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Abstract

The spontaneous emergence of pattern formation is ubiquitous in nature, often arising as a collective phenomenon from
interactions among a large number of individual constituents or sub-systems. Understanding, and controlling, collective
behavior is dependent on determining the low-level dynamical principles from which spatial and temporal patterns emerge;
a key question is whether different group-level patterns result from all components of a system responding to the same
external factor, individual components changing behavior but in a distributed self-organized way, or whether multiple
collective states co-exist for the same individual behaviors. Using schooling fish (golden shiners, in groups of 30 to 300 fish)
as a model system, we demonstrate that collective motion can be effectively mapped onto a set of order parameters
describing the macroscopic group structure, revealing the existence of at least three dynamically-stable collective states;
swarm, milling and polarized groups. Swarms are characterized by slow individual motion and a relatively dense, disordered
structure. Increasing swim speed is associated with a transition to one of two locally-ordered states, milling or highly-mobile
polarized groups. The stability of the discrete collective behaviors exhibited by a group depends on the number of group
members. Transitions between states are influenced by both external (boundary-driven) and internal (changing motion of
group members) factors. Whereas transitions between locally-disordered and locally-ordered group states are speed
dependent, analysis of local and global properties of groups suggests that, congruent with theory, milling and polarized
states co-exist in a bistable regime with transitions largely driven by perturbations. Our study allows us to relate theoretical
and empirical understanding of animal group behavior and emphasizes dynamic changes in the structure of such groups.
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Introduction

Many animal groups display coordinated motion in which

individuals exhibit attraction towards others and also a tendency to

align their direction of travel with near-neighbors [1]. The

functional complexity of such aggregates are thought to result from

relatively local, self-organizing interactions among individuals that

endow many groups, such as flocking birds and schooling fish, with

the capacity to move, respond to threats and make decisions

collectively [2]. Thus the way in which collective dynamics emerge

from inter-individual social interactions likely has profound

consequences on the selection pressures experienced by group

living organisms.

Theoretical considerations of the self-structuring properties of

groups have suggested that certain features of interaction among

individuals may give rise to a relatively small number of specific

collective states [3–7]. For example, models representing local

repulsion, directional alignment and longer-range attraction

among individuals [3,5] predict that groups in which individuals

follow these behavioral rules exhibit only three collective states; a

swarm state in which individuals aggregate but are locally and

globally disordered, a milling state in which individuals have a high

degree of alignment with local neighbors but overall the group

exhibits a rotating milling formation (or torus, in three-

dimensional space) and a polarized state in which individuals tend

to be aligned with each other over a long range and consequently

the group experiences net movement. While these patterns have

all been observed in nature among different organisms [8] and can

evolve in simulations of simple predator and prey behaviour [9],

experimental support for the existence of these states, and for any

one system transitioning between them, has not previously been

determined.

In addition to displaying commonly observed group structures

these models also emphasize an important unifying feature—that

collectively moving animal groups can be considered as a

dynamical system in which multiple group states, or dynamical-

ly-stable states, exist, and that collective properties, such as the

spatio-temporal configurations exhibited, may be robust to exactly

how behavioral tendencies such as repulsion, alignment and

attraction are mediated. Furthermore, under this scenario, animal

groups are also predicted to exhibit ‘multistability’ whereby more

than one collective state coexist for identical individual behavior,
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with groups transitioning relatively quickly between the alternate

structural configurations. In the model of Couzin et al. [3], for

example, the milling and polarized state co-exist over a region of

parameter space (see Paley et al. [10] for a formal analysis of this

bistable regime). The question of which collective behavior is

adopted therefore depends on the initial configuration of the

system, in this case the positions and orientations of individuals: if

groups start in a relatively disordered state they tend to form a

milling formation; but tend to remain in the polarized configu-

ration if they begin sufficiently aligned with one another.

Perturbations, such as disruption induced by predator attacks

[1], or more generally, sources of intrinsic [11,12] or extrinsic

noise [13], can cause the system to leave its existing dynamically-

stable state and enter an unstable transitional regime. Depending

on the degree and type of perturbation the group may find itself

either drawn back towards the previous state, or if perturbed

sufficiently far, to be drawn into the alternative dynamically-stable

state.

Thus even though the group behavior results from a large

number of relatively local interactions, the group-level dynamics

can be described using relatively few and simple lower-dimen-

sional ‘order parameters’ that portray the collective dynamics,

such as global polarization and the degree of collective rotation.

This approach is familiar to us in physical systems where a

multitude of different inter-molecular interactions result in only

four fundamental states of matter; solid, liquid, gas and plasma.

When properties such as density and energy are altered, a physical

system can undergo ‘phase transitions’ between these states.

Similarly, at a certain level of description, we can view animal

groups as having the potential to exhibit abrupt changes in spatial

or temporal patterns, and thus phase transition-like behavior (see

Buhl et al. [14] for an experimental example of density-driven

transitions in locust swarms).

However, biological systems are not in equilibrium. There are no

conserved thermodynamic quantities, such as momentum and

energy, and individual motion typically results not from thermal

fluctuations or external forcing, but from individual self-propulsion

and decision-making. Nevertheless, the concept that local interactions

reduce to common non-equilibrium collective states is a key insight

provided by computational modeling of collective animal behavior

[3,4,15] which relates more generally to phase transition theory in

non-equilibrium systems [16]. Additionally, despite individual motion

likely being governed by a complex stochastic decision-making

process based on the positions, movement and size of neighbors (and

even hidden features like individual’s state), two recent studies of

schooling fish—Katz et al. [17] and Herbert-Read et al. [18]—

demonstrate that interactions can be effectively reduced to local

tendencies to be repelled from, or attracted towards, neighbors.

Similar evidence exists for aggregating ducks [19] and swarming

locusts [20].

Despite these advances, to date, no experimental study has

quantified the dynamical states of collective motion exhibited by

any species of group-living animal, nor determined whether the

general predictions of existing models of collective behavior

hold—notably, that groups will exhibit, and transition among,

relatively few (dynamically-stable) states. Here we investigate the

emergence of macroscopic collective states under highly controlled

laboratory conditions using schooling fish (golden shiner, Notemi-

gonus crysoleucas). This is a convenient model system for investigat-

ing collective behavior since individuals are relatively small

(average length approximately 5 cm in our study), and naturally

form highly cohesive schools in very shallow and still water [21].

Digital tracking of fish in a range of group sizes (from 30 to 300

fish) allows us to obtain detailed data regarding the individual

positions and velocities of schooling fish over long periods of time.

We use these data to analyze how group size and perturbations

(driven both by inevitable contact with the boundary of the tank,

but also by changes in motion by individuals within the group in

the absence of boundary influence) affect group behavior and

function to transition the group between alternative dynamical

states.

Results/Discussion

Seven replicate experiments were conducted for group sizes 30,

70 and 150 fish, and three replicates were conducted for 300 fish

(due to limitations in our capacity to house very large numbers of

fish). Each replicate consisted of filming fish swimming in a large

shallow tank (2.1 m61.2 m, water depth 5 cm) for 56 minutes (at

30 frames per second). A similar approach has been taken

previously [17,18,22,23]. Individual fish were tracked following

the methodology of Katz et al. [17] to obtain time series of the

positions and velocities. These time series constitute the raw data

from which we base our analyses.

To describe the collective structure of the fish shoals we use two

order parameters, identical to previous categorization in simula-

tion models [3,11]. First, the polarization order parameter Op,

which provides a measure of how aligned the individuals in a

group are. It is defined as the absolute value of the mean

individual heading,

Op~
1

N

XN

i~1

ui

�����

�����,

where ui is the unit direction of fish number i. Op takes values

between 0 (no alignment on average) and 1 (all fish are aligned).

Second, the rotation order parameter Or, which describes a

group’s degree of rotation about its center of mass. To define this

measure we introduce the unit vector ri pointing from the shoal’s

center of mass towards fish i. The rotation order parameter Or is

then defined by the mean (normalized) angular momentum

Author Summary

The patterns exhibited by moving animal groups like flocks
of birds and schools of fish are typical of self-organizing
systems in which global structural and dynamical proper-
ties arise from local interactions between individuals.
Despite their apparent complexity, such systems can often
be described, and understood, in terms of these emergent
properties, rather than the detailed low-level description
needed for depicting the individual dynamics. Here we
show that schooling fish (in groups of 30 to 300 golden
shiners) can be described in terms of the degree of
alignment and degree of rotation among group members.
We demonstrate that shiner schools exhibit three distinct
behaviors: a swarm state with low speeds and little order; a
strongly aligned state where the fish move with higher
speeds; and a milling state, where each fish moves around
the center of the group. Simulations have previously
predicted this type of behavior, and we relate our findings
to a well-known model of collective motion to help
highlight similarities and differences between models and
animal groups. Our results give insight into the regulation
of group structure among animals, and also inform us
generally about how global structures arise naturally from
interactions among components of dynamical systems.

Collective States in Schooling Fish
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Or~
1

N

XN

i~1

ui|ri

�����

�����,

which, by construction also takes values between 0 (no rotation)

and 1 (strong rotation).

Time series of these two order parameters give us valuable

information about the global structure of a group and how the

structure changes during an experiment. However, important

pieces of information are not captured, like the group density, the

average individual speed, and how close a group swims to the tank

boundary. For a fuller picture of the collective dynamics, we will

also use these order parameters. Other group properties could also

be measured.

Collective states exhibited and the role of group size
Throughout our entire period of filming the fish were cohesive,

and for all group sizes three dynamically-stable collective

behaviors were observed [3]; the swarm (S), polarized (P) and milling

(M) group state. Snapshots of these distinct patterns are shown in

Fig. 1A for a group of 150 fish (Videos S1, S2, S3, S4 contain

video extracts of all group sizes). As in [3], these separate modes of

motion can be categorized by only two structural properties (order

parameters) of the group—its polarization Op and its degree of

collective rotation Or. Groups repeatedly transitioned between

these collective states, as is evident in representative time series of

the order parameters shown in Fig. 1B.

To demonstrate more clearly these dynamically-stable states, in

Fig. 2 we consider the proportion of time groups spend in different

regions of the two-dimensional phase space spanned by the order

parameters Op and Or (red representing more time spent in a given

region and blue the least time; black areas signify regions of the

phase space not visited by groups in our experiments). While all

three states of motion were manifest in all groups, there are also

visible differences relating to increasing group size. For the

smallest group size of 30 fish we see that the polarized group state

predominates (high Op and low Or). Only rarely did groups of this

size exhibit swarm behavior (low Op and low Or), and even less

frequently did they adopt the rotating group state (low Op and high

Or). The fluctuations in the order parameters are also most

frequent for this group size (Fig. 1B). For a group size of 70 fish the

frequency of transitions decreases and the collective states

corresponding to the three dynamically-stable states become

clearly distinguishable as ‘hotspots’: the polarized state is no

longer dominant, with milling and swarm behavior also being

common. As group size is increased further, to 150 and then 300

fish, groups spend most of their time milling, displaying fewer

transitions into (and among) the polar state and swarm state. For

all group sizes the milling state has an equal probability of rotating

clockwise and counter-clockwise, i.e. groups did not exhibit a

handedness (see Fig. S1).

A natural consequence of increasing the number of fish in the

tank is that the mean density within the experimental arena

becomes higher, and hence the effects of the tank boundary

become more pronounced. To reveal whether the higher density

of fish per tank area in larger groups could cause the increased

stability of the milling state we performed an experiment (4

replicates) with 30 fish in a smaller tank (0.6660.38 m), which

corresponds to the mean density of 300 fish in the larger tank. The

density plot of the order parameters is shown as an inset in the 30

fish density plot in Fig. 2, and reveals that confinement by the

boundaries and higher mean density do not lead to increased time

spent milling. However, the time spent in the polarized state was

reduced; contact with the smaller tank caused this group size to

Figure 1. Dynamical states of schooling fish. (A) Snapshots of a
group of 150 golden shiners swimming in a shallow tank. The different
images (thresholded for clarity) demonstrate the typical configurations
displayed by the fish school: swarm state (S), polarized state (P) and
milling state (M). (B) Extracts of time series of order parameters for
groups of 30, 70, 150, and 300 golden shiners. Polarization Op (in blue)
measures how aligned the fish are, while rotation Or (in red) measures
the degree of rotation around the center of mass of the fish shoal.
doi:10.1371/journal.pcbi.1002915.g001

Figure 2. Density plots of polarization vs. rotation from
experiments. The data shown are averaged over all replicates for
each of the groups of 30, 70, 150, and 300 golden shiners. The order
parameter space is divided into four regions—swarm (S), polarized (P),
milling (M), and transition (T)—each being characterized by the
dominant dynamical state of the fish school in that particular region.
Different values of pmin and pmax were used for each group size to
emphasize the density patterns and regions with no data are colored
black. The insert in the 30 fish plot shows the density plot from an
experiment with 30 fish and the tank area reduced to one tenth of the
original.
doi:10.1371/journal.pcbi.1002915.g002

Collective States in Schooling Fish
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exhibit more frequent transitions to the swarm state than when it

was in the larger tank. At least for the 30 fish, and possibly as a

general result, the presence of the boundary does not increase the

stability of the milling state per se. Rather, the stability of milling is

largely determined by the size of the group. Although the

functional reason for milling is not yet known, it does, however,

allow individuals to be locally polarized, which could be important

for information transfer, while allowing the group to remain in a

specific area. Swarm behavior allows the group to remain in an

area but is locally disordered and this may be more susceptible to

predation [1].

To gain further understanding of the relationship between

group size and the stability of the different group structures we

employed the canonical model of grouping of Couzin et al. [3], in

which there are no boundary interactions. Exploring the collective

behavior of simulated individuals (see Methods for simulation set

up and details) we find that the model produces qualitatively

similar results across the range of group size in our experiments

(30, 70, 150 and 300 agents), with the polarized states being

dominant for the smallest group size, and an increasing proportion

of the group’s time is spent in the milling state as group size

increases (see Fig. 3).

Another aspect of group size is the self-regulation of density.

Theoretically, when more members are added to a group of self-

propelled particles, the density can either remain approximately

constant, in which case the system is H-stable, or the density can

increase, and the system is catastrophic [4]. In our experiments,

the individuals within the group regulate their spacing such that

density tends to remain stable regardless of group size. The mean

area occupied by the fish grows approximately linearly with group

size and the packing fraction (and density) remains nearly constant

(See Fig. S2). This regulatory behavior places the fish in the

category of H-stable systems.

Transitions between collective states
To quantify the relation between group size and collective state

we need to explicitly define the different states. Given the relatively

clear demarcation of states revealed by our data in Fig. 2 we

employed a simple approach in which we discretize the phase

space in terms of the order parameters. The specific range of

values were motivated by the high-density regions observed in

Fig. 2. We thus define that the school is in: the polar state (P) when

Op.0.65 and Or,0.35; the milling state (M) when Op,0.35 and

Or.0.65; and the swarm state (S) when Op,0.35 and Or,0.35.

Outside these ranges we define the system to be in a transitional

regime (T). On average, therefore, each region is characterized by

the dominant dynamical state of the fish school within that

particular region. The regions defining the dynamical states are

overlaid the density plots in Fig. 2 (the qualitative nature of our

results does not depend on the precise nature of how these regions

are defined, see Fig. S3).

As shown in Fig. 1B, groups frequently transitioned between the

three collective states. A transition is considered completed if the

group moves from one of the three states to another. By this

definition, a school can move from one of the dynamical states,

into the transition region, and then back to its previous state,

without having undergone a transition. We quantify, statistically,

the transitions between states and investigate how the transition

patterns depend on the group size.

As we previously saw in Fig. 2, the proportion of time spent in

the polarized state decreases strongly with group size from 0.57 to

0.26, 0.18 and 0.05 (30 to 300 fish shoals, respectively, light blue

columns in Fig. 4A). Likewise, the proportion of time in the milling

state increases with group size from 0.03 to 0.18, 0.36 and 0.45

(yellow columns Fig. 4A). The group size has however little effect

on the proportion of time spent in the swarm state or in the

transition region, which varies between 0.09 and 0.11 (dark blue

columns Fig. 4A), and 0.31 and 0.44 (brown columns in Fig. 4A),

respectively. The fraction of transitions between states, as

illustrated by Fig. 4B, exhibit little variation between the group

sizes. The only visible trend is a small increase in the number of

transitions between the milling state and the swarm state (see also

Fig. S4 for alternative graphics).

To complement this picture it is important to note two (inter-

related) features that do change with group size: Firstly the rate at

which groups exhibit transitions decreases as a function of group

size (from 2.0 transitions/min for 30 fish, to 1.4, 1.2, and 0.8

transitions/min for 70, 150, and 300 fish respectively); Secondly,

the stability of the milling state increases as a function of group size

(the longest time a group of 30 spent milling was 17 s, this

increased to 110 s, 708 s, and 1245 s for group sizes 70, 150 and

300, respectively. See Fig. 4C for rank plots of time spent in a state

before transitioning). This means that the large proportion of time

the 30 fish spent in the polarized state is an accumulated effect of

many visits into the state, while the proportion of time the 300 fish

spent in the milling state is greatly affected by the milling state

being more stable for larger groups.

A further feature of the transitional behavior of groups is that

transitions from one dynamical state to another only accounted for

47% (n = 1943) of the total number of visits into the transition

zone (n = 4119), counting only visits lasting longer than 1 s. This

demonstrates that the schools experience frequent perturbations,

of which some result in transitions to another state (Fig. 4B), and

the others back to the preceding state.

From observing the schooling behavior it appears that

perturbations to the group act as triggers to transitions between

collective states (see Videos S1, S2, S3, S4) and we can identify two

main sources for fluctuations that result in transitions; interactions

Figure 3. Density plots of polarization vs. rotation from
simulations. The data shown are from simulations with 30, 70, 150,
and 300 agents, employing a constant-speed agent based simulation
model of collective behavior where no boundary is present (See
Methods for simulation details). Regions with no data are colored black.
As for the experimental data, the milling state grows in stability with
group size.
doi:10.1371/journal.pcbi.1002915.g003

Collective States in Schooling Fish

PLOS Computational Biology | www.ploscompbiol.org 4 February 2013 | Volume 9 | Issue 2 | e1002915



with the tank wall (boundary effects) and fluctuations due to the

intrinsically noisy nature of individual motion. We note that these

processes are not mutually exclusive.

Boundary effects and state transitions
In order to reveal more clearly the role of boundary effects on

state transitions we use our extensive time series to characterize the

typical nature of transitions and relate these to whether the group

tends to be relatively close to, or far from, the boundary. We

present data for 150 fish in Fig. 5 (for other group sizes see Fig.

S5). In Fig. 5A the arrows represent the average trajectories that

groups take through Op and Or space when transitions occur and,

unlike Fig. 2, the density plot now depicts the distance db from the

center of mass of the group to the closest point at the tank

boundary; red colors represent a relatively large distance and blue

colors relative proximity to the boundary. A more detailed view of

the transition dynamics is presented in Figs. 5B–D. Here, for each

of the transitions from polar to milling, polar to swarm and milling

to swarm state, the average trajectories are plotted as a velocity

field in the Op and Or phase space overlaid on the density plot

showing the distribution of trajectories (for the reverse transitions

and other group sizes see Figs. S6 and S7).

The data shown in Fig. 5 verify that transitions happen both

close to the wall of the tank, and in the center of the tank. For large

parts of the transition region schools are relatively close to the

boundary, such as from the polarized state to the swarm state,

where most transitions take place (Fig. 5C). Although not as clear,

the transitions between the milling state and the swarm state are

also characterized by being, on average, closer to the wall (Fig. 5D).

The exception is for transitions that occur with high values of the

order parameters, that is, between the polarized state and the

milling state (Fig. 5B), and vice versa. These tend to occur both

close to and also away from the wall. This indicates, as evidenced

by the video footage (Videos S1, S2, S3, S4), that both boundary

Figure 4. Statistics of state transitions. (A) Fraction of time spent in the different dynamical states shown for each group size. The error bars are
showing the standard deviation measured across replicates. The group of 30 fish is predominantly in the polarized state, but less time is spent in this
state with increasing group size (GLM: F1,22 = 36.21, P = 4.6e-06). As the group size increases, the groups gradually spend more time in the milling
state (GLM: F1,22 = 19.31, P = 0.00023). The amount of time spent in the transition regime is high, but constant, for all group sizes (GLM: F1,22 = 0.67,
P = 0.42). Across all group sizes (GLM: F1,22 = 0.053, P = 0.82) little time is spent in the swarm state. (B) Fraction of transitions from one state to another
for the different groups. The error bars are showing the standard deviation measured across replicates. For all group sizes, the polar state
predominantly transitions into the swarm state compared to the milling state (GLMM: F1,23 = 58.77, P,0.0001). The swarm state is dominated by
transitions into the polarized state (GLMM: F1,23 = 55.69, P,0.0001). Although these transitions are consistent across group sizes, there is a significant
interaction between group size and the frequencies of transitioning from the milling state to the swarm and polarized states (GLMM: F1,22 = 13.30,
P = 0.0014). While the milling state tended to transition into the polar state, for 300 fish there was a roughly equal probability of transitioning to the
polar or swarm states. (C) Rank plots showing the probability of being in a state longer than time Ts before moving into a different regime. There was
no significant difference between group sizes in the persistence of the polar state (GLMM: F1,22 = 0.58, P = 0.45), although group size increased the
persistence of the transition (F1,22 = 24.52, P = 1e-04) and milling states (F1,22 = 17.54, P = 4.0e-04), and to a lesser degree, the swarm state
(F1,22 = 5.31, P = 0.031).
doi:10.1371/journal.pcbi.1002915.g004

Figure 5. Transition patterns for 150 fish. (A) Density plot of the smallest distance from the center of mass of the fish shoal to the tank boundary
as a function of rotation and polarization (dmin = 26 and dmax = 52 cm). The overlaid arrows are the averaged trajectories of all transitions in the
rotation-polarization phase space. (B–D) Density plots of transitions from polarized to milling state (B), from polarized to swarm state (C) and from
milling to swarm state (D). Overlaid the density plots are the corresponding velocity fields of the transition data (in the rotation-polarization phase
space). Plots of the reverse transitions and group sizes 30, 70 and 300 are provided in SI.
doi:10.1371/journal.pcbi.1002915.g005

Collective States in Schooling Fish
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and other triggering mechanisms are important for inducing

transitions between collective states.

When in the milling state, interactions with the boundary can

result in a local increase in density near the wall, due to the

inherently constrained nature of motion when abutting the

boundary. This can cause the mill to transition into a polarized

state as shown in Fig. 6A. Another way in which the mill can break

down is due to the action of individuals at the group edge; if fish

turn or move away from the edge of the group this can seed the

unraveling of the milling formation into a polarized state.

Conversely, when in a polarized state individuals at the front of

the group can turn towards the main mass resulting in a

perturbation that prompts the group to turn, potentially initiating

the mill formation. This last example is evidenced in Fig. 6B and

demonstrates that the milling formation can emerge as a group

effect from the individual interactions—without direct interaction

with the tank boundary.

In the case of polarized groups the boundary also has inevitable

consequences on transitions; a polarized group may swim directly

towards a wall, or corner, of the tank. Individuals reaching the wall

slow down and tend to become disordered (unaligned) and the

group can transition into the swarm state. That this mechanism of

transition is dominating is demonstrated both by the average

transition path from polarized to swarm in Fig. 5A, which crosses a

region where db is small, as well as the short average time groups

spend in the polarized state before transitioning, as shown in

Fig. 4C.

The relationship between speed, density and group state
For tractability many previous models of animal grouping

(including that of Couzin et al. [3]) have assumed that individuals

move at constant speed and social response is represented by

adjusting direction of travel in response to the positions and/or

orientations of near neighbors. Recently, however, two experi-

mental studies on schooling fish, Katz et al. [17], involving golden

shiners (Notemigonus crysoleucas—the species used here), and

Herbert-read et al. [18], involving mosquitofish (Gambusia

holbrooki), have highlighted the importance of speed regulation to

collective behaviors. In the former study it was found that

individual social interactions can be approximated qualitatively by

pairwise interactions that are functions of the position and speed of

each individual. While the spatial nature of these interactions was

found to be relatively independent of individual speed, the

magnitude, or strength, of response to neighbors decreased greatly

as individual speed decreased. Also Viscido et al. [24] found a

positive correlation between average group speed and polarity for

shoals of 4 and 8 giant danios (Devario aequipinnatus). This suggests

that there is an important relationship between individual speed

and the degree to which individuals coordinate their motion with

neighbors, a relationship that is not captured in many models of

collective motion [3,15,25,26].

Examining the relationship between the mean speed of

individuals in the group and the ‘packing fraction’ (a measure of

the density of individuals within the group) and the order

parameters Op and Or, we observe that low speed is associated

with the group being relatively dense and both locally- and

globally-disordered (the swarm state). The two locally-ordered

(milling and polarized) states are characterized by higher mean

speed and a decreased packing fraction (see Fig. 7A for group size

of 150 fish; this relationship is common among all group sizes as

shown in Fig. S8). Consequently the relationship between density

and order is the opposite of that predicted by the most studied

models of grouping behavior, notably the Vicsek model [15];

although we note that such simple models have been extremely

useful in developing understanding of group dynamics for other

animal aggregates, such as locusts [14], and other species of

schooling fish [23].

From our data we cannot distinguish between two, not mutually

exclusive, hypotheses regarding the causal relationship between

speed and order; does decreasing speed induce local disorder

through weakened social interactions, or does perception of local

disorder reduce an individual’s speed? Since golden shiners do not

appear to explicitly respond to the body orientation of neighbors,

and rather respond more-or-less exclusively to individuals’

positions in space [17], increasing speed likely increases local

order. However, a dense, slow moving and disordered group is

also likely to further reduce individual speed (not least through

increased risk of collision) - thus both causal relationships likely co-

exist.

To demonstrate the plausibility (and indeed, generality) of

speed-induced transitions, we return to the model employed

above, from [3]. We verify that changing individual speed does

result in qualitatively the same transitional behavior seen here;

swarm behavior for relatively low speed and bistable milling and

parallel group motion as individual speed increases. This result

holds up to 150 agents. For groups of 300 agents the milling state is

dominant and no instances of the polar state are found. (see Fig. 8

for results from simulations with 150 agents and Fig. S9 for

remaining group sizes. Simulation details are found in Methods).

Local social interactions are similar across group size and
dynamical state

In order to deepen our understanding of the local dynamics we

also quantified the relationship between the speed of an individual

and the degree of order in its immediate vicinity (within a radius

Figure 6. Time-lapse examples demonstrating transition mech-
anisms. (A) Transition initiated by interaction with the tank wall. In the
first picture, the fish is in a milling state, indicated by the blue arrow,
and the lower part of the group is close to the tank wall (grey line). In
the second picture, the interaction with the wall has caused a local
increase in density, marked by the blue region, and a few individuals
have started to turn opposite the milling direction. This cascades, and in
the third picture the flow of the mill is interrupted as a large proportion
is breaking away from the milling direction. The result is total
unraveling of the milling state and transition into the polar state, seen
in the last picture. (B) Transition from the polar state to the milling state,
initiated by individuals in the shoal. In the first picture, the group is in a
polar state, signified by the red arrow. A few individuals in the front,
visible in the red region, have started to turn downwards. This leads the
group as a whole into a sharp right turn, and as picture two
demonstrates, the group is forced into a shape with larger curvature.
Now, when the individuals in front of the group can spot the back of
the group, they continue the turning and start following the back, as
seen in the third picture. In the final picture, as the front individuals
catches up with the tail, the loop closes and the transition into the
milling state is complete.
doi:10.1371/journal.pcbi.1002915.g006
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distance of 15.5 cm). In Fig. 7B we show the resulting relationship

as a contour plot for groups of 150 fish (see Fig. S10 for

corresponding plots of 30, 70 and 300 fish, and for different radial

proximity distances). A strong association is evident between

individual speed and local order. Assuming an unknown causal

direction in the relation between the speed and the local order, as

discussed above, there are two ways we can average the contour

plots; either over all values of the speed for each value of the local

order, or vice versa, for each value of the speed we average over

the local order. The results of both procedures, for all group sizes,

are overlaid on the contour plot in Fig. 7B. While the two

approaches yield disparate curves, they both demonstrate a similar

relationship between individual speed and local order. Although

the fish have to align at higher speeds to maintain group cohesion,

it is unclear why they should become disordered at low speeds.

There is also a much greater variance in local order at low speeds,

demonstrating a wide degree of flexibility when individual speeds

are low. Interestingly, across the group sizes the two sets of curves

are close to identical. This suggests that, from the perspective of a

focal individual, it may simply adopt the same local rules

regardless of group size (consistent with the findings of Katz et

al. [17] for groups of 10 and 30 fish).

Contrary to the polarization order parameter, the rotation order

parameter has little meaning on a purely local scale. Rather we

compute the rotation order parameter separately for a series of

shells placed around the center of mass of the group, as illustrated

in Fig. S11. This allows us to obtain a well-defined measure that

provides insight into the structural organization of the milling

state. As can be seen in Figs. 7C and 7D this state is characterized

by a center with low speed and low degree of structure that

contributes little to the milling state, while as we move towards the

edge of the group the speed and impact from each shell on the

milling state increases. In Fig. 7D the curves are almost identical

for all group sizes suggesting that, again, scaling the size of the

group has little effect on the local structural signature of this

collective state.

These results demonstrate that the ordered polarized and

milling states are locally near identical from the perspective of a

focal individual, regardless of group size. These data also support

the prediction of a multi-stable locally-ordered regime in which the

group can transition back and forth between the polarized and

milling state through stochastic and boundary-induced effects.

Conclusions
Despite the multitude of local interactions that result in

coordinated group motion we demonstrate that schooling golden

shiners predominantly exist in three ‘fundamental’ dynamically-

stable states of the underlying dynamics: swarm, milling and

polarized motion. We establish that group states, and transitional

behavior, can be represented in low-dimensional space, a

Figure 7. Structural properties. (A) Density plots of packing fraction and average individual speed (averaged per frame) as functions of rotation
Op and polarization Or for 150 fish. (B) The plot illustrates the correlation between individual speed and local polarization estimated in two ways from
the underlying density maps (the example shown in the background is for 150 fish). The stapled curves are produced by averaging across individual
speeds for each value of the order parameter; the solid curves from averaging across the order parameter values for each individual speed. The local
polarization of an individual fish is defined as the polarization Op restricted to the area inside a circle with radius 15.6 cm (approximately 3 body
lengths) centered at the individual fish. (C) Average individual speed at different radial positions in the milling state. (D) Average rotational order
parameter at the same positions. The radial division of the milling state in (C) and (D) is constructed by centering six shells outside each other, where
the outermost shell has a radius defined by the distance from the group’s center of mass to the median distance of the five most peripheral fish (see
illustration in Fig. S11). The width of each shell is the radius of the outer shell divided by six. The averages are calculated for each shell, where the
outer shell even includes peripheral fish.
doi:10.1371/journal.pcbi.1002915.g007

Figure 8. Relationship between agent speed and order in constant-speed agent based simulation model with 150 agents. (A) Density
plot of agent speed as function of rotation Or and polarization Op, revealing a bistable regime between the milling and the polar states for high
speeds. (B) Normalized probability plot of polarization Op as function of agent speed. (C) Normalized probability plot of rotation Or as function of
agent speed. The last two plots illustrate the bifurcation that occurs as the speed is increased, where the system transitions from a swarm state and is
found either in a highly polarized state or in a milling state. (See Methods for simulation details).
doi:10.1371/journal.pcbi.1002915.g008
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projection that allows us to see the path taken by groups between

the three dynamically-stable states as well as to relate the collective

states exhibited to properties such as group size, individual speed

and perturbations to the group. We note that it is possible that

further collective states may be found within the classified

dynamically stable regimes described here, but the present states

are highly consistent with the theoretical predictions of three

regimes

A key question in the study of collective behavior is whether

different group-level patterns result from all individuals responding

to the same external factor [27], or individuals changing behavior

[1], or whether multiple dynamically-stable collective states co-

exist for the same individual behaviors [3]. Our results provide

evidence for the importance of the two latter processes in the

behavior of schooling fish: transitions from the swarm, to the

milling or parallel group states (and vice versa) involve a social

feedback whereby individuals adjust behavior—in this case their

speed—in response to prevailing local conditions. Low average

speeds among group members correspond to them occupying the

dense, disordered swarm regime.

Higher speeds correspond to higher local order (alignment

among group members) and groups existing in either the milling

or polarized state. Transitions between these states occur with

negligible, or no, change in local density, order or speed; instead

perturbations such as collisions with the boundary, or (seemingly

stochastic) fluctuations in motion at the group edge (in the case of

milling to polarized state transitions) or front (in the case of

polarized to milling transitions) result in the group leaving one

dynamically-stable state, and either then returning to that state, or

transitioning to the alternative locally-ordered regime. Thus the

milling and polarized states appear to be bistable; the state

exhibited by the group effectively being dependent on starting

conditions and/or the nature of perturbations, as well as the group

size. Theoretically [3] and experimentally (analysis of shoals of 30

fish in small tank), milling states are seen to be less stable for small

groups, when controlling for boundary condition effects. It is likely

that the relationship we found between speed and local order is a

generic feature of mobile groups with local interactions. Further-

more, qualitatively similar features have been observed in small

groups (4 and 8 fish) of the giant danios [24].

A key challenge for animal behavior in this, and future, decades

is to understand how the microscopic mechanisms of interactions

among molecules, physiological systems and neural circuits result

in behavior at higher levels of organization. Whereas we focused

on collective behavior resulting from interactions among individ-

ual organisms, the general approach adopted shares commonal-

ities with approaches that have successfully been used to

characterize the dynamical properties of gene interaction networks

[28], neuronal circuits [29], how locomotion is coordinated among

limbs, each of which has many degrees of freedom [30], and how

the behavior of individual organisms (such as Caenorhabditis elegans),

despite apparent complexity, can be deconstructed into a discrete

number of low-dimensional behavioral dynamically-stable states

(see Stephens et al. [31]). We suggest that development, and

adoption of, such techniques in the behavioral sciences could

facilitate the advent of increasingly integrative and quantitative

insights.

Our work demonstrates that such an approach to data collection

and analysis can reveal underlying simplicity in the dynamical

properties of collective behavior in groups. Collective behavioral

states appear to result from both behavioral feedback processes

whereby individuals both adopt, and influence, the behavior of near

neighbors and also as multi-stable regimes in which individual

behavior does not change, but rather perturbations induce relatively

abrupt transitions between alternate and co-existing dynamically-

stable behavioral states. Prey groups have been observed to switch

states upon detecting a predator [32] and risk can be dependent on

these states [9,33]. Whether the mechanisms for switching between

states as identified here are somehow themselves adaptive would be

an interesting question to address in future work.

Methods

Experiments and data extraction
The experimental setup, the automated tracking procedure and

the methods for constructing detailed trajectory data were the

same as described in Yael et al. [17] and details are found there.

The data used for the analyses in this work are time series of

positions and velocities of the individual fish. The tracking

accuracy varied with the structure of the groups. As we show in

Fig. S12, ordered groups were more precisely tracked, while dense

and disordered groups were more prone to tracking errors. On

average the percentage of frames with tracking accuracy above

80% were 88% for 30 fish, 91% for 70 fish, 80% for 150 fish and

71% for 300 fish. Since our focus in this paper does not rely on us

maintaining identities for long periods of time there is ample data

from which to calculate global patterns and distributions of

properties such as speed.

Order parameters
We calculated the polarization order parameter Op and the

rotation order parameter Or (see definitions in Results and

Discussion) for each frame and smoothed the resulting time series

using a moving average with a span of 30 frames (corresponding to

1 second). In Fig. 7B we used a definition of the polarization order

parameter that is restricted to the local neighborhood around a

focal individual. Similarly, we used a radial version of the rotation

order parameter in Fig. 7D, in which only fish inside a shell of

given radius surrounding the full shoal’s center of mass were

included.

Density plots
All Or-Op density plots were made by dividing up the phase

space into 30 times 30 bins and counting the number of values

falling into the respective bins (Figs. 2, 3 and 5B–C) or calculating

the average value in the bins (Figs. 5A and 7A). Only bins with

counts above a certain threshold were included (100 counts in

Figs. 2 and 7A and 20 counts in Fig. 5). Before plotting, the bin

values were interpolated over a finer mesh of 300 times 300 points.

Defining states
Deciding exact thresholds for when a shoal is in a certain state

or not is hardly possible, even though it is easy to approximately

mark out the regions in the Or-Op phase space that corresponds to

the swarming, polar and milling states. Since the analyses we did

were not critically dependent on whether precise demarcations

could be made, we used a heuristic approach and—motivated by

the high density regions observed in Fig. 2, as well as visual

verification from the videos—defined the dynamic states as

follows: polar state (P) when Op.0.65 and Or,0.35; milling state

(M) when Op,0.35 and Or.0.65; and swarm state (S) when

Op,0.35 and Or,0.35. Outside these ranges we defined the

system to be in a transitional state (T).

Packing fraction
To calculate the packing fraction of a group we first used an

alpha-shape algorithm [34] to measure the area spanned by the

group. Dividing the number of fish by the measured area and then

Collective States in Schooling Fish
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multiplying by the average area of a fish body (40 times 5 pixels)

produced the packing fraction value.

Transition paths
To calculate the average transition paths in Fig. 5A we first

interpolated all transition time series to have the same length.

Then we averaged the interpolated transition paths between one

state and another. The vector plots in FigS. 5B–D were

constructed by first differentiating each of the transition time

series to create a velocity vector field, which we then coarse-

grained by dividing the Or-Op phase space into 30 times 30 bins

and averaging over the vector field in each bin.

Simulations
Simulations were performed using the constant-speed agent-

based model described in Couzin et al. [3] with 30, 70, 150 and 300

individuals. In this model the individuals move with constant speed

and interact with each other through three types of interactions:

repulsion, alignment of orientation and attraction. Centered on

each individual are three spherical non-overlapping behavioral

zones; zone of repulsion, zone of orientation and zone of attraction.

The distribution of neighbors across these three zones is what

decides the desired heading of an individual. For a detailed

description of the model algorithm, see [3]. In our simulations we

varied the speed from 0.1 to 4.1 unit lengths per unit time in

increments of 0.1 and performed 500 replicates for each value of the

speed. Each simulation was run for 2500 time steps and the order

parameters in the final simulation step recorded. The remaining

model parameters remained fixed throughout the simulations and

were: zone of repulsion 1; zone of orientation 3; zone of attraction

15; field of perception 270 degrees; turning rate 60 degrees; error

0.2 radians; time step increment 0.1. Note that the simulations are

not parametrized to fit the schools of fish. Rather, we use the

simulations to display a generic quality of self-propelled particle

models that aligns with experimental observations.

Statistical analyses
The frequency of the milling state rotating in a clockwise or

counter-clockwise direction was analysed using a quasi-poisson

distributed Generalised Linear Mixed Model (GLMM). Direction (a

within-subject fixed factor) and group size (between-subject

covariate) were the explanatory variables along with their interac-

tion term, and shoal identity the random variable. The time spent in

each state as a proportion of the total trial time was calculated for

each group of fish, and then was analyzed as a function of group size

using quasi-binomial Generalised Linear Models (GLM). Each state

was analyzed separately, as well as the time spent in transition

between states. Quasi-negative binomial GLMMs were used to

analyse the frequency of transitions from each state (swarm, milling

and polarised) to a different state (the ‘to’ state, a within-subject fixed

factor), again with group size as an additional explanatory variable

and shoal identity the random variable. These models were run

separately for each ‘from’ state and included the ‘to’ state6group

size interaction. The persistence of each visit to a state before

transitioning into a different state (i.e. its stability) was analysed using

quasi-negative binomial GLMMs. As a visit to a state within one

shoal was not independent from the duration of other visits within

that shoal, the analysis was carried out separately for each state.

Group size was used as an explanatory variable and shoal identity as

the random variable. The parameter theta for the quasi-negative

binomial GLMMs was estimated from running negative-binomial

GLMs without the random variable first, which gives an estimate for

theta. Non-significant interaction terms were removed before

testing main effects, but with the statistics given for main effects

including any other main effects regardless of their significance. All

statistical tests were carried out using R 2.14.2.

Supporting Information

Figure S1 No signature of handedness. The plot shows the

mean and standard deviation of the number of transitions (per

replicate) resulting in a clockwise (blue) or counter-clockwise (red)

milling state. Transitions into the milling state were no more likely

to go clockwise or counterclockwise (GLMM: F1,23 = 0.7191,

P = 0.4052), and neither was this affected by group size

(direction6group size interaction: F1,22 = 2.9966, P = 0.0974).

(TIF)

Figure S2 Relation between group size and group area
and packing fraction. (A) shows the mean group area plotted as

a function of group size, including standard deviations. The

dashed red line is a linear fit. (B) shows the mean packing fraction

as a function of group size, also with standard deviations incuded.

(TIF)

Figure S3 Statistics of state transitions for varying
definitions of dynamical state. We define the dynamical

states as: polar state (P) when Op.12k and Or,k; milling state

(M) when Op,k and Or.12k; and swarm state (S) when Op,k

and Or,k. The plots show the transition statistics for k = 0.25 (first

row), 0.35 (second row and the value used in the paper—included

for ease of comparison) and 0.40 (third row). As in the paper: (A)

Fraction of time spent in the different dynamical states shown for

each group size. The error bars are showing the standard

deviation measured across replicates. (B) Fraction of transitions

from one state to another for the different groups.

(TIF)

Figure S4 Schematic overview of transitions between
dynamical states. The filled circles represent the fraction of

time spent in a dynamical state and the arrows represent the

fraction of transitions from one dynamical state to another. The

absolute number of transitions from one state to another is placed

at the tip of the respective transition arrow.

(TIF)

Figure S5 Average transition paths. Density plot of the

smallest distance from the center of mass of the fish shoal to the

tank boundary as a function of rotation and polarization. The

overlaid arrows are the averaged trajectories of all transitions in

the rotation-polarization phase space. For the different group sizes

we used dmin = 19.5 cm and dmax = 36 cm (30 fish), dmin = 23 cm

and dmax = 49 cm (70 fish), dmin = 26 cm and dmax = 52 cm (150

fish), dmin = 29 cm and dmax = 55 cm (300 fish). Both the distance

distribution and the transition paths are similar across group sizes.

The transitions between the swarm state and the polarized state on

average happen when the center of mass is close to the boundary,

indicating that these transitions are mostly caused by interactions

with the boundary. The same is the case with the transitions

between the swarm state and the milling state, if not as clear.

Between the polar state and the milling state, the transitions on

average happen further away from the boundary, suggesting that

these transitions can be caused both by interactions with the

boundary or by local perturbations in the school.

(TIF)

Figure S6 Transition patterns. Density plots of transitions

between states for (A) 30 fish and (B) 70 fish. Overlaid the density

plots are the corresponding velocity fields of the transition data (in

the rotation-polarization phase space).

(TIF)
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Figure S7 Transition patterns. Density plots of transitions

between states for (A) 150 fish and (B) 300 fish. Overlaid the

density plots are the corresponding velocity fields of the transition

data (in the rotation-polarization phase space).

(TIF)

Figure S8 Packing fraction and average speed. Density

plots of packing fraction and average individual speed (averaged

per frame) as functions of rotation Op and polarization Or for (A) 30

fish, (B) 70 fish and (C) 300 fish.

(TIF)

Figure S9 Relationship between agent speed and order
in constant-speed agent based simulation model with 30,
70 and 300 agents. (A) Density plot of agent speed as function of

rotation Or and polarization Op, revealing a bistable regime

between the milling and the polar states for high speeds in

simulations with 30 and 70 agents. For 300 agents the milling state

becomes dominant and the bistable regime dissappears. (B)

Normalized probability plot of polarization Op as function of

agent speed. (C) Normalized probability plot of rotation Or as

function of agent speed. (See Methods for simulation details).

(TIF)

Figure S10 Relation between local polarization and
individual speed. The plots show the correlation between

individual speed and local polarization estimated in two ways from

the underlying density maps. The stapled curves are produced by

averaging across individual speeds for each value of the order

parameter; the solid curves from averaging across the order

parameter values for each individual speed. The local polarization

of an individual fish is defined as the polarization Op restricted to

the area inside a circle centered at the individual fish. The plots

show the results from using neighborhoods of 1–3 body lengths

(BL), where BL is 5.2 cm.

(TIF)

Figure S11 Radial division of milling state. The figure

shows the division of fish in the milling state into shells, where the

distance of the outer shell (dashed lines) is defined as the median

distance to the group’s centre of mass of the five most peripheral

fish, and the width of each shell is the radius of the outer shell

divided by six.

(TIF)

Figure S12 Tracking accuracy. (A) shows histograms of how

many fish are tracked in each frame. The red line in each

histogram denotes the threshold for 80% tracking accuracy. The

percentage of frames above 80% accuracy are 88% for 30 fish,

91% for 70 fish, 80% for 150 fish and 71% for 300 fish. (B) shows

the density distributions of tracking accuracy as a function of the

rotational (Or) and polarization (Op) order parameters.

(TIF)

Video S1 30 golden shiners swimming in shallow water
in the laboratory. The video plays at 166 normal speed to

clearly depict the different dynamical patterns occurring.

(M4V)

Video S2 70 golden shiners swimming in shallow water
in the laboratory. The video plays at 166 normal speed to

clearly depict the different dynamical patterns occurring.

(M4V)

Video S3 150 golden shiners swimming in shallow
water in the laboratory. The video plays at 166 normal

speed to clearly depict the different dynamical patterns occurring.

(M4V)

Video S4 300 golden shiners swimming in shallow
water in the laboratory. The video plays at 166 normal

speed to clearly depict the different dynamical patterns occurring.

(M4V)
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