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Abstract

A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics
techniques (e.g. machine learning) that predict protein function have been developed to address this question. These
methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional
genes participating in processes that are not already well studied. Many of these processes are well studied in some
organism, but not necessarily in an investigator’s organism of interest. Sequence-based search methods (e.g. BLAST) have
been used to transfer such annotation information between organisms. We demonstrate that functional genomics can
complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method
transfers annotations only when functionally appropriate as determined by genomic data and can be used with any
prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to
enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional
knowledge transfer (FKT) dramatically improve their accuracy in predicting gene-pathway membership, particularly for
processes with little experimental knowledge in an organism. We also show that our method compares favorably to
annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to
11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to
processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo
experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward
cell migration during heart development. FKT is immediately applicable to many bioinformatics techniques and will help
biologists systematically integrate prior knowledge from diverse systems to direct targeted experiments in their organism of
study.
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Introduction

Defining the role of proteins in pathways is among the key

challenges of human genomics. Many successful approaches have

been developed for prediction of protein function and pathway

membership [1–6], however they rely on prior knowledge in the

organism of interest to make new predictions (i.e. at least some

genes in the organism already annotated to the pathway) [7–11].

These approaches rely on identifying characteristic behavioral

patterns, in functional genomic datasets, phylogenetic profiles, or

genomic feature studies of genes that are known to participate in a

pathway, then use these patterns to predict additional pathway

members [12–14]. For example, gene expression and protein

interaction profiles can be used by machine learning methods to

associate novel genes to pathways based on previously known

pathway members [15,16]. The potential of such computational

approaches to direct experiments has been demonstrated in studies

investigating mitochondrial biogenesis [17] and seed pigmentation

[18]. Other common exploratory methods, such as hierarchical

clustering [19], don’t directly use known gene annotations to learn

a prediction classifier, however they often use existing annotations

to interpret the resulting cluster of genes (e.g. gene enrichment

analysis) [20]. However in many organisms including human,

pathways and processes where functional annotations of genes are

most needed often have few or no prior experimentally confirmed

annotations, making novel predictions of genes that may

participate in such a process difficult or impossible. Thus, our

study describes a method to robustly increase the set of prior gene
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annotations, which has the potential to improve all function

prediction methods by increasing the accuracy of their predictions

and enabling wider coverage of pathways and biological processes.

Many of these processes are well studied in some model

organism, but not necessarily in an investigator’s organism of

interest. Even when applying a conservative examination of only

the closely related and heavily studied mammalian species human,

mouse, and rat, processes represented in one species are often not

well-characterized in another (summarized in Figure 1 and a full

list of processes available in Text S1). For example, the process

cellular glucose homeostasis, an increasingly important process due to

the role of cellular metabolism in cancer development, has less

than 5 gene annotations in human, yet has 31 in mouse, a

commonly used model organism for cancer studies. These

processes (referred to in the text as understudied processes) are not

well studied in a particular organism of interest (i.e. very few genes

are annotated) but might be well characterized in some other

organism.

A longstanding solution to improving the prediction accuracy of

understudied processes has been to transfer functional annotations

from organisms where the process is better characterized [21]. The

critical challenge in accurately transferring functional knowledge

between organisms is identifying the appropriate genes for the

transfer: those genes that share not only sequence similarity, but

also conserved pathway roles. Large-scale automated methods

have so far exclusively used sequence homology to identify

Figure 1. Functional knowledge of biological processes is far from uniform, even among closely related organisms. Each node
represents the number of experimentally annotated biological processes in an organism. Each edge value corresponds to the number of
experimentally annotated processes in the source organism that lack any experimental annotations in the target organism. Thus, the directed edges
between nodes indicate the direction of potential annotation transfer between organisms. For example, 3,245 processes with annotations in mouse
have no experimentally annotated genes in rat.
doi:10.1371/journal.pcbi.1002957.g001

Author Summary

Due to technical and ethical challenges many human
diseases or biological processes are studied in model
organisms. Discoveries in these organisms are then
transferred back to human or other model organisms.
Traditional methods for transferring novel gene function
annotations have relied on finding genes with high
sequence similarity believed to share evolutionary ances-
try. However, sequence similarity does not guarantee a
shared functional role in molecular pathways. In this study,
we show that functional genomics can complement
traditional sequence similarity measures to improve the
transfer of gene annotations between organisms. We
coupled our knowledge transfer method with current
state-of-the-art machine learning algorithms and predicted
gene function for 11,000 biological processes across six
organisms. We experimentally validated our prediction of
wnt5b’s involvement in the determination of left-right
heart asymmetry in zebrafish. Our results show that
functional knowledge transfer can improve the coverage
and accuracy of machine learning methods used for gene
function prediction in a diverse set of organisms. Such an
approach can be applied to additional organisms, and will
be especially beneficial in organisms that have high-
throughput genomic data with sparse annotations.

Knowledge Transfer for Under-studied Processes
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functionally conserved genes [22,23]. However, the relationship

between sequence similarity and function is not trivial. For

example, human angiopoietin-4 (ANGPT4), an important angio-

genesis growth factor, has been shown to activate TEK (tyrosine-

protein kinase receptor), while the mouse sequence-ortholog

(Angpt4) has been shown to inhibit TEK [24].

In our previous work [25], we developed a cross-organism gene

functional similarity measure, which relied on the concept that

functional genomics data can be used to resolve homologous

relationships among closely related genes. The approach summa-

rizes the compendium of genomics data in each organism into

functional relationship networks to identify genes that do not

simply share sequence similarity but also functional behavior in

large collections of heterogeneous functional data, and are thus

functionally analogous (referred to in text as functional analogs). In

this current study, we present a novel knowledge transfer method,

Functional Knowledge Transfer (also referred to in text as FKT

and outlined in Figure 2), which leverages the mapping of

functional analogs to direct cross-organism annotation transfer for

function prediction. FKT can be especially beneficial for existing

and future machine learning methods studying biological processes

with sparse annotations in any given organism of interest. By

transferring experimental knowledge between genes that have

been identified as functional analogs, our method extends beyond

simple annotation transfer by sequence similarity. Experimental

functional annotations are only transferred for genes that are not

just similar in sequence, but also in their functional behavior

derived from a large and relatively comprehensive compendium of

genomic data.

In this study, we show that FKT improves the prediction

accuracy of machine learning algorithms, particularly for biolog-

ical processes with few existing annotations in an organism of

study. We compare FKT to annotation transfer by sequence

similarity (BLAST) and demonstrate the superior performance of

our method in improving gene function prediction performance.

The consistent improvement and high performance across various

state-of-the-art classification algorithms demonstrates our ap-

proach is robust to different learning models, which is crucial for

wide applicability.

We apply FKT to gene function (i.e. biological process)

prediction in six metazoan organisms (Homo sapiens, Mus musculus,

Rattus novegicus, Drosophila melanogaster, Danio rerio and Caenorhabditis

elegans) and show that FKT is robust enough for the automated

transfer of annotations among these diverse organisms and

accurate function prediction. Finally, we demonstrate an applica-

tion of FKT to discovering novel biology by coupling the

knowledge transfer with a Support Vector Machine (SVM) to

predict proteins involved in left-right asymmetry regulation during

heart development in Danio rerio. We correctly predict several

proteins in the pathway and experimentally confirm the first

evidence of wnt5b’s role in the process. A comprehensive

application of FKT to 11,000 biological processes, along with

the functional relationship networks for all six organisms, are

available through the IMP web-server portal accessible at http://

imp.princeton.edu [26].

Results

In Figure 2, we outline the pipeline for FKT and the

subsequent gene function predictions (details provided in the

Materials and Methods section below). Briefly, we first integrated

high and low-throughput experimental data such as gene

Figure 2. Schematic of the functional knowledge transfer. (A) A functional relationship network is constructed for each organism through
Bayesian integration of heterogeneous genomic data (e.g. expression, TF motif binding, physical interaction assays). (B) Functionally analogous gene
pairs (i.e. functional analogs) are identified by computing a gene pairwise functional similarity score introduced in Chikina et. al between all sequence
homologs. Functional similarity is measured by the statistical significance of the number of common TreeFam gene families in the functional
relationship network neighbors of each homologous gene pair. (C) Next, experimentally confirmed biological process annotations for each gene are
transferred to its functional analogs. (D) For each biological process the extended set of gene annotations (which include direct gene annotations, if
available, and cross-annotated genes) can be used as training examples for machine learning methods (SVM used in this study) to make novel gene
membership predictions. (E) Top predicted genes are carried over for experimental validation.
doi:10.1371/journal.pcbi.1002957.g002

Knowledge Transfer for Under-studied Processes
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expression data, protein-protein interaction data, protein domain

and transcription factor binding motif information into functional

networks for each of seven organisms (Saccharomyces cerevisiae was

also included as an annotation source). Next, we calculated a

network-based functional similarity score as described in our

prior work [25] but extended here to additional organisms and

data sources, between all ortholog and paralog pairs in a Treefam

[22] gene family to identify the targets for annotation transfer.

Homologs with high functional similarity scores were determined

to be functional analogs. Next, we applied FKT by transferring

all gene-process annotations between functional analogs and

merge these with existing annotations (if available) in an

organism. To test the predictive power of FKT, the set of

transferred and organism-specific annotations were used to train

a Support Vector Machine (SVM) classifier [27] and predict new

genes to all biological processes in six metazoan organisms.

Functional network connection weights (i.e. the inferred proba-

bility that two genes co-function in the same biological process),

were treated as input features to the classifier (see Materials and

Methods). Additional state-of-art machine learning methods (L1-

regularized logistic regression [28] and Random forest [29]) were

trained and evaluated to test the robustness of FKT performance

improvement. Finally, we demonstrate the power of our

approach with an in vivo experiment validating the predicted

role of wnt5b in establishing correct heart asymmetry in Danio

rerio.

Functional knowledge transfer enables accurate gene
prediction for pathways with few or no known genes

Most modern machine-learning methods that predict novel

members of a biological pathway require a set of genes already

known to participate in the pathway. These approaches are

therefore limited to predicting genes to biological processes with

sufficient prior knowledge in an organism [30]. For example, in

the MouseFunc competition [7] (a broad competition focused on

the performance of biological process prediction approaches),

terms with less than three gene annotations were considered

infeasible to predict and not included.

We address this constraint by leveraging knowledge across

species, which allows us to take advantage of known biology from

a model organism where the pathway of interest may be better

studied. We applied our functional cross-annotation strategy

(FKT) to biological processes with few known genes (annotation

sizes of , = 5 and , = 15) in six metazoans and evaluated the

predictive performance of an SVM trained with these annota-

tions. To evaluate our performance, we constructed a three-year

temporal holdout of experimental annotations. We used only

biological process annotations added to Gene Ontology [31]

before 5/11/2008 (all dates in mm/dd/yyyy format) in learning

the functional networks, transferring annotations across organ-

isms, and predicting gene-process participation. New experimen-

tal annotations added to Gene Ontology between 5/11/2008 to

5/11/2011 were held-out and used for evaluation. In total, 3,207

GO biological process terms across the six organisms acquired

new gene annotations in the subsequent three years. We

evaluated the accuracy of our predictions with the gene-process

assignments made during the hold-out time period in Figure 3

(evaluation results of all GO terms in Text S3). We observed

substantial improvement using FKT when compared with only

using the direct annotations for an organism. Improvement was

evident across all six organisms, suggesting that even well

characterized model organisms (e.g. mouse) can benefit from

genomic-data-driven knowledge transfer. In addition, by holding

out gene-process annotations acquired within the last three years,

we could evaluate our ability to predict genes to processes which

had no known genes in an organism prior to the hold out date

(i.e. before 5/11/2008). Even though these processes were

uncharacterized at that time, they subsequently became the

focus of a directed experiment and thus were deemed biologically

relevant and experimentally feasible in the organism. As shown in

Figure 3, FKT gene predictions to these processes performed

competitively even compared to biological processes with known

gene annotations. Furthermore, these results were robust to the

evaluation timeframe (1-year temporal holdout shown in Figure

S1).

We hypothesized that our transfer method could improve

prediction performance for a wide range of machine learning

methods. Machine learning algorithms are often based on distinct

learning models and assumptions, thus any widely applicable

annotation transfer method must be robust to not only the

biological variability (e.g. different organisms or pathways) but also

to this modeling variability. Thus in addition to SVM, we

evaluated two widely used state-of-the-art learning methods: L1-

regularized logistic regression [28] and Random forest [29]. We

trained both classification methods with and without FKT and

evaluated on the held-out set of annotations. FKT improved

prediction accuracy across each machine-learning algorithm and

organism (Figure 4). In particular, these improvements were

consistent across biological process annotation sizes (, = 5 and

, = 15). Altogether, these results indicated that FKT could

recover biological processes that would be otherwise missed by

most prediction methods, and that the transfer had wide

applicability - improving performance across diverse organisms

and machine learning algorithms.

Genes predicted to processes with no prior annotations
in the study organism reflect subsequent experimental
findings

We coupled FKT with an SVM and applied the machine

learning classifier to predicting novel gene functions in six

organisms. These predictions included gene-process membership

for 8,091 GO biological processes currently without experimental

annotations in at least one organism. Supervised machine learning

methods would be unable to predict novel genes to these biological

processes without annotation transfer. They represent a wide

range of biological pathways and processes ranging from

development and metabolism to immune response and response

to various stimuli (a complete list of these GO terms is in Text S2,

categorization and specificity of these terms are shown in Figure

S2, S3).

For example, the biological process regulation of exit from mitosis

(GO:0007096) represents a crucial mitotic cell cycle process that

enables cells to regulate their exit from M phase. This process had

no experimental annotations in Danio rerio at the time of our study,

however had been extensively studied in the model organisms

Saccharomyces cerevisiae [32], Mus musculus [33] and Drosophila

melanogaster [34]. Our functional cross-annotation method has

identified a total of 18 genes in Danio rerio with functional analogs

annotated to this process (11 from yeast, 5 fly, 1 mouse and 1 rat),

enabling novel predictions of gene membership to this process.

Our top gene prediction for this process, cdh2, has been

experimentally confirmed in a recent study examining cell cycle

progression in cdh2 mutant retina cells [35]. Interestingly, cdh2 is

not only a novel prediction in Danio Rerio (i.e. this gene function

was unknown at the time of our study), but also no cdh2 homologs

are known to be involved in the regulation of exit from mitosis in other

organisms. Cdh2 is a member of the cadherin protein family, which

are important transmembrane proteins that play a crucial role in

Knowledge Transfer for Under-studied Processes

PLOS Computational Biology | www.ploscompbiol.org 4 March 2013 | Volume 9 | Issue 3 | e1002957



cell adhesion in multi-cellular organisms. Methods that employ

only sequence similarity would be unable to predict this because

cdh2 homologs have not been annotated to this process in other

model organisms. Furthermore, prediction methods without FKT

will miss this finding because there are no existing Danio rerio

annotations to this process. Only methods coupling FKT with a

machine learning algorithm can take advantage of information

from the single cell model organism Saccharomyces cerevisiae, where

cell-cycle checkpoints have been extensively studied [36], and

successfully predict this finding in the multicellular model

organism Danio rerio. This in vivo experimental result demonstrates

FKT’s utility for predicting novel genes to understudied processes.

In addition, by coupling functional transfer to machine learning

methods that leverage organism-specific functional data collec-

tions, we can make reliable gene-process predictions even without

an annotated sequence-homolog.

Cross-annotation among functional analogs improves
prediction accuracy for small processes

To compare our functional transfer method, which applied a

more specific annotation transfer, to commonly used methods that

used only sequence homology, we evaluated a method that did not

Figure 3. Cross annotation allows accurate recovery of small and unannotated terms. All annotations accumulated after 5/11/2008 are
held out from our prediction pipeline (as outlined in Figure 2) and are used for evaluation of prediction performance. 3,207 GO biological processes
terms that acquired new annotations subsequent to our holdout date are grouped by organism and by the number of annotations at 5/11/2008
(zero, , = 5, , = 15, all). Performances at recapitulating future annotations are compared for a machine learning method (SVM) without (gray) and
with (pink) including functional knowledge transfer (FKT) derived examples. For processes with zero annotations before 5/11/2008, no predictions
can be made without cross-annotation (shown as absent performance bar). In all six metazoan organisms and for all process sizes, FKT improves
prediction performance.
doi:10.1371/journal.pcbi.1002957.g003

Knowledge Transfer for Under-studied Processes
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leverage functional similarity and a baseline method without any

cross-annotation. In this sequence-only method, all homologous

gene pairs (reciprocal BLAST best hit gene pairs) were targets for

annotation transfer - any biological process annotated to a gene was

transferred to its reciprocal best-hit gene in all organisms. To obtain

a representative set of gene-process annotations for evaluation, we

conducted a threefold cross-validation on genes that had experi-

mental biological process annotations, and evaluated the SVM

classifier prediction performance on each corresponding held-out

set of biological process annotations. The results of the comparison

showed that although both methods improved performance for

small processes, FKT showed greater performance gains (Figure 5,

evaluation results of all GO terms in Text S3). In a few organisms,

the performance gains were substantial - for example, in human and

mouse, the median performance (precision at 10% recall) increased

more than fivefold.

Upon examining the processes that improved the most when

compared to a sequence-only method, many pathways and

processes with transcriptional based regulatory control showed

improved performance using FKT. Response to mechanical stimulus,

ameboidal cell migration, regulation of neuron differentiation and striated

muscle cell development were among the top improved processes in all

organisms using FKT compared to sequence-only. Unsurprisingly,

these processes have been well known to be tightly regulated

through transcriptional programs (e.g. stress response, develop-

mental TF gradients) [37–39] and have multiple datasets

measuring the transcriptional profiles incorporated in our func-

tional networks [40–42].

Figure 4. Functional knowledge transfer (FKT) improves prediction accuracy for a wide range of state-of-the-art classification
algorithms. The performance change when applying FKT are compared for each of three machine learning algorithms: L1-regularized logistic
regression, Random forest and SVM (evaluated based on the ability to recapitulate held-out annotations accumulated after 5/11/2008). 3,207 GO
biological process terms are shown, grouped by annotation size at 5/11/2008 (, = 5, , = 15). The percent change in performance (median fold over
random) when applying FKT compared to no FKT with each machine learning algorithm is shown for six diverse organisms. All bars are to the right of
zero, indicating a performance improvement when FKT is applied for each machine learning algorithm.
doi:10.1371/journal.pcbi.1002957.g004

Figure 5. Functional knowledge transfer (FKT) improves performance for predicting small processes. The performance of two
knowledge transfer methods (FKT and sequence-only) and a baseline method (with no cross-annotation) are compared. Shown here are results of
threefold cross-validation for small processes (, = 15) that represent specific or understudied pathways. FKT paired prediction method shows
improved performance compared to both sequence-only transfer and the baseline method.
doi:10.1371/journal.pcbi.1002957.g005
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We expect that FKT will continue to improve as the functional

genomics compendia for many organisms continue to grow,

including expression and other types of measurements across

multiple perturbations. An additional advantage of a functional

genomics similarity approach, as shown in [25], is the ability to

differentiate functional differences in tissue specificity between

sequence homologs. The example of mouse RNA polymerase II

elongation factor Supt5h and its direct sequence-ortholog C. elegans

spt-5 highlight this issue. FKT determined these sequence-

orthologs as not being functional analogs. Indeed, mouse Supt5h

is predominantly neuronal, while C. elegans SPT-5 is non-neuronal

and primarily expressed in the intestine and pharynx [43–45].

Even though these sequence-orthologs have diverged in tissue

specificity, they still share high sequence similarity and a sequence-

only method would inappropriately transfer all functional anno-

tations between them.

In vivo validation of Danio rerio gene wnt5b involvement
in the establishment of heart asymmetry

In all vertebrates, the heart develops with a distinct left-right (L-

R) asymmetry during embryonic morphogenesis. Deviations in

left-right heart development can lead to complex congenital heart

defects that are among the most common human neonatal diseases

[46,47]. During cardiac morphogenesis in Danio rerio, two distinct

stages of cell migrations lead to the final asymmetries of the heart.

In the first stage, called ‘‘heart jogging’’, myocardial cell migration

within the cardiac cone place the ventricular cells to the left side,

while atrial cells remain near the midline. In the second stage of

‘‘heart looping’’, the heart tube bends and forms a loop that places

the ventricle to the right of the atrium. Although the steps of cell

migration progression leading to left-right heart asymmetry are

beginning to be explored [48–51], an understanding of how it is

achieved mechanistically is still lacking.

In Gene Ontology, the biological process term ‘‘determination

of heart left right asymmetry’’ (GO:0061371) represents the

developmental pathways regulating heart jogging and looping. To

validate our prediction method (FKT coupled with SVM), we

investigated the top five predicted genes that had not already been

annotated to this GO term: sox32, wnt5b, ndr1, tbx1 and lft1. We

found existing literature evidence confirming the involvement of

four of the five genes (sox32 [52–55], ndr1 [56], tbx1 [57], and lft1

[58–60]). Although there existed experimental results confirming

the role of these genes in influencing heart asymmetry, these

results had not yet been curated by GO annotators. For example,

in a knock-out experiment of our top predicted gene (sox32/

casanova), Danio rerio embryos had fewer dorsal forerunner cells

which led to defects in Kupffer’s vesicle formation and subsequent

left-right patterning of the heart, confirming that sox32 was

required for proper establishment of heart asymmetry. The only

gene among the top five without existing experimental support was

wnt5b, our second ranked prediction after sox32. Previous work

had shown the involvement of wnt5b in cell migration during

gastrulation [61] but the gene had not been specifically associated

with heart left-right asymmetry regulation. To experimentally

validate our prediction of wnt5b to left-right heart determination,

we knocked down its function by means of morpholino antisense

oligonucleotides (MO) [62].

A significantly greater proportion of embryos where wnt5b was

knocked down with a morpholino (Figure 6) had a defective heart

jogging phenotype (Fisher’s exact test p-value,0.001). In total, 48%

of morpholino treated embryos showed either right-sided heart jog

or midline jog comparable to previous genes known to be involved

in this biological process [63–65]. Only 4% of wild type and control-

MO treated embryos exhibited this phenotype. This phenotype is

likely due to the disruption of asymmetric expression of the

TGFbeta member Nodal (data not shown), which is typically

asymmetrically expressed on the left side of vertebrate embryos

during somitogenesis. Left-sided Nodal in Danio rerio myocardial

cells directs their subsequent migration during asymmetric cardiac

morphogenesis [48,51]. Further investigation would be necessary to

understand the mechanistic role of wnt5b in left-right heart

determination, however our in vivo experiment confirmed the

regulatory role of wnt5b in Danio rerio left-right asymmetry

determination in heart development, as our method predicted.

Discussion

This study demonstrates that state-of-the-art machine learning

methods coupled with our functional knowledge transfer method

can accurately prioritize novel genes of understudied processes.

Previous methods have focused on incorporating functional

genomic data primarily as input data [66–69]. In contrast, here

we demonstrate that the prevalence of understudied processes and

the abundance of genomic data provide an opportunity to improve

the accuracy of cross-organism annotation transfer and extend

prediction coverage to processes with no prior annotations. We now

integrate FKT into our IMP web-server [26]. This makes IMP a

web interface for exploratory analysis covering all organisms

included in this study across 10,653 biological processes (http://

imp.princeton.edu). Functional knowledge transfer allows IMP to

also include gene predictions for processes currently unannotated in

an organism. Although in our current study we have experimentally

followed up on our top predicted gene, all of our predictions in IMP

are shown with estimated probabilities allowing biologist to draw a

threshold dependent on how much the assay costs, and how

important it is to find true positives (versus not finding false

positives). In addition, the website includes the Bayesian functional

relationship networks that were used for mapping functional

analogs and used as input features to the machine learning methods.

In particular, to the best of our knowledge, we include the first

zebrafish (Danio rerio) functional relationship network.

We anticipate that our approach can be extended beyond the

six organisms shown in this study, as it is especially beneficial in

organisms that have high-throughput genomic data with sparse

annotations (e.g. frog, slime mold). Next-generation sequencing is

further increasing the diversity of organisms that are measured on

the genome-scale, and functional knowledge transfer can help us

understand and annotate the roles of genes in such emerging

model systems. Functional knowledge transfer allows for accurate

hypothesis generation and experiment guidance even for pathways

with no previous experimental knowledge in a given organism,

thus benefiting human biology, broadly studied organisms such as

mouse and fly, and newly adopted model systems.

Materials and Methods

We developed a functional knowledge transfer method and

applied this method to predicting gene functions in six organisms

using a functional network based classification strategy. In

summary, data integration was performed using a regularized

naive Bayes classifier, which summarized the data compendium

into organism specific function relationship networks. Edges in

functional relationship networks represented, given all collected

data from that organism, the posterior probability of a gene pair

co-functioning in the same biological process. Next, a collection of

organism specific experimental annotations supplemented with

cross-annotated gene annotations (based on both sequence and

functional similarity) was used as gold standard for each GO

biological process to train a GO term specific SVM with the

Knowledge Transfer for Under-studied Processes
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functional relationship network as features. To test for robustness

across different machine learning algorithms, L1-regularized

logistic regression and Random forest were also evaluated by

coupling both algorithms with the functional knowledge transfer

method. Final predictions were made on a total of 10,653 unique

biological processes. We experimentally validated our method’s

predictions for the determination of heart left-right asymmetry in

Danio rerio. Of our top five predictions, four were validated via

existing but un-curated experiments from the literature. We

validated the fifth, wnt5b, using a morpholino knock-down assay.

Integration and summary of organismal data
compendia

Data source and pre-processing. We collected 2,444

microarray datasets from NCBI Gene Expression Omnibus

(GEO) covering a total of 43,865 conditions across seven model

organisms. Probes were collapsed and normalized according to the

procedure described in [69] and the Fisher’s z-transformed

pearson correlation were calculated for each gene-pair as

described in [10].

Physical and genetic interaction data from BioGRID [70], IntAct

[71], Mint [72], and MIPS [73] were processed as counts of

experimental assays that support an interaction between two genes

(e.g. a gene pair with evidence from two-hybrid and western blot

would receive two counts). Potential transcription factor (TF) to

target gene associations were obtained from Yeastract [74] and TF

binding site motifs retrieved from Jaspar [75]. Yeastract’s predicted

TF-gene relations were treated as pair-wise binary scores. For

Jaspar, we searched for possible transcription factor binding sites by

scanning each TF profile in 1 kb upstream sequence of all genes

using FIMO [76]. Motif matches were treated as a binary score

(present if p-value,.001 and not-present otherwise) and the final

gene pair score was obtained by calculating the pearson correlation

between the two genes’ binary score vectors.

Phenotype and disease data from SGD [77], MGI [78],

Wormbase [79], Flybase [80], GSEA [20], Zfin [81] were

incorporated into our functional networks by summing the co-

occurrences of gene pairs in all phenotypes/diseases and

normalizing by the size of the phenotype/disease. For gene pair,

i, j the scoring function is the following:

S(i,j)~
Xn

k~1

Ik ið ÞIk jð Þ
Nk

where function Ik(i) and Ik(j) are the indicator functions that have

the value 1 when gene i or j is annotated to the phenotype or

Figure 6. Knockdown of wnt5b leads to defects in zebrafish heart asymmetry. Morpholinos (MO) against wnt5b were injected into zebrafish
embryos at the 1–2 cell stage. Embryos were evaluated for heart jogging at 27 hour post fertilization and scored as either left (C), right (B), or no jog
(A). While control MO injected embryos had predominantly left-jogged hearts, embryos injected with the wnt5bMO displayed randomized heart
jogging with 48% of embryos displaying right or midline jog.
doi:10.1371/journal.pcbi.1002957.g006
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disease, n is the total number of phenotypes/diseases, and Nk is the

total number of genes associated with the phenotype or disease k.

Protein sequence similarity between genes was obtained from

Biomart [82], and protein domain data were treated as binary

evidence from PfamA [83] and Prosite [84].

Generating functional relationship networks. To sum-

marize the processed heterogeneous genomic data, we generated

one global functional relationship network per organism. We

applied Bayesian integration, specifically a naı̈ve Bayes classifier,

to systematically deal with differences in accuracy and relevance of

each data source for predicting gene functional relations. Gene

pairs co-annotated to a set of 433 expert selected Gene Ontology

[31] biological process fringe terms were used as known

functionally related genes (i.e. positive examples) [69,85]. Gene

pairs not co-annotated to any terms in the GO fringe, KEGG

[86], PID [87] or Biocyc [88] were considered as unrelated (i.e.

negative examples) except in the following cases:

1. A gene pair was annotated to terms overlapping with a

hypergeometric P-value below 0.05

2. A gene pair was annotated to a set of ‘negative’ GO terms that

define minimal relatedness (as described in [69])

If a gene pair met either of the two conditions, it was excluded

from unrelated pair generation (i.e., they were neither related nor

unrelated for training). Thus this formed a set of global related and

unrelated gene pairs to be used for training and evaluation.

One binary regularized naive Bayes classifier was trained per

Gene Ontology fringe term (i.e. biological process/context). Each

naive Bayes classifier contains one class node determining the

membership of a gene-pair to the biological process and organism

specific dataset nodes conditioned on the class node. When

integrating large number of genomic datasets, the naive Bayes

assumption of conditional independence among datasets can no

longer be justified. We have shown that a mutual information based

parameter regularization for naive Bayes classifiers can alleviate the

conditional dependency among datasets [69]. In this work, we make

modifications to our prior method by directly estimating the

conditional dependency between a dataset by limiting the mutual

information calculation between datasets to gene-pairs that are not

functionally related. This heuristic enables us to estimate the

conditional dependency between datasets without having to regress

out the incomplete functional relation class node information.

Specifically, the heuristic sum of shared information Uk is now:

Uk~

P
i=k

Ipairs[negative Dk,Dið Þ

H Dkð Þ

ak~2Uk{1

where IpairsMnegatives is the mutual information between dataset Dk and

Di among gene pairs not known to have a functional relationship

(i.e. negative gene pair examples) and H is the single dataset entropy.

Then we use the exponential decreased ratio (ak) to weight a given

dataset’s likelihood function. Finally, the naive Bayes functional

relationship posterior probability for gene pair i,j is the following:

P� Dk~dk gi,gj

� �
jFR~1

� �
~P Dk~dk gi,gj

� �
jFR~1

� �
ns

nszak

� �
z

1

jDkj
ak

nszak

� �

Pgi ,gj
FR~1DDð Þ~

P FR~1ð Þ P
n

k~1
P� Dk~dk gi,gj

� �
DFR~1

� �
Pgi ,gj

Dð Þ

where the weighted dataset likelihood function is P*, dk(gi, gj) is the

experimental value for gene pair i,j, |Dk| is the total number of

discretization levels and ns is a pseudocount set to 3 in our

integration based on cross-validation results.

Finally, with biological process specific functional relation

networks predicted by each naive Bayes classifier, we averaged

the edge probabilities from each process specific functional

network to generate the final global functional relationship

network.

GO biological process gold standard construction
through cross-annotation

In total, 10,653 GO biological process terms were predicted for

new gene annotations covering six organisms, Homo sapiens, Mus

musculus, Rattus novegicus, Drosophila melanogaster, Danio rerio and

Caenorhabditis elegans. We limited the positive examples for each

GO term to propagated experimental GO annotations with GO

evidence codes EXP, IDA, IPI, IMP, IGI and IEP (all ‘‘NOT’’

annotations were removed). In addition, to leverage the research

strengths across organisms, we transferred gene annotations among

six organisms plus yeast, first based on sequence similarity and

second filtered by function similarity. In detail, we start with all

sequence paralog and ortholog gene relations within each TreeFam

[22] gene family. Next, based on our previous algorithm [25], we

filtered for functional analogs among all paralog and ortholog gene

pairs using our functional relationship networks. We define a

functional analog to be a gene pair that has a significant number of

overlapping TreeFam gene families among its closest gene

neighbors in the global functional relationship network (a functional

network is converted into a binary network by using a probability

cutoff of 0.5). We defined a gene pair’s score as the following:

SG1,G2~
Xmin(m,n)

i~k

m

i

� � N{m

n{i

� �

N

n

� �

where m and n are the number of TreeFam gene families in each

gene G1 and G2’s direct neighborhood in the functional network, k is

the number of overlapping TreeFam gene families between gene G1

and G2 gene neighbors and N is the total number of TreeFam gene

families around gene G1 and G2. The functional similarity score is

the probability of observing greater or equal to the number of

overlapping gene families by chance, thus can be interpreted as a

hypergeometric p-value. We used a score cutoff of , = 0.01 to

consider a gene pair as functional analogs.

Finally, all experimental annotations are propagated between

functional analogs. In total, our supervised functional knowledge

transfer allowed us to make predictions for 8,091 additional GO

biological processes, thus extending our predictions beyond simply

well-studied and well annotated processes and pathways.

Biological process prediction with network based SVM
We used the augmented gold standard genes by functional

knowledge transfer and functional relation network as features into

state-of-art machine learning algorithm Support Vector Machine

(SVM) to predict novel biological process gene annotations. Our

functional relation network based SVM method has shown to
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outperform methods that directly input the raw data into the SVM

or a simplistic sum of the functional networks to the positive

examples [89].

For each biological process, the feature space was constructed as

the weights in the functional relation network. Thus for each gene

example, all gene edge weights connecting to the example gene

were used to create the feature vector. Therefore, each organism

feature count will be equal to the number of genes in the organism.

The set of feature vectors for training examples were used to train

a linear SVM according to the standard formulation:

min
w,ji§0

1

2
wT wz

C

n

Xn

i~1

ji

Vi : yi wT xi

� �
§1{ji

where n is the of training example genes, w is the gene weight

vector, yi is the training label of gene i and xi is the edge weight

vector connecting gene i to all genes in the functional network.

Finally, the unbounded SVM prediction scores were trans-

formed into probabilities based on a maximum likelihood sigmoid

fit to the SVM outputs [90].

Additional machine learning algorithms
To validate that the observed performance improvement was

not specific to any single learning algorithm, we applied the

functional knowledge transfer to two additional widely used

machine learning methods: L1-regularized logistic regression and

Random forest. Regression analysis coupled with regularization

has been a broadly used approach to control for the bias-variance

trade-off [91]. In particular, L1-regularization has been success-

fully used in many methods for shrinkage and feature selection

applications, most famously in the works of LASSO [92]. By

coupling L1-regularization with a logit link function, conditional

probabilities of a gene membership to a biological process can be

computed based on selected genes of predictive power. The

predictive gene weight vector w was obtained by the following

regression problem:

arg min
w

Xm

i~1

log 1ze{yiw
T xi

� �
zl

Xn

i~1

Dwi D

where l.0 is the regularization parameter, yi is the training label

of gene i and xi is the edge weight vector connecting gene i to all

genes in the functional network.

Random forest classifiers are a combination of decision trees

that are aggregated to make a final prediction. Random forest

algorithms have been shown to produce improved prediction

accuracy compared to a single decision tree by better estimating

the contribution of each predictor through random sampling [29].

In genomic applications, Random forest has gained interest due to

the many high-dimensional genomic learning problems [93].

Formally, random forest is defined by the following:

RF~ h X ,dið Þ,i~1, . . . ,nf g

where the random forest RF is a set of h :ð Þ decision tree functions,

trained on training examples X and a bootstrap sample di from the

original feature space of D. For classification, the votes of each n

decision trees are averaged as shown in the following:

avn

Xn

i~1

I hi Xð Þð Þ

where I :ð Þ is the indicator function for the prediction class of

interest. In our study, for each GO term 61 decision trees were

trained on independent bootstrap samples of our original genomic

training data.

Performance evaluation
For performance evaluations for GO terms with no prior

annotation, we used a three-year temporal holdout set of gene

annotations for each GO biological process (one-year holdout

results shown in supplemental material). The held-out gene

annotations were preserved throughout the prediction pipeline

(functional network integration and SVM predictions) to avoid any

overestimation of performance. Although we train our SVM

classifiers using the augmented cross-annotated gold standard,

only the non-transferred experimental GO term annotations were

used for evaluation with all transferred annotations excluded.

The GO gene association files used to create our gold standard

was downloaded from Gene Ontology [31] on 5/11/2011 (all

dates in mm/dd/yyyy format). To generate an accurate temporal

three-year holdout we downloaded the GO gene association

version archived at 5/11/2008. All annotations were propagated

and only experimental examples newly annotated after 5/11/2008

for each GO term was used in the temporal evaluation.

Accordingly, any GO term that had no gene annotations on 5/

11/2008, but subsequently accumulated new annotations were

used to evaluate our performance in predicting terms with no-

known prior annotations.

To compare performance between knowledge transfer methods,

we conducted an evaluation by performing a threefold cross-

validation among genes that had experimental biological process

annotations. This set of evaluation annotations represents a

random sampling of the current knowledge base as of 5/11/

2011. Identical to our temporal holdout, all evaluation annotations

for each holdout were withheld from our prediction pipeline to

avoid any performance over-estimation.

Implementation
All software used in this study has been implemented in the

open source and publicly available Sleipnir library [94] available

from http://libsleipnir.bitbucket.org, which interfaces with the

SVMperf library [95] for linear kernel SVM classifiers (the error

parameter C was set to 100 for these experiments through cross-

validation). L1-regularized logistic regression used the LIB-

LINEAR [28] and Random forest used the MILK (Machine

Learning Toolkit) python package implementation with 61

decision trees per GO term.

Morpholino microinjections and scoring of heart left-
right asymmetry

The wnt5b morpholino (MO) and standard control MO were

purchased from GeneTools. The sequence of the wnt5b MO used

is as follows: 59-GTCCTTGGTTCATTCTCACATCCAT-39.

Morpholinos were injected at a concentration of 6 ng/uL into the

yolk of one-cell stage embryos for whole knockdown in the

embryonic cells. Initial assessment (Figure 6) was performed via in

situ hybridizations on fixed embryos using the standard protocol

[96] with cmlc2/myl7 used as a probe. Images were captured at 46
or 106 magnification using a ProgressC14 digital camera

(Jenoptik) on a Leica MZFLIII microscope.
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Heart laterality for each treatment (wnt5b MO, control MO,

wild type) was evaluated in live Tg(cmlc2::GFP) embryos at

27 hours post fertilization. Embryos were scored as left/right/no

jog based on expression of GFP driven by cmlc2’s heart specific

promoter using a Leica SP5 confocal microscope (Figure S4).

Supporting Information

Figure S1 FKT cross annotation allows accurate recov-
ery of small and unannotated terms in 1 year temporal
holdout (pink: FKT+SVM, gray: SVM). All annotations

accumulated after 5/11/2010 are held out from our prediction

pipeline (as outlined in Figure 2) and are used to evaluate the

predictive power of FKT derived cross annotations (3 year

temporal holdout is shown in main text figure 3). GO biological

processes terms that acquired new annotations subsequent to our

holdout date are grouped by organism and by the number of

annotations at 5/11/2010 (zero, , = 5, , = 15, all). Performances

at recapitulating future annotations are compared for a machine

learning method (SVM) without (gray) and with (pink) learning on

functional knowledge transfer (FKT) derived examples. For

processes with zero annotations before 5/11/2010, no predictions

can be made without cross-annotation (shown as absent

performance bar).

(PDF)

Figure S2 The categorization of newly predicted biolog-
ical processes. In total 8,091 GO biological processes without

prior experimental annotation were predicted for novel gene-

pathway membership by deploying FKT across our six metazoan

organisms (Homo sapiens, Mus musculus, Rattus novegicus, Drosophila

melanogaster, Danio rerio and Caenorhabditis elegans). Here we show the

nature of these newly predicted biological process terms grouped

by each process’ parent term in the gene ontology (1 level in the

biological process name space).

(PDF)

Figure S3 Specificity of newly predicted biological
processes. Here we plot the specificity of 8,091 newly predicted

GO biological processes without prior experimental annotations.

As an imperfect proxy for biological specificity we use the depth of

each process term in the gene ontology biological process name

space. As examples of terms for a given depth, depth 2 leukocyte

proliferation, depth 4 glomerulus vasculature development, depth

6 intermediate filament cytoskeleton organization, depth 8 purine

ribonucleotide biosynthetic process, depth 10 regulation of insulin

secretion involved in cellular response to glucose stimulus, depth

12 negative regulation of histone h3 k9 methylation.

(PDF)

Figure S4 Zebrafish wnt5b knockdown in live embryos
show significant deviation from wild type heart jogging.
Heart laterality for each treatment (wnt5b MO, control MO, wild

type) was evaluated in live embryos at 27 hours post fertilization.

Embryos were scored as left (C), right (B), or no jog (A) based on

the expression of GFP driven by cmlc2’s heart specific promoter.

In total, 48% of morpholino treated embryos showed either right-

sided heart jog or midline/no jog. Only 4% of wild type and

control-MO treated embryos exhibited this phenotype. In situ

results are shown in Figure 6 in the manuscript.

(PDF)

Text S1 GO terms relevant in mammals (mouse,
human, rat) but missing in at least one organism.
(TXT)

Text S2 GO terms with no experimental annotations
but gene prediction enabled by FKT.
(TXT)

Text S3 All GO terms prediction evaluation results for
temporal and random holdout.
(TXT)
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