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Abstract

We propose a Bayesian approach for estimating branching tree mixture models to compare drug-resistance pathways (i.e.
patterns of sequential acquisition of resistance to individual antibiotics) that are observed among Mycobacterium
tuberculosis isolates collected from treatment-naı̈ve and treatment-experienced patients. Resistant pathogens collected
from treatment-naı̈ve patients are strains for which fitness costs of resistance were not sufficient to prevent transmission,
whereas those collected from treatment-experienced patients reflect both transmitted and acquired resistance, the latter of
which may or may not be associated with lower transmissibility. The comparison of the resistance pathways constructed
from these two groups of drug-resistant strains provides insight into which pathways preferentially lead to the
development of multiple drug resistant strains that are transmissible. We apply the proposed statistical methods to data
from worldwide surveillance of drug-resistant tuberculosis collected by the World Health Organization over 13 years.
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Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobac-

terium tuberculosis and is transmitted between hosts through the

respiratory route. The appearance of TB resistant to multiple

antibiotics threatens global control strategies that depend on the

efficacy of standard combinations of these drugs. Drug-resistant

TB in communities initially arises as a result of the sporadic

appearance and subsequent selection of drug-resistant M. tubercu-

losis mutants in individuals receiving inadequate treatment.

Individuals acquiring drug-resistance as a result of poor TB

treatment may then transmit resistant organisms to their

respiratory contacts.

Figure 1 displays mechanisms leading to drug resistant TB

infection in treatment-naı̈ve and treatment-experienced patients.

Drug-resistance in treatment-naı̈ve TB patients reflects primary

transmission of resistant strains; in contrast, drug-resistance in TB

patients who have previously been treated with anti-TB antibiotics

may reflect either transmitted resistance or resistance acquired

during previous treatment. Resistant strains observed among

treatment-naı̈ve TB patients have demonstrated sufficiently high

reproductive fitness to have been transmitted and caused disease.

By contrast, resistant strains that are observed among treatment-

experienced patients arise from either transmission from another

host or from within-host selection of sporadically occurring

mutants under drug pressure. Drug resistant strains arising as a

result of this second mechanism may not be as easily transmitted to

secondary hosts as drug strains that have already demonstrated

their ability to infect and cause disease in secondary hosts.

Determining which strains are sufficiently fit to be transmitted and

cause disease can aid in developing effective strategies to combat

the spread of resistance.

Probabilistic graphical models, e.g. branching tree mixture

models, have been used to infer the sequence of several binary

events that have occurred in an unknown order [1–3]. These

models can potentially provide public health benefit as they only

require cross-sectional data, often easily and abundantly available,

and are applicable to any biological system that follows an

ascending Markov process. Past use of these models include

describing the order of acquiring copy number aberrations in renal

cancer, modeling the development of HIV genetic mutations

associated with antiretroviral resistance and characterizing the

acquisition of anti-TB drug resistance from phenotypic TB data

[1–3]. Knowledge regarding these longitudinal processes may be

useful in directing research for disease control.

Considerable work has been done in defining and fitting

branching tree models. The single mutagenetic tree introduced by

Desper et al. [1], describes the progression of a set of events, or

pathway, for a population. The model assumes that there are no

reversions following an event and that for each event, there is a
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unique pathway leading to it. To broaden this class of models for

settings where the latter assumption does not hold, Beerenwinkel

et al. [2] introduced mixture models that allow for the existence of

multiple evolutionary pathways leading to the same event. Izu et

al. [3] developed a Bayesian approach to identifying a mixture

model and estimating the associated parameters.

Branching trees are useful in the context of TB because the

probability of reverse mutations is very small (validating the

ascending markov assumption), and global cross-sectional pheno-

typic drug resistance data are publicly available [4]. In analyses of

genetic data, an event is a specific mutation; whereas in analyses of

phenotypic data, sets of genetic mutations are grouped into single

events. For example, the event ‘‘resistance to isoniazid’’ would

comprise all patterns of genetic mutations which confer isoniazid

resistance. Although phenotypic data does not allow examination

of the ordering in which such mutations emerge, such data are

more readily available and can provide a basis for generating

hypotheses that can subsequently be tested with genetic data.

Below, we expand the use of these models beyond their previous

application for describing the progression of events in a single

population. This paper develops a Bayesian approach to compare

pathways in two different populations using branching trees in

which some tree parameters are prespecified. We apply these

methods to investigate the relationship between drug resistance in

treatment-naı̈ve and in treatment-experienced patients. By com-

paring branching trees from these two groups of patients, we gain

Figure 1. Mechanisms of TB drug resistance in treatment-naı̈ve and experienced patients. The first pathway describes patients who test
positive for resistance to anti-TB drugs prior to their first treatment episode. These treatment- naı̈ve patients were initially infected with a drug-
resistant strain. The second pathway describes patients who were infected by a drug resistant strain and failed their first course of treatment. After
their first course of treatment, they tested positive for resistance to anti-TB drugs. The final pathway describes patients who were infected by a drug
susceptible strain and failed their first treatment episode because they acquired resistance via spontaneous mutation.
doi:10.1371/journal.pcbi.1002973.g001

Author Summary

Drug-resistant tuberculosis (TB) initially arises as a result of
the sporadic appearance and subsequent selection of
drug-resistant M. tuberculosis mutants. Such strains may or
may not be associated with fitness costs affecting their
ability to transmit and cause disease. Resistant pathogens
collected from treatment-naı̈ve patients are strains for
which fitness costs of resistance were not sufficient to
prevent transmission. Those collected from treatment-
experienced patients reflect strains that may or may not be
associated with lower transmissibility. Determining which
strains are sufficiently fit to be transmitted and cause
disease can aid in developing effective strategies to
combat the spread of resistance. Branching trees are
graphical models used to infer the sequence of several
binary events (i.e. a pathway) that have occurred in an
unknown order. We propose a novel method using
branching trees with prespecified components to compare
evolutionary pathways among different populations. We
apply our model to understand if there are unique drug-
resistant pathways found only amongst treatment expe-
rienced patients that might reflect acquired resistant
disease associated with fitness costs that limits its ability
to transmit. Our methods can be generalized to any
biological process for which the assumption of an
ascending markov process applies.

Mixture Models with Prespecified Elements
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insight into the evolution of highly drug-resistant strains that remain

capable of being transmitted and causing secondary disease.

Methods

Branching trees
We follow Desper et al. in our notation for branching tree

models. A branching tree, denoted by T~(V ,r,E,bp), is a special

Bayesian network that consists of a set of nodes or vertices, a root,

a set of edges connecting the vertices, and edge weights. Vertices

represent the event of a binary random variable and the root

represents the binary random variable indicating whether none or

at least one of the events characterized by the vertices have

occurred. The edges connecting the nodes have weights equal to

the conditional probability of the child event given the prior

occurrence of the parent event. As the branching trees described

here do not take time into account, the edge weights are not

informative about the times to occurrences of events. An example

is provided by the two trees in Figure 2 with edge weights

bp1,1~0:1 and bp2,1~0:9. From these, we infer that prevalence of

drug1 is higher but not that resistance to it occurs faster in the

latter compared with the former tree. For more details on timed

branching tree used in oncogenesis see Desper et al.

Branching trees model the joint distributions of events and

impose constraints on the dependencies among events and on the

order in which they can occur. Let V~fr,z1,z2,:::,zng be the set of

nodes for which r is the root; (zu,zv)[E denote the edge directed

from node zu pointing towards node zv ;and bp be the probability

mapping such that bp : E?½0,1�. A path from z1 to zm is a

sequence of edges (z1,z2)(z2,z3):::(zm{1,zm) and z1 is an ancestor

of zm. The path is a cycle if z1~zm. A branching tree imposes the

restriction that there be no cycles and that each edge must be

directed toward a different node. A node with no offspring is called

a leaf. One particular branching tree to define is a star tree.

In this paper, the nodes represent the acquisition of drug

resistance to one or more drugs and the root represents a wild type

state (i.e. full sensitivity to all anti-TB drugs). The edges connecting

the nodes signify that the event represented by the offspring (child)

node can only occur given the prior occurrence of the event

represented by the parent node. The edge weights are the

conditional probabilities of these events.

Mixture models
Because a branching tree requires that each edge be directed

toward a different node, single branching trees may not be

sufficient to describe the underlying processes of interest.

Beerenwinkel et al. [2] introduced mixture models in order to

accommodate the existence of multiple evolutionary pathways

leading to the same node. A K-tree mixture model is comprised of

K branching trees, T 1,:::,T K , and their respective tree weights,

a1,:::,aK , where ak is the marginal probability that a random

individual follows a pathway represented by the kth tree. Let cik

denote the probability that the ith individual follows a pathway

represented by T k (Beerenwinkel et al. [2] referred to this

probability as the responsibility of T k). We refer to a tree structure as

the graph of the mixture model without the edge weights, i.e. the

collection of trees, T ’k~(V ,E,r).

Mixture models often contain a special noise component or star

tree, in which all nodes originate in the root. Figure 2 provides an

example of a mixture model, in which the first tree is the star tree.

Mixture models which include a star tree ensure that every

possible multinomial state has probability greater than zero.

Estimating mixture models that are partially specified
We adapt the two-step process introduced in Izu et al. to

estimate mixture models, in which aspects are prespecified

Figure 2. An example of the graphical display of a 2-tree mixture model with three nodes. bp is the set of edge weights defined as the
conditional probability of the child node given the prior occurrence of the parent event. a1 and a2 are the probability that an individual follows a
pathway represented by the first and second tree, respectively.
doi:10.1371/journal.pcbi.1002973.g002

Mixture Models with Prespecified Elements

PLOS Computational Biology | www.ploscompbiol.org 3 March 2013 | Volume 9 | Issue 3 | e1002973



M~
XK

k~1

akT k

where k~(1,:::,Kp,Kpz1,:::,K) and T k is treated as known for

Kp of the K trees. The first step estimates the structures of the

remaining trees. To accomplish this, we adjust the EM-like

algorithm in Beerenwinkel et al. [2] to account for the prespecified

portion of the model. This involves iterating between estimating

the K responsibilities for each individual and reconstructing the

remaining K{Kp trees using the data weighted by the respon-

sibilities. Given an estimate ofM~
PK

k~1 akT k the responsibility

of the kth tree for the ith sample is estimated (E step) by

cik~
akL(xi DT k)

XK

l~1
alL(xi DT l)

:

Following this step, T k for k~fKpz1,:::,Kg is reconstructed by

using the maximum branching algorithm (M step) found in Desper

et al. with the following adjusted joint and marginal probabilities

p̂pk,u~
1

Nk

XN

i~1

cikI(Xi,u~1)

p̂pk,uv~
1

Nk

XN

i~1

cikI(Xi,u~1)I(Xi,v~1)

Nk~
XN

i~1

cik:

As discussed in Izu et al. we can also compose a set of candidate

models that include similar, but different, structures for the

unspecified trees and then use a given criteria to choose the best

model. In certain settings, it may be reasonable to assume the

structure of all trees in the model thereby avoiding the need for the

first step.

Given the structure of the K trees, the second step uses Bayesian

methods to estimate the parameters associated with the partially-

known mixture model. Let y represent a multinomial random

variable whose outcomes are determined by the pattern of events

for the set of binary random variables or vertices. There are 2n

possible outcomes, where n is the number of vertices. Let

p1,k,:::,p2n,k be the corresponding probabilities of each outcome

associated with the kth tree. For example, for the mixture model

shown in Figure 2 there are 23~8 possible outcomes for the

multinomial distribution. If p4 corresponds to the event resistance

to drug3 but not drug1 or drug2, the probability of this outcome is

p4~a1(1{bp1,1)(1{bp1,2)bp1,3za2 � 0:

Let y*Multinomial(a1p1,:::,aK pK ). We place non-informative

priors on the tree weights, ak, and the parameters associated with

T k. The posterior distribution of these parameters can be obtained

from an MCMC implementation in WinBUGS.

Measure of similarity
To use mixture models to compare two populations, A and B,

we include trees derived from data on population A as prespecified

elements in our mixture model for population B. Tree weights

associated with these trees provide a measure of the similarity

between the two populations, which we define below. The mixture

model for population B is

M~
XK

k~1

akT k

where KP of the K trees describe pathways that are also seen in

population A, and the remaining trees describe pathways seen only

in population B. We define the measure of similarity as
PKP

k~1 ak.

From our definition of ak above, the measure of similarity is the

probability that an individual from population B follows any of the

pathways resulting from the model describing population A. Using

the bayesian methods described above, we can obtain a posterior

distribution for this quantity.

Application to drug resistant TB in treatment-naı̈ve and
treatment-experienced patients

The data we analyze are obtained from Anti-Tuberculosis Drug

Resistance in the World, Fourth Global Report [4]. These data

arise from surveillance in countries where all notified culture-

positive TB cases received drug susceptibility testing (DST) and

from population-representative surveys in countries where not all

TB cases routinely receive DST. Between 1994 and 2007, DST

results were collected from patients from 138 settings in 114

countries and 2 Special Administrative Regions (SARs) of China.

The anti-TB drugs reported include isoniazid (H), rifampin (R),

ethambutol (E) and streptomycin (S). Twenty-nine settings were

excluded because data were either only reported for treatment-

naı̈ve patients or combined for naı̈ve and treatment-experienced

patients, leaving a total of 85,672 samples from treatment-naı̈ve

patients and 18,619 samples from treatment-experienced patients.

Seven different regions were considered (AFR = African region,

AMR = region of the Americas, EMR = Eastern Mediterranean

region, FSU = Former Soviet Union region, NFSU-EUR = Non-

Former Soviet Union European region, SEAR = South-East Asian

region, WPR = Western Pacific region) as shown in Table 1.

Originally, all European countries were included in a single

region. However, the prevalence of resistance to any anti-TB drug

is significantly higher in countries of the former Soviet Union than

in other European countries: 39% (95% CI: 38–40) and

8.2%(95% CI: 7.8, 8.5), respectively, among treatment-naı̈ve

cases and 71% (95% CI: 70–72) versus 20% (95% CI: 18, 22)

among treatment experienced cases. Because of this large

difference, we split the European region into two sub-regions.

Resistance pathways may vary between regions, both because of

geographic heterogeneity in strain lineage and because of

differential selective pressure due to different historic usage of

anti-tuberculosis drugs [5]. As a consequence, we analyze data

from each region separately. Methods described in Izu et al. are

used to analyze the data from the treatment-naı̈ve patients. The

resulting tree structures and their corresponding edge weights

comprise the prespecified components in the mixture model fit to

data from treatment-experienced patients.

Results

Results for treatment-naı̈ve patients
In the resulting mixture models for treatment-naı̈ve patients,

models from all seven regions contain two trees. The non-star tree

for the models describing the AMR, EMR, FSU, SEAR and WPR

is shown in Figure 3(a)-these are all trees with a single leaf. Izu et

Mixture Models with Prespecified Elements
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al. used a simulation study to show that these methods perform

well when the underlying data generating tree structure has a

single leaf. The non-star tree from the models describing AFR and

NFSU-EUR is shown in Figure 3(b). For each region, estimates for

the tree and edge weight parameters are shown in Table 2. ai is an

estimate of the proportion of the population following the ith tree.

The four columns following ai represent the edges and

corresponding edge weights associated with tree i. The edge

weight is the conditional probability of resistance to the drug

indicated by the child node given resistance to the drug indicated

by the parent node. If the parent node is the root (WT), the edge

weight is the marginal probability of resistance to the drug

indicated by the child node. For example, in the AFR, 16% of all

TB strains follow pathways described by the first tree which has

the set of edges E = {WT?H, WT?R, WT?E, WT?S}. 84%

of TB strains follow pathways to resistance described by the second

tree with the set of edges E = {WT?H, H?R, H?E, R?S}. In

the latter, the conditional probability of resistance to rifampin

given resistance to isoniazid is 0.86. The weights on the star tree

found in the first column of Table 2, range from 0.09 (SEAR) to

0.18 (FSU) and all standard errors are less than 0.026. With the

exception of the FSU, the probabilities associated with edges

beginning at the root in the non-star tree are all less than 0.10 (s.e.

v0.015), reflecting the relatively low prevalence of resistance

observed among treatment-naı̈ve patients. In contrast, for the

FSU, the probability associated with the edge from the root is 0.27

(s.e. = 0.007).

Results for treatment-experienced patients
A prespecified mixture model was fit to the data on treatment-

experienced patients with the non-star trees from the fit to data on

naı̈ve patients as specified components (Figure 3). The number of

Table 1. Breakdown of data by region.

AFR AMR EMR FSU NFSU-EUR SEAR WPR

naı̈ve n = 13229 n = 12286 n = 2642 n = 7546 n = 21585 n = 4781 n = 23603

0.11 0.15 0.15 0.39 0.08 0.15 0.18

(0.11,0.12) (0.14,0.15) (0.14,0.16) (0.38,0.40) (0.08,0.09) (0.14,0.16) (0.17,0.18)

experienced n = 2357 n = 2861 n = 511 n = 5335 n = 2461 n = 1553 n = 3541

0.21 0.29 0.47 0.71 0.2 0.43 0.44

(0.2,0.23) (0.27,0.31) (0.42,0.51) (0.7,0.72) (0.19,0.22) (0.40,0.45) (0.43,0.46)

The first row displays sample size, proportion of the population resistant to any drug and the corresponding confidence interval for treatment-naı̈ve patients and the
second row displays this information for patients with a previous treatment history. AFR = African region, AMR = region of the Americas, EMR = Easter Mediterranean
region, FSU = Former Soviet Union region, NFSU-EUR = Non-Former Soviet Union European region, SEAR = South-East Asian region, WPR = Western Pacific region.
doi:10.1371/journal.pcbi.1002973.t001

Figure 3. Non-star tree structures from mixture models for treatment-naı̈ve patients. (a) non-star tree for AFR and NFSU-EUR. (b) non-star
tree for AMR, EMR, FSU, SEAR and WPR. Nodes = {WT = wild type, H = isoniazid, R = rifampin, E = ethambutol and S = streptomycin }.
doi:10.1371/journal.pcbi.1002973.g003
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unspecified trees was obtained from fitting a fully specified mixture

model to the data from treatment-experienced patients. The trees

represented exclusively in the model for treatment-experienced

patients describe pathways for resistance that are unique to this

population (i.e. not observed among the treatment-naı̈ve). Models

for each region, with the exception of SEAR, contain two

unspecified trees, one of which is the star tree, and the other of

which is shown in Figure 4. The model describing the SEAR

contains three unspecified trees: the star tree, and the trees shown

in Figure 4(a) and 4(c). Each of the three different non-star tree

structures, contain the edge H?R. The non-star tree for the EMR

and SEAR, is the only structure in which streptomycin, not

isoniazid, is the child node of the root. The analysis of resistance

patterns from treatment-naı̈ve and experienced patients produces

Table 2. Posterior nodes and standard deviations of mixture model parameters describing resistance in treatment-naı̈ve patients.

Region Mixture Model Parameters

AFR a1 WT?H WT?R WT?E WT?S a2 WT?H H?R R?E H?S

0.16(0.007) 0.32(0.022) 0.047(0.006) 0.04(0.005) 0.35(0.020) 0.84(0.007) 0.02(0.003) 0.86(0.094) 0.51(0.043) 0.70(0.039)

AMR a1 WT?H WT?R WT?E WT?S a2 S?H H?R R?E WT?S

0.11(0.006) 0.45(0.026) 0.19(0.015) 0.11(0.010) 0.20(0.025) 0.89(0.006) 0.32(0.021) 0.46(0.039) 0.46(0.049) 0.079(0.004)

EMR a1 WT?H WT?R WT?E WT?S a2 S?H H?R R?E WT?S

0.13(0.026) 0.27(0.052) 0.17(0.038) 0.09(0.023) 0.32(0.057) 0.87(0.026) 0.42(0.079) 0.42(0.077) 0.78(0.091) 0.08(0.014)

FSU a1 WT?H WT?R WT?E WT?S a2 S?H H?R R?E WT?S

0.18(0.007) 0.79(0.015) 0.29(0.016) 0.36(0.016) 0.38(0.022) 0.82(0.007) 0.64(0.013) 0.58(0.019) 0.62(0.023) 0.27(0.007)

NFSU-EUR a1 WT?H WT?R WT?E WT?S a2 WT?H H?R R?E H?S

0.13(0.005) 0.35(0.018) 0.047(0.006) 0.03(0.004) 0.26(0.014) 0.87(0.005) 0.01(0.001) 0.92(0.065) 0.58(0.048) 0.69(0.044)

SEAR a1 WT?H WT?R WT?E WT?S a2 S?H H?R R?E WT?S

0.09(0.008) 0.71(0.044) 0.17(0.023) 0.12(0.018) 0.28(0.046) 0.91(0.008) 0.25(0.048) 0.69(0.130) 0.68(0.090) 0.08(0.007)

WPR a1 WT?H WT?R WT?E WT?S a2 S?H H?R R?E WT?S

0.11(0.004) 0.67(0.016) 0.27(0.011) 0.16(0.009) 0.28(0.019) 0.89(0.004) 0.34(0.017) 0.38(0.025) 0.65(0.048) 0.10(0.003)

The four columns following ai represent the edges and corresponding edge weights associated with tree i. The edge weight is the conditional probability of being
resistant to the child node given resistance to the parent node has occurred. If the parent node is the root (WT), the edge weight is the marginal probability of
becoming resistant to the child node. Nodes = {WT = wild type, H = isoniazid, R = rifampin, E = ethambutol and S = streptomycin }.
doi:10.1371/journal.pcbi.1002973.t002

Figure 4. Non-star tree structures from mixture models for treatment-experienced patients. (a) non-star tree for AFR, FSU, NFSU-EUR,
SEAR and WPR. (b) non-star tree for AMR (c) non-star tree for EMR and SEAR.
doi:10.1371/journal.pcbi.1002973.g004
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identical tree structures for the AFR, EMR, NFSU-EUR and

SEAR.

The results of analyses are shown in Table 3. Because there is

only one prespecified tree, the measures of similarity is the weight

for the unspecified tree shown in the first column of Table 3. In

our application, the measure of similarity is the probability that a

treatment-experienced patient follows a pathway identical to that

seen in treatment-naı̈ve patients. It ranges from 0.29 to 0.71 and

all standard errors are less than 0.18. The breakdown for each

region is as follows: 0.52 (AFR, s.e. = 0.18), 0.71 (AMR,

s.e. = 0.03), 0.36 (EMR, s.e. = 0.12), 0.33 (FSU, s.e. = 0.03), 0.48

(NFSU-EUR, s.e. = 0.18), 0.29 (SEAR, s.e. = 0.12), and 0.51

(WPR, s.e. = 0.06).

As shown in Izu et al., bootstrap methods provide information

regarding the stability of these tree structures. For each region, a

set of candidate tree structures are obtained for naı̈ve and

treatment-experienced patient from fitting 30 bootstrap samples.

The program Mtreemix [6] was used to fit Beerenwinkel’s mixture

model to data from naı̈ve patients and an adaption to the

Mtreemix program was used to fit our prespecified mixture model

to data from treatment-experienced patients. All candidate sets

contain fewer than four structures with the exception of the

NFSU-EUR and SEAR for treatment-experienced patients (five

and eight structures, respectively). Results of Izu et al. imply that

estimates from models where more structures occur in the set of

candidate trees are less stable. Results provided in Table 3 show

that the standard deviations of the posterior distribution for the

branching tree parameters in these regions are relatively high.

Simulation study
In analyses described above, we prespecified a single tree in our

mixture model. This section presents the results of simulations to

gauge the accuracy of our methods. Data are simulated from the

seven resulting mixture models from the treatment-experienced

data. In each of the models, labeled simulations 1–7, one tree

structure and its edge weights are prespecified and treated as

known. We estimate the structure and corresponding edge weights

for the remaining unspecified portion of the model as well as all

tree weights.

Table 4 shows how often the correct tree structure is chosen.

The agreement between these results and those from the bootstrap

analyses (Table 5) are generally high, with some notable

exceptions. The results from AFR, EMR, and WPR appear to

be stable in both analyses and the results for SEAR are particularly

unstable in both. In the AMR, FSU and NFSU-EUR, the results

from the simulation samples differ from the results from the

bootstrap samples. The NFSU-EUR shows the largest difference.

The correct tree structure is chosen in 84% of the simulations, but

in only 3% of the bootstrap samples. The tree structure chosen in

83% of the bootstrap samples is similar to the correct tree except

for the non-star tree in the unspecified portion of the model. The

set of edges for the non-star tree is: E = {WT?H, H?R, H?E,

H?S}. We compared the distribution of the bootstrap samples

that resulted in this alternative tree and the simulation samples

resulting in the correct tree. Eight of the sixteen multinomial

parameters show different distributions in the bootstrap compared

to the simulation samples. We believe that these differences

constitute the main driver of this discrepancy. Such differences

could make it difficult for the data to distinguish between closely

related trees (e.g. those that differ by a single edge) that explain the

data equally well.

The results from fitting the models are shown in Table 6, which

provides the coverage for each parameter estimated in the seven

models. Coverage is defined as the percentage of time the 95%

credible intervals contain the true parameter, given the simulation

resulted in the correct tree structure. Of all seven simulations, all

parameter estimates have coverage higher than 90%. Our

simulations show that when the tree structure is correct, the

mixture model parameters are well estimated.

Discussion

This paper describes methods to estimate partially prespecified

mixture models which can be used to compare two populations.

Our model is applied to investigate patterns of resistance amongst

treatment naı̈ve and experienced patients. Trees from treatment-

naı̈ve data (Figure 3) reflect pathways from strains which have

demonstrated the ability to be transmitted and cause disease. Trees

from treatment-experienced patients (Figure 4) describe pathways

from a combination of transmitable and reproducible strains and

those which may have suffered some cost in terms of their ability to

transmit. There are different explanations for the patterns we

observe in the two populations and these methods cannot

definitively differentiate among them. Below, we review our results

and use them to generate hypotheses about underlying mechanisms

of TB resistance which may be worthy of further testing.

In the AFR, EMR, NFSU-EUR and SEAR the same tree

structure arises from both treatment-naı̈ve and experienced

patients, implying the pathways to multi-drug resistance are

similar in both populations. One possible explanation is that in

these regions, all pathways result in transmissible resistant TB

strains. Factors that are region specific provide other possible

explanations. For example, there is a high prevalence of HIV in

the AFR. Patients with suppressed immune systems may be more

susceptible to strains that have lower overall reproductive fitness,

thereby permitting all pathways observed among re-treatment

cases to be also seen in naı̈ve cases [7]. The NFSU-EUR has the

Table 4. The percentage of simulations in which the correct
tree structure is chosen.

Simulation Percentage

1 (AFR) 98.6

2 (AMR) 70.5

3 (EMR) 77.3

4 (FSU) 100

5 (NFSU-EUR) 84.2

6 (SEAR) 39.8

7 (WPR) 100

The region simulated is shown in parenthesis.
doi:10.1371/journal.pcbi.1002973.t004

Table 5. Number of different structures that arose from 30
bootstrap samples fit to naı̈ve and treatment-experienced
patients in each region.

AFR AMR EMR FSU
NFSU-
EUR SEAR WPR

naı̈ve 4 (53) 1(100) 2(77) 2(07) 2(57) 1(100) 1 (100)

experienced 3(87) 4(40) 3 (37) 1(100) 5(2) 8(20) 1(100)

The number inside the parenthesis is the percentage of structures which were
the same as that of the original sample.
doi:10.1371/journal.pcbi.1002973.t005
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lowest prevalence of drug resistance among all regions (Table 1).

For both naı̈ve and experienced patients in this region, much

highly resistant disease is observed among immigrants from areas

where the prevalence of drug resistance is high [8]. One potential

explanation is that the majority of highly resistant disease in this

region results from transmission with only minimal contribution of

acquired resistance.

In contrast, analysis of AMR, FSU, SEAR and WPR resulted in

branching trees which differ among treatment-naı̈ve and experi-

enced patients. This tends to imply that some pathways to

resistance produce strains that are relatively less transmissible and

cause disease in secondary hosts. Alternatively, it may be that new

resistance pathways appearing first among re-treatment cases

through acquisition may not have had enough time to be observed

among new cases.

Among treatment-naı̈ve patients, the pathway of the most

common tree begins with streptomycin; however, in treatment-

experienced patients, the majority of the trees, it begins with

isoniazid. This difference may reflect the history of TB treatment.

Streptomycin was the first anti-TB drug in general use followed by

isoniazid and then rifampin. It is also possible that in some settings

(and with some resistance-conferring mutations), resistance to

isoniazid is associated with a reproductive fitness cost that

decreases the microbes transmissibility or ability to cause disease

[9–11]. It is unlikely that this ordering of mutations reflects current

sequencing of drug use since in most settings the vast majority of

cases will be treated simultaneously with four drugs (rifampin,

isoniazid, ethambutol and pyrazinamide) [12]. Only in rare

settings is streptomycin (the only antibiotic of the four reported

here that requires injection) used in first-line regimens for treating

tuberculosis.

Each non-star tree describing both treatment-naı̈ve and

experienced patients contains the edge H?R. This important

edge defines the development of multidrug resistant TB (MDR-

TB). Given that a strain follows a pathway associated with the tree

under study, the weight corresponding to the edge H?R is the

conditional probability of the strain being MDR given that it is

resistant to isoniazid (INH). This edge weight in the trees for naı̈ve

patients provides insight into the probability of MDR-TB given

INH resistance in strains that are being transmitted. Except for the

AFR, the H?R edge weight is lower in trees associated with

treatment-naı̈ve patients, suggesting in these regions, the condi-

tional probability of MDR-TB given INH resistance may be lower

among transmitted strains.

The measure of similarity provides a quantitative measure of the

degree of similarity of two populations. We note that it does not

directly provide information regarding the process of acquiring

resistance in the two populations. Resistance pathways seen in the

sample of treatment- naı̈ve patients may not actually represent

every possible pathway associated with this population. In

addition, patients presenting for re-treatment who were originally

infected with resistant strains may also have acquired additional

resistance [13]. Therefore, comparison of tree structures from

treatment-naı̈ve and treatment-experienced patients cannot serve

as a basis for estimating the proportion of the latter who were

originally infected with resistance strains. Nonetheless, the

proportion of drug-resistant and MDR TB attributable to

transmission found in several molecular epidemiologic studies,

38% to 53%, and 64% respectively are similar to the weights

associated with trees observed in treatment-naı̈ve patients [14–17].

The large amount of data from treatment-naı̈ve patients allows

us to estimate reliably the prespecified portion of the model. In

some settings, it may not be appropriate to assume that branching

trees are known for a portion of the model. The Bayesian

approach permits incorporation of uncertainty by placing a prior

distribution on the parameters of the prespecified trees; the

methods of Szabo and Boucher [18] that permit incorporation of

measurement error into the mixture model can also be used. We

would have included this approach in our analysis had such

measures been available in the settings where the data were

collected. In other settings, it may be preferable to avoid

prespecification of model components and estimate all model

parameters completely from available data. To aid in such

endeavors, our model could be naturally extended to include other

covariates, such as indicator variables for different populations.

Izu et al. discuss the possibility that multiple structures may

describe data equally well as was possibly the case in the NFSU-

EUR. The authors recommend using bootstrap methods and

simulation to assess reliability of results. In such situations,

examining the similarities among the different plausible tree

structures provides insight regarding resistance pathways. In the

results described above, all of the trees resulting from the bootstrap

samples shared many of the same properties. The most notable

similarity was the role of E as the child node to R in 96.5% and

72.9% of the resulting structures from the bootstrap samples across

all regions for naı̈ve and experienced patients, respectively. 92.7%

of the bootstrap samples across all regions for both groups of

patients resulted in a structure with H as an ancestor to R,

implying resistance to isoniazid precedes resistance to rifampin–a

finding that has also been previously described.

In summary, the proposed methods permit investigation of

pathways to resistance in treatment-naı̈ve and treatment-experi-

enced patients, subject to limitations describe above. These results

are useful for formulating questions regarding the biology and

epidemiology of drug resistant tuberculosis and can help generate

testable hypotheses about which pathways to multiple drug

resistance may be most likely to generate fit strains capable of

being successfully transmitted. The analyses presented here are

limited by the fact that only phenotypic resistance data were

available. As discussed in Izu et al., genotypic data that permit

inference regarding the pathways by which specific drug-resistance

conferring mutations accumulate would allow for refinement of

hypotheses that can be tested. Although the focus of this paper is

on tuberculosis, our methods can be generalized to any biological

process for which the assumption of an ascending markov process

applies.
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