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Abstract

The release of Ca from intracellular stores is key to cardiac muscle function; however, the molecular control of intracellular
Ca release remains unclear. Depletion of the intracellular Ca store (sarcoplasmic reticulum, SR) may play an important role,
but the ability to measure local SR Ca with fluorescent Ca indicators is limited by the microscope optical resolution and
properties of the indicator. This leads to an uncertain degree of spatio-temporal blurring, which is not easily corrected (by
deconvolution methods) due to the low signal-to-noise ratio of the recorded signals. In this study, a 3D computer model
was constructed to calculate local Ca fluxes and consequent dye signals, which were then blurred by a measured
microscope point spread function. Parameter fitting was employed to adjust a release basis function until the model output
fitted recorded (2D) Ca spark data. This ‘forward method’ allowed us to obtain estimates of the time-course of Ca release
flux and depletion within the sub-microscopic local SR associated with a number of Ca sparks. While variability in focal
position relative to Ca spark sites causes more out-of-focus events to have smaller calculated fluxes (and less SR depletion),
the average SR depletion was to 20610% (s.d.) of the resting level. This focus problem implies that the actual SR depletion is
likely to be larger and the five largest depletions analyzed were to 866% of the resting level. This profound depletion limits
SR release flux during a Ca spark, which peaked at 863 pA and declined with a half time of 762 ms. By comparison, RyR
open probability declined more slowly, suggesting release termination is dominated by neither SR Ca depletion nor intrinsic
RyR gating, but results from an interaction of these processes.
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Introduction

During cardiac excitation-contraction coupling, calcium (Ca) is

released from the sarcoplasmic reticulum (SR) through ryanodine

receptors (RyRs), which are concentrated in the junctional regions

of the SR (jSR). Ca release occurs due to ‘calcium-induced

calcium release’ (CICR) [1], wherein Ca efflux from the jSR

produces a rapid, local increase in Ca in the cytoplasm, which can

be observed with fluorescent Ca indicators as a ‘Ca spark’ [2]. The

corresponding Ca depletion in the junctional and wider SR has

been detected as a ‘Ca blink’ [3]. The SR Ca signal is made

possible by a protocol that favors indicator loading into the SR [4]

and have shown that during a Ca spark, a ,40% decrease in local

SR [Ca] appears to occur [3,5]. The fundamental insight provided

by these and other biophysical approaches have led to local

control theories [6] for the regulation of SR Ca release, however,

detailed understanding of CICR has been elusive due to

uncertainties in the amplitude and time-course of RyR release

flux and the associated changes in local Ca concentrations near the

RyRs. In particular, identification of the mechanism(s) responsible

for termination of the inherently regenerative CICR mechanism

has been especially problematic [7]. Nevertheless, integrating

facets of known Ca handling systems has provided useful insight

into the interplay of Ca metabolism with excitability (e.g. [8–12]).

Consideration of the sub-microscopic volume of the jSR

immediately suggests that the Fluo-5N signal must under-estimate

true jSR Ca depletion [3,13]. This problem arises from size of the

confocal point spread function (PSF), which encompasses both

elements of the jSR and adjacent network SR. In the latter, [Ca] is

high and is likely to change with a different time-course to that in

the jSR. It should be noted that this situation is different during Ca

spark recordings because the cytoplasmic signal is larger than the

jSR volume and the confocal PSF integrates signal from regions

that have low [Ca]. The potential seriousness of the blurring

problem has led us to analyze the problem by using computational

methods, combined with measurements of actual microscope

blurring to extract the likely depth SR Ca depletion, which is

central to understanding the termination of SR Ca release during

Ca sparks.

In principle, the problem of microscopic blurring might be

reduced by deconvolution of the recorded signal with the

microscope PSF. However, Ca blink signals are extremely noisy

which renders this approach (essentially) unusable (a problem

frequently observed in inverse solutions). Our approach is to create
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a computer model that captures the general geometry underlying

local SR Ca release, blur the simulated fluorescent Ca signals, then

refine the underlying flux parameters by iteration until experi-

mental records are reproduced. This ‘forward method’ for

analyzing SR Ca release was introduced by Soeller and Cannell

[10]. We show that local jSR depletion is likely to be heavily

under-estimated by Fluo-5N signals. With estimates of jSR

depletion and release flux, we were also able to obtain the first

estimates of the time-course of RyR gating at the junction (from

recorded data) and show that the decline of release flux is not

simply due RyR closure. This result should have important

implications for models of CICR termination.

Methods

Cell preparation
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol used (R649) was approved by the University of Auckland

Animal Ethics Committee. All surgery was performed under

sodium pentobarbital anesthesia (140 mg/kg, i.p.), and every effort

was made to minimize suffering.

Single cardiac ventricular myocytes were obtained by enzymatic

dissociation of Langendorff-perfused hearts from male Wistar rats

(,250 g), as previously described [14]. Cells were incubated with

5 mM Fluo-4 acetoxymethyl ester (Invitrogen, California, U.S.A.)

for 25 min by adding 2.5 mL of a 2 mM stock (2.5% PluronicH F-

127 in dimethyl sulfoxide, Invitrogen and Sigma-Aldrich, respec-

tively) to 1 mL of cell suspension. Following incubation, the dye

loading solution was replaced with perfusion buffer, which was a

modified Tyrode’s solution (pH = 7.4, in mM): NaCl 140, KCl 4,

MgCl2 1, HEPES 10, D-glucose 10 and CaCl2 1. Experiments

were carried out at room temperature.

Line-scanning confocal microscopy
Imaging was performed with a LSM 710 (Zeiss, Oberkochen,

Germany) system. Resolution of the line-scan images was higher

than usually performed (e.g. [2,15]) at ,0.35 ms/line and

0.083 mm/pixel, with the scan line placed along the cell.

The actual microscope PSF was measured by imaging 100 nm

yellow-green Fluorospheres (Invitrogen). Beads resting on the glass

cover-slip of the perfusion bath and on top of live myocytes were

imaged and analyzed to determine the ideal microscope PSF and

the maximum PSF distortion by spherical aberration (note that the

cell does not have the same refractive index as the immersion

medium). This process was performed for both a water- (406, 1.1

numerical aperture) and an oil- (636, 1.4 numerical aperture)

immersion objective. The latter is typical of objectives used in most

other Ca spark and Ca blink studies (e.g. [2,3,5,15]).

Model parameters and diffusion equations
The computer model equations were solved numerically by

FACSIMILE (Flow and Chemistry Simulator, U.K. Atomic

Energy Authority, 1987). FACSIMILE solutions were then

analyzed by custom programs written in Interactive Data

Language (IDL v6.3, ITT Visual Information Solutions, Colora-

do, U.S.A.). Solutions were fit to experimental data by adjusting

the peak and time-course of RyR permeability using a non-linear

least-squares method [16]. The accuracy of this fitting method was

tested using synthetic datasets with Poisson noise and reliable

convergence was found in all cases.

The computer model consisted of both cytosolic and SR

compartments and was based on spherical geometry. The

computational volume had a radius of 4 mm, which was divided

into 40 elements (1#i#39), where the center-most element (i = 0)

contained the jSR with reflective boundary conditions at the edge

of the computational space. The diffusional volumes of the cytosol

and SR were 60% and 3.2% of total cell volume [17] respectively,

except for the first element, where SR volume was set to 8 aL to

represent the jSR [3].

The equation to be solved is

dX

dt
~{DX

:+2X{
X

B

JX zJS ð1Þ

where DX is the diffusion coefficient for diffusible species X, JX the

reactive flux for all buffers B and JS the source (and sinks) of that

species. The Laplacian in one dimension for spherical geometry

was solved by a conventional finite difference scheme. Reactive

fluxes were described by the general ODE:

JB~Kon
:½Ca�:½B�{Koff

:½CaB� ð2Þ

where B and CaB are the ligand-free and Ca-bound forms of the

buffer, respectively. All rate constants, concentrations and

diffusion coefficients of buffers are given in Table 1. FACSIMILE

automatically scaled the calculated flux across compartment

boundaries to take account of the different compartment

volumes. The general approach has been described previously

[11].

SR Ca release function
SR Ca release flux (mM/ms) was determined by the [Ca]

gradient between the jSR and junctional space and a flexible basis

release function, modified from [10]:

CR(t)~S:
1

1ze{kon
:(t{t0)

: 1

1ze
koff

:(t{t1)

� �3

ð3Þ

Author Summary

Calcium levels inside myocytes regulate the heart’s force of
contraction. Calcium is released from the primary intracel-
lular store called the sarcoplasmic reticulum. Calcium
release was directly observed as ‘calcium sparks’ using
fluorescent calcium indicators inside the cell. More
recently, calcium levels inside the store have been
measured as calcium ‘blinks’. These suggest that some
depletion of store calcium occurs during cell excitation;
however, the actual extent of depletion is made uncertain
by the complex sarcoplasmic reticulum shape, dye
saturation and optical properties of the microscope. While
previous studies have assumed idealized microscope
properties, we measured microscope blurring and applied
it to a computer model of calcium movements inside the
cell. In this model, calcium release was adjusted to match
the simulated blurred calcium signals to experimental
results. The calculations show that the depth of local
sarcoplasmic reticulum calcium depletion is much greater
than inferred from calcium blinks and that the time-course
of calcium release is affected by this depletion. An
estimate for the time-course of gating of the ion channels
that regulate calcium release inside the cell was also
calculated. We suggest that the time-course of SR Ca
release arises from a complex interaction of Ca depletion  
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where the constants kon and koff controlled the rising and decay

phases, respectively, S a scaling factor for magnitude and t0,1 were

time shifts. Only these five parameters were adjusted by least

squares minimization of model output to recorded Ca sparks, all

other parameters were as given in Table 1. The sensitivity of the

model to chosen parameters is shown in the Supporting

Information.

The calculated release flux (Ispark) was used to calculate n?PO of

the RyRs by:

n:PO~
Ispark

:V0
:z:F :(½Ca�jSRzK1=2)

½Ca�jSR
:imax

ð4Þ

where the maximum unitary RyR channel current (imax) and half

maximal conductance (K1/2) were set to 2 pA and 2 mM [Ca]jSR,

respectively [18]. These constants give a single channel current (iRyR) of

,0.6 pA when [Ca]jSR is 1 mM. V0 was the volume of the first cytosolic

element (4.18 aL), z is the valence of Ca and F is Faraday’s constant.

Buffering and transport
As shown in Fig. 1B, the SR contained Fluo-5F, while only the jSR

compartment contained calsequestrin (CSQ) and was able to release

Ca (‘‘R’’), which entered the first cytosolic element. The rate of SR

uptake (‘‘U’’) were set so that when [Ca]i was transiently increased to

10 mM, return to rest occurred in a half-time of ,160 ms:

U~
Vmax

1z Km
½Ca�i

� �2
ð5Þ

where Vmax was 300 mM/s and Km was 0.3 mM [17]. The leak flux

(‘‘L’’) was set so that [Ca]i at rest was 100 nM [19]. Cytosolic buffers

included ATP, calmodulin (CaM), Fluo-4, troponin-C (both high and

low affinity sites, TnCI and TnCII, respectively) and SR membrane

binding sites (SRm). The junctional space also included sarcolemmal

membrane binding sites (SLm) and excluded Fluo-4 [10]. [Mg] was

set to 1 mM in all compartments [20].

Table 1. Computer model buffers: concentrations, diffusion
coefficients and binding kinetics.

x [x] D Kon Koff KD

(mM) (1028 dm2/s) (/mM/s) (/s) (mM)

Cytosol

Cafree 0.1 3.0 - - -

ATP 4000 1.5 13.64 30000 2200

CaM 36 (4 sites) 0.45 100 31 0.31

Fluo-4 50 0.75 307 276.7 0.9

Fluo-5F 100 0.75 307 451.9 1.47

TnCI,hi 140 (2 sites) - 100 7.1 0.071

TnCII,lo 70 - 125 500 4

SLm 86 - 125 1625 13

SRm 47 - 115 100 0.87

SR

Cafree 1000 * - - -

CSQ 120000 - 100 600000 600

Fluo-5N 50 * 307 122956 400

For details, see Methods.
doi:10.1371/journal.pcbi.1002931.t001

Figure 1. Computer model geometry. (A) shows a region of a
cardiac myocyte and presents the size of a typical junction relative to a
confocal PSF and the computer model. A transverse tubule (purple)
extends in between myofilaments (pink) that are wrapped by network
of SR tubules (yellow surface, red lumen). A flattened disc of SR wraps
around the T-tubule to form a Ca release junction. The size of a typical
confocal PSF is shown by an ellipse in x-z orientation, at 2?FWHM. (B)
shows the transverse, stylised view of (A), where the SR can be seen as
an ‘X’ shape that curves around the myofibrils. The jSR is shown as a
white circle and assumed to be in the centre of the PSF (opaque ellipse).
The spherical mesh of the computer model is also shown (grey dashed
lines), with the radius at 4 mm, which should be sufficiently large to
capture a Ca spark without boundary effects. (C) shows a simplified
diagram of the computer model elements (0#i#39) and the two
compartments: the cytosol (blue) and SR (orange). The locations of
mobile and immobile Ca buffers are shown. See text and Table 1 for
details.
doi:10.1371/journal.pcbi.1002931.g001
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The diffusion coefficient for ATP (DATP) at 24uC was chosen as

an intermediate between the estimates obtained by two methods:

(1) If DATP is 1.461028 dm2/s at 16uC [12] and the Q10 of DATP

is 1.4 [21], then DATP would be 1.961028 dm2/s at 24uC. (2)

Since the molar mass of ATP is 507.18 g/mol, assuming a

globular structure would allow the Stoke-Einstein equation to

predict that DATP would be 1.461028 dm2/s. The total concen-

tration of ATP was set to 4 mM [12], the majority of which was

bound to Mg at rest (Kon,Mg = 3.361024/mM/s, Koff,Mg = 3/s,

[22]). The on and off rates of Fluo-4 were also estimated from

experimental data obtained at 16uC [23] using a Q10 of 2.

Dissociation constants of Fluo-4 and Fluo-5F were obtained from

various in vitro calibrations [24,25]. DCaM was estimated from its

Stoke’s radius [26]. TnC contained three binding sites for Ca,

where the high affinity sites (TnCI,hi) could also bind Mg

(Kon,Mg = 0.03/mM/s, Koff,Mg = 1.11/s, [27,28]). TnCII,lo bound

exclusively to Ca [22,27,28]. Ca binding sites were also present on

the sarcolemmal [29] and SR [30] membranes. Resting SR free

[Ca] was 1 mM [31,32]. The jSR contained CSQ binding sites

equivalent to 120 mM, due to a binding capacity of 30–40 Ca per

molecule of CSQ [33].

The diffusion coefficient for Ca (DCa) in the SR was set to a

value smaller than that in the cytosol to include the effect of

tortuosity and Ca binding sites within the SR. Considering the SR

network as a sheet with staggered holes as diffusion barriers, the

tortuosity factor can be estimated from the ratio between the size

of and distance between the ‘holes’. Since SR tubules are ,40 nm

in diameter and the ‘holes’ in the SR network between adjacent

tubules are ,160 nm wide [34], the diffusion coefficient would be

reduced by 70% [35]. The binding of Ca to buffers in the SR

lumen will also reduce the rate of Ca diffusion in proportion to the

number of binding sites present. It is thought that ,60% of Ca

buffers in the network SR is SERCA [36], with ,1.7 mmol/LSR

of SERCA in rat [37]. Assuming each SERCA molecule has two

binding sites for Ca and free [Ca]SR is 1 mM and the other buffers

have 1:1 reactions with Ca, then the concentration of binding sites

would be ,2.8 mmol/LSR and diffusion would be reduced by

,65%. Thus, the overall effect of tortuosity and Ca binding is a

,90% reduction in effective DCa. In addition, the local network

SR Ca flux into a jSR is likely to be further reduced due to

reduced connectivity (by only one or two tubules, [3]). This was

accounted for by further reducing the diffusion coefficient between

the last network SR element and the jSR element. If there were

only one tubule of 40 nm diameter connecting these elements,

then the rate of diffusion between them would be reduced by

,95% [38]. Increased confidence in the value used was provided

by the ability of the model to reproduce the time course of Ca

blink recovery (e.g. [5]). The diffusion coefficient of Fluo-5N within

the SR was assumed to be 5 times smaller than for Fluo-4 in the

cytoplasm [39]. Using different intra-SR Ca diffusion coefficients

had relatively small effects on the simulated Ca spark (Supporting

Information Fig. S1, red crosses). For example, when DCa,SR was

increased 10-fold, peak fluorescence and FWHM increased by less

than ,10%, while the time-course was prolonged (time to peak

increased to ,13 ms from 7.5 ms and time to half decay

,doubled). On the other hand, altering the intra-SR Ca diffusion

coefficient had large effects on Ca spark restitution (not shown)

and Ca blink recovery. With the value(s) used here, experimental

results were reasonably reproduced (see below).

Incorporation of microscope optical blurring
Two three-dimensional (3D) Gaussian functions were used to

simulate the PSFs recorded at the coverslip and on tops of cells.

For the coverslip PSF, the Gaussian function had a FWHM of

0.25 mm in the focal plane (x, y) and 0.6 mm along the optical axis

(z). For cell top PSF, the Gaussian function had a FWHM of

0.35 mm in x, y and 1.2 mm in z.

The Ca-bound Fluo-4 signal has to be spatially blurred at each

computational time-point to simulate an experimentally recorded

Ca spark in a line-scan image. This raises a computational

problem because efficient solution of the reaction diffusion

equations needs to exploit symmetry (where possible) to reduce

the dimensionality, while the PSFs are asymmetric. Furthermore,

during parameter fitting, very large numbers of simulation runs

may be carried out, so computational efficiency is highly desirable

and suggests that limiting the problem to a spherical coordinate

system might be advantageous. While re-gridding the solution at

each time point to Cartesian coordinates for convolution by the

PSF would be possible, this time-consuming operation was

avoided by transforming sets of PSF weights from Cartesian to

radial ordinates, each corresponding to a particular position of the

PSF convolved with a spherical shell. This radial PSF could be

pre-computed (to save time) and the convolution performed in

FACSIMILE. This entire process was repeated at each time-point

to generate the blurred signal, which was equivalent to a confocal

line-scan image. The complete line-scan image was then used

during least squares fitting (see above).

The optical distortion of the Ca-bound Fluo-5N signal during

the formation of a Ca blink is not the same that for a Ca spark due

to different geometry of the SR with respect to the confocal PSF.

The volume of the signal of interest is much smaller and the signal

is likely to be contaminated by signal from the network SR. To

simulate this situation, the SR signal was distributed as an

extruded ‘‘X’’ shaped spatial region centered on the jSR to mimic

the SR network wrapping around the myofilaments (see Fig. 1A

and Fig. 1B).

Parameter sensitivity
To test the sensitivity of the model to chosen parameters,

parameters were independently altered and the simulated Ca2+

spark compared to a ‘standard’ using transport parameters given

in Table 1 which: reached a peak F/F0 of 1.8 in 7.5 ms, had a time

to half decay of 17 ms and a FWHM of 1.2 mm. The effects of

altering [ATP] in the cytosol, [CSQ] in the jSR, jSR volume,

[Fluo-4], S, kon and koff are shown in Fig. S1. From these analyses,

we can predict how the release flux time-course would have to be

altered to match experiments; for example an increase in peak

amplitude would require correspondingly larger flux (and deeper

SR Ca depletion). An increase in time to peak would require a

corresponding decrease in speed of decay of the release flux. Note

that increasing the volume of the jSR (red triangles) had a similar

effect to increasing [CSQ] (see [40]) since this also increases the

amount of Ca available for release. The effect of altering the shape

and amplitude of the Ca release function (i.e. S, kon, koff), as

occurred during curve-fitting, are also shown. The effect of

altering SR Ca diffusion on Ca spark fits is illustrated in

Supporting Fig. S2.

Results

Effect of myoplasm on the confocal PSF
Images of yellow-green beads located on the coverslip (Fig. 2i) of

a perfusion chamber and on top of live myocytes (Fig. 2ii) for both

water- (Fig. 2A) and oil- (Fig. 2B) immersion objectives are shown.

It is notable the recorded PSF is clearly distorted along the optical

axis, an effect which we attribute to refractive index mismatch(es).

A summary of PSF dimensions is given in Table 2, and it is clear

that the distortion in z is most pronounced when using the oil-

Ca Underlying Ca Sparks and Blinks
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immersion objective (as might be expected), where the FWHM of

the PSF was almost doubled. It is clear from these data that

assumption of an idealized (i.e. diffraction limited) PSF during Ca

spark and Ca blink recording would be erroneous.

Optical blurring of a Ca spark signal
Two 3D Gaussian profiles based on our PSF measurements

were used to simulate the effect of PSFs that are on the coverslip or

on top of cells. A high signal-to-noise spontaneous Ca spark is

shown in Fig. 3A and was used as the data set for parameter-

fitting. Fig. 3B shows the coverslip PSF (shown in in x-y and x-z

views) and the Ca spark generated by the computer model. The

image on the right shows the absolute difference between the

simulated and recorded events, showing a good fit with no

systematic residuals. Fig. 3C shows the results of using the cell-top

PSF, where the model could also fit the recorded event with a

larger release flux (see below). The measured (black lines) and

fitted time (Fig. 3D) and spatial (Fig. 3E) profiles of the Ca sparks

are also shown, colored according to the markers shown in

Fig. 3A–C. These profiles also show that the fitted and measured

events are in reasonable agreement.

The un-blurred Fluo-4 dye signal at the center of the Ca spark is

shown in Fig. 4A, as calculated if the recorded Ca spark occurred

at the cell-top (black lines) or near the coverslip (red lines),

respectively. The dashed lines correspond to the blurred dye

signals, where they been scaled to the amplitude of the un-blurred

signals to allow comparison of the effect of blurring on time-

course. Despite being in-focus, optical blurring in both cases

caused the recorded Ca spark to be slower than that of the

underlying signal. For a Ca spark that originated at the cell-top,

the time of peak fluorescence was increased by ,1 ms. This effect

was smaller when the Ca spark was at the coverslip. The FWHM

of the Ca spark was doubled due to blurring (not shown). The

fluxes that were required to produce the same recorded Ca spark

(Fig. 3) were different due from using the two different PSFs

(Fig. 4B). When the cell-top PSF was used, the calculated peak

release flux was ,11.8 pA, while when the smaller, coverslip PSF

was used, only ,8.7 pA was required to produce the blurred Ca

Figure 2. The effect of live myocytes on the confocal PSF. Examples of PSFs measured using (A) water and (B) oil immersion objectives on the
coverslip (i) and on top of a live cardiac myocyte (ii) bathed in 1 mM Ca-Tyrode’s solution are shown (see inset). Scale bars indicate 0.5 mm. (C) The
intensity profiles across the peak intensity in (i) y and (ii) z are shown. The effect of the refractive index mismatch across the myocyte was more
pronounced when using an oil immersion objective.
doi:10.1371/journal.pcbi.1002931.g002

Table 2. Measurement of confocal point spread functions
during live cell imaging.

FWHM (mm)

x y z n

Water immersion

Coverslip 0.3860.03 0.3560.02 1.760.2 6

Cell 0.346003 0.3660.03 1.560.1 5

Oil immersion

Coverslip 0.2960.01 0.2260.02 0.6160.04 4

Cell 0.3260.01 0.3260.02 1.1960.06 5

Mean FWHM of PSFs on the coverslip and on top of live myocytes with oil and
water immersion objectives (one S.E.M. shown). The focal plane is described by
x and y, while the optical axis is described by z.
doi:10.1371/journal.pcbi.1002931.t002

Ca Underlying Ca Sparks and Blinks
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spark. Since these values represent two extreme cases for Ca sparks

recorded in-focus, but from different locations within a cell, it is

likely that an average Ca spark would be associated with an

intermediate peak current (e.g. ,10 pA). Note that the different

PSFs did not markedly change the time-course of the calculated

release flux.

Optical blurring of a Ca blink signal
Fig. 5A shows the simulated line-scan images of [Ca]SR, Ca-

Fluo-5N and the Ca blink (optically blurred Ca-Fluo-5N) signals

generated from using the cell-top PSF marked by purple, green

and red bars, respectively. Depending on the degree of optical

blurring determined by the orientation of the network SR relative

to the optical axis (see Fig. 1B), Ca blink depletions ranged

between 25–35%, which are within the range of values reported in

other studies [3,5,39]. Importantly, the underlying non-blurred

Ca-Fluo-5N signal showed much more extensive depletion

compared to the corresponding Ca blink. For example, the Ca-

Fluo-5N signal had decreased by ,70% at its minimum, more

than double that suggested by the blurred signal. Additionally, Ca-

Fluo-5N also under-reported the underlying depletion of [Ca]SR,

which was actually ,90%. Overall, dye kinetics and optical

blurring caused a near 3-fold under-estimation of the true extent of

[Ca]SR depletion. Dye kinetics also had an effect on the ability of

Ca blink signals to correctly report the time-course of [Ca]SR

changes (right panel, Fig. 5B). Though there were only small

distortions to the time to minimum, the time taken for [Ca]SR

recovery was under-estimated by Ca-Fluo-5N by ,40 ms and

which was slightly lengthened by optical blurring. Overall, this led

to a ,35% under-estimation of [Ca]SR recovery time.

Local SR Ca release flux and depletion
Fig. 6A and B show further examples of model fits to a number

of experimentally recorded Ca sparks with different amplitudes

and time-courses. The ability of the model to fit this range of Ca

sparks is notable. The computed Ca release functions are shown in

Fig. 6C, where peak flux occurred before the peak of the Ca spark.

The calculated SR Ca signals in Fig. 6D show that [Ca]SR

depletion was large compared to their associated Ca blink signals

(dashed lines). In addition, the duration of the computed release

flux was always shorter than the duration of the fitted permeability

function, where peak flux always occurred before RyR open

probability had even begun to decline (Fig. 6E), showing jSR

depletion plays an important role in reducing release flux prior to

closure of the RyR channels. The mean peak flux was 7.962.9 pA

(s.d.) for Ca sparks with maximum F/F0 of 3.060.6. Panel F shows

average Ca blinks compared to average Ca-Fluo-5N and [Ca]SR

signals, consistent with the trends described in Fig. 5. The average

Figure 3. Simulation and fit of a Ca spark with on-coverslip and on-cell PSFs. (A) shows a line-scan image of a measured Ca spark. From left
to right, (B) shows the on-coverslip PSF in x-y (top) and x-z (bottom) view (scale bars show 0.5 mm), the simulated Ca spark and absolute difference
between the simulated and recorded events. The mean of the difference image was 20.06. (C) shows a similar dataset, but for an on-cell PSF, where
the mean of the difference image was 20.07. The goodness of fit can be appreciated in the time and distance profiles are shown in (D) and (E),
respectively, colored by the marks beside the Ca spark images.
doi:10.1371/journal.pcbi.1002931.g003
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(blurred) Ca blink signal was DF/F0 = 0.2460.098 (s.d.), compared

to the corresponding SR depletion to an average minimum of

2106130 mM.

Discussion

Effect of microscope blurring on Ca sparks
The model presented here shows that the Ca spark signal is

distorted by the confocal PSF even when it is in-focus, so that its

amplitude was approximately halved and width doubled. This is

consistent with calculations reported previously, albeit with

different PSF and a more narrow modeled spark FWHM of

,1 mm [30,41]. The calculated peak release flux is dependent on

the degree of spatial blurring, but our estimate is in reasonable

accord with previous models [10,41]. This concordance might not

have been expected when many models do not reproduce the

spatio-temporal properties of recorded Ca sparks. This can be

explained by the peak flux being the primary determinant of the

peak change in fluorescence (which all models fit well), which is

largely dominated by flux amplitude. Initial analyses of Ca sparks

(with a mean F/F0 of ,2.0) in early studies gave a flux estimate of

4 pA for 10 ms [2] and it is notable that initially estimated

integrated flux, ,40 pA.ms has not changed a great deal in

subsequent analyses (e.g. see [29,41]). This is due to the need to

preserve total Ca release (from integrated peak fluorescence)

during a Ca spark. In these simulations, a Ca spark of F/F0 ,2.7

yields a flux integral of ,40 pA.ms which is in good agreement

with previous estimates, given the somewhat higher peak F/F0

recorded here.

Blurring in Ca blink signals
The distortion introduced by microscope blurring was more

pronounced for Ca blinks compared to Ca sparks. This problem

arises from: (1) the width of the PSF (as is the case for Ca sparks),

as well as (2) the spatially restricted nature of the underlying signal

source, (3) the non-linear dye response; and (4) the high [Ca] in the

extended network SR. The overall effect of these factors was that

the Ca blink amplitude must under-estimate the extent of jSR

depletion even when the microscope is focused on a z-line and at a

junction. Our average estimated [Ca]jSR signal fell to ,20% of the

Figure 4. Ca-Fluo-4 and release flux associated with Ca spark.
The (A) time profiles of the unblurred calculated Ca-Fluo-4 signals for
Ca sparks at the top of the cell (black) and near the coverslip (red). The
dashed lines show the corresponding simulated Ca sparks (blurred Ca-
Fluo-4 signals) scaled to the amplitudes of the un-blurred signals to
allow comparison of the time-courses. (B) shows the release flux
required to produce the fitted simulated Ca sparks shown in Fig. 3 and
4A, where a larger current was required when optical blurring was more
severe (i.e. if the Ca spark had originated from near the cell top).
doi:10.1371/journal.pcbi.1002931.g004

Figure 5. Ca blinks and [Ca]SR signals. (A) shows the simulated
line-scan images of [Ca]SR (purple), Ca-Fluo-5N (green) and Ca blink
(blurred Ca-Fluo-5N, red) signals when the Ca sparks were simulated
with an cell-top PSF. Left panels in (B) and (C) show the time and spatial
profiles through the minimum Ca blink intensity, respectively. The right
panels show scaled versions of the profiles.
doi:10.1371/journal.pcbi.1002931.g005
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resting level, which is much lower than the decline to estimated

previously [5,39], even after including a correction for fractional

jSR volume [3]. Since many Ca sparks are out of focus, this value

should represent an upper limit for the actual SR depletion.

Taking the brightest 5 Ca sparks as representative of in-focus

events gave a jSR depletion to 866% (mean 6 s.d.) of the resting

level.

Local SR Ca depletion
The actual depletion in [Ca]jSR is certainly larger than directly

inferred from the fluorescence signal due to the non-linear dye

response, which will always cause the dye signal to underestimate

true average Ca change (i.e. dF/dCa%1). Furthermore, the

network SR supplies a high Ca signal that changes more slowly

than the jSR. Although this component might be captured by a

Figure 6. Analysis of recorded Ca sparks. (A) shows 3 examples of (i) recorded and (ii) simulated Ca sparks analyzed with a cell-top PSF. These
events were chosen for their high signal-to-noise ratio and high amplitude, which suggests they are in-focus. (B) shows the (i) time and (ii) spatial
profiles of the recorded and fitted (smooth lines) datasets, color-coded by the bars shown in (A). The events have been offset for clarity. (C) shows the
flux responsible for each event, which was used to calculate the time-course of n?PO. (D) shows the time-course of [Ca]SR in the junction (solid lines),
overlaid with the corresponding Ca blink signals (dashed lines). (E) shows the time-courses of release flux and n?PO averaged from fitting a
population of Ca sparks (n = 14), where the shaded regions show one S.E.M. For all events, RyRs were open longer than release flux duration, which
were 24.0613 vs. 11.262.2 ms, respectively, when measured from the start to the time at half maximal decay. (F) shows the corresponding average
[Ca]jSR and Ca blink time-courses with the shaded areas showing one S.E.M.
doi:10.1371/journal.pcbi.1002931.g006
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correction for relative volume (as noted by [3]), the extent of the

correction is critically dependent on the spatial distribution of

intra-SR gradients and the relative volume of network to jSR for a

particular junction (e.g. ,30% further under-estimation if the SR

and myofilaments were rotated 90u relative to the PSF, Fig. 1B).

That the model reproduces Ca blink signals after blurring

indicates that the profound jSR depletion we predict is completely

consistent with experimental data and shows that previous

estimates of jSR Ca depletion are almost certainly too small.

The depth of jSR Ca depletion is affected by the rate at which

the jSR is refilled by the network SR. If DCa in the SR is increased

10-fold, the time-course of recovery of Ca blinks is not reproduced

(Fig. S2). Although such a change in SR DCa did not prevent

fitting the Ca spark shown in Fig. 3, the corresponding Ca blink

was small (DF/F0 ,0.15, Fig. S2C, dotted lines) and recovered in

12.5 ms, which is much faster than any Ca blinks reported to date.

Despite this much larger rate of diffusion within the SR, profound

depletion of Ca in the jSR was still observed (,60%, Fig. S2, solid

lines) and the Ca blink was still spatially restricted (Fig. S2D).

An independent test of the calculations is provided by comparing the

average SR Ca depletion that would occur during an evoked Ca

transient or during a Ca wave. Assuming the unit of release includes

the jSR and the network SR limited to a radius of ,0.9 mm (from

consideration of the distance from the release site to the middle of the

sarcomere), the model predicts that the jSR (z-line) Ca depletion would

be ,3-times larger than that at the m-line. However, during

synchronous release, the m-line becomes depleted more deeply as

more CRUs draw Ca from it. Using our model, a first order solution to

this problem is provided by assuming that each CRU is not affected by

release from adjacent sites so that the depletion is given by restricting

the SR volume to the equivalent volume that would serve each CRU.

CRU’s form an approximately hexagonal lattice with 0.7 mm between

them in the z-plane and 1.8 mm along the cell axis [42]. Thus, the

equivalent volume of the SR source Ca in the spherical model would

have a radius of 0.52 mm, and the model predicts that the m-line would

deplete to level much closer (90%) to that seen at the z-line. Therefore,

if all CRU’s are activated, the z- and m-line depletion signals are very

similar (albeit with slightly different time-courses) and there would be

(essentially) no detectable gradient along the sarcomere at typical Fluo-

5N signal-to-noise ratios, as observed [13,43].

Effect of jSR depletion on the Ca release time course
The steep Ca gradient across the jSR membrane is reduced

rapidly during a Ca spark (Fig. 6). The effect of this local jSR Ca

depletion has a profound effect on the time-course of Ca release.

As shown in Fig. 3–5, Ca release flux had decreased to half its peak

value (at ,5 ms after peak flux), the Ca gradient from the jSR to

the cytosol had decreased to ,64% of the value at the time of peak

flux. The small difference between the flux and gradient reflects

the minor contribution of changes in RyR n?PO to the declining

flux at this time, accounting for ,12% of the total flux decline.

Therefore, the decline in flux is not dominated by changes in RyR

gating but rather the loss of driving force for Ca release at this time

(Fig. 6E). The smaller decrease in n?PO at this time may be

explained by the RyRs operating in a near-saturated regime with

regard to either jSR or cytoplasmic Ca control of RyR open time.

Though not modeled here, it is highly likely that the reduction in

release flux due to local Ca depletion will be transduced via the

steep cytoplasmic Ca-dependence of RyR gating to reduce n?PO

and eventually stop CICR [44]. That reduced jSR [Ca] affects

CRU gating has been explored by Sato and Bers [45], who

concluded that SR depletion can prevent Ca spark initiation. This

is in accord with the idea that the SR Ca depletion described here

inhibits the regeneration inherent in CICR (and will therefore

contribute to Ca spark termination).

The confocal PSF during live cell Ca imaging
As shown in Fig. 2 and Table 2, the properties of a confocal PSF can

deviate markedly from theoretical values when imaging occurs through

a living cardiac myocyte. This is not simply due to spherical aberration

(since this should be negligible with the water immersion lens) and the

PSF is larger than the ,0.260.7 mm expected for an oil-immersion

lens focused into 10 mm of water (see also Table 20.2 in [46]). Visual

inspection of the fine structure of the PSF suggests that other problems

beyond simple spherical aberration exist: the bending of the PSF axis

and structure in the field suggest that the cell is behaving as a complex

phase object rather than as a simple body of fluid. In connection with

this point, it is known that the cell surface is quite uneven (e.g. [47]) and

the presence of myofilaments, mitochondria and even the nucleus

(although the latter was avoided here) add complex structures that are

barely resolved yet contribute to the phase shift of the marginal rays

that are critical for tight PSF formation.

Conclusions
This model accurately reproduced the reported spatial and

temporal properties of Ca blinks and Ca sparks. The under-

estimation of [Ca]jSR depletion by Ca blink signals is somewhat larger

than the results of a recent computer modeling study by Hake, et al.

[9] would suggest. Although the latter study did not use experimental

data sets nor microscope blurring (and slightly different parameters),

the constraint of geometry and microscope performance on the

accuracy of recorded signals is clear. The profound SR Ca depletion

we calculate strongly affects SR release time-course and shows that

the declining Ca flux during a Ca spark is not simply due to RyR

closure. By fitting a model with realistic geometry to recorded data,

we limit the effects of noise that would preclude inverting the

equations for diffusion and buffering. It was notable that despite using

an extensive dataset, all solutions converged toward similar time-

courses for the release flux, suggesting an unexpected invariance of

RyR gating behavior during SR release.

Supporting Information

Figure S1 Parameter sensitivity of Ca2+ spark model.
(A) Peak fluorescence, (B) FWHM, (C) time to peak and (D) time

to half decay. The change in default parameters are normalized to

their values given in Table 1. VJSR is the volume of the jSR.

(TIF)

Figure S2 Effect of increasing the rate of Ca diffusion in
the SR on fitted Ca spark and Ca blink properties. The

Ca spark shown in Fig. 3 could be fit by least-squares minimization

when DCa in the SR was decreased 10-fold. The data (grey lines)

and fitted result (solid black lines) in time (A) and space (B) are

shown, which show a reasonable fit, although the size of the

residuals is larger than that shown in Fig. 3 (mean absolute

difference = 0.07). The corresponding SR Ca signals in time (C)
and space (D) are also shown. They include: [Ca]SR (in mM, solid

line), Ca-Fluo-5N (in F/F0, dashed line) and the blurred dye signal

(Ca blink in F/F0, dotted lines).

(TIF)

Author Contributions

Conceived and designed the experiments: CHTK MBC. Performed the

experiments: CHTK. Analyzed the data: CHTK MBC. Contributed

reagents/materials/analysis tools: DRL MBC. Wrote the paper: CHTK

MBC.

Ca Underlying Ca Sparks and Blinks

PLOS Computational Biology | www.ploscompbiol.org 9 February 2013 | Volume 9 | Issue 2 | e1002931



References

1. Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum.

Circulation Research 40: 119–129.
2. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events

underlying excitation-contraction coupling in heart muscle. Science 262: 740–
744.

3. Brochet D, Yang D, Maio A, Lederer J, Franzini-Armstrong C, et al. (2005)

Ca2+ blinks: Rapid nanoscopic store calcium signaling. Proceedings of the
National Academy of Sciences of the United States of America 102: 3099–3104.

4. Kabbara AA, Allen DG (2001) The use of the indicator fluo-5N to measure
sarcoplasmic reticulum calcium in single muscle fibres of the cane toad. The

Journal of physiology 534: 87–97.

5. Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+

sparks: Role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion.

Circulation Research 103: e110–e115.
6. Cannell MB, Kong CH (2012) Local control in cardiac E-C coupling. Journal of

Molecular and Cellular Cardiology 52: 298–303.
7. Stern MD, Cheng H (2004) Putting out the fire: What terminates calcium-

induced calcium release in cardiac muscle? Cell Calcium 35: 591–601.

8. Koivumaki JT, Korhonen T, Tavi P (2011) Impact of sarcoplasmic reticulum
calcium release on calcium dynamics and action potential morphology in human

atrial myocytes: a computational study. PLoS computational biology 7:
e1001067.

9. Hake J, Edwards AG, Yu Z, Kekenes-Huskey PM, Michailova AP, et al. (2012)

Modeling Cardiac Calcium Sparks in a Three-Dimensional Reconstruction of a
Calcium Release Unit. The Journal of Physiology 590: 4403–22.

10. Soeller C, Cannell MB (2002) Estimation of the Sarcoplasmic Reticulum Ca2+

Release Flux Underlying Ca2+ Sparks. Biophysical Journal 82: 2396–2414.

11. Cannell MB, Allen DG (1984) Model of calcium movements during activation in
the sarcomere of frog skeletal muscle. Biophysical Journal 45: 913–925.

12. Baylor SM, Hollingworth S (1998) Model of sarcomeric Ca2+ movements,

including ATP Ca2+ binding and diffusion, during activation of frog skeletal
muscle. Journal of General Physiology 112: 297–316.

13. Sobie EA, Lederer WJ (2012) Dynamic local changes in sarcoplasmic reticulum
calcium: physiological and pathophysiological roles. Journal of Molecular and

Cellular Cardiology 52: 304–311.

14. Cooper PJ, Soeller C, Cannell MB (2010) Excitation-contraction coupling in
human heart failure examined by action potential clamp in rat cardiac myocytes.

Journal of Molecular and Cellular Cardiology 49: 911–917.
15. Wang S-Q, Song L-S, Lakatta E, Cheng H (2001) Ca2+ signalling between single L-

type Ca2+ channels and ryanodine receptors in heart cells. Nature 410: 592–596.
16. Markwardt CB (2009) Non-linear Least-squares Fitting in IDL with MPFIT. In:

Bohlender DA, Durand D, Dowler P, editors. Proceedings of the Astronomical

Society of the Pacific Conference Series 411: 251
17. Bers DM (2001) Excitation-Contraction Coupling and Cardiac Contractile

Force. Kluwer Academic Publishers.
18. Mejia-Alvarez R, Kettlun C, Rios E, Stern M, Fill M (1999) Unitary Ca2+

current through cardiac ryanodine receptor channels under quasi-physiological

ionic conditions. Journal of General Physiology 113: 177–186.
19. Wier WG, Cannell MB, Berlin JR, Marban E, Lederer WJ (1987) Cellular and

subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2.
Science 235: 325–328.

20. Gupta RK, Gupta P, Moore RD (1984) NMR studies of intracellular metal ions
in intact cells and tissues. Annual Review of Biophysics and Bioengineering 13:

221–246.

21. Sidell BD, Hazel JR (1987) Temperature affects the diffusion of small molecules
through cytosol of fish muscle. Journal of Experimental Biology 129: 191–203.

22. Fabiato A (1983) Calcium-induced release of calcium from the cardiac
sarcoplasmic reticulum. American Journal of Physiology 245: C1–14.

23. Baylor S, Hollingworth S (2000) Measurement and interpretation of cytoplasmic

[Ca2+] signals from calcium-indicator dyes. News in the Physiological Sciences
15: 19–26.

24. Yasuda R, Nimchinsky E, Scheuss V, Pologruto T, Oertner T, et al. (2004)
Imaging calcium concentration dynamics in small neuronal compartments.

Science Signal Transduction Knowledge Environment 2004: pl5.

25. Woodruff M, Sampath AP, Matthews H, Krasnoperova NV, Lem J, et al. (2002)
Measurement of cytoplasmic calcium concentration in the rods of wild-type and

transducin knock-out mice. The Journal of Physiology 542: 843–854.
26. Sorensen BR, Shea MA (1996) Calcium binding decreases the stokes radius of

calmodulin and mutants R74A, R90A, and R90G. Biophysical Journal 71:
3407–3420.

27. Holroyde MJ, Robertson SP, Johnson JD, Solaro RJ, Potter JD (1980) The

calcium and magnesium binding sites on cardiac troponin and their role in the

regulation of myofibrillar adenosine triphosphatase. Journal of Biological

Chemistry 255: 11688–11693.

28. Pan BS, Solaro RJ (1987) Calcium-binding properties of troponin C in

detergent-skinned heart muscle fibers. Journal of Biological Chemistry 262:

7839–7849.

29. Soeller C, Cannell MB (1997) Numerical simulation of local calcium movements

during L-type calcium channel gating in the cardiac diad. Biophysical Journal

73: 97–111.

30. Smith GD, Keizer JE, Stern MD, Lederer WJ, Cheng H (1998) A simple

numerical model of calcium spark formation and detection in cardiac myocytes.

Biophysical Journal 75: 15–32.

31. Chen W, Steenbergen C, Levy L, Vance J, London R, et al. (1996)

Measurement of free Ca in sarcoplasmic reticulum in perfused rabbit heart

loaded with 1,2-Bis(2-amino-5,6-difluorophenoxy)ethane-N,N,Na9,Na9-tetraace-

tic acid by 19F NMR. Journal of Biological Chemistry 271: 7398–7403.

32. Shannon T, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+]

in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+

reserve. Circulation Research 93: 40–45.

33. Murphy RM, Mollica JP, Beard NA, Knollmann BC, Lamb GD (2011)

Quantification of calsequestrin 2 (CSQ2) in sheep cardiac muscle and Ca2+-

binding protein changes in CSQ2 knockout mice. American Journal of

Physiology Heart and Circulatory Physiology 300: H595–604.

34. Ogata T, Yamasaki Y (1990) High-resolution scanning electron microscopic

studies on the three-dimensional structure of the transverse-axial tubular system,

sarcoplasmic reticulum and intercalated disc of the rat myocardium. Anatomical

Record 228: 277–287.

35. Crank J (1979) The Mathematics of Diffusion. Oxford: Oxford University Press.

36. Tada M, Toyofuku T (2011) Cardiac sarcoplasmic reticulum Ca2+-ATPase. In:

Terjung R, editor. Comprehensive Physiology. John Wiley & Sons, Inc. pp. 301–

334.

37. Hove-Madsen L, Bers DM (1993) Sarcoplasmic reticulum Ca2+ uptake and

thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes.

Circulation Research 73: 820–828.

38. Swietach P, Spitzer K, Vaughan-Jones R (2008) Ca2+-mobility in the

sarcoplasmic reticulum of ventricular myocytes is low. Biophysical Journal 95:

1412–1427.

39. Picht E, Zima AV, Shannon TR, Duncan AM, Blatter LA, et al. (2011)

Dynamic calcium movement inside cardiac sarcoplasmic reticulum during

release. Circulation Research 108: 847–856.

40. Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, et al. (2006) Casq2

deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release,

and catecholaminergic polymorphic ventricular tachycardia. Journal of clinical

investigation 116: 2510–2520.

41. Izu L, Mauban J, Balke CW, Wier G (2001) Large currents generate cardiac

Ca2+ sparks. Biophysical Journal 80: 88–102.

42. Soeller C, Crossman DJ, Gilbert R, Cannell MB (2007) Analysis of ryanodine

receptor clusters in rat and human cardiac myocytes. Proceedings of the

National Academy of Sciences of the United States of America 104: 14958–

14963.

43. Kubalova Z, Gyorke I, Terentyeva R, Viatchenko-Karpinski S, Terentyev D, et

al. (2004) Modulation of cytosolic and intra-sarcoplasmic reticulum calcium

waves by calsequestrin in rat cardiac myocytes. The Journal of physiology 561:

515–524.

44. Laver DR, Kong CH, Imtiaz MS, Cannell MB (2012) Termination of calcium-

induced calcium release by induction decay: An emergent property of stochastic

channel gating and molecular scale architecture. Journal of Molecular and

Cellular Cardiology 54: 98–100.

45. Sato D, Bers DM (2011) How does stochastic ryanodine receptor-mediated Ca

leak fail to initiate a Ca spark? Biophysical Journal 101: 2370–2379.

46. Hell SW, Stelzer EHK (2006) Lens aberrations in confocal fluorescence

microscopy. In: Pawley J, editor. Handbook of Biological Confocal Microscopy.

Springer. pp. 347–354.

47. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, et al. (2009) Loss of

T-tubules and other changes to surface topography in ventricular myocytes from

failing human and rat heart. Proceedings of the National Academy of Sciences of

the United States of America 106: 6854–6859.

Ca Underlying Ca Sparks and Blinks

PLOS Computational Biology | www.ploscompbiol.org 10 February 2013 | Volume 9 | Issue 2 | e1002931


