair of neurons shares a certain amount of input. This

common input may furthermore exhibit spike synchrony, repre-

senting the coherent activity of the other members of the cell

Figure 1. A pair of integrate-and-fire model neurons driven by
partially shared and correlated presynaptic events. A Each of
the neurons i and j receives input from N sources, of which fN are
excitatory and (1{f )N are inhibitory. Both neurons share a fraction c of
their excitatory and inhibitory sources, whereas the fraction 1{c is
independent for each neuron. Schematically represented spike trains on
the left of the diagram show the excitatory part of the input; the
inhibitory input is only indicated. A single source emits spike events
with a firing rate nin, with marginal Poisson statistics. Correlated spiking
is introduced in the cfN common excitatory sources to both neurons.
This pairwise correlation is realized by means of a multiple interaction
process (MIP) [39] that yields a correlation coefficient of p between any
pairs of sources. In absence of a threshold, the summed input drives the
membrane potential to a particular working point described by its
mean m and standard deviation s and the correlation coefficient
rin~Cov½Vi ,Vj �=(sisj) between the free membrane potentials Vi , Vj of
both neurons. In presence of a threshold mean and variance of the
membrane potential determine the output firing rate nout and their
correlation in addition determines the output correlation rout,
calculated by (2). B–E Direct simulation was performed using different
values of common input fraction c and four fixed values of input spike
synchrony p (as denoted in E). Each combination of c and p was
simulated for 100 seconds; gray coded data points show the average
over 50 independent realizations. Remaining parameters are given in
Table 1. Solid lines in B and C are calculated as (5) and (6), respectively.
In C, for convenience, rin is normalized by the common input fraction c,
so that rin=c~1 in absence of synchrony (p~0). E shows the output
spike synchrony r1 ms

out .
doi:10.1371/journal.pcbi.1002904.g001

Author Summary

Whether spike timing conveys information in cortical
networks or whether the firing rate alone is sufficient is a
matter of controversial debate, touching the fundamental
question of how the brain processes, stores, and conveys
information. If the firing rate alone is the decisive signal
used in the brain, correlations between action potentials
are just an epiphenomenon of cortical connectivity, where
pairs of neurons share a considerable fraction of common
afferents. Due to membrane leakage, small synaptic
amplitudes and the non-linear threshold, nerve cells
exhibit lossy transmission of correlation originating from
shared synaptic inputs. However, the membrane potential
of cortical neurons often displays non-Gaussian fluctua-
tions, caused by synchronized synaptic inputs. Moreover,
synchronously active neurons have been found to reflect
behavior in primates. In this work we therefore contrast
the transmission of correlation due to shared afferents and
due to synchronously arriving synaptic impulses for leaky
neuron models. We not only find that neurons are highly
sensitive to synchronous afferents, but that they can
suppress noise on signals transmitted by synchrony, a
computational advantage over rate signals.

Noise Suppression and Surplus Synchrony
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assembly. In the assembly picture, the synchronous input from

peer neurons of the same assembly is thus considered conveying

the signal, while theTe input from neurons outside of the assembly

is considered as noise [33].

One particular measure for assessing the transmission of

correlation by a pair of neurons is the transmission coefficient,

i.e. the ratio of output to input correlation. When studying spiking

neuron models, the synaptic input is typically modeled as Gaussian

white noise, e.g. by applying the diffusion approximation to the

leaky integrate-and-fire model [34]. In the diffusion limit, the

transmission coefficient of a pair of model neurons receiving

correlated input mainly depends on the firing rate of the neurons

alone [35,36]. For low correlations, linear perturbation theory well

describes the transmission coefficient, which is always below unity,

i.e. the output correlation is bounded by the input correlation,

pairs of neurons always lose correlation [37]. Analytically tractable

approximations of leaky integrate-and-fire neural dynamics have

related the low correlation transmission to the limited memory of

the membrane voltage [38]. The transmission is lowest if neurons

are driven by excitation and inhibition, when fluctuations

dominate the firing. In the mean driven regime the transmission

coefficient can reach unity for integral measures of correlation

[38].

Understanding the influence of synchrony among the inputs on

the correlation transmission requires to extend the above

mentioned methods, as Gaussian fluctuating input does not allow

to represent individual synaptic events, not to mention synchrony.

Therefore, in this work we introduce an input model that extends

the commonly investigated Gaussian white noise model. We

employ the multiple interaction process (MIP) [39] to generate an

input ensemble of Poisson spike trains with a predefined pairwise

correlation coefficient. We use these processes containing spike

synchrony as the input common to both neurons and model the

remaining afferents as independent Poisson spike trains. Further-

more, contrary to studies that measure the integrated output

correlation (count correlation) [35,36], we primarily consider the

output correlation on the time scale of milliseconds, i.e. the type of

correlation determined by the coincidence detection properties of

neurons.

In section ‘‘Results’’ we first introduce the neuron and input

models. In section ‘‘Understanding and Isolating the
Effect of Synchrony’’ we study the impact of input synchrony

on the firing properties of a pair of leaky integrate-and-fire

neurons with current based synapses. Isolating and controlling

this impact allows us to separately study the effect of input

synchrony on the one hand and common input on the other hand

on the correlation transmission. In section ‘‘Correlation
Transmission in the Low Correlation Limit’’ and

‘‘Correlation Transmission in the High Correlation
Limit’’ we present a quantitative explanation of the mechanisms

involved in correlation transmission, in the limit of low and high

correlation, respectively, and show how the transmission

coefficient can exceed unity in the latter case. In section

‘‘Discussion’’ we summarize our findings in the light of

previous research, provide a simplified model that enables an

intuitive understanding and illustrates the generality of our

findings. Finally, we discuss the limitations of our theory and

consider possible further directions.

Results

The neuronal dynamics considered in this work follows the

leaky integrate-and-fire model, whose membrane potential V (t)
obeys the differential equation

tm

dV (t)

dt
~{(V (t){V0)ztmsexc(t)ztmsinh(t),

V (t)/Vr if V (t)wVh,

ð1Þ

where tm is the membrane time constant, V0 the resting potential,

Vh the firing threshold, and Vr the reset potential of the neuron.

The neuron is driven by excitatory and inhibitory afferent spike

trains sexc(t)~w
P

j d(t{tj
exc) and sinh(t)~{g:w

P
k d(t{tk

inh)

where w is the excitatory synaptic weight and tj
exc and tk

inh are the

arrival time points of excitatory and inhibitory synaptic events,

respectively. sexc=inh denote the weighted sum of all afferent

excitatory and inhibitory events, respectively. Inhibitory events are

further weighted by the factor {g. Each single incoming

excitatory or inhibitory event causes a jump of the membrane

potential by the synaptic weight w or {gw, respectively, according

to (1). Whenever the membrane potential reaches the threshold Vh

the neuron fires a spike and the membrane potential is reset to Vr

after which it is clamped to that voltage for a refractory period of

duration tr. In the current work we measure the correlation

between two spike trains si and sj on the time scale t as

rt
out~S Cov½nt

i ,nt
j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½nt
i �Var½nt

j �
q T

T

ð2Þ

where nt
i is the spike count of spike train si in a time window t and

the average STT is performed over the T=t time bins of a

stationary trial. In the current work we investigate correlations on

two different time scales, t~1 ms and t~100 ms, referred to in

the following as r1 ms
out and r100 ms

out , respectively.

We investigate the correlation transmission of a pair of neurons

considering the following input scenario. Each neuron receives

input from N presynaptic neurons of which fN are excitatory and

(1{f )N are inhibitory. Both neurons share a fraction c[ 0,1½ � of

their excitatory and inhibitory afferents. Fig. 1A shows a schematic

representation of the input to neurons i~1,2. Each source

individually obeys Poisson statistics with rate nin. Our motivation

to study this scenario comes from the idea of Hebbian cell

assemblies [13,14,31,32]. We imagine the considered pair of

neurons to belong to an assembly. Both neurons receive cfN
common excitatory inputs from peer neurons of the same group

and (1{c)fN disjoint excitatory inputs from neurons possibly

belonging to other assemblies. We further assume that synchro-

nous firing of the assembly members is the signature of

participation in an active assembly [13,32]. We therefore ask

how the synchronous activity among the cfN common excitatory

inputs affects the correlation between the activity of the considered

pair. In particular we choose a multiple interaction process (MIP)

[39] to model the synchronous spike events in the common input.

In this model each event of a mother Poisson process of rate lm is

copied independently to any of the cfN child spike trains with

probability p, resulting in a pairwise correlation coefficient of p
between two child spike trains. Thinking of the pair of neurons as

a system that transmits a signal from its input to its output, we

consider the Poisson events of the mother spike train as the signal,

representing the points in time where a group of peer neurons of

the assembly are activated. The disjoint inputs to both cells act as

noise. By choosing the rate of the mother spike train as lm~
nin

p
the rate of a single child spike train is nin and independent of p.

Fig. 1B, C, D and E show that the amount of pairwise

correlations in the common input has a strong impact on the

Noise Suppression and Surplus Synchrony
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variance and correlation of the free membrane potentials (s2,rin)

and therefore on the output firing rate and output spike synchrony

(nout,r
1 ms
out ). Let us first consider the case of p~0, i.e. the absence

of synchronous events in the input. As expected, the free

membrane potential variance s2 remains constant throughout

the whole range of c, as does the firing rate nout (Fig. 1B and D).

Fig. 1C shows the correlation of the free membrane potential of a

neuron pair, normalized by the common input fraction c. As

expected, for p~0 the input correlation is only determined by the

common input fraction and thus rin~c. Hence, the output

synchrony observed for p~0 in Fig. 1E is solely due to the

correlation caused by common input and describes the often

reported correlation transmission function of the integrate-and-fire

model [35,36], where for 0vcv1 the output spike synchrony is

always well below the identity line, which is in full agreement with

the work of [35].

Let us now consider the case of pw0. In Fig. 1B and D we

observe that even small amounts of input synchrony result in an

increased variance of the free membrane potential, which is

accompanied by an increase of the output firing rate. While for

weak input synchrony the increase of s and nout is only moderate,

in the extreme case of strong input synchrony (p~0:1) s becomes

almost ten-fold higher and nout increases more than three-fold

compared to the case of p~0. Fig. 1C shows that input synchrony

also has a strong impact on the correlation between the free

membrane potentials of a neuron pair. For any pw0 the input

correlation is most pronounced for high p and in the lower regime

of c. Simulation results shown in Fig. 1E suggest that this increase

of input correlation is accompanied by an increased synchrony

between the output spikes for p~0:001 and p~0:01. For strong

input synchrony of p~0:1 the output synchrony is always higher

than the input correlation caused solely by the common input,

except near c~0 and at c~1.

The output firing rates and output spike synchrony shown in

Fig. 1D and E bear a remarkable resemblance, most notably for

lower values of c. Particularly salient is the course of these

quantities for p~0:1, which is almost identical over the whole

range of c. These observations clearly corroborate findings from

previous studies that have shown an increase of the correlation

transmission of a pair of neurons with the firing rate of the neurons

[35,36]. Thus, we must presume that a substantial amount of the

output synchrony observed in Fig. 1E can be accounted for by the

firing rate increase observed in Fig. 1D. Furthermore, as Fig. 1C

suggests, for any pw0 common input and the synchronous events

both contribute to the correlation between the membrane

potentials of a neuron pair.

Understanding and Isolating the Effect of Synchrony
These two observations – the increase of input correlation and

output firing rate induced by input synchrony – foil our objective

to understand the sole impact of synchronous input events on the

correlation transmission of neurons. In the following we will

therefore first provide a quantitative description of the effect of

finite sized presynaptic events on the membrane potential

dynamics and subsequently describe a way to isolate and control

this effect.

The synchronous arrival of k events has a k-fold effect on the

voltage due to the linear superposition of synaptic currents. The

total synaptic input can hence be described by a sequence of time

points tj and independent and identically distributed (i.i.d) random

number wj that assume a discrete set of synaptic amplitudes each

with probability P(wj). The train of afferent impulses follows

Poisson statistics with some rate l. Assuming small weights w and

high, stationary input rate l, a Kramers-Moyal expansion

[40,41,42] can be applied to (1) to obtain a Fokker-Planck

equation for the membrane potential distribution p(V ,t)

Lp(V ,t)

Lt
~{

L
LV

S(V ,t)

S(V ,t)~{
s2

tm

Lp

LV
(V ,t){

V{m

tm

p(V ,t):

ð3Þ

Only the first two moments SwjT~
P

wj wjP(wj) and

S(wj)2T~
P

wj (wj)2P(wj) of the amplitude distribution enter the

first (m) and second (s2) infinitesimal moments as [43, cf. Appendix

Input-Output Correlation of an Integrate-and-Fire Neuron for a

detailed derivation]

m~ltmSwjTzV0

s2~
1

2
tmlS(wj)2T:

ð4Þ

In the absence of a threshold, the stationary density follows from

the solution of S(V ,t)~0 as a Gaussian with mean m and variance

s2.

Equation (3) and (4) hold in general for excitatory events with

i.i.d. random amplitudes arriving at Poisson time points. Given the

K~cfN common excitatory afferents’ activities are generated by a

MIP process, the number of k synchronized afferents follows a

binomial distribution P(k)~B(K ,p,k)~
K

k

� �
pk(1{p)K{k, with

moments SkT~Kp and Sk2T~Kp(1{pzKp). Note that

throughout the manuscript we choose the number of common

inputs K to be an integer, and we restrict the values of c

accordingly. The total rate
nin

p
SkT~ninK of arriving events is

independent of p, as is the contribution to the mean membrane

potential m. Further we assume the neurons to be contained in a

network that is in the balanced state, i.e. g~f =(1{f ), and that all

afferents have the same rate nin. Thus, excitation and inhibition

cancel in the mean so that m~V0. Due to the independence of

excitatory and inhibitory spike trains they contribute additively to

the variance s2 in (4). The variance due to (1{f )N inhibitory

afferents with rate nin is (1{f )Nning2F2, with F2~
1

2
tmw2. An

analog expression holds for the contribution of unsynchronized

disjoint excitatory afferents. The contribution of K excitatory

afferents from the MIP follows from (4) as
nin

p
Sk2TF2. So together

we obtain

s2~ cf (1{pzcfNp)z(1{c)f zg2(1{f )
� �

NninF2

~ f (1{cpzc2fNp)zg2(1{f )
� �

NninF2:
ð5Þ

Fig. 1B shows that (5) is in good agreement with simulation

results. We are further interested in describing the correlation rin

between the membrane potentials of both neurons. The covari-

ance is caused by the contribution from shared excitation
nin

p
Sk2TF2, in addition to the contribution from shared inhibition

c(1{f )Nning2F2, which together result in the correlation

coefficient

Noise Suppression and Surplus Synchrony
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rin~ f (1{pzcfNp)zg2(1{f )
� �

cNninF2=s2: ð6Þ

Again, Fig. 1C shows that (6) is in good agreement with

simulation results.

In order to isolate and control the effect of the synchrony

parameter p on the variance (5) and the input correlation (6), in

the following we will compare two distinct scenarios: In the first

scenario, common input alone causes the input correlation rin and

spiking synchrony among afferents is zero (p~0). In the second

scenario we generate the same amount of input correlation rin but

realize it with a given amount of spike synchrony pw0. In order to

have comparable scenarios, we keep the marginal statistics of

individual neurons the same, measured by the membrane potential

mean m and variance s2.

In scenario 1 (p~0) the input correlation rin (6) equals the

common input fraction c. In scenario 2 (pw0) the same input

correlation rin can be achieved by appropriately decreasing the

fraction of common inputs to �cc(rin,p). The value of �cc is

determined by the positive root of the quadratic equation (6)

solved for c. In neither scenario does the input correlation depend

on the afferent rate nin. In scenario 2 we can hence choose nin in

order to arrive at the same variance s2 as in scenario 1. To this

end we solve (5) for nin to obtain the reduced afferent rate

�nnin(s2,rin,p).

We evaluate this approach by simulating the free membrane

potential of a pair of leaky integrate-and-fire neurons driven by

correlated input. For different values of p we chose �cc(rin,p) and

�nnin(s2,rin,p), shown in Fig. 2A and B, to keep the variance and the

correlation constant. Fig. 2A shows that the adjustment of the

common input fraction becomes substantial only for higher values

of p: while for p~0:001 the reduced �cc is only slightly smaller than

c, for p~0:1 and rin~0:8 it is reduced to �cc~0:21. Fig. 2B shows

that even for small amounts of input synchrony, nin needs to be

decreased considerably in order to prevent the increase of

membrane potential variance (Fig. 1B). In the extreme case of

rin~1 and p~0:1 (both neurons receive identical and strongly

synchronous excitatory input) an initial input firing rate of 10 Hz

needs to be decreased to �nnin~0:15 Hz. Fig. 2C and D confirm

that indeed both the correlation and the variance of the free

membrane potential remain constant throughout the whole range

of rin and for all simulated values of p.

Correlation Transmission
In order to study the transmission of correlation by a pair of

neurons, we need to ensure that the single neuron’s working point

does not change with the correlation structure of the input. The

diffusion approximation (3) suggests, that the decisive properties of

the marginal input statistics are characterized by the first (m) and

second moment (s2). As we supply balanced spiking activity to

each neuron, the mean m is solely controlled by the resting

potential V0, as outlined above. For any given value of p and rin,

choosing the afferent rate �nnin(s2,rin,p) ensures a constant second

moment s2. Consequently, Fig. 3 confirms that the fixed working

point (m,s2) results in an approximately constant neural firing rate

nout for weak to moderate input synchrony p. For strong

synchrony, fluctuations of the membrane potential become non-

Gaussian and the firing rate decreases; the diffusion approxima-

tion breaks down.

In studies which investigate the effect of common input on the

correlation transmission of neurons, the input correlation is

identical to the common input fraction c [35,36]. In the presence

of input synchrony this is obviously not the case (Fig. 1C).

Choosing the afferent rate and the common input fraction

according to �nnin(s2,rin,p) and �cc(rin,p), respectively, enables us

to realize the same input correlation rin with different contribu-

tions from shared inputs and synchronized events. We may thus

investigate how the transmission of correlation by a neuron pair

depends on the relative contribution of synchrony to the input

correlation rin. Fig. 3A shows the output synchrony as a function

of rin for four fixed values of input synchrony p. As the input

correlation is by construction the same for all values of p, changes

in the output synchrony directly correspond to a different

correlation transmission coefficient. Even weak spiking synchrony

(p~0:001) in the common input effectively increases the output

synchrony, compared to the case where the same input correlation

is exclusively caused by common input (p~0). Stronger synchrony

(p~0:01 and p~0:1) further increases this transmission. In Fig. 3B

we confirm that the increase of output spike synchrony is not

caused by an increase of the output firing rate of the neurons, but

rather their rate remains constant up to intermediate values of

pƒ0:01. The drastic decrease of the output firing rate for p~0:1
does not rebut our point, but rather strengthens it: correlation

transmission is expected to decrease with lower firing rate [35,36]

for Gaussian inputs. However, here we observe the opposite effect

in the case of strongly non-Gaussian inputs due to synchronous

afferent spiking. We will discuss this issue in the following

paragraph, deriving an analytical prediction for the correlation

transmission. Moreover, we observe that the increased transmis-

sion is accompanied by a sharpening of the correlation function

with respect to the case of p~0 (cf. Fig. 3C and D).

Figure 2. Isolation and control of the effect of synchrony on the
free membrane potential statistics. A,B Adjusted common input
fraction �cc (A) and input firing rate �nnin (B) for different values of p (gray
coded) that ensure the same variance and covariance as for p~0. C
Correlation coefficient rin normalized by c between the free membrane
potential of a pair of neurons using the adjusted common input fraction
�cc. D Standard deviation of the free membrane potential, using the
adjusted firing rate �nnin . The statistics of the free membrane potential
measured in simulations in panels C and D are further verified via (6)
and (5) (solid lines).
doi:10.1371/journal.pcbi.1002904.g002
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For correlated inputs caused by common inputs alone (no

synchrony, p~0) or by weak spiking synchrony (pƒ0:01) the

transmission curves in Fig. 3A are always below the identity line.

This means that the neural dynamics does not transmit the

correlation perfectly, but rather causes a decorrelation. Recent

work has shown that the finite life time of the memory stored in

the membrane voltage of a leaky integrate-and-fire neuron is

directly related to this decorrelation [38]. Quantitative approxi-

mations of this decorrelation by non-linear threshold units can be

understood in the Gaussian white noise limit [37,35,36]. For input

correlation caused by spiking synchrony, however, we observe a

qualitatively new feature here. In the presence of strong spiking

synchrony (p~0:1), in the regime of high input correlation

(rin *> 0:8) the correlation transmission coefficient exceeds unity.

In other words, the neurons correlate their spiking activity at a

level that is higher than the correlation between their inputs. In

order to obtain a quantitative understanding of this boost of

correlation transmission by synchrony, in the following two

sections we will in turn investigate the mechanisms in the limit

of low and high input correlations, respectively.

Correlation Transmission in the Low Correlation Limit
In the limit of low input correlation Fig. 3 suggests that the main

difference of the correlation functions is in the central peak caused

by coincident firing of both cells. As the remainder of the

covariance function only changes marginally, we can as well

consider integral measures of the covariance function. Calculating

the time integral of the covariance function can conveniently be

accomplished by an established perturbative approach that treats

the common input as a small perturbation and only requires the

DC-susceptibility of the neuron to be determined [37,44,35,36].

As the covariance function typically decays to zero on a time scale

of about 10 ms, the integral correlation is well approximated by

the covariance between spike counts in windows of 100 ms,

considered in this subsection.

For Gaussian white noise input and in the limit of low input

correlation, the correlation transmission is well understood

[37,44,35,36]. The employed diffusion approximation assumes that

the amplitudes of synaptic events are infinitesimally small. For

uncorrelated Poisson processes and large number of afferents N , the

theory is still a fairly good approximation. For small synaptic jumps

approximate extensions are known [45,46] and exact results can be

obtained for jumps with exponentially distributed amplitudes [47].

However, in order to treat spiking synchrony in the common input to

a pair of neurons, we need to extend the perturbative approach here.

Before deriving an expression for the correlation transmission

by a pair of neurons, we first need the firing rate deflection of a

neuron i caused by a single additional synaptic impulse of

amplitude J at t~0 on top of synaptic background noise. Within

the diffusion approximation, the background afferent input to the

neuron can be described by the first two moments m and s2 (4).

We denote as ds(t)~s(t){nout the centralized (zero mean) spike

train and as hi(t,J)~Sdsi(tDimpulse of amplitude J at t~0)Ti

the excursion of the firing rate of neuron i with respect to the base

rate nout caused by the additional impulse and averaged over the

realizations of the background input STi, illustrated in Fig. 4B. An

additional impulse is equivalent to an instantaneous perturbation

of both, the first (m) and the second (s2) moment with prefactors

tmJ and 1
2

tmJ2n, respectively, as shown in section ‘‘Impulse

Response to Second Order’’. The DC-susceptibility Hi(?,J)
is therefore a quadratic function in the amplitude J

Hi(?,J)~

ð?
0

hi(t,J) dt

~a(m,s) Jzb(m,s)J2,

ð7Þ

where the prefactors a(m,s) and b(m,s) depend on the working

point of the neuron and hence on the background noise

parameterized by m and s. A similar approximation to second

order in J was performed for periodic perturbations of the afferent

firing rate [48, cf. Appendix, eq. A3] and for impulses in [12, cf.

App. 4.3 and Fig. 8 for an estimate of the validity of the

approximation]. Note that this approximation extends previous

results that are first order in J [49,46]. The DC-susceptibility

H(?,J) can be interpreted as the expected number of additional

spikes over baseline caused by the injected pulse of amplitude J.

As the marginal statistics of the inputs to both neurons are the

same they fire with identical rates. Each commonly received

impulse to both cells contributes to the cross covariance function

between the outgoing spike trains, defined as

kout(t)~Sds1(tzt)ds2(t)Tt, ð8Þ

where the expectation value STt is taken over realizations of the

disjoint inputs, the common input, and over time t. kout(t) drops

to zero for t??. The average over realizations of the afferent

input ensembles can be performed separately over realizations of

the common STc and the disjoint inputs STi, i[½1,2� [49], leading

to

kout(t)~ lim
T??

1

2T

ðT

{T

SSds1(tzt)T1Sds2(t)T2Tcdt:

Figure 3. Correlation transmission of a pair of integrate-and-
fire neurons. A Output spike synchrony as a function of input
correlation rin and for four different values of input synchrony p~0,
p~0:001, p~0:01 and p~0:1 (gray-coded). Dashed black line with
slope 1 indicates rout~rin . B Corresponding mean output firing rate of
the neurons. C,D Cross-correlation functions at input correlations
rin~0:44 (C) and rin~0:88 (D) (indicated by dashed vertical lines in A)
for the three values of input synchrony p as indicated in C.
doi:10.1371/journal.pcbi.1002904.g003
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Transforming to frequency domain with respect to t and applying

the Wiener-Khinchine theorem [50], the cross spectrum between

the centralized spike trains reads

Kout(v)~SSdS1(v)T1SdS2({v)T2Tc:

With the definition of the Fourier transform

X (v)~F½x�(v)~
Ð?
{? x(t)e{ivtdt, for v~0 the cross spectrum

equals the time integral of the cross correlation function.

Performing the average STc over the common sources we obtain

two contributions, due to synchronous excitatory pulses from the

MIP [39], giving rise to k synchronously arriving events, k being

distributed according to a binomial distribution k*B(�ccfN,p,k),
and due to �cc(1{f )N common inhibitory inputs each active with

Poisson statistics and rate �nnin, leading to

Kout(0)~lm

X
k

B(�ccfN,p,k)SdS1(0Dkw)T1SdS2(0Dkw)T2

z�nnin�cc(1{f )NSdS1(0D{gw)T1SdS2(0D{gw)T2,

where SdSi(0DJ)Ti~Hi(?,J) is the integral of the response to a

single impulse of amplitude J . So with (7) we have

H1(?,J)H2(?,J)~a2J2z2abJ3zb2J4 and finally obtain

Kout(0)~lm a2w2M2z2abw3M3zb2w4M4

� �
z�nnin�cc(1{f )N a2({gw)2z2ab({gw)3zb2({gw)4

� �
,
ð9Þ

where M2, . . . ,M4 are the moments of the binomial distribution

(Section ‘‘Moments of the Binomial Distribution’’). In

order to obtain a correlation coefficient, we need to normalize the

integral of (9) by the integral of the auto-covariance of the neurons’

spike trains. This integral equals FFnout [51,44], with the Fano

factor FF. In the long time limit the Fano factor of a renewal

process equals the squared coefficient of variation CV 2 [52],

which can be calculated in the diffusion limit [40, App. A1]. Thus,

we obtain

r?
out^

Kout(0)

CV 2nout

: ð10Þ

Fig. 4A shows that the output spike correlation of a pair of neurons

is fairly well approximated by r?
out in the lower correlation regime.

While the approximation is good over almost the whole displayed

range of rin for p~0:001 and p~0:01, for p~0:1 the theory only

works for values of rinv0:3 in agreement with previous studies

[35,36] applying a similar perturbative approach to the case of

Gaussian input fluctuations.

Correlation Transmission in the High Correlation Limit
In order to understand how the neurons are able to achieve a

correlation coefficient larger than one, we need to take a closer

look at the neural dynamics in the high correlation regime. We

refer to the strong pulses caused by synchronous firing of

numerous afferents as MIP events. Fig. 5A shows an example of

the membrane potential time course that is driven by input in the

high correlation regime. At sufficiently high synchrony as shown

here, most MIP events elicit a spike in the neuron, whereas

fluctuations due to the disjoint input alone are not able to drive the

membrane potential above threshold. Thus, in between two MIP

events the membrane potential distribution of each neuron evolves

independently and fluctuations are caused by the disjoint input

alone. Fig. 5B shows the time-dependent probability density of the

membrane potential, triggered on the time of arrival of a MIP

event. We observe that most MIP events cause an action potential,

followed by the recharging of the membrane after it has been reset

to Vr at t~0. After a short period of repolarization the membrane

potential quickly reaches its steady state. The contribution of the

�ccfN common, excitatory afferents to the membrane potential

statistics is limited to those occasional strong depolarizations.

Between two such events they neither contribute to the mean nor

to the variance of V . Hence the effective mean and variance of the

membrane potential are due to the disjoint input alone, given by

~mm~V0{g(1{f )�ccN�nninF1 and ~ss2~ f (1{�cc)zg2(1{f )
� �

N�nninF2

with F1~tmw and F2~
1
2

tmw2. Fig. 5C shows in gray the

empirical distribution of the membrane potential between two

MIP events after it has reached the steady state. It is well

approximated by a Gaussian distribution with mean ~mm and

variance ~ss. The membrane potential can therefore be approxi-

mated as a threshold-free Ornstein-Uhlenbeck process [53,54].

Let us now recapitulate these last thoughts in terms of a pair of

neurons: In the regime of synchronized high input correlation (e.g.

p~0:1, rinw0:8), MIP events become strong enough so that most

of them elicit a spike in both neurons. At the same time, the

uncorrelated, disjoint sources (which can be considered as sources of

noise) induce fluctuations of the membrane potential which are,

however, not big enough to drive the membrane potential above

threshold. Thus, while the input to both neurons still contains a

considerable amount of independent noise, their output spike trains

are (for sufficiently high rin) a perfect duplicate of the mother spike

train that generates the MIP events in their common excitatory

input, explaining the observed correlation transmission coefficient

larger than unity. Note that this is the reason for the drastic decrease

of the output firing rate in Fig. 3B, which in the limit of high input

correlation approaches the adjusted input firing rate �nnin (Fig. 2B).

We would like to obtain a qualitative assessment of the

correlation transmission in the high correlation input regime.

Since the probability of output spikes caused by the disjoint

sources is vanishing, the firing due to MIP events inherits the

Poisson statistics of the mother process. Consequently, the auto-

covariance function of each neurons’ output spike train is a d-

function weighted by its rate n0~lmPinst, where Pinst is the

probability that a MIP event triggers an outgoing spike in one of

the neurons. The output correlation can hence be approximated

by the ratio

Figure 4. Approximation of the output correlation in the limit
of low input correlation. A Correlation transmission in the low input
correlation limit. Data points show the output correlation r100 ms

out

resulting from simulations, solid lines show the theoretical approxima-
tion r?

out (10). Dashed black line indicates rout~rin. B Deflection of the
firing rate with respect to base rate caused by an additional synaptic
event at t~t0 .
doi:10.1371/journal.pcbi.1002904.g004
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rout^
Psync

Pinst

, ð11Þ

where Psync is the probability that a MIP event triggers an

outgoing spike in both neurons at the same time. Note that the

approximation (11) holds for arbitrary time scales, as the spike

trains have Poisson statistics in this regime. In order to evaluate

Pinst and Psync, we use the simplifying assumption that the last

MIP event at t~0 caused a reset of the neuron to Vr~0, so the

distribution P(V ,t) of the membrane potential evolves like an

Ornstein-Uhlenbeck process as [54]

P(V ,t)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p~ss(t)2
q exp {

(V{~mm(t))2

2~ss(t)2

 !

with

~mm(t)~~mm 1{e{ t
tm

	 

~ss2(t)~~ss2 1{e{ 2t

tm

	 

,

ð12Þ

which is the solution of (3) with initial condition V (0)~0. We

evaluate Pinst from the probability mass of the voltage density

shifted across threshold by an incoming MIP event as

Pinst~
X�ccfN

k~1

B(�ccfN,p,k):
ð?
0

dt lmS(t):
ðVh

Vh{kw

dV P(V ,t), ð13Þ

where the survivor function S(t)~ exp ({lmt) is the probability

that after a MIP event occurred at t~0 the next one has not yet

occurred at tw0. So dtlmS(t) is the probability that no MIP event

has occurred in 0,t½ � and it will occur in t,tzdt½ � [52]. The

binomial factor B is the probability for the amplitude of a MIP

event to be kw and the last integral is the probability that a MIP

event of amplitude kw causes an output spike [46]. We first express

I(V ,t)~
ÐVh

V dV P(V ,t) in terms of the error function using (12)

with the substitution x~
V{~mm(t)ffiffiffi

2
p

~ss(t)
, to obtain

I(V ,t)~
1

2
erf

Vh{~mm(t)ffiffiffi
2
p

~ss(t)

� �
{erf

V{~mm(t)ffiffiffi
2
p

~ss(t)

� �� �
, ð14Þ

where we used the definition of the error function

erf(x)~ 2ffiffi
p
p
Ð x

0
e{x2

dx. We further simplify the first integral in

(13) with the substitution y~e{lmt to

ð?
0

dt S(t):I(V ,t)~{

ð0
1

dy

lmy
y:I V ,

ln y

{lm

� �
,

thus finally obtaining

Pinst~
X�ccfN

k~1

B(�ccfN,p,k):
ð1
0

ÎI(Vh{kw,y) dy, ð15Þ

where we introduced ÎI(V ,y) as a shorthand for (14) with ~mm(t) and

~ss(t) expressed in terms of the substitution variable y as

m̂m(y)~~mm 1{y
1

lmtm

� �
and ŝs(y)~~ss 1{y

2
lmtm

� �
, following from

(12). In order to approximate the probability Psync that the MIP

event triggers a spike in both neurons we need to square the

second integral in (13), because the voltages driven by disjoint

input alone are independent, so their joint probability distribution

factorizes, leading to

Psync~
X�ccfN

k~1

B(�ccfN,p,k):
ð1
0

ÎI(Vh{kw,y)2dy: ð16Þ

It is instructive to observe that 0ƒI(V ,t)ƒ1, because I given by

(14) is a probability. Therefore it follows that I2(V ,t)ƒI(V ,t),
with equality reached if I~1 or I~0. Hence from the definitions

(15) and (16) it is obvious that PsyncƒPinst, as it should be and the

ratio (11) defines a properly bounded correlation coefficient

0ƒroutƒ1 in the high input correlation regime.

So far, we have considered both neurons operating at a fixed

working point, defined by the mean and variance (4). Due to the

non-linearity of the neurons we expect the effect of synchronous

input events on their firing to depend on the choice of this working

point. We therefore performed simulations and computed (2) using

four different values for the mean membrane potential m0 (Fig. 6).

This was achieved by an appropriate choice of a DC input current

I0 and accordingly adjusting the input firing rate nin in order to

keep the mean firing rate constant (Fig. 6A, inset). The data points

from simulations in Fig. 6A show that different working points of

the neurons considerably alter the correlation transmission in the

limit of high input correlation. At working points near the

Figure 5. Neural dynamics in the regime of high input
correlation and strong synchrony. A Exemplary time course of a
membrane potential driven by input containing strong, synchronous
spike events. During the time period shown, five MIP events arrive
(indicated by tick marks above Vh). The first four drive the membrane
potential above the threshold Vh , after which V is reset to Vr and the
neuron emits a spike (dark gray tick marks above Vh). The fifth event is
not able to deflect V above threshold (light gray) and the membrane
potential quickly repolarizes towards its steady state mean ~mm (see text).
B Time-resolved membrane potential probability density P(V ,t)
triggered on the occurrence of a MIP event at t~0. Since most MIP
events elicit a spike, after resetting V to Vr the membrane potential
quickly depolarizes and settles to a steady state Gaussian distribution.
The slight shade of gray observable for small t just below the threshold
Vh is caused by the small amount of MIP events that were not able to
drive the membrane potential above threshold. C Probability density of
the membrane potential in steady state. Theoretical approximation
(black) was computed using ~mm and ~ss (see text and eq:Vt), empirical
measurement (gray) was performed for tw30 ms (gray dashed line in
B). Simulation parameters were p~0:1, �cc~0:26 (c~0:87) and �nnin~1:75
(nin~10) Hz. Other parameters as in Table 1.
doi:10.1371/journal.pcbi.1002904.g005
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threshold (m0~11 mV) MIP events more easily lead to output

spikes, thereby boosting the transmission of correlation, as

compared to working points that are further away from the

threshold (m0~8 mV). Solid lines in Fig. 6A furthermore show

that (11) indeed provides a good approximation of the output spike

correlation when the input to both neurons is strongly synchro-

nized. Obviously, the assumption has to hold that the probability

density of the membrane potential is sufficiently far from the

threshold, which for p~0:1 is only the case if rin *> 0:75. Hence,

the approximation becomes less accurate for lower input

correlations, as expected. Note that, as opposed to Fig. 1E, the

effective common input fraction �cc in Fig. 6A is much lower than

rin. Fig. 6B shows the same data as a function of the actual

fraction of shared afferents �cc. It reveals that the gain of correlation

transmission above unity is already reached at fractions of

common input as low as c~0:15 (for m0~11 mV), which is a

physiologically plausible value.

A further approximation of (15) and (16) confirms the intuitive

expectation that the mean size of a synchronous event compared

to the distance of the membrane potential to the threshold plays an

important role for the output synchrony: if synchrony is sufficiently

high, say p~0:1, the binomial distribution B(�ccfN,p,k) is rather

narrow and has a peak at k~�ccfNp. Inserting this mean value into

(15) and (16) we obtain the approximation

rout^

Ð 1

0
ÎI(Vh{�ccfNpw,y)2dyÐ 1

0
ÎI(Vh{�ccfNpw,y)2dy

,

which shows that the response probability at time t after a spike

mainly depends on (Vh{~mm(t){�ccfNpw)=~ss(t).

Measuring the integral of the output correlation over a window

of 100 ms, in the limit of high input correlation rin§0:8 and

strong synchrony p~0:1 the picture qualitatively stays the same.

Spikes are predominantly produced by the strong depolarizations

caused by the synchronously arriving impulses. The output spike

trains hence inherit the Poisson statistics from the arrival times of

the synchronous volleys. As for marginal Poisson statistics and

exactly synchronous output spikes the correlation coefficient does

not depend on the time window over which the correlation is

measured, the output correlation coefficient is uniquely deter-

mined by the ratio of the rates that both neurons fire together over

the rate of each neuron firing individually, expressed by (11). This

theoretical expectation is shown in Fig. 7A and B to agree well

with the simulation results for different values of the mean

membrane potential.

A qualitatively new behavior is observed in the intermediate

range of input correlation rin^0:5: the input correlation is

transmitted faithfully to the output with a gain factor around unity.

Note that in the absence of synchrony the correlation gain is

strictly below unity, as shown in Fig. 4. In the following we

consider the point rin~0:5 to provide a qualitative argument

explaining the unit gain. Fig. 7C shows the average postsynaptic

amplitude caused by a volley of synchronously arriving impulses

Nf �ccwp, which is about 5:1 mV fluctuating only weakly with a

small standard deviation of w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf �ccp(1{p)

p
around 0:8 mV.

Fig. 7D shows that the mean membrane potential due to the

disjoint input alone is around 7 mV, so two synchronous impulses

closely appearing in time are sufficient to fire the neuron.

Moreover, the fluctuations ~ss caused by the disjoint afferents alone

are strong (around 3 mV) and with the mean membrane potential

~mm of around 7 mV they are sufficient to fire the cell. As the integral

over the covariance function equals the count covariance over long

windows of observation
Ð?
{? k(t) dt~ limt??

1

2t
S(nt

1{SntT)

(nt
2{SntT)T, we consider the spike counts nt

1 and nt
2 in a long

time window t. As each source of fluctuations (disjoint and

Figure 6. Approximation of the output synchrony in the limit
of high input correlation. A Output spike synchrony as a function of
input correlation in the limit of high input correlation and strong
synchrony p~0:1. Data points and solid lines show results from
simulations and theoretical approximation (11), respectively. Gray code
corresponds to the four different mean membrane potential values m0

as depicted in B, the input firing rate nin was 17:5 Hz, 13:7 Hz, 10:0 Hz
and 7:2 Hz, correspondingly (from low to high m0). The working point
used in the previous sections corresponds to m0~10 mV, nin~10 Hz.
The inset shows the output firing rate at the four working points. B
Output spike synchrony as a function of the actual common input
fraction �cc at the four working points. Dashed curves in A and B indicate
rout~rin .
doi:10.1371/journal.pcbi.1002904.g006

Figure 7. Correlation transmission for the output correlation
on a long time scale r100 ms

out in the presence of strong input
synchrony (p~0:1). A,B As Fig. 6A,B but measuring the spike count
correlation between the neurons over a time window of 100 ms. C
Mean pNf �ccw (thick lines) and mean plus minus one standard deviation

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf �ccp(1{p)

p
(thin lines) of the amplitude of synchronous spike

volleys in the common excitatory input as a function of rin for three
different values of p (indicated by gray code). D Mean ~mm and standard
deviation ~ss of the membrane potential caused solely by the disjoint
afferents for strong synchrony (p~0:1) as a function of rin.
doi:10.1371/journal.pcbi.1002904.g007
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common inputs) alone is already sufficient to fire the cell, both

sources mutually linearize the neuron. Averaging the deviation of

the spike count from baseline dnt
i~nt

i{Snt
iT separately over each

source of noise (STc over common, STd over disjoint sources) this

deviation can be related linearly to the fluctuation of the respective

other source, Sdnt
iTd!dVc, Sdnt

iTc!dVd . If such a linear

relationship holds, it is directly evident that correlations are

transmitted faithfully

rout~
Sdnt

1dnt
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S dnt
1

� �2TS dnt
2

� �2T
q ^

SdV1dV2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S dV1ð Þ2TS dV2ð Þ2T

q ~rin:

So far, for pw0 we have considered the case of input events in

the common excitatory input that are perfectly synchronized. In

the following we investigate how the transmission of strong

synchrony p~0:1 changes if the common excitatory input events

are not perfectly synchronous by randomly jittering the spike times

in each volley according to a normal distribution with a standard

deviation tj . Fig. 8A shows that increasing the temporal jitter of

the spike volleys results in a decrease of the mean output firing rate

of neurons, in line with the decrease of the input variance caused

by the jittering. Fig. 8B shows that also the output synchrony r1 ms
out

between the neurons is substantially decreased with increasing

jitter tj . This observation is the result of three consequences of the

jitter. Firstly, from the decreased firing rate observed in Fig. 8A we

expect the correlation transmission to decrease [35,36]. Secondly,

due to the measurement of output synchrony on the precise time

scale of 1 ms, every dispersion of the input spikes exceeding this

time window lowers the output correlation. Thirdly, for a jitter

width comparable to the membrane time constant the leak term of

the integrate-and-fire neuron reduces the summed effect of the

input spikes on the membrane potential the more, the stronger the

dispersion of the spike times. Thus, when considering the output

synchrony r1 ms
out even with a jitter as small as 1 ms the case of

routwrin is not reached in the regime of high input correlation.

However, on longer correlation time windows (Fig. 8C, D) a

correlation gain w1 is possible with jitter widths up to 5 ms. This

is intuitively expected, because spikes arriving within a short time

interval compared to the membrane time constant (here

tm~10 ms) have in sum the same effect as if arriving in

synchrony. Thus, measuring the output correlation on the same

time scale as the jitter ‘collects’ this cumulative effect.

Discussion

Summary of Results
In this work we investigate the correlation transmission by a

neuron pair, using two different types of input spike correlations.

One is caused solely by shared input – typically modeled as

Gaussian white noise in previous studies [35,36] – while in the

other the spikes in the shared input may additionally arrive in

synchrony. In order to shed light on the question whether cortical

neurons operate as integrators or as coincidence detectors

[18,24,25], we investigate their efficiency in detecting and

transmitting spike correlations of either type. We showed that

the presence of spike synchrony results in a substantial increase of

correlation transmission, suggesting that synchrony is a prerequi-

site in explaining the experimentally observed excess spike

synchrony [17,21,22], rather than being an epiphenomenon of

firing rate due to common input given by convergent connectivity

[8].

To model correlated spiking activity among the excitatory

afferents in the input to a pair of neurons we employ the Multiple

Interaction Process (MIP) [39], resulting in non-Gaussian fluctu-

ations in the membrane potential of the receiving neurons. In this

model the parameter p defines the pairwise correlation coefficient

between each pair of N spike trains. If N is large enough and all

spike trains are drawn independently (p~0) the summation of all

N spike trains is approximately equivalent to a Gaussian white

noise process [41,54]. However, introducing spike correlations

between the spike trains (pw0) additionally allows for the

modeling of non-Gaussian fluctuating inputs. Such correlations

have a strong effect on the membrane potential statistics and the

firing characteristics of the neurons. The fraction of common input

c and the synchrony strength p each contribute to the total

correlation between the inputs to both neurons. We show how to

isolate and control the effect of input synchrony such that (1) a

particular input correlation rin can be realized by an (almost)

arbitrary combination of input synchrony p and common input

fraction c, and (2) the output firing rate of the neurons does not

increase with p. This enables a fair comparison of transmission of

correlation due to input synchrony and due to common input. We

find that the non-linearity of the neuron model boosts the

correlation transmission due to the strong fluctuations caused by

the common source of synchronous events.

Given a fixed input correlation, the correlation transmission

increases with p. Most notably, this is the case although the output

firing rate of the neurons does not increase and is for the most part

constant, suggesting that the correlation susceptibility of neurons is

not a function of rate alone, as previously suggested [35], but

clearly depends on pairwise synchrony in the input ensemble.

Previous studies have shown how to apply Fokker-Planck theory

and linear perturbation theory to determine this transmission of

Figure 8. Correlation transmission for strong synchrony
(p~0:1) with jittered spike volleys. Panels show simulation results
using V0~10 mV and four different jitter widths tj~0 ms, tj~1 ms,
tj~5 ms and tj~10 ms (gray code as shown in panel A). A Output
firing rate as a function of input correlation for different jitter widths. B–
D Output correlations r1 ms

out (B), r10 ms
out (C) and r100 ms

out (D) as a function of
the input correlation for increasing jitter widths.
doi:10.1371/journal.pcbi.1002904.g008
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correlation by pairs of neurons driven by correlated Gaussian

white noise [37,44,35,36]. In order to understand the effect of

synchrony on the correlation transmission here we extended the

Fokker-Planck approach to synaptic input of finite amplitudes. In

the limit of low input correlation this extension indeed provides a

good approximation of the output correlation caused by inputs

containing spike correlations. Alternative models that provide

analytical results are those of thresholded Gaussian models [55,56]

or random walk models [38]. In order to study transmission in

networks with different architecture than the simple feed-forward

models employed here, our results may be extended by techniques

to study simple network motifs developed in [57].

Hitherto existing studies argue that neurons either loose

correlation when they are in the fluctuation driven regime or at

most are able to preserve the input correlation in the mean driven

regime [58]. Here, we provide evidence for a qualitatively new

mechanism which allows neurons to exhibit more output

correlation than they receive in their input. Fig. 3A and Fig. 7A

show that in the regime of high input correlation the correlation

transmission coefficient can exceed unity. This effect, observed at

realistic values of pairwise correlations (p^0:1) and common input

fractions (c^0:25), does not depend on the time scale of the

measure of output spike correlation and furthermore withstands a

jittering of the input synchrony up to the time scale of the

membrane time constant. This time scale is on the same order as

the experimentally observed dynamically changing precision of

synchrony [59], accessible through theoretical and methodological

advances to determine and detect significant spike synchrony

[19,60]. We provide a quantitative explanation of the mechanism

that enables neurons to exhibit this behavior. We show that in this

regime of high input correlation rin the disjoint sources and the

common inhibitory sources do not contribute to the firing of the

neurons, but rather the neurons only fire due to the strong

synchronous events in the common excitatory afferents. Based on

this observation, we derive an analytic approximation of the

resulting output correlation beyond linear perturbation theory that

is in good agreement with simulation results.

Mechanism of Noise Suppression by Coincidence
Detection

We presented a quantitative description of the increased

correlation transmission by synchronous input events for the leaky

integrate-and-fire model. Our analytical results explain earlier

observations from a simulation study modeling synchrony by co-

activation of a fixed fraction of the excitatory afferents [61].

However, the question remains what the essential features are that

cause this effect. An even simpler model consisting of a pair of

binary neurons is sufficient to qualitatively reproduce our findings

and to demonstrate the generality of the phenomenon for non-

linear units, allowing us to obtain a mechanistic understanding. In

this model, whenever the summed input I1,2 exceeds the threshold

h the corresponding neuron is active (1) otherwise it is inactive (0).

In Fig. 9 we consider two different implementations of input

correlation, one using solely Gaussian fluctuating common input

(input G), the other representing afferent synchrony by a binary

input common to both neurons (input S). The binary stochastic

signal g(t) has value A with probability q and 0 otherwise, drawn

independently for successive time bins. Background activity is

modeled by independent Gaussian white noise in both scenarios.

The input G corresponds to the simplified model presented in [35,

cf. Fig.4] that explains the dependence of the correlation

transmission of the firing rate. In order to exclude this

dependence, throughout Fig. 9 we choose the parameters such

that the mean activity of the neurons remains unchanged. As

shown in the marginal distribution of the input current to a single

neuron in Fig. 9B, in the scenario S the binary process g causes an

additional peak with weight q centered around A. Equal activity in

both scenarios requires a constant probability mass above

threshold h, which can be achieved by an appropriate choice of

sSvsG . In scenario G the input correlation equals the fraction of

shared input rin~c, as in [35], whereas in scenario S the input

correlation is rin~
Var½g�

Var½g�zs2
S

, where Var½g�~q(1{q)A2 is the

variance of the binary input signal g(t). Comparing both scenarios,

in Fig. 9C–G we choose q such that the same input correlation is

realized.

As for our spiking model, Fig. 9C shows an increased

correlation transmission due to input synchrony. This observation

can be intuitively understood from the joint probability distribu-

tion of the inputs (Fig. 9D–G). Whenever any of the inputs exceeds

the threshold (I1,2wh) the corresponding neuron becomes active,

whenever both inputs exceed threshold at the same time

(I1wh ^ I2wh), both neurons are synchronously active. There-

fore, Sf1T~
Ð?

h dI1

Ð?
{? dI2 p(I1,I2), the probability mass on the

right side of h for input I1 (corresponding definition for Sf2T), is a

measure for the activity of the neurons. Analogously,

Sf1f2T~
Ð?

h

Ð?
h dI1dI2 p(I1,I2), the probability mass in the upper

right quadrant above both thresholds is a measure for the output

correlation between both neurons. Since by our model definition

the mean activity of both neurons is kept constant, the masses Sf1T
and Sf2T are equal in all four cases. However, the decisive

difference between scenarios with inputs G and S is the proportion

of Sf1f2T on the total mass above threshold Sf1T~Sf2T. This

proportion is increased by the common synchronous events,

observable by comparing Fig. 9D,E. The more this proportion

approaches 1, Sf1f2T^Sf1T~Sf2T, the more the activity of both

neurons is driven by g (Fig. 9F). At the same time the contribution

of the disjoint fluctuations on the output activity is more and more

suppressed. As the correlation coefficient relates the common to

the total fluctuations, the correlation between the outputs can

exceed the input correlation if the transmission of the common

input becomes more reliable than the transmission of the disjoint

input (cf. point marked as F in Fig. 9C).

The situation illustrated in Fig. 9 is a caricature of signal

transmission by a pair of neurons of a cell assembly. The signal of

interest among the members of the assembly consists of

synchronously arriving synaptic events from peer neurons of the

same assembly. In our toy model such a volley is represented by an

impulse of large amplitude A. The remaining inputs are

functionally considered as noise and cause the dispersion of I1

and I2 observable in Fig. 9D–F. In the regime of sufficiently high

synchrony (corresponding to large A) in Fig. 9F, the noise alone

rarely causes the neurons to be activated, it is suppressed in the

output signal due to the threshold. The synchrony coded signal,

however, reliably activates both neurons, moving I1 and I2 into the

upper right quadrant. Thus a synchronous volley is always

mapped to 1 in the output, irrespective of the fluctuations caused

by the noise. In short, the non-linearity of neurons suppresses the

noise in the input while reliably detecting and transmitting the

signal. A similar effect of noise cancellation has recently been

described to prolong the memory life-time in chain-like feed

forward structures [62].

Limitations and Possible Extensions
Several aspects of this study need to be taken into account when

relating the results to other studies and to biological systems. The

multiple interaction process as a model for correlated neural
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activity might seem unrealistic at first sight. However, a similar

correlation structure can easily be obtained from the activity of a

population of N neurons. Imagine each of the neurons to receive a

set of uncorrelated afferents causing a certain mean membrane

potential m and variance s2. The entire population is then

described by a membrane potential distribution p(V ). In addition,

each neuron receives a synaptic input of amplitude w that is

common to all neurons. Whenever this input carries a synaptic

impulse, each of the N neurons in the population has a certain

probability to emit a spike in direct response. The probability

equals the amount of density shifted across threshold by the

common synaptic event. Given the value p(Vh) and its slope
Lp

LV
(Vh) of the membrane potential density at threshold Vh, the

response probability is Pinst(w)~wp(Vh){ 1
2

w2 Lp

LV
(Vh)zO(w3)

to second order in the synaptic weight w. Employing the diffusion

approximation to the leaky integrate-and-fire neuron, the density

vanishes at threshold p(Vh)~0 and the slope is given by
Lp
LV

(Vh)~{
nouttm

2s2
[34]. The response probability hence is

Pinst(w)~
nouttm

4s2
w2. For typical values of nout~20 Hz,

s~4 mV, and tm~10 ms the estimate yields w~5:7 mV to get

the copy probability p~0:1 used in the current study. Such a

synaptic amplitude is well in the reported range for cortical

connections [28]. As each of the neurons within the population

responds independently, the resulting distribution of the elicited

response spikes is binomial, as assumed by the MIP. Moreover,

since our theory builds on top of the moments of the complexity

distribution it can be extended to other processes introducing

higher order spike correlations [61,39].

The correlation transmission coefficient can only exceed unity if

the firing of the neurons is predominantly driven by the

synchronously arriving volleys and disjoint input does not

contribute to firing. The threshold then acts as a noise gate, small

fluctuations caused by disjoint input do not penetrate to the output

side. In the mean driven regime, i.e. when V0wVh, this situation is

not given since every fluctuation in the input either advances

(excitatory input) or delays (inhibitory input) the next point of

firing. Especially at high firing rates the ‘forgetting’ of the

fluctuation due to the leak until the next firing can be neglected,

the leaky integrate-and-fire neuron behaves like a perfect

integrator. Perfect integrators transmit fluctuations linearly, so

r100 ms
out ~rin [58]. Given strong input synchrony (p~0:1) and

V0~15:5 mVwVh, simulation results show that in the regime up

to input correlations rinƒ0:5 the neurons exhibit such a linear

transmission (data not shown). For rinw0:5 the correlation

transmission decreases as the firing rate substantially decreases in

Figure 9. Mechanistic model of enhanced correlation transmission by synchronous input events. A The detailed model discussed in the
results section is simplified two-fold. 1) We consider binary neurons with a static non-linearity f (x)~H(x{h). 2) We distinguish two representative
scenarios with different models for the common input: G: Gaussian white noise with variance cs2

G , representing the case without synchrony, or S: a
binary stochastic process g(t) with constant amplitude A, mimicking the synchronous arrival of synaptic events. In both scenarios in addition each
neuron receives independent Gaussian input. B Marginal distribution of the total input I1,2 to a single neuron for input G (gray) and S (black) and for
rin~0:8. In input S the binary process g alternates between 0 (with probability 1{q) and A (with probability q), resulting in a bimodal marginal
distribution. The mean activity of one single neuron is given by the probability mass above threshold h. We choose the variances s2

G and s2
S of the

disjoint Gaussian fluctuating input such that the mean activity is the same in both scenarios. C Output correlation rout~
Cov½f (I1),f (I2)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½f (I1)�Var½f (I2)�
p as a

function of the input correlation rin (see A) between the total inputs I1 and I2 . Probability q is chosen such that inputs G and S result in the same
input correlation rin . The four points marked by circles correspond to the panels D–G. D–G Joint probability density of the inputs I1 , I2 to both
neurons. For two different values of rin the lower row (E,G) shows the scenario G, the upper row (D,F) the scenario S. Note that panel B is the
projection of the joint densities in F and G to one axis. Brighter gray levels indicate higher probability density; same gray scale for all four panels.
doi:10.1371/journal.pcbi.1002904.g009
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the regime of high rin. This smaller firing rate moves the dynamics

away from the perfect integrator as the neurons loose more

memory about the commonly received pulses between two spikes.

The boost of output correlation by synchronous synaptic

impulses relies on fast positive transients of the membrane

potential and strong departures from the stationary state: An

incoming packet of synaptic impulses brings the membrane

potential over the threshold within short time. Qualitatively, we

therefore expect similar results for short, but non-zero rise times of

the synaptic currents. For long synaptic time constants compared

to the neuronal dynamics, however, the instantaneous firing

intensity follows the modulation of the synaptic current adiabat-

ically [44,63]. A similar increase of output synchrony in this case

can only be achieved if the static f {I curve of the neuron has a

significant convex non-linearity.

The choice of the correlation measure is of importance when

analyzing spike correlations. It has been pointed out recently that

the time scale t on which spike correlations are measured is among

the factors that can systematically bias correlation estimates [3]. In

particular, spike count correlations computed for time bins larger

than the intrinsic time scale of spike synchrony can be an

ambiguous estimate of input cross correlations [64]. Considering

the exactly synchronous arrival of input events generated by the

MIP, we chose to measure count correlations on a small time scale

of t~1 ms as well as on a larger scale of t~100 ms.

Conclusion
It has been proposed that the coordinated firing of cell

assemblies provides a means for the binding of coherent stimulus

features [14,15,16]. Member neurons of such functional assem-

blies are interpreted to encode the relevant information by

synchronizing their spiking activity. Under this assumption the

spike synchrony produced by the assembly can be considered as

the signal and the remaining stochastic activity as background

noise. In order for a downstream neuron to reliably convey and

process the incoming signal received from the assembly, it is

essential to detect the synchronous input events carrying the signal

and to discern them from corrupting noise. Moreover, the

processing of such a synchrony-based code must occur indepen-

dently of the firing rate of the assembly members. We have shown

that indeed the presence of afferent spike synchrony leads to

increased correlation susceptibility compared to the transmission

of shared input correlations. The finding of a correlation

susceptibility that is not a function of the firing rate alone [35]

demonstrates a limitation of the existing Gaussian white noise

theory that fails to explain the qualitatively different correlation

transmission due to synchrony.

Though in the limit of weak input correlation the correlation in

the output is bounded by that in the input, in agreement with

previous reports [37,35,58], our results show that for high input

correlation caused by synchrony, neurons are able to correlate

their outputs stronger than their inputs. This finding extends the

prevailing view of correlation propagation as a ‘transmission’, as

this notion implies that a certain quantity is transported, and

hence can at most be preserved. We have shown in a mechanistic

model how this correlation gain results from the non-linearity of

cortical neurons enabling them to actively suppress the noise in

their input, thus sharpening the signal and improving the signal-to-

noise ratio. In convergent-divergent feed forward networks (synfire

chains), this mechanism reshapes the incoming spike volley [65],

so that synchronized activity travels through the feed forward

structure in a stable manner or builds up iteratively from a less

correlated state, if the initial correlations exceed a critical value

[66,67]. From our findings we conclude that the boosting of

correlation transmission renders input synchrony highly effective

compared to shared input in causing closely time-locked output

spikes in a task dependent and time modulated manner, as

observed in vivo [22].

Methods

Impulse Response to Second Order
We here derive an approximation for the integral of the impulse

response of the firing rate with respect to a perturbing impulse in

the input. A similar derivation has been presented in [12, App.

4.3]. Consider a neuron receiving background spiking input with a

first and second moment m and s2, respectively, and an additional

incoming impulse of amplitude J at time t
0
. The arrival of the

impulse causes an instantaneous shift of the membrane potential

by J. Therefore the probability density at voltage V is increased in

proportion to the density at V{J before the jump, whereas the

density is decreased by the states that were at V . This amounts to

an additional term in the Fokker-Planck equation (3), which reads

Lp(V ,t)

Lt
~{

L
LV

S(V ,t)zd(t{t
0
)({P(V ,t)zP(V{J,t)):

Applying a Kramers-Moyal expansion [41] (a Taylor expansion in

V up to second order) to the additional term, we get

d(t{t
0
)({P(V ,t)zP(V{J,t))

~d(t{t
0
) {P(V ,t)zP(V ,t){J

Lp

LV
(V ,t)z

1

2
J2 L2p

LV2
(V ,t)zO(J3)

 !
:

Combining the terms proportional to the first and second order derivative

with the corresponding terms appearing in eq:P(V,t) leads to

Lp(V ,t)

Lt
~

L
LV

V{m

tm

p(V ,t)

� �
z

s2

tm

L2p

LV 2
(V ,t)zd(t{t

0
) {J

Lp

LV
(V ,t)z

1

2
J2 L2p

LV2
(V ,t)

 !

~
L

LV

V{m

tm

{d(t{t
0
)J

� �
p(V ,t)

� �
z

s2

tm

zd(t{t
0
)

1

2
J2

� �
L2p

LV 2
(V ,t):

So the additional impulse can be considered as a d-shaped

perturbation of the first and second infinitesimal moment. We

therefore introduce a formal dependence of m(t) and s2(t) on a time

dependent function x(t) as

m(t)~mztmJ x(t)

s2(t)~s2z
1

2
tmJ2x(t):

If we are interested in the effect of an impulse of small amplitude

J%Vh{m, we may linearly approximate the response

h(t)~nout(tDgiven impulse at t
0
){nout of the neuron to the impulse

x(t)~d(t{t
0
). It generally holds that to linear approximation in x the

integral of the response to an impulse x(t)~d(t{t
0
) equals the
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response to a unit-step in the parameter x(t)~h(t), because

H(t,J)~
Ð?
{? h(s,J)h(t{s) ds~

Ð t

{? h(s,J)ds. In the limit of t??
the step response equals the DC-susceptibility, which can be expressed

as the derivative with respect to the perturbed quantity x. Therefore

we obtain to linear approximation

H(?,J)~
Lnout

Lx
: ð17Þ

Using the well known expression for the mean first passage time

[68,40] for a neuron with stationary input

n{1
out (m,s)~trz

ffiffiffi
p
p

tm F (yh){F (yr)ð Þ

with

F (y)~

ðy

f (y) dy f (y)~ey2
(erf(y)z1)

yh~
Vh{mffiffiffi

2
p

s
yr~

Vr{mffiffiffi
2
p

s
,

ð18Þ

(17) can be evaluated as

H(?,J)~a(m,s)Jzb(m,s)J2

with

a(m,s)~(nouttm)2

ffiffiffi
p

2

r
1

s
f (yh){f (yr)ð Þ

b(m,s)~(nouttm)2
ffiffiffi
p
p 1

4s2
f (yh)yh{f (yr)yrð Þ,

ð19Þ

where we applied the chain rule to express
Ln{1

out

Lx
~{n{2

out

Lnout

Lx

and
LyA

Lx
~{

1ffiffiffi
2
p

s

Lm

Lx
{

yA

s

Ls

Lx
as well as

Ls

Lx
~

1

2s

Ls2

Lx
, so finally

LyA

Lx
~{

1ffiffiffi
2
p

s
tmJ{

yA

4s2
tmJ2 for A[fh,rg.

Moments of the Binomial Distribution
The first four moments of the binomial distribution B(N,p,k)

are [69]

M1~Np,

M2~Np(1{pzNp),

M3~Np(1{3pz3Npz2p2{3Np2zN2p2) and

M4~Np(1{7pz7Npz12p2{18Np2z

6N2p2{6p3z11Np3{6N2p3zN3p3):

Acknowledgments

We thank the two anonymous reviewers for their helpful and constructive

comments. All simulations were carried out with NEST (http://www.nest-

initiative.org).

Author Contributions

Performed the mathematical analysis and simulations: MSK MH.

Conceived and designed the experiments: MSK MD SG MH. Performed

the experiments: MSK MH. Analyzed the data: MSK MH. Contributed

reagents/materials/analysis tools: MSK MH. Wrote the paper: MSK MD

SG MH.

References

1. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic
point processes. II. Simultaneous spike trains. Biophys J 7: 419–440.

2. Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action

potentials: Analysis and functional interpretation. Science 164: 828–830.

3. Cohen MR, Kohn A (2011) Measuring and interpreting neuronal correlations.
Nat Rev Neurosci 14: 811–819.

4. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity:

explanation of the large variability in evoked cortical responses. Science 273:
1868–1871.
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