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Abstract

The relationship of HIV tropism with disease progression and the recent development of CCR5-blocking drugs underscore
the importance of monitoring virus coreceptor usage. As an alternative to costly phenotypic assays, computational methods
aim at predicting virus tropism based on the sequence and structure of the V3 loop of the virus gp120 protein. Here we
present a numerical descriptor of the V3 loop encoding its physicochemical and structural properties. The descriptor allows
for structure-based prediction of HIV tropism and identification of properties of the V3 loop that are crucial for coreceptor
usage. Use of the proposed descriptor for prediction results in a statistically significant improvement over the prediction
based solely on V3 sequence with 3 percentage points improvement in AUC and 7 percentage points in sensitivity at the
specificity of the 11/25 rule (95%). We additionally assessed the predictive power of the new method on clinically derived
‘bulk’ sequence data and obtained a statistically significant improvement in AUC of 3 percentage points over sequence-
based prediction. Furthermore, we demonstrated the capacity of our method to predict therapy outcome by applying it to
53 samples from patients undergoing Maraviroc therapy. The analysis of structural features of the loop informative of
tropism indicates the importance of two loop regions and their physicochemical properties. The regions are located on
opposite strands of the loop stem and the respective features are predominantly charge-, hydrophobicity- and structure-
related. These regions are in close proximity in the bound conformation of the loop potentially forming a site determinant
for the coreceptor binding. The method is available via server under http://structure.bioinf.mpi-inf.mpg.de/.
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Introduction

The entry of the human immunodeficiency virus (HIV) into

human cells is initiated by binding of the viral envelope

glycoprotein gp120 to the cellular CD4 receptor [1,2]. This

primary interaction induces conformational changes in gp120 [3]

that enable viral binding to one of the cell-surface coreceptors

CCR5 or CXCR4 [4]. The interaction of gp120 with the

coreceptor induces a series of further rearrangements in the

envelope glycoproteins that trigger fusion of the virus and cell

membranes [1]. The third variable region (V3) of gp120 [5,6]

plays a crucial role in biding to the coreceptor. Whether a virus

can bind to CCR5 only (R5 virus), or is capable of binding to

CXCR4 (X4 virus) is determined predominantly by the sequence

and structure of this region [7]. The phenotype of viral coreceptor

usage is termed viral tropism.

It has been shown that in the early, asymptomatic stages of

infection mainly R5 viruses are observed, whereas progression

towards AIDS is often associated with the emergence of X4 viruses

[8]. The finding that humans who lack CCR5 expression due to

the homozygosity of the D32 mutation in the CCR5 gene are

resistant to HIV-1 infection [9] stimulated research on CCR5

inhibitors which led to the licensing of Maraviroc (MVC) [10] for

clinical use in 2007. Viral tropism is an indicator of disease

progression and determining viral tropism is a companion

diagnostic obligatory for the application of CCR5 inhibitors.

Therefore there is a need for efficient methods for monitoring of

coreceptor usage and for a better understanding of its determi-

nants.

Computational methods for predicting viral tropism based on

the sequence of the V3 loop have been developed [11,12,13,14] as

an alternative to costly phenotypic assays for testing of the

coreceptor usage [15]. The 11/25 rule was proposed as an initial

approach for inferring coreceptor usage, and is based on the

observation that a positive charge on either of the 11th or 25th

residues in the V3 region is indicative of an X4 virus [5,6]. Due to

its simplicity, the 11/25 rule has been commonly used although it

has been shown that for many viral variants, changes at positions

11 or 25 are neither necessary nor sufficient for the tropism switch

[11]. More elaborate sequence-based methods for prediction of

coreceptor usage rely on a binary encoding of amino acids in the

V3 sequence and use statistical approaches to construct predictive

models and to infer residues strongly related to the tropism

[11,12,13,14]. The geno2pheno[coreceptor] method developed by

our lab has been made freely available on the internet and is

widely used throughout Europe and beyond for interpreting

genotypic data measured as a companion diagnostic to Maraviroc

therapy. The method has entered the German/Austrian expert

guidelines for HIV-1 tropism testing in 2009 [16] and the

respective European guidelines in 2011 [17]. The major drawback
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of the binary sequence representation is that it only indirectly

encodes the physicochemical properties of amino acids and their

spatial arrangement in the binding site which ultimately determine

viral tropism.

Structures of gp120 including the V3 loop have been

determined by x-ray crystallography [18,19]. The V3 loop is an

extended structure protruding approximately 30 Å from the CD4-

bound core of gp120 [18]. It is composed of a conserved base, a

flexible stem that rigidifies upon coreceptor binding and a tip in a

b-hairpin conformation. After the first structure of the V3 loop has

been resolved [18], new coreceptor prediction methods were

developed [20,21] incorporating structural information on the

loop in the prediction process. Sander et al. [21] proposed a

distance-based descriptor of the spatial arrangement of physico-

chemical properties of the loop. They found that the distance

information resulting from structural modeling of the side chains

of the loop together with a binary encoding of its sequence

outperforms prediction methods based on sequence alone.

Dybowski et al. [20] developed a two-level classification approach

that combines two physicochemical properties of the loop –

electrostatic potential and hydrophobicity. This two-level ap-

proach resulted in improvement in prediction accuracy over

prediction based on sequence alone. Even though including the

structural information into the prediction represents a step forward

in understanding of the binding mechanism of gp120 to the

coreceptor, both methods have limitations. The method by Sander

et al. is based on molecular distances that do not offer a direct

interpretation of the structural determinants of the phenotype.

Dybowski et al. include only two features in their predictor while a

systematic analysis of a larger set of physicochemical features of

the V3 loop would allow for identifying other features relevant for

tropism. Both methods involve costly computational operations

such as calculation of the electrostatic potential or modeling of side

chains that stand in the way of making the methods available as an

online application. Finally, all previously proposed methods except

one [14] were developed and tested exclusively on clonal data.

Such data are inferred from lab-cloned viruses as opposed to

clinically derived data, which are obtained through bulk Sanger

sequencing of patient samples and contain viral mixtures. In bulk

sequencing data, diversity of virus populations in a patient is

represented by a consensus sequence comprising dominant strains.

The exact composition of the virus population as well as viral

minorities below 10% [22] of the population are not detected by

bulk Sanger sequencing which has been shown to pose additional

challenge for in silico coreceptor prediction [14].

The work presented here was motivated by the goal of

developing a method for genotypic prediction of viral tropism

that is at least as accurate as existing structure-based methods, i.e.,

more accurate than the widely used sequence-based method [14].

At the same time, the method should allow for a computationally

efficient implementation allowing for its general use as an online

application.

To meet this goal we present a systematic approach to

incorporating physicochemical and structural properties of the

V3 loop into the prediction of HIV coreceptor usage. We map 54

amino acid indices representing the physicochemical properties of

amino acids onto the V3 loop structure and use methods from

statistical learning to extract those features that are most

informative of coreceptor usage. The extracted set of features

represents a small fraction of the initial feature set and models

based on this set attain higher prediction accuracy with decreased

computational load. Our structural descriptor affords direct

interpretation of the features of the V3 loop relevant for viral

tropism by pointing to specific physicochemical properties of

amino acids in different parts of the loop being predictive of

coreceptor usage. We also applied our method to clinically derived

(bulk) data and tested its usability for prediction of the MVC

therapy outcome.

Results

Model parameters
The structural descriptor of the V3 loop is based on the

published structure of the V3 loop [18] and amino acid indices

[23] representing physicochemical properties of amino acids in a

numerical form. Each residue of the V3 loop sequence is

represented by a vector comprising the 56 preselected indices

[24]. The residue positions were mapped to spheres centered

along the V3 loop backbone (Figure 1). The spheres represent

structural proximities along the loop as well as uncertainty in the

structural conformation of individual loop variants. The vectors of

amino acid indices of the mapped residues were normalized using

Gaussian smoothing and summed up within each sphere. Next,

the sphere vectors were concatenated into a single V3 loop vector.

This vector was used as the V3 loop structural descriptor in the

statistical model (full model) for coreceptor usage prediction. A

training dataset of 1186 phenotyped V3 sequences from the Los

Alamos database [25] (clonal dataset) was used for model

development.

We investigated the average number of residues covered by

each sphere and selected the radius of 8 Å based on predefined

criteria (see Text S1, Figure S1). We tested several other radii for

their predictive performance (Figure S2). Throughout this study

we used area-under-receiver-operating-characteristic (ROC) curve

(AUC) and, in line with the common approach to validating

genotypic predictions of viral tropism, sensitivity at the specificity

of 11/25 rule in a given dataset (ranging between 0.89 and 0.97

termed here sensitivity for brevity) calculated in a 10610-fold cross

validation as cutoff-independent measures of the prediction

accuracy. The radius of 8 Å yielded the AUC of 0.847 and a

sensitivity of 0.587. Smaller or larger radii led to significant

Author Summary

Human Immunodeficiency Virus (HIV) requires one of the
chemokine coreceptors CCR5 or CXCR4 for entry into the
host cell. The capacity of the virus to use one or both of
these coreceptors is termed tropism. Monitoring HIV
tropism is of high importance due to the relationship of
the emergence of CXCR4-tropic virus with the progression
of immunodeficiency and for patient treatment with the
recently developed CCR5 antagonists. Computational
methods for predicting HIV tropism are based on
sequence and on structure of the third variable region
(V3 loop) of the viral gp120 protein — the major
determinant of the HIV tropism. Limitations of the existing
methods include the limited insights they provide into the
biochemical determinants of coreceptor usage, high
computational load of the structure-based methods and
low prediction accuracy on clinically derived patient
samples. Here we propose a numerical descriptor of the
V3 loop encoding the physicochemical and structural
properties of the loop. The new descriptor allows for
server-based prediction of viral tropism with accuracy
comparable to that of established sequence-based meth-
ods both on clonal and clinically derived patient data as
well as for the interpretation of the properties of the loop
relevant for tropism. The server is available under http://
structure.bioinf.mpi-inf.mpg.de/.

Structural Descriptor of HIV-1 V3 Loop
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reduction of prediction performance (p,0.001 for R = 3 Å and

R = 15 Å, paired Wilcoxon test). The performances of models with

different parameter values are shown in Figure S2.

For comparison we implemented two sequence-based descrip-

tors of the V3 loop. The g2p model represents each amino acid as a

binary vector of size 20 in which the position of a single 1 indicates

the amino acid it encodes. This representation is used by

sequence-based approaches, among others by geno2pheno[cor-

eceptor] [14]. Those approaches are not necessarily based on the

same training sets as the one used in our study. Certainly the

training set used by the geno2pheno[coreceptor] method is

different. The aaindex model encodes each amino acid as a vector

of the 56 amino acid indices used in the structural descriptor.

Feature selection
In order to reduce the highly redundant feature vector of the

structural descriptor of the full model and to investigate which

features are informative for coreceptor usage we applied several

feature selection procedures: Random Forest (RF) [26], linear

support vector machine (SVM) [27] and Lasso regression [28]. We

next compared the performance of the full model based on the

entire set of features to the descriptor based on separate and

combined subsets of features selected by three feature selection

methods. SVM was the prediction method used throughout this

study independent of the feature set and sequence encoding.

Overall, reducing the feature set resulted in improved prediction

accuracy over the full set of features and over the g2p model

(Table 1). The SVM(1) model based on the top 1% ranking

features performed better than the SVM(5) model based on a

larger feature set of the top 5% ranked features. The Lasso model

based on the most strongly reduced feature set (102 features)

selected via Lasso regression resulted in the highest performance

with AUC 0.893 and sensitivity 0.674. Models based on features

selected via RF ranking showed the poorest predictive perfor-

mance of all models tested (Table 1).

The sets of features selected by the three feature selection

methods show a limited overlap. The initial feature set contains

small subsets of highly correlated features that pertain to highly

correlated amino acid properties in overlapping structure regions

(spheres). These features convey the same information to the

prediction method and can be therefore selected interchangeably

by each method (see Text S2 and Figure S3). However, the overall

correlation of features in the descriptor is low and a version of the

descriptor based on an uncorrelated feature set does not yield

improved performance (Text S3, Figure S4). We performed the

same feature selection procedures on models based on the

structural descriptor with a sphere radius of 10 Å, chosen based

on analysis described in Text S1 and Figure S1. The results of

models based on this radius showed similar patterns of perfor-

mance although with lower prediction performance (data not

shown). In the rest of this study we used models based on the 8 Å

radius.

Clonal model
We inspected the predictive performance of models based on

combined sets of features selected using different methods

(Table 1). Given the performance of the tested models we selected

the SVM(1)_Lasso model based on the combined set of the top 1%

SVM-ranked features and the Lasso-selected features, termed it

clonal model and used as the structural descriptor model in

subsequent tests (Figure 2). The performance of the clonal model

Figure 1. Schematic illustration of the sphere-shaped proxim-
ities of the structural descriptor. Atoms of the 2B4C V3 loop
structure are represented by dots, representative atoms by larger dots.
The black line connects representative atoms of the adjacent loop
residues. Atoms of each residue are colored according to the
‘‘Hydrophobicity factor’’ amino acid index. Spheres are centered at
the representative atoms of the loop residues. The spheres for residues
299, 317 and 323 are shown. The physicochemical features of residues
within each sphere were averaged and used as a part of the structural
descriptor.
doi:10.1371/journal.pcbi.1002977.g001

Table 1. Performance of models based on feature sets and
combination of feature sets selected using different feature
selection methods.*

model features AUC sensitivity

g2p 1000 0.860 0.616

aaindex 2800 0.829 0.565

full 5544 0.847 0.587

RF(1) 144 0.860 0.673

RF(5) 241 0.863 0.634

SVM(1) 123 0.889 0.706

SVM(5) 362 0.879 0.674

Lasso 102 0.893 0.674

RF(1)_SVM(1) 264 0.878 0.683

RF(5)_SVM(5) 588 0.875 0.668

RF(1)_Lasso 226 0.883 0.652

RF(5)_Lasso 315 0.874 0.639

SVM(1)_Lasso# 218 0.892 0.686

SVM(5)_Lasso 448 0.881 0.674

RF(1)_SVM(1)_Lasso 340 0.868 0.644

RF(5)_SVM(5)_Lasso 653 0.883 0.685

*Models are named after the feature selection method with the number in
parentheses indicating the percentage cutoff of the ranked features. Sensitivity
shown is at specificity of 11/25 rule in the clonal dataset. The clonal model is
indicated with a #.
doi:10.1371/journal.pcbi.1002977.t001

Structural Descriptor of HIV-1 V3 Loop
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was not significantly higher than the performance of the Lasso

model, however we chose the SVM(1)_Lasso feature set offering

higher sensitivity. The AUC and sensitivity of the clonal model

were significantly higher than those of the sequence-based g2p and

aaindex models (p,0.01, paired Wilcoxon test). In our approach

the features were first selected and then evaluated on the entire

sequence set in two subsequent steps involving cross validation. A

test involving reselection of the SVM(1)_Lasso features in each

cross validation run (nested cross validation) resulted in a decrease

of the AUC of only approximately 1.6 percentage points. Since the

analysis of features selected for the clonal model was an additional

goal of this study, we refrained from reselection of features within

the separate cross validation runs. We regard this difference in

performance as a potential uncertainty of our accuracy estimation

inherent to the feature selection procedure. The accuracy obtained

using nested cross validation is still significantly higher (p,0.003)

than the accuracy of the g2p prediction suggesting that the selected

structural and physicochemical features are more informative of

tropism than the sequence alone [14].

In our approach we refrain from modelling of the side chains of

the V3 loop. There is certain level of imprecision related to

modelling of side chains due to the high flexibility and variability

of the loop. We use our approach based on spheres as an

approximation of the real structure of the loop that is costly to

derive computationally and is unreliable. Such approximation of

the structure is robust against indels as we observe no relationship

of the model performance to the presence of indels in a sequence

(Figure S5).

We additionally tested the performance of a model based on a

different V3 loop structure (Protein Data Bank (PDB) code 2QAD)

[19] and performance of models based on combinations of structure-

and sequence-based descriptors. However, these models did not

yield an improvement in prediction performance (see Text S4).

Comparison with other structure-based methods
We compared the performance of our method with the

performance of previously published structure-based methods for

tropism prediction [20,21] by testing the descriptor on the datasets

used in the study of Sander et al. [21] (Sander dataset) and the study

of Dybowski et al. [20] (Dybowski dataset). These datasets have

sequence overlap of 19% and 58% with the clonal dataset,

respectively. The overlap varies presumably due to different

content of the Los Alamos database [25] at a given time point and

to the different filtering methods used. In order to avoid

overtraining and to test the performance of our model indepen-

dently of the training dataset, we did not repeat feature selection

on the datasets of other studies but based the predictions on the

features of the clonal model. Structural descriptors trained on the

Sander and Dybowski datasets were constructed based on these

features and tested in a 10610-fold cross validation setting. The

clonal model showed performance similar to that of the original

method of Sander et al. with a lower AUC 0.901 (0.923 reported

by Sander et al.) and higher sensitivity 0.782 (0.774 reported by

Sander et al.), see Table 2. The result of Sander et al. was obtained

on a dataset with no insertions or deletions relative to the reference

structure and involved costly side-chain modeling steps. In

contrast, our result was based on features selected on a different

dataset, and the prediction procedure did not involve structural

modeling. The clonal model reached better performance on the

Dybowski dataset in comparison to the original method with AUC

0.948 (0.937 reported by Dybowski et al.) and sensitivity 0.838

(0.810 reported by Dybowski et al.), see Table 2.

Performance on clinical data
We additionally tested the method on clinically derived patient

data from the HOMER cohort [29] (HOMER dataset). We reran

the feature selection procedures on this dataset and selected the

best performing model (Lasso) as the clinical model. The clinical

model showed AUC 0.774 and the sensitivity 0.463 [29], a result

significantly higher (p,0.01, paired Wilcoxon test) than the one of

the g2p model [14] with AUC 0.743 and sensitivity of 0.451

(Table 2, Figure 3). To support this assessment, we performed an

additional test on another independent patien-derive sequence set.

On this dataset we observed a similar performance advantage of

the clinical over the g2p model (see Text S5, Figure S6). Similar to

the clonal model, the test of reselecting the Lasso features within

the cross validation runs resulted in a decrease of performance of

approximately 1.8% in AUC, which is still significantly higher

(p,0.002) than the performance of the g2p model.

We additionally tested the effect of amino-acid ambiguities on

the prediction accuracy of the clinical model and found that the

combined information from both types of sequence positions,

ambiguous and non-ambiguous is important for tropism predic-

tion (see Text S6 and Table S1).

As shown by Sing et al. [14] accuracy of tropism prediction

methods applied on clinical data improves upon augmenting the

sequence information with clinical correlates, such as VL or CD4+

T cell counts. Accordingly, adding such clinical information as

additional features to the input of the clinical model significantly

improved the predictive performance (p,0.001, paired Wilcoxon

test) over that of the clinical model to AUC 0.803 and sensitivity

0.474 (Table 2, Figure 3). This performance is also significantly

higher than that of the g2p model containing clinical correlates in

terms of both AUC and sensitivity (p,0.001, paired Wilcoxon

test). This demonstrates the higher prediction accuracy of the new

method based on preselected structural and physicochemical

features of the V3 loop over the commonly used sequence-based

methods such as geno2pheno [14].

Figure 2. Performance of models based on features selected
using RF, SVM and Lasso. ROCR of different models are plotted. The
legend lists the number of features, AUC and sensitivity at the
specificity of the 11/25 rule (6.28%. indicated by the vertical dashed
line) in brackets. The clonal model is represented by a black solid line.
Vertical segments show the standard deviations of the 10610-fold cross
validation curves of the clonal and g2p models. Comparison of clonal
and g2p models via precision-recall curves is shown in the Figure S14.
doi:10.1371/journal.pcbi.1002977.g002

Structural Descriptor of HIV-1 V3 Loop

PLOS Computational Biology | www.ploscompbiol.org 4 March 2013 | Volume 9 | Issue 3 | e1002977



Predicting therapy outcome
Finally, we tested the prediction performance of the clinical

model on a dataset of sequences collected at therapy start from a

German cohort of patients undergoing MVC therapy (MVC

dataset). Among the 53 sequences five originate from patients who

experienced therapy failure. With the decision cutoff at the 11/25

rule specificity of the HOMER dataset (specificity 0.928, score

0.097) three of these sequences were predicted as X4 viruses in

accordance with the patient therapy outcome. The two remaining

sequences of patients experiencing therapy failure that were

predicted as R5 viruses were also phenotyped as R5 virus, which

suggests the presence of undetectable minorities as the potential

reason for the classification error.

The remaining 48 patients experienced therapy success. 41 of

the cases were classified as R5 viruses by the clinical model, which

is in accordance with the patient therapy outcome. Out of seven

remaining cases that were classified as X4 viruses, two were

phenotyped as X4 viruses. For comparison, we predicted tropism

of the sequences in this dataset using the g2p model. This

sequence-based prediction reported correctly only two therapy

Table 2. Performance of the clonal and clinical models on different datasets.*

dataset model features AUC sensitivity original method/g2p

AUC sensitivity

Sander clonal 218 0.901 0.782 0.923 0.774

Dybowski clonal 218 0.948 0.838 0.937 0.810

HOMER clinical 59 0.774 0.463 0.743 0.451

HOMER-clinical clinical (CD4, VL) 61 0.803 0.474 0.781 0.442

*The performance of the clonal model on the Sander and Dybowski datasets is compared to the performance of the original methods [20,21] developed on these
datasets. The clinical model constructed on the HOMER dataset is compared to the performance of g2p method in a 10610-fold cross validation. Additionally the clinical
model trained on the HOMER dataset coupled with clinical correlates (VL and CD4+ T cell counts) (HOMER-clinical) is compared to the g2p model also coupled with
clinical correlates.
doi:10.1371/journal.pcbi.1002977.t002

Figure 3. Performance of the clinical model compared to the g2p model. Black curves represent the clinical model, red – the g2p method.
Dashed curves represent models enhanced with clinical patient information. The vertical dashed line indicates the specificity of the 11/25 on the
clinical dataset. Vertical segments show the standard deviations of the 10610-fold cross validation curves of the clinical and g2p models. The legend
presents the results as in Figure 2.
doi:10.1371/journal.pcbi.1002977.g003

Structural Descriptor of HIV-1 V3 Loop
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failure cases but also 44 therapy success cases which is more than

the clinical model predicted. As a measure of the quality of

predictions of the MVC dataset we used the Matthews correlation

coefficient (MCC), which quantifies the correlation of the observed

and predicted binary classification and is suited for datasets with

an unbalanced class proportion. Therapy outcome prediction

based on structural descriptor showed overall accuracy of

MCC = 0.34 comparing favorably with g2p model yielding

MCC = 0.29.

Phenotypic characterization was only available for a subset of

28 sequences from the MVC dataset (Trofile dataset). In this

subset the phenotype appeared to be the best predictor of the

therapy outcome with one correctly predicted therapy failure case

out of three and 23 correctly predicted therapy successes out of 25

(MCC = 0.25). The clinical model reported the same number of

correctly predicted therapy failure cases and lower number of 20

correctly predicted therapy success cases (MCC = 0.10). The

clinical model scored higher than the g2p method that did not

report correctly any of the therapy failure cases and predicted

correctly 23 therapy successes (MCC = 20.10). Additionally, the

clinical model correctly classified all X4 sequences in the Trofile

dataset reaching MCC of 0.660 and favorably comparing with the

g2p showing MCC of 0.352.

Overall, the phenotype as well as the structural descriptor model

and the g2p model trained on clonal data showed a generally

lower capacity of detecting therapy outcome compared to the

models trained on clinical data. Detailed results of the MVC

dataset analysis are provided in Tables S2 and S3.

Feature clustering
In order to facilitate the interpretation of the large number of

selected features we clustered the 56 amino acid indices into four

groups (Figure 4) using hierarchical clustering. Cluster 1 is

composed of two types of indices – related to residue size and

volume and to residue occurrence in proteins. Cluster 2 contains

the smallest number of indices and is composed of indices related

to residue charge. Indices of cluster 3 are related to the secondary

and tertiary structure of proteins. Cluster 4 contains indices related

to different structural properties e.g. residue occurrence in b-sheet,

solvent accessibility, amino acid polarity or hydrophobicity.

Feature analysis
By combining amino-acid indices with specific positions on the

V3 loop, the proposed features can be interpreted in terms of

physicochemical properties along the structure of the loop. The

features selected for the clonal model are informative about the

coreceptor usage. Their analysis can therefore provide insights into

the physicochemical and structural factors of viral tropism.

Features selected by different methods. Features of the

clonal model were selected based on two different feature selection

methods – Lasso and SVM. Among 218 features in this model

seven were selected by both methods. Three of the features

describe electrical charge at positions 319–322. Two of the

features are structure-related (‘‘Free energy in b-strand region’’,

‘‘Normalized frequency of turn’’) and related to positions 304 and

305. These amino acid indices based on statistical analysis of 3D

structures define propensities of amino acids to form b-strands [30]

and reverse turns [31], respectively. The remaining two features

selected by both methods are based on amino-acid indices

‘‘Number of codons’’ at position 297 and ‘‘Relative mutability’’

at position 307. ‘‘Number of codons’’ defines how many different

codons encode a given amino acid and ‘‘Relative mutability’’

quantifies the rate of exchange of an amino acid based on

alignment of a large set of protein sequences [32].

Top-ranking features. Both feature selection methods allow

for feature ranking based on the feature coefficients in the

respective linear models. We inspected the top-scoring features in

both rankings (Figure 5). SVM scoring follows a gamma

distribution with a shape parameter of 2.2. The selected features

follow a close to uniform distribution in the range of values above

the chosen cutoff. The feature scores based on Lasso selection are

distributed over a wider range of values and contain several high-

scoring outliers.

Among the top-scoring features selected by both methods we

found ‘‘Positive charge’’ at the stem position 322 corresponding to

the position 25 in the consensus sequence. Highly ranked features

in the SVM scoring include also ‘‘Positive charge’’ at the position

321. Additionally SVM scoring pointed to secondary structure

propensities and mutability at the loop stem (‘‘Normalized

frequency of coil’’, ‘‘Normalized frequency of b-sheet unweight-

ed’’, ‘‘Normalized relative frequency of bend’’ at positions 307,

319–320 and 324). These indices are based on statistical analyses

of secondary structures and statistical models for predicting

tertiary structures and define the contributions of different amino

acids to the formation of a given structural element [33,34,35].

Among the high-ranking features in the Lasso scoring we found

predominantly charge indices at the loop stem (‘‘Positive charge’’,

‘‘Isoelectric point’’ and ‘‘Net charge’’ at positions 307, 316, 322–

323) and at the loop base (‘‘Net charge’’ at position 300).

Additionally we found ‘‘Hydrophobicity factor’’ at the loop base

positions 302–303. Two structure-related features based on

‘‘Normalized frequency of turn’’ and ‘‘Normalized frequency of

b-turn’’ amino acid indices at the base position 305 were also

scored high by the Lasso method. Details of the feature ranking

are provided as Tables S4, S5 and S6.

Amino-acid indices and their clusters. Next, we investi-

gated which clusters of indices were significantly overrepresent-

ed among selected features. The only cluster significantly

overrepresented among the selected features was cluster 2

(p,0.05). Three out of five features of this cluster are also

overrepresented individually in the full set of selected features –

‘‘Positive charge’’ (22 features), ‘‘Isoelectric point’’ (14 features)

and ‘‘Normalized frequency of extended structure’’ (9 features)

that describes the propensity of amino acids to form specific

secondary structures [36]. Most of the selected features of this

cluster describe residues in positions 319–320 and position 324

(Figure S7) and their relevance was confirmed by additional

analysis described below.

Next, we inspected which of the amino-acid indices most often

appear among the selected features of the clonal model and

analyzed the distribution of selected features along the V3 loop in

a sliding-window approach (Figure 6). Among individual amino-

acid indices we found six that are significantly enriched among

selected features: ‘‘Positive charge’’, ‘‘Isoelectric point’’, ‘‘Hydro-

phobicity factor’’, ‘‘Number of codons’’, ‘‘Relative mutability’’ and

‘‘Normalized frequency of extended structure’’ (Figure 6A).

Notably all of the significantly overrepresented indices belong to

clusters 1 or 2. The sliding-window analysis of the distribution of

selected features along the loop pointed to two regions: between

positions 303 and 312 and more strongly between positions 318

and 324. These regions correspond to two strands of the V3 stem.

In the first region (303–312) the selected features are based mostly

on indices from clusters 1 and 3. The second region (318–324)

shows also a high number of features based on indices from cluster

2 which are predominantly associated with residue charge

(Figure 6B). A similar pattern of amino acid index overrepresen-

tation and of feature distribution along the V3 loop was observed

in the clinical model (Figure S8).

Structural Descriptor of HIV-1 V3 Loop
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Figure 4. Hierarchical clustering of the amino acid indices. The vertical line indicates the separation of the tree into four clusters analyzed in
this study. Labels of the tree are colored according to the clusters.
doi:10.1371/journal.pcbi.1002977.g004

Figure 5. Distribution of scores of features selected using SVM and Lasso. (A) Distribution of scores of the SVM method. The vertical line
indicates the cutoff for the selection of features for the clonal model. The scores of the top-scoring features are listed. (B) Distribution of scores of the
Lasso method. Top-scoring features in the distribution are indicated. On both panels, positions of the features mapped on the V3 loop structure are
indicated in brackets, labels are colored according to the clusters shown in Figure 4.
doi:10.1371/journal.pcbi.1002977.g005
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Structural regions. To gain more insight into the two

regions observed in the sliding-window test, we mapped the

positions of the features of the clonal model on the crystal structure

of the V3 loop (Figure 7). Most features of the two regions of

interest describe positions 304, 307 and 319–321, respectively

(Figure 7A). We label these regions core site (CS) 1 and 2. In the

bound conformation of the loop (PDB code 2QAD) CS1 and CS2

are located closer to each other than in the open conformation

(Figure 7B and Figure S9). We investigated the interactions of the

residues of the two sites [37] and found that in the bound

conformation residues of CS1 and CS2 form interacting pairs

between two sides of the central loop stem. In particular residues

304 and 307, which are located on one side of the loop stem, form

van-der-Waals interactions with residues 319 and 320, which are

located on the other strand of the stem. In the open conformation

CS1 and CS2 are more widely separated and the interactions

between two sides of the loop are not observed. Position 324 is also

associated with a high number of selected features and is located

on the loop stem however does not interact with CSs in either of

the conformations.

Features of the clonal model involving the six amino acid-

indices that are significantly overrepresented among the selected

features are all found in CS1 or CS2 as well as around residue 324

(see Figure 7 and Figure S10), which confirms the importance of

CS1 and CS2 in determining coreceptor usage.

Discussion

Physicochemical and structural properties of proteins determine

their binding affinities. Prediction methods of HIV-1 coreceptor

usage based solely on the V3 sequence do not account for this type

of properties nor do they provide the information on loop

characteristics that are crucial for the interaction. Prediction

models incorporating loop structure can provide such information.

However, previously reported structure-based prediction models

suffer from limitations in terms of (i) runtime and software

complexity – which prevents their accessibility via a tool publicly

available online – and (ii) interpretation of the prediction result.

Here we present a prediction model of HIV coreceptor usage

based on V3 sequence and structure [18] that overcomes these

limitations. The method is based upon a set of features that was

selected from a large initial feature set. The model shows better

performance than the one based on the initial feature set, both in

terms of prediction accuracy and computational efficiency and

shows higher predictive power than the prediction method based

uniquely on sequence. In addition, the proposed model affords an

interpretable set of physicochemical properties located in specific

parts of the loop structure that play a role in determining viral

tropism. The approach is generic and can be applied in other

supervised learning applications involving the combination of

sequence or evolutionary information, physicochemical and

Figure 6. V3 positions and amino acid indices among the features of the clonal model. (A) Structure locations of features of the clonal
model were mapped on the positions on the reference sequence. Numbers of selected features mapped to adjacent sequence positions were
summed and averaged over a sequence window of size three. The resulting distribution of all features is represented by the black line, distributions
of features of the four clusters are represented by lines in the relevant colors as defined in Figure 4. (B) Amino acid indices of the clonal model
features. Bars are colored according to the clusters of amino acid indices. Significantly overrepresented indices are marked with an asterisk.
doi:10.1371/journal.pcbi.1002977.g006
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structural properties. In particular, computational biology and

medical applications involving molecular binding mechanisms are

good potential candidates for achieving improved accuracy and

interpretability with the proposed approach.

Our clonal model was developed on a sequence set comprising

different HIV-1 subtypes. The limited number of sequences of

each subtype and the high variability of the V3 loop sequence

which obviates a clear subtype classification advocate use of a

common model for all subtypes, an approach also applied by other

prediction methods [11,14,20,21]. The proposed structural

descriptor appears to entail information on both structure and

sequence, as adding the binary encoding of the sequence to the

descriptor does not improve the performance of the clonal model

(Text S4). In contrast, the distance-based descriptor of Sander et

al. [21] is complementary to the sequence which is demonstrated

by the improved performance of the descriptor, when combined

with the sequence information.

Our method shows a moderately but significantly higher

prediction performance of approximately 3 percentage points

over the model based on sequence only [14] both on the clonal

and clinical datasets with and without patient clinical markers.

The model additionally shows a higher or similar prediction

performance to that of other structure-based methods [20,21]

without modeling steps that increase the computational cost of the

prediction procedure. Our model shows higher prediction

accuracy when applied on external datasets from these studies

than on the dataset it was trained on, suggesting the selected

feature set is not biased towards the used sequence set. Note that

our approach implements an approximate representation of the

structure of the V3 loop with the goal of predicting coreceptor

usage based on an interpretable model and without predicting of

an accurate structural model of the V3 loop with respect to

insertions or deletions compared to the template structure. Also,

unlike method of Sander et al. our approach does not involve

modeling of side chains. The effectiveness of a thorough structural

modeling and especially of modeling side chains for the purpose of

predicting tropism is likely to be limited by the variability of the V3

loop sequence and the structural flexibility of the loop. In our

method spheres are used to represent structural proximities over

which physicochemical properties are averaged. In this way our

approach accounts for the uncertainty of the structural confor-

mation of the loop and avoids costly modeling steps. The accuracy

and efficiency of our approach enables its use as a server

application.

Unlike previously developed structure-based methods [20,21],

our method was tested not only on clonal data but also on

clinically derived (bulk) data and showed significantly better

performance over the established sequence-based approach. Given

the common usage of this type of data in patient diagnosis and the

potential difficulties it represents in classification [14], predicting

tropism and MVC therapy outcome based on clinical data

represents a more realistic scenario for training and assessment of

classification methods than prediction of tropism based on clonal

data.

We also assessed the capacity of our method to predict MVC

therapy outcome. For the purpose of this validation, we used a

cohort of patients treated with MVC. This analysis is limited due

to the low number of cases in the MVC dataset. With increasing

use of entry inhibitors, therapy outcome data are expected to

become more abundant and the capacity to train models

predicting therapy outcome will improve. The higher performance

of the clinical over the clonal model in predicting therapy outcome

Figure 7. Important V3 positions and amino acid indices on the V3 structure. (A) 2B4C V3 structure used in this study. Ca atoms are marked
with small black spheres along the loop backbone. Representative atoms are represented by gray spheres with the size proportional to the number
of features of the clonal model mapped on the respective V3 position. Positions assigned to core sites are numbered. (B) V3 structure in a bound
conformation (2QAD, [19]) with the same sphere representation as in panel (A). Positions informative of tropism are located close to each other in this
conformation and form interactions between two sides of the loop stem. (C, D) Structure representation of V3 as in panel (A) with positions of the
loop colored according to the ratio of selected features related to ‘‘Positive charge’’ (C) and ‘‘Hydrophobicity factor’’ (D) to the overall number of the
selected features present on the respective V3 position with red indicating high ratio and gray low. Structures were visualized using Pymol [48].
doi:10.1371/journal.pcbi.1002977.g007
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suggests that comprehensive datasets appropriate for specific

prediction goals can produce more reliable models.

The analysis of features informative of viral tropism points to

two critical sites in the loop stem, comprising residues 304, 307

and 319–322, respectively and to position 324 located more closely

to the base of the stem. The charge of amino acids at these sites is

known to play role in coreceptor binding [6,7]. Additionally, our

analysis points to the importance of the propensities of these amino

acids for forming specific secondary structures. Residues on both

sides of the stem form interactions in the bound conformation of

the loop probably contributing to the rigid form of the loop upon

binding. The combined effect of charge and propensity for specific

local structural conformations might therefore contribute to

acquiring the adequate binding site complementarity and local

loop conformation required for specific coreceptor binding.

The results of other studies of structural features related to HIV

tropism are in general accordance with our results. A recently

published method [38] predicts coreceptor usage based on a

perturbation vector reflecting relative change in compatibility of a

given V3 the sequence and structure with the reference structure

[39]. Ten most important positions for the coreceptor usage,

according to this study are positions 302–304, 306–307, 309, 312,

322, 324–325. However, no additional interpretation of the

characteristics of these positions is provided. Sander et al. point to

the residues 298, 302, 306, 308, 315, 317, 319, 321, 322 and 328

involved in residue pairs important for tropism. The regions found

in our analysis are in close proximity or in-between the positions

listed by Sander et al. on the V3 structure. However the ranking of

Sander et al. is based on the importance of distances among

functional atom types in the V3 loop, which is not equivalent to

the importance of the residue itself. Findings reported by

Dybowski et al. [20], point to electrostatic hulls around positions

306, 321 and 322, and between position 301 and 326 as the

features of highest importance for the classification which is also in

agreement with our results. Additionally, the authors point to

hydrophobicity of residues 303 and 307 as important for viral

tropism.

Given the considerable structural flexibility and sequence

variability of the V3 loop, individual features of this region

distinguishing between the two virus phenotypes are hard to

define. We performed a comprehensive analysis of a large number

of physicochemical residue characteristics in various locations on

the loop and pointed to those that are the most informative of

tropism. The resulting method offers higher performance than the

standard sequence-based approach with a comparable efficiency

and a direct interpretation of structural and physicochemical

determinants of tropism. The method has been implemented as a

server application within the geno2pheno framework under

http://structure.bioinf.mpi-inf.mpg.de/.

Materials and Methods

Dataset
To construct the clonal dataset we screened the Los Alamos

database [25] for all phenotyped V3 loop sequences. In order to

avoid bias due to overrepresentation of data from the same patient

we filtered the dataset extracting one randomly chosen sequence

per patient. The resulting dataset contains 1186 sequences with

tropism annotation, 215 of which are annotated as X4 viruses. In

the dataset 501 sequences are of subtype B, 286 of subtype C, the

remaining sequences are of other and recombinant subtypes. We

aligned the sequences in the dataset and the sequence of the V3

loop of the PDB entry 2B4C using ClustalW [40] obtaining an

alignment of length 50. In order to assess the robustness of this

alignment we aligned each of the sequences in our dataset to the

alignment of all the remaining sequences. In this test all the

alignments were identically reproduced suggesting that the

sequence alignment prior to prediction results in the correct

alignment. The clonal dataset is provided as Supplemental Text

S7. In our study the positions in the gp120 sequence are numbered

relative to the reference as previously described [41]. See Figure

S11 for the correspondence between the numbering of the V3 loop

positions in the reference sequence HXBc2 [41] and the subtype B

consensus sequence.

Amino-acid indices
We used the amino-acid indices collected in the AAindex

database [23]. In this database various physicochemical and

biochemical properties of amino acids are stored in the form of

numerical indices. Due to the high number of over 500 indices in

the database many of which are redundant we used a represen-

tative and interpretable subset of 54 indices, selected using

multivariate statistical analysis [24]. This is a minimal fully

representative set of indices. Reducing it further would limit the

physicochemical information provided by our descriptor. Two of

the selected indices named ‘‘Normalized frequency of beta-turn’’

and ‘‘Free energy in beta-strand region’’ were represented by

duplicate entries in the AAindex database showing minor

differences (AAindex entries: CHOP780101/CHOP780203 and

MUNV940104/MUNV940105 respectively). To avoid arbitrary

selection between the duplicate entries we used both of the

ambiguous indices, which resulted in a set of 56 indices selected for

this study.

Structural descriptor
The descriptor of the V3 loop was based on the published

structure of the V3 loop with PDB [42] code 2B4C [18]. To

construct the descriptor for each V3 loop sequence we used spheres

defining structural neighbors inside the loop structure within

which the physicochemical properties of residues are averaged as

detailed below. The spheres are positioned along the reference

loop backbone and centered at its residues. Specifically, positions

of residues were defined as the position of the representative atom of

each residue in the structure – the Ca atom for Glycine and the

Cb atom for all other amino acid types. Positions of insertions in

the alignment relative to the reference structure were inferred

based on the positions of representative atoms of the residues at

both ends of the insertions (flanking atoms). First, a line connecting

the flanking atoms was calculated. Then the inserted residues were

placed along the line at equidistant positions. This way we

approximate the location of atoms on the loop structure without

precise modeling of the structure which is likely to be inaccurate

given the flexibility of the V3 loop structure and which would

considerably slow down the prediction process. The resulting

coordinates of the residues of the V3 loop sequences were used as

centers of the spheres defining the structural neighborhoods in the

loop structure.

In addition to the set of spheres corresponding to alignment

positions additional spheres were positioned at the midpoints of

lines connecting centers of each pair of consecutive alignment

spheres. This way we obtained a set of 99 spheres – 50

corresponding to alignment positions and 49 positioned in-

between consecutive alignment positions. Example spheres are

illustrated in Figure 1.

Each V3 sequence position was mapped to a sphere if the

corresponding representative atom was located within the given

sphere. The details of the selection of the sphere radius and
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Gaussian smoothing parameter within the spheres are described

and illustrated in Text S1 and Figure S1.

Prediction method
The model based on the structural descriptor classifying viruses

as R5 or X4 was constructed using a linear SVM [43]

implemented in the R package e1071 [44]. For model evaluation

we used the ROC curve that illustrates the trade-off between

specificity and sensitivity. The AUC and the specificity at the

sensitivity of the 11/25 rule were used as measures of model

performance. We used the R package ROCR [45] for visualiza-

tion and evaluated the models with ten times ten (10610) fold

cross validation. Each descriptor feature was normalized to [0,1]

within the training dataset.

Feature selection
We used two classification methods performing feature

ranking: Random Forests (RF) [26], with the mean decrease

in Gini index and linear SVMs with the feature weights as two

measures of feature importance [27]. We also used Lasso

regression [28] which performs feature selection by assigning

zero coefficients to the less important features. For the methods

producing feature ranking (RF and linear SVM) we tested two

cutoffs for the selected features: top 1% and top 5% of a gamma

distribution fitted to the ranking of all the features using

maximum likelihood. We used all features selected by the Lasso

regression method. The feature ranking of the SVM and Lasso

regression methods was obtained via an average of a 10610-fold

cross validation. The RF method performs internal randomiza-

tion, its feature ranking was therefore inferred from a single run

of the method. We tested the performance of models based on

subsets of features selected by each method and combined

feature sets selected by different methods. Models based on

subsets of selected features were named after the feature

selection method with the percent cutoff indicated in parenthe-

ses (e.g. SVM(1)). Names of models based on combinations of

feature sets selected using several feature selection methods were

composed of the corresponding feature selection methods

separated by an underscore (e.g. SVM(1)_Lasso). As the analysis

of the features selected for the clonal model was a goal of our

study, feature selection was performed on the entire clonal

dataset. To assess how the choice of the set of sequences on

which the features are selected impacts the model’s prediction

accuracy, we performed two different types of tests. In the first

test, features of the model were reselected on the training set in

each cross validation run on the clonal set (nested cross

validation). In the second test we applied the features of the

clonal model to other sequence sets – Sander and Dybowski

datasets.

Other datasets
The HOMER dataset was filtered to contain one randomly

chosen sequence per patient, which resulted in a set of 954

sequences out of which 167 comprised X4 viruses. Each sequence

in the clinical dataset represents a population of variants

genotyped and phenotyped in bulk, an approach used in the

routine clinical practice. These sequences contain ambiguous

positions with alternative amino acids representing different

variants in the population. The ambiguous positions were

represented by a balanced average of vectors of indices of all

alternative amino acids at a given position. Due to these

differences between the clinically and clonally derived data, we

repeated the feature selection on this dataset and constructed the

clinical model.

The MVC dataset comprises 53 patient cases under MVC

therapy whose therapy outcome can be assessed based on the viral

load (VL). We define as therapy success an observed 2log decrease

in VL with respect to the level immediately before the therapy

start or a VL drop below 50 copies/ml measured three months

after the therapy start [46]. We classified the viruses sequenced at

therapy start with respect to their tropism in order to investigate

the capacity of the structural descriptor to predict the therapy

outcome. Since the MVC dataset was derived in clinical bulk

sequencing we used the clinical model to predict the phenotype of

the sequences in this dataset. We used the prediction score at the

specificity of 11/25 rule which corresponds to a false discovery

rate (FDR) of 6.28% in the HOMER dataset as a classification

cutoff between the R5 and X4 viruses. The FDR is an estimate of

the expected proportion of sequences incorrectly classified as X4

viruses with a given cutoff and is calculated as the fraction of R5

viruses in the training set scored above the cutoff among all

sequences scored above the cutoff in 10610-fold cross validation.

In the MVC dataset we additionally distinguish 28 sequences that

were phenotyped using the Trofile assay (Trofile dataset). Summary

statistics for all datasets used are presented in Table 3.

Feature clustering
Clustering of the 56 amino acid indices was performed in order

to facilitate the interpretation of the large number of selected

features. As a similarity score among the indices we used the

absolute value of their correlation. This way, indices that express

the same affinities among amino acids are considered similar. We

performed hierarchical clustering of the 56 amino acid indices and

computed silhouette values [47] in order to select the best set of

clusters. The highest silhouette value was obtained for a

partitioning of indices into 12 clusters. The highest silhouette

value of a partitioning of indices into fewer than 12 clusters was

obtained for four clusters. We selected four as the number of

clusters for further analysis as it represents a small and

interpretable number of groups of indices. The silhouette values

as well as the 12 clusters are shown in Figures S12 and S13.

Supporting Information

Figure S1 Choice of sphere radius and Gaussian smoothing

parameters. Black histograms represent the distribution of the

number of residues included in proximities of a radius indicated on

the corresponding plot on the left. Red histograms illustrate the

sum of Gaussian normalizing factor per each residue. Mean with

variance in brackets of each distribution are indicated in legends.

(TIFF)

Figure S2 Performance of models based of structural proximities

of different radii. ROCR of models based on different radii are

plotted. The selected radius of 8 Å is traced with a black solid line.

Table 3. Summary statistic of the used datasets.

dataset all sequences X4 sequences R5 sequences

clonal 1188 215 973

Sander 1357 205 1152

Dybowski 515 151 364

MVC* 53 5 48

Trofile 28 3 25

*For the MVC dataset in the columns ‘‘X4 sequences’’ and ‘‘R5 sequences’’ the
numbers of therapy failures and successes are shown respectively.
doi:10.1371/journal.pcbi.1002977.t003
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AUC and sensitivity at the specificity of 11/25 rule in brackets are

indicated in the legend.

(TIFF)

Figure S3 Distance on the 3D structure of features selected by

different feature selection methods. Plot in D illustrates the

overall distance of spheres of the features of the initial feature set.

Plots in A–C illustrate the distance of the highly correlated

features as defined above. The highly correlated features can be

found among features selected by different methods and they

pertain to locations in close proximity on the structure, which is

the potential reason for the low overlap of features selected by

different methods.

(TIFF)

Figure S4 Correlation of features in the initial feature set.

Histograms show distribution of the Pearson correlation of all

features of the structural descriptor (left panel), of the features of

the clonal model (middle panel) and of the features of the clonal

model with the remaining features of the structural descriptor

(right panel). Median, percentage of feature pair with correlation

.0.5 and .0.75 are indicated in the legend.

(TIFF)

Figure S5 Comparison of the clonal and g2p models in the

precision-recall space. The curves show the relationship between

true positive rate (recall) and positive predictive value (precision).

Area under the curve shows a higher predictive performance of the

clonal model compared to the g2p model.

(TIFF)

Figure S6 Validation of the clinical model on an external

dataset. In order to support the assessment of the performance of

the clinical model we used an independent dataset of 760

clinically-derived sequences phenotyped using Enhanced (140

sequences) and standard Trofile (620 sequences). The clinical

model shows a visibly better performance compared to the clonal

model on the sequences phenotyped using the enhanced Trofile

assay (left panel, solid black and red curve, respectively) and

outperforms g2p model train on clinical or clonal data (left panel,

dashed black and red curve, respectively). These differences in

performance between the clinical and clonal models are not

observed on the subset of sequences phenotyped with the standard

Trofile assay (right panel). Nevertheless, in this subset, the

structure-based models outperform the corresponding sequence-

based models by ,2 percentage points.

(TIFF)

Figure S7 Effect of indels on the prediction accuracy of the

clonal model. The curves illustrate the prediction performance of

the clonal model based on a dataset containing only sequences

with indels (black curve) and only sequences with indels (red

curve). Similar performance of the clonal model based on both

datasets suggests there is a limited effect of the presence of indels

on the model accuracy.

(TIF)

Figure S8 Distribution of V3 positions (top panel) and amino

acid indices (bottom panel) among the features selected for the

clinical model constructed analogous to Figure 6 in the main text.

Clinical model is composed of a lower number of features (66)

compared to clonal model. Although two regions corresponding to

CS1 and CS2 are discernable (top panel), they are generally more

spread out. This might be due to a lower number of features in this

model and higher variability of sequences in the clinical dataset.

Similar to the features of the clonal model the significantly

overrepresented amino acid indices in the clinical model belong

mainly to cluster 1 and 2 (bottom panel) and relate to residue

charge and hydrophobicity.

(TIFF)

Figure S9 Side-chains of the V3 loop in the unbound (A, structure

2B4C) and bound (B, structure 2QAD) conformation. In the bound

conformation the residues of CS1 (304 and 307) and CS2 (319–321)

are closely located and form bonds between two sides of the loop stem.

(TIF)

Figure S10 Clusters of selected features mapped on the 2B4C

structure.

(TIF)

Figure S11 Significantly overrepresented features mapped on

the 2B4C structure.

(TIFF)

Figure S12 V3 residue numbering. The numbering of V3

residues used in this manuscript is shown on the 2B4C structure.

Top numbers indicate residue position within V3 loop, bottom

numbers are assigned according to HXBc2, a numbering used also

in the 2B4C annotation [18]. Figure from [21].

(TIFF)

Figure S13 Hierarchical clustering of amino acid indices. Black

dots indicate numbers of clusters, red dots the silhouette values for

the consecutive steps of the clustering procedure. Vertical lines

indicate the best clustering obtained for 12 clusters and second

best with a lower number of clusters (4).

(TIFF)

Figure S14 Separation of amino acid indices into 12 clusters –

the separation that showed the largest silhouette value.

(TIFF)

Table S1 Performance of the clinical model and models derived

from the clinical dataset by removing sequences with ambiguities

(HOMER-filter), removing sequences without ambiguities (HO-

MER-ambi) and replacing ambiguities with gaps (HOMER-gap).

(PDF)

Table S2 Therapy outcome prediction using structure-based

model.

(XLS)

Table S3 Therapy outcome prediction using g2p model.

(XLS)

Table S4 Ranking and selection of features.

(XLS)

Table S5 AA indices of the selected features.

(XLS)

Table S6 Positions of the V3 loop of the selected features.

(XLS)

Text S1 Selection of model parameters.

(PDF)

Text S2 Overlap of features selected by different feature

selection methods.

(PDF)

Text S3 Feature correlation.

(PDF)

Text S4 Combining structure and sequence descriptors.

(PDF)

Text S5 Validation of the clinical model on external dataset.

(PDF)
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Text S6 Effect of ambiguities on prediction accuracy.

(PDF)

Text S7 Clonal dataset.

(ZIP)
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