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Abstract

The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that
contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long
periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical
perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts
following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect
the prevalence of an infection and estimate R0, the number of secondary infections of an infectious individual in a
completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure.
We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to
homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations
of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a
slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher
prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that R0 is
generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability.
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Introduction

Living in society implies that individuals are constantly

interacting with each other. Interactions may take different forms,

but those involving proximity or direct contact are of special

interest to epidemiology because they are potential bridges by

which infections may propagate. These interactions can be

modeled by using the formalism of networks, where a vertex

represents a person and the interaction between two persons

corresponds to a link [1,2]. Research on empirical data indicates

that contact patterns are not random but contain network

structures whose particularities depend on the environment and

context of the contacts [1,2]. These interactions have in common

the property of being highly heterogeneous in the sense that each

individual interacts with a different number of other people,

belongs to a different community, or assumes different topological

roles in the network. Several studies using networks have assumed

that contacts are fixed, or static, and the topology at different levels

contains the relevant structures to regulate the spreading processes

[3–7]. The static approach is typically used as a first approxima-

tion to contact patterns due to its simplicity, but it is more suitable

for modeling systems where processes propagate faster than the

evolution of the network. Nevertheless, in several networks of

interest to epidemiology, the structure may change faster than

infectious states, and the static representation becomes deficient

[8]. The increasing availability of high-resolution data has shown

that contact patterns contain diverse temporal properties [9–12]

that may affect dynamic processes as much as the topology does.

In this new framework, the time and duration during which

vertices and links are active are taken into account to more

precisely map the contact patterns into an evolving network

structure [13]. Some empirical studies show, for example, that

contact (or partnership) duration and inter-contact interval (or

inter-event time) are highly heterogeneous, which means that the

length of partnership do not have characteristic values [11,12] and

intense activity (sometimes called bursts) may be followed by

longer intervals of isolation or inactivity [10,12,14,15]. This last

property makes it difficult to distinguish from the empirical data

whether an individual is absent for some period or simply left the

system (i.e., censoring [16]).

Although there is an extensive literature on mathematical

models in epidemiology that includes temporal information such

as seasonal effects [17,18], or age-structured populations [18], few

studies have addressed the interplay between temporal structures

and epidemics [19]. Volz and Meyers, for instance, have studied

epidemics in a family of random networks assuming that partners

change at a fixed mixing rate and show the importance of contact

dynamics to estimate an outbreak of syphilis in a high school [20].

This model is further extended to include heterogeneous contact

rates and is applied to study intervention strategies [21]. Smieszek

and collaborators have investigated the impact on epidemics of

daily changes of partners (equivalent to Volz’s model for mixing
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rate equal to one) and repeated contacts in random networks

(equivalent to mixing rate equal to zero), and they discussed the

epidemiological contexts where one or another model is more

suitable [22]. Another mathematical model that allows detailed

tracing of contact behavior and demographic process is used to

study the contribution of different infection stages to HIV

epidemics [23]. The gap length between different partnerships

and the partnership duration have been addressed by different

authors, and it has been suggested that these are critical

components in sustaining the transmission of gonorrhea [24]

and chlamydia [25]. Numerical studies using networks of contact

patterns between conference attendees conclude that heterogene-

ity in contact durations causes lower spread of infection [26].

Furthermore, concurrency has been long claimed, from a

theoretical perspective, to be responsible for increasing the

prevalence and growth rate of HIV [27].

In this paper, we focus on the heterogeneity in the time interval

between two events of vertex activation (hereafter referred to as

inter-event time). It has been suggested that, in case of burst

activity (e.g., power-law inter-event time distribution), the number

of new infected individuals in SI dynamics decays as a power-law

in the long-time limit irrespective of the degree distribution of the

network [28,29]. These studies are essentially concerned with the

long-term effect of spreading and not with the early stages of an

epidemic outbreak. A study using an empirical network of sexual

contacts suggests that, in comparison to homogeneous contact

patterns, heterogeneous contacts speed up the spread of simulated

infections [30]. The results for sexual contacts (together with other

similar studies using diverse communication patterns as proxies for

contact networks and epidemic–like simulations [31–33]) are

derived by contrasting the evolution of the infection dynamics in

the original network with the same dynamics in randomized

versions of the temporal network (null models) where the time

stamps are reshuffled retaining some (e.g., daily patterns) or no

temporal constraints. Therefore, the relative difference and

importance of the temporal characteristics to shape the spread

of infections depend on the randomization protocol, and

conclusions may be misleading as a result. One example is the

increase in average inter-event time caused by the randomization

of the time stamps when the turnover of vertices is high. In this

case, those vertices that were originally active, for example, only at

the beginning of the network, can be found at any time after

randomization. Moreover, if samples of the empirical network are

subsequently repeated to extend the original network in the time

domain, this asymmetry creates artificial cyclic effects since the

identity of vertices in the final and initial parts of the network are

substantially different.

To avoid conclusions based on particular samples of empirical

networks and limitations in reshuffling methods, one can study the

spread of infections in a minimalist model containing only the

temporal properties of interest. Several assumptions are necessarily

made to reduce the complexity of the model, but by using

generative models of dynamic networks one can control the

temporal structure in a continuous and systematic way. We

therefore propose a simple and intuitive theoretical model of a

temporal network in which the vertices are active (‘‘on’’ state) only

at certain times and are otherwise inactive (‘‘off’’ state), co-evolving

with an infection dynamic. We mainly focus on susceptible-

infective-recovered (SIR) epidemics, but also present results of the

susceptible-infective (SI) model, which has typically been used in

studies of heterogeneous inter-event times.

Methods

Temporal network model
A temporal network may, in its simplest form, be defined as a

dynamic network where the vertices and the links are active (‘‘on’’

state) only at certain times and inactive (‘‘off’’ state) otherwise [13].

In our model, each vertex follows a stochastic process where

subsequent ‘‘on’’ states depend on a certain inter-event time

distribution P(Dt). In other words, we have a process in which the

probability of a vertex’s being active at time t0 depends on the last

time t it was active, that is, Dt~t0{t. For computational reasons,

time is discrete t~f1,2,:::,tfinalg and we generate the next ‘‘on’’

state when the vertex is active, that is, if a vertex is active at t, we

select the next time it will be active t0 by sampling Dt from P(Dt)
[34]. As soon as a vertex is active, it chooses uniformly between other

active vertices, connects to one of them during one time step, and

destroys the link afterwards by turning back to ‘‘off’’ state. Such an

evolving network is therefore only constrained by the inter-event

time and results in randomly mixed networks without degree

heterogeneities and correlations. After a few steps everyone has

contacted everyone else at least once but since at each time step only

one link per vertex is allowed, triads, clicks, or other connected

structures do not occur during a single time step. This unrealistic

topological structure is necessary to guarantee that only the temporal

constraints affect the dynamics. In a related work, Stehlé and co-

authors have proposed a dynamic network model able to create

various inter-contact times and partnership durations simultaneous-

ly. In their model, agents (or vertices) transit between interacting and

isolated states, and the transition probabilities depend on both the

current state and the time duration since last change of state [35].

The most suitable functional form for the inter-event time

distribution depends on the system of interest [10,12,14,15,31], but

for simplicity, we study the two limiting scenarios of burstness (power

law) and randomness (Poisson) in our model. As a typical example

of a class of skewed distributions we use a power law with an

exponential cutoff (or quenched) P(Dt)!Dt{a exp({bHETDt)
(awwbHET~0:001), hereafter referred to as HET case. It is

suggested that this type of inter-event time distribution appears, as a

result of preferential queuing models, for example, where individuals

choose to perform highest priority tasks more often than random

Author Summary

Networks of sexual contacts and of spatial proximity are of
interest for the understanding of epidemics because they
define potential pathways by which sexual and airborne
infections spread. These networks are not static but vary,
with both vertices and links appearing and disappearing at
different times. One of the temporal properties observed
across systems is that the time lapse between two contacts
is irregular, which means that high activity is followed by
long intervals of idleness. In this article, by using a
theoretical model of a dynamic network co-evolving with a
simulated infection, we show that such heterogeneity
leads to earlier epidemic outbreaks and increased preva-
lence of infections for a range of parameters, in compar-
ison to scenarios of regular activity, which is the current
modeling paradigm in mathematical epidemiology. We
also include a turnover rate to model individuals entering
and leaving the system, and we show that if turnover is
high, the relative difference in the prevalence of hetero-
geneous and homogeneous contact patterns increases
due to the continuous influx of susceptible individuals.
These heterogeneities also increase the expected number
of secondary infections produced by a single infected
vertex in a completely susceptible population.
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tasks [14] or because of nonhomogeneous Poissonian processes

constrained by cyclic activity [15]. As a baseline for comparison, we

consider the exponential distribution P(Dt)! exp({bHOMDt) with

the same average SDtT as HET. Exponential inter-event times

appear in Poissonian processes where the chance of being active

depends only on the constant rate bHOM~1=SDtT (which means

that t and t0 are unrelated) that corresponds to homogeneous inter-

event times (HOM). Since our models use discrete time, we use the

equivalent geometric distribution in the simulations.

Independently of the evolution of these contacts, we define a

vertex turnover mechanism to account for changes in the identity of

vertices. For simplicity, we assume a Poissonian process with rate

bturnover~1=SDtturnoverT where a new vertex automatically replaces

a removed vertex. This procedure keeps the total number of vertices

N constant (N~1000) and thus removes the effects of system-size

fluctuations. The turnover time of the new vertex is given by

tturnover~tzDtturnover and Dtturnover is sampled from the distribu-

tion P(Dtturnover)!exp({bturnoverDtturnover). As initial conditions,

all vertices start with random values for t0 and tturnover. The initial

transient quickly disappears after a few time steps and is discarded.

Epidemics models
On top of the evolving network, we define an infectious process

using compartmental models. In these models, vertices belong to

compartments such as susceptible (S), infected (I), or recovered (R),

according to their state at the moment [18]. Each epidemic model

defines a set of possible compartments and allowed transitions

between compartments. We focus on general properties of the

susceptible-infected-recovered (SIR) dynamics. For comparison

with previous studies based on empirical networks, we consider the

limit case of susceptible-infected (SI) dynamics. The study of

specific infections with realistic parameters and the most proper

compartments go beyond the scope of the present article;

therefore, we restrict our analysis to theoretical aspects of these

standard models to understand the impact of heterogeneous

temporal contacts on general spread dynamics.

In the SIR model, a vertex in state I infects a susceptible partner

S instantaneously upon contact with probability l (l is the per-

contact infection probability; unless otherwise stated, as a toy

assumption we generally use l~1). An infected vertex I is

completely recovered after tInf time steps, changing to state R. In

contrast, a stochastic recovery parameter would imply that the

chance of recovery is the same regardless of the time of infection,

which gives relatively large dispersion in the distribution of

infective intervals [36]. The SI model simply corresponds to the

limit tI??. Note that ‘‘recover’’ in the SIR model means that the

vertex cannot infect or be infected anymore, but still makes

connections until it is removed by the turnover mechanism.

Initially, one vertex is set to the infective state I and the remaining

N{1 vertices are set susceptible S. Newcomers are always set to

susceptible state S. The fraction of infected vertices (or the

prevalence) is i(t)~fno: infected vertices at time tg=N; the frac-

tions of susceptible and recovered vertices are defined in the same

way and given, respectively, by s(t) and r(t). Therefore, we define

the outbreak size as H(t)~i(t)zr(t). For each simulation, we

generate 50 to 200 realizations of the random temporal network

model (depending on the measure) and, for each realization, we

select all vertices active in the first-time step as infection seeds.

Results

Evolution of the prevalence
We initially study the deterministic SI infection dynamics in

both temporal network models. This model corresponds to an

upper limit where transmission occurs upon contact with an

infective vertex and a vertex remains infective as time goes on.

This simple model, although unrealistic, helps us to understand the

essential mechanisms of spreading on the temporal networks and

has been also used on related literature.

We see in Figure 1 that in the case of Dtturnover?? (blue curves),

the heterogeneous pattern HET causes a higher prevalence during

the initial time interval (e.g., within few time steps, about 85% of the

population is infected for a~2:5 - Figure 1B), followed by a slow

increase until the remainder of the network is infected. The

homogeneous pattern HOM causes slower growth in the same

initial interval; however, it allows the infection to reach the entire

network earlier. This initial speedup in the HET occurs because, at

short time scales, an infected vertex contacts a larger number of

other vertices due to bursts (See Text S1) and thus quickly spreads

the infection. As time goes by, the average waiting time to contact a

susceptible vertex increases [28], leading to a slowdown in the

number of newly infected vertices. The difference between HET

and HOM is more pronounced for decreasing a (the slope of the

inter-event time distribution) since smaller a corresponds, in case of

HET patterns, to an increasing probability of vertices waiting long

intervals between two subsequent activations.

If a moderate turnover is included (Dtturnover~10 - red curves),

HET causes a higher prevalence during the entire period and also

removes the asymptotic slow growth as observed in the absence of

turnover. This happens because vertices originally inactive for long

periods of time are now replaced earlier in the dynamics. The long

intervals of inactivity are increasingly removed for increasing

turnover rate (decreasing Dtturnover). Furthermore, for varying

Dtturnover the absence of epidemic outbreak is observed at larger

values of Dtturnover in the HOM case in comparison to HET. This

happens because at high turnover rates, vertices following HET

patterns make, on average, more contacts before replacement than

vertices following HOM, as a consequence, the infection is more

likely to die out in the HOM case; in fact, the ratio between the

average number of contacts of vertices following HET and HOM

increases for decreasing Dtturnover (see Text S1).

After discussing the elementary mechanisms of the spread

process in this class of temporal networks, we focus in the evolution

of the SIR dynamics. The SIR model includes a new compartment

where vertices are recovered after a limited period of infectivity.

To illustrate the general behavior of the SIR dynamics, we show in

Figure 2 the prevalence of the infection within the population for

two specific configurations (we explore other configurations

bellow) with a~2:5 (see Text S1 for the relation between SDtT
and a) and infective periods tI~5&3SDtT (Figure 2A,B,C) and

tI~10&6SDtT (Figure 2D,E,F). The infection growth has a

similar shape for both inter-event time models, but as in the SI

dynamics, the curve is shifted depending on the model and

parameters; the shorter infective period results on larger difference

between the timing of the peak of HET and HOM (Figure 2A).

The final fraction of susceptible vertices is higher for HET

irrespective of the values of tI (Figure 2A,D), which suggests that

the earlier peak contributes to avoid the infection of all vertices.

While in the SI dynamics, the probability that an infected vertex

contacts a susceptible vertex decreases after a certain point (due to

the long waiting times), in the SIR dynamics, the same vertex

recovers before infecting others. As a consequence, vertices

inactive for long times remains susceptible. The same mechanism

responsible for a non-null number of susceptible vertices also

causes the different intensities of the peak prevalence for each

network.

The introduction of the turnover mechanism reduces the peak

prevalence in both contact patterns but has more impact on the

Bursts and Epidemics in Evolving Networks
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homogeneous network (Figure 2B,C,E,F). As discussed before in

the context of SI dynamics, the increasing turnover rate removes

the long waiting times and causes HET vertices to have more

contacts, at shorter scales, in comparison to HOM vertices (see

Text S1). If the infective period is larger, an infected vertex has a

higher chance to contact a susceptible vertex and propagate the

infection. For moderate turnover, that is, Dtturnover~20&12SDtT

(Figure 2B,E), the newly introduced susceptible vertices are

responsible for creating a small second wave of epidemics (peak

is *40% smaller than the first wave for both configurations),

followed by a small oscillation of low prevalence for both networks

but still slightly higher for heterogeneous contacts. Similar results

of the evolution of the epidemics are observed for other

configurations with tI~5 and aw2 (see Text S1). When the

Figure 1. Prevalence of the infection in SI epidemics. The prevalence Si(t)T in case of SI epidemics for HET and HOM contact patterns with
Dtturnover?? (blue curves) and Dtturnover~10 (red curves). Each column corresponds to a different a, (A) a~2, (B) a~2:5 and (C) a~3. The x-axis is in
log-scale.
doi:10.1371/journal.pcbi.1002974.g001

Figure 2. Prevalence of the infection in SIR epidemics. Curves correspond to the fraction of infected Si(t)T (i.e. the prevalence – blue) and
fraction of susceptible individuals Ss(t)T (red). Each panel contains a different configuration: (A)tI~5 and Dtturnover??; (B) tI~5 and Dtturnover~20;
(C) tI~5 and Dtturnover~4; (D) tI~10 and Dtturnover??; (E) tI~10 and Dtturnover~20; (F) tI~10 and Dtturnover~4. The x-axis is in log-scale.
doi:10.1371/journal.pcbi.1002974.g002
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turnover rate is higher (Dtturnover~4&3SDtT), the infection grows

monotonically to a state of roughly constant prevalence

(Figure 2C,F), leaving a large number of susceptible individuals

(60% to 80% of the vertices for the configurations shown).

Intensity and timing of peak prevalence
In this section we study the dependence of the peak prevalence

with the network characteristics and SIR model parameters. When

Dtturnover??, the only temporal pattern is the heterogeneous

inter-event times. Figure 3 shows the difference in the intensity of

the peak prevalence Di~Si(tpeak{HET)T{Si(tpeak{HOM)T for the

two scenarios of inter-event times for the deterministic (l~1,

Figure 3A) and stochastic (l~0:1, Figure 3B) SIR dynamics. Two

distinct regimes appear for difference combinations of the infective

interval tI and the contacts heterogeneity (given by the slope a of

the power-law distribution). In case of deterministic SIR, for any a
and small values of tI, and for av2 and any tI, the peak

prevalence is higher for heterogeneous contact patterns (positive

values of Di). On the other hand, for larger values of the same

parameters, we see a higher prevalence in case of the homoge-

neous contacts HOM (negative values of Di). The difference in the

peak prevalence between the HET and HOM reaches up to 54%
within the range of parameters considered. We perform a simple

ANOVA analysis to verify if the intensity of the peak prevalence of

the two networks are different and show, through the F statistics

for each combination of parameters (Figure 3C), that the

differences are statistically significant for a range of values

(Fc(1,98)~6:901,pv:01, raw p-values are presented in Text

S1). We have also calculated the difference Di relative to the

prevalence in the HET network Direl~Di
�
Si tpeak{HET

� �
T.

Figure 3E shows that for several configurations, this relative

difference goes over 100%, especially for av2:5. In case of

stochastic SIR, we do not observe configurations where the HOM

network results on higher prevalence in comparison to the HET

model (Figure 3B). The difference Di increases for sufficiently large

tI and 2vav3. Although the differences in Figure 3B are one

order of magnitude smaller than in the deterministic case, they are

statistically significant for av3 (Figure 3D) and the relative

difference remains considerable high, more than 20% for av3
and §100% in the dark red region (see Figure 3F).

The irregular contact patterns also shift the time of the peak

prevalence (see Figure 4A,B, where the negative values of

Dtpeak~tpeak{HET{tpeak{HOM mean that peak HET occurs

earlier than peak HOM). In Figure 4A (deterministic SIR), the

(positive) region at about av2 essentially comprises cases in which

the infection dies out quickly for homogeneous (and thus

tpeak{HOM&0) but not for heterogeneous (where tpeak{HETw0)

patterns. However, tpeak-HET may occur up to 100 time steps

earlier than tpeak-HOM in the interval 1:75vav2:5 (Dtpeakv0).

For aw2:5 and tI high enough, the epidemic reaches its peak

earlier in the HOM scenario; in this regime of sufficiently high tI

we recover the SI dynamics. The difference between HET and

HOM is statistically significant for the red and white region in

Figure 4C (Fc(1,98)~6:901,pv:01; raw p-values are presented in

Text S1). The difference relative to the HET case,

Dtrel
peak~Dtpeak

�
tpeak{HET, is also large, the blue (red) region in

Figure 4E shows that the difference in the time of the peak

prevalence can be more than 2 times larger (smaller) than the time

of the HET peak prevalence. For stochastic SIR, the difference in

the time of peak prevalence (Figure 4B) is statistically significant

for tIw15 and 2vav3:75 (Figure 4D). Even for stochastic SIR,

we identify two different regions in the parameter space where

either HET (blue in Figure 4B) or HOM (red in Figure 4B) results

on earlier outbreaks. Similarly to the deterministic SIR, the

relative differences are consistently high (dark red region in

Figure 4F) whenever they are statistically significant.

Estimation of R0

We estimate R0 by counting the number of secondary infections

of an infectious vertex in a completely susceptible population

before the vertex recovers or leaves the system [18]. For the

deterministic SIR, Figure 5 shows R0 for heterogeneous and

homogeneous contact patterns in the case of Dtturnover?? and

Dtturnover~10 for two different infective intervals tI~5
(Figure 5A,C) and tI~10 (Figure 5B,D). In all configurations of

the homogeneous case, R0&1 for aƒ1:75. Generally, R0 is higher

for HET in comparison to HOM. Above the plots, we present the

F statistics to quantify the significance of the difference between

the two networks and we see that R0 is indistinguishable only in

few cases for large a. For both infective durations, the values of R0

are higher in the case of Dtturnover?? (Figure 5A,B).

We show in Figure 6 the effect of stochastic SIR infection

dynamics and various infection intervals on R0 (for a~2:5 and

Dtturnover??). In Figure 6A, we see a threshold (within the

numerical accuracy) at R0~1 such that epidemics occur above

this curve (in the Text S1, we show a similar plot but of the

Figure 3. Intensity of the peak prevalence for SIR epidemics.
Difference in the intensity of peak prevalence Di for (A) deterministic
(l~1) and for (B) stochastic (l~0:1) SIR dynamics with various infective
intervals in case of Dtturnover??. F statistics for (C) deterministic (l~1)
and for (D) stochastic (l~0:1) SIR (red and white mean that HET and
HOM peak intensities are statistically different, that is,
FwFc(1,98)~6:901,pv:01), raw p-values are in Text S1; the difference
relative to the HET case, that is, Direl~Di

�
i tpeak{HET

� �
for (E)

deterministic (l~1) and for (F) stochastic (l~0:1) SIR.
doi:10.1371/journal.pcbi.1002974.g003

Bursts and Epidemics in Evolving Networks

PLOS Computational Biology | www.ploscompbiol.org 5 March 2013 | Volume 9 | Issue 3 | e1002974



outbreak size, and identify that below this threshold the size of the

epidemic outbreak is less than 0:1%). We plot the difference

DR0~RHET
0 {RHOM

0 in Figure 6B to facilitate comparison

between the two temporal networks. For short infective intervals,

HET results in larger R0 irrespective of the per-contact infection

probability l. The same applies for small l and any infective

intervals. On the other hand, the homogeneous contacts result in

larger values of R0 for sufficiently high tI and l. For sufficiently

large tI, the infection spreads slower in the HET network, as it

happens with SI. When the turnover mechanism is included

(Dtturnover~10), since vertices stay shorter in the dynamics, the

absolute values of R0 decrease slightly such that R0v1 for lv0:2
(Figure 6E). Moreover, the heterogeneous network results in larger

R0 for all studied values (Figure 6F).

Distribution of outbreaks
The introduction of the two temporal constraints in the

dynamic network affects in different ways the distribution of

possible outbreak sizes for a given initial condition. For a~2:5,

Figure 7 shows that both contact patterns lead to symmetric

distributions (of outbreak sizes) with characteristic values but

different dispersions. Furthermore, in the case of high turnover

rate, a number of initial infections result in null or very small

outbreaks since some vertices are removed before infecting others.

This effect is more pronounced in the HOM case. This is expected

since bursts of activity result in more contacts before the vertex

replacement, which is Poissonian (See Text S1). In the absence of

turnover, the dispersion of the distribution (measured by the

standard deviation) is larger for HET, while in the case of

Dtturnover~20&12SDtT, the dispersion is larger for HOM. We

measure the standard deviation for some other values of a (see

Table 1) and observe that, for Dtturnover??, the distribution of

outbreaks is broader for the HET in comparison to HOM only for

a§2:5 and is narrower for aƒ2:25. For aƒ2:25, HOM causes

several small and null outbreaks and the distribution becomes right

skewed, which explains the larger standard deviation. For

Dtturnover~20, HOM results on larger dispersion than HET for

several values of a; however, in case of a~2, null outbreaks are

observed for HOM. In this case of Dtturnover~20, there is also

some overlap of the distributions indicating that some initial

conditions may give, for example, HHOMwHHET, which is

different than the characteristic behavior of SHHETTwSHHOMT.

Discussion

Contact patterns are characterized by a high degree of

heterogeneity both at topological [1,2] and at temporal levels

[9–12]. As much as the contact structure (e.g., degree distribution

or community structure) constrains the spread of infections,

temporal structures (e.g., inter-contact times, causal relations,

partnership duration) also influence the dynamics of infection

propagation. To contribute to the understanding of the interplay

between temporal structures and spread of infections, and in

particular, to the role of bursts of vertex activity to regulate

epidemics, we introduce a simple and intuitive model of temporal

network where the vertex dynamic is constrained only by the inter-

event time distribution and by an independent turnover mecha-

nism. Within this simplified framework, the contribution of these

temporal constraints to the spread of infections becomes evident

since there are no competing topological structures in the model.

Our results show that the prevalence curve can be generally

divided into two parts. The first part is characterized by a faster,

steeper growth of the fraction of infected vertices in the case of

heterogeneous contact patterns. After this initial period, a second

regime is identified whose characteristics depend on the epidemics

model, turnover rate, and other parameter values. In the absence of

replacement of vertices, the prevalence of the infection is generally

higher for homogeneous contact patterns. This happens because in

a completely susceptible population, an infected vertex quickly

contacts several other vertices due to bursts, as a consequence of

which the epidemic outbreak occurs earlier. However, as time goes

by, the longer inactive intervals due to the broad distribution of

inter-event times, the probability of finding a susceptible vertex

decreases and the heterogeneous contact patterns slow down the

spread of the infection. For some configurations of the SIR

dynamics, heterogeneous patterns avoid the infection of the entire

network and thus provide a way of decreasing the global impact of

the epidemic. Temporal structures may therefore be used to exploit

new vaccination protocols based on behavioral characteristics of the

population reflected in the dynamic network structures [37–39].

In our model, an initial speedup in the SI dynamic is followed

by a slowdown in the asymptotic limit, which is in agreement with

previous theoretical results [28–30]. On the other hand, some

other studies (using empirical networks of human communication)

suggest that bursts speed up non-deterministic SIR epidemics in

the case of small infection probabilities, and slow down for large

Figure 4. Time of the peak prevalence for SIR epidemics. Difference
in the time of peak prevalence Dtpeak for (A) deterministic (l~1) and for (B)
stochastic (l~0:1) SIR dynamics with various infective intervals in case of
Dtturnover??; F statistics for (C) deterministic (l~1) and for (D) stochastic
(l~0:1) SIR (red and white mean that HET and HOM peak times are
statistically different, i.e. FwFc(1,98)~6:901,pv:01), raw p-values are in
Text S1; the difference relative to the HET case, that is, Dtrel

peak~

Dtpeak

.
tpeak{HET for (E) deterministic (l~1) and for (F) stochastic

(l~0:1) SIR.
doi:10.1371/journal.pcbi.1002974.g004
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probabilities [33] and for deterministic SI epidemics [31,32]. We

observe that for decreasing heterogeneity (larger a), the prevalence

is similar for both inter-event time distributions. Therefore, it may

be that in networks with skewed (but not strictly power-law such as

in Refs. [31,33]) inter-event time distributions and topological

correlations, slower growth eventually occurs in the earlier stages.

In other words, while bursts increase the prevalence, at least at

shorter time scales, increasing clustering (or community structure)

would decrease the spread of an infection. Furthermore, by

scanning the parameter space, we observe that homogeneous

contacts can cause greater prevalence than heterogeneous contacts

for moderate values of infection duration and for large per-contact

infection probabilities. It is important to note, however, that we

model only one temporal structure. It may be, for example, that

heterogeneous partnership durations [26] and non-overlapping

partnerships [24,27] are major temporal structures responsible for

slowing spread in empirical networks. Since different structures,

both at the temporal and topological level, compete to promote or

reduce the spread simultaneously, it remains an open problem to

quantify which is the controlling component in this complex

dynamic in particular systems.

The increasing of the turnover rate in the dynamics removes the

long inter-event times of the vertices (i.e., it is equivalent to a cutoff

effect in the power law) since a vertex is more likely to be removed

(the replacement is Poissonian in our model) than to wait for very

long to be active again. Therefore it is expected that a vertex

contacts more different partners before replacement if following

heterogeneous inter-event times. Since infected vertices are

replaced by susceptible vertices, the increase in turnover causes

a faster replacement of infected vertices, leaving more vertices

susceptible to infection. Therefore, the difference in prevalence

between both contact patterns is more pronounced in networks

with high vertex turnover and generally, heterogeneous patterns

cause higher prevalence for SI, already for moderate values of

vertex turnover. In the case of SIR dynamics, the influx of

susceptible vertices causes a second (lower-intensity) wave of

infection but the fraction of susceptible vertices remains constant

afterwards. Higher rates of vertex turnover cause a larger fraction

of the network to remain susceptible in the stationary state.

We have also estimated R0, the expected number of secondary

infections produced by a single infective vertex in a completely

susceptible population. We have found that the difference in R0

for heterogeneous and homogeneous contact patterns is statisti-

cally significant. This relative difference increases with increasing

turnover rate. In general, heterogeneous patterns result in higher

values of R0, but in case of stochastic SIR dynamics, for sufficiently

Figure 5. Estimation of R0 for deterministic SIR epidemics. Numerical estimation of R0 for SIR in case of (A) Dtturnover?? and (C)
Dtturnover~10 (with tI~5), and in case of (B) Dtturnover?? and (D) Dtturnover~10 (with tI~10). The results are independent of the network size N (see
Text S1). Dashed lines correspond to R0~1. The F statistics is presented above the plots. Dashed lines correspond to Fc; RHET

0 and RHOM
0 are

statistically different if FwFc(1,98)~6:901,pv:01.
doi:10.1371/journal.pcbi.1002974.g005
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large values of infection probabilities and duration of infection,

homogeneous patterns lead to higher estimates of R0. Our results

thus indicate that the assumptions of temporally heterogeneous or

homogeneous contacts and fixed population give different

estimates of R0 and are therefore relevant to understanding

spread in temporal networks.

In summary, we have proposed a simple temporal network

model containing heterogeneous time intervals between subse-

Figure 6. Estimation of R0 for stochastic SIR epidemics. Numerical estimation of R0 for HET network (a~2:5) and the difference of R0 between
HET and HOM networks, that is, DR0~RHET

0 {RHOM
0 . R0 for HET in case of (A) Dtturnover?? and (E) Dtturnover~10; DR0 for (B) Dtturnover?? and (F)

Dtturnover~10; F statistics for (C) Dtturnover?? and (G) Dtturnover~10 (red and white mean that HET and HOM cases are statistically different, that is,
FwFc(1,98)~6:901,pv:01); p-values for (D) Dtturnover?? and (H) Dtturnover~10.
doi:10.1371/journal.pcbi.1002974.g006

Figure 7. Distribution of outbreak sizes by random initial
infection seeds. Fraction of times F (H) an epidemic outbreak with
size H(t) is observed at time t~200. The results correspond to the SIR
model with tI~5 and network configurations with a~2:5.
doi:10.1371/journal.pcbi.1002974.g007

Table 1. The standard deviation of the distribution of
outbreak sizes.

HET HOM HET HOM

a Dtturnover?? Dtturnover~20

2 0.048 0.069 0.037 0.0003

2.25 0.053 0.094 0.028 0.047

2.5 0.032 0.020 0.026 0.032

2.75 0.016 0.005 0.025 0.026

3 0.011 0.002 0.023 0.025

The table contains the standard deviation of the distribution of outbreaks at
t~200 for various values of a, in case of Dtturnover?? and Dtturnover~20. See

Figure 7 for the distribution of outbreak sizes for a~2:5. We use 1:2:105 initial
infection seeds (SIR dynamics) for each model and combination of parameters.
doi:10.1371/journal.pcbi.1002974.t001
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quent vertex activations and a vertex turnover dynamics. The

simulation of standard epidemic models (SI and SIR) that co-

evolve with this dynamic network has shown that irregular

contacts affect significantly the emergence of epidemics. With

respect to models that assume characteristic intervals between

subsequent vertex activations, the differences in the timing of the

epidemic outbreak, the prevalence of the infection, and R0 depend

not only on the level of temporal heterogeneity of the contacts and

vertex turnover, but also on the characteristics and parameters of

the epidemics. Further research is needed to understand the

contribution of other temporal structures and the combined role of

topological and temporal correlations on the emergence of

epidemics in dynamic networks.

Supporting Information

Text S1 The text contains information about the values of SDtT
used in the simulations; the ratio of contacts made by a vertex

following heterogeneous and homogeneous contact patterns; the

effect of varying Dtturnover on the SIR dynamics; a finite-size

analysis of R0 for SIR dynamics; and an analysis of the size of the

outbreak for stochastic SIR dynamics.

(PDF)
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35. Stehlé J, Barrat A, Bianconi G (2010) Dynamical and bursty interactions in

social networks. Phys Rev E 81(3): 035101(R).

36. Lloyd AL (2001) Realistic distributions of infectious periods in epidemic models:

Changing patterns of persistence and dynamics. Theor Popul Biol 60: 59–71.

37. Lee S, Rocha LEC, Liljeros F, Holme P (2012) Exploiting temporal network

structures of human interaction to effectively immunize populations. PLoS ONE

7(5): e36439.

38. Earn DJD, He D, Loeb MB, Fonseca K, Lee BE, et al. (2012) Effects of school

closure on incidence of pandemic influenza in Alberta, Canada. Ann Intern Med

156(3): 173–181.

39. Macke BA, Maher JE (1999) Partner notification in the United States: An

evidence-based review. Am J Prev Med 17(3): 230–242.

Bursts and Epidemics in Evolving Networks

PLOS Computational Biology | www.ploscompbiol.org 9 March 2013 | Volume 9 | Issue 3 | e1002974


