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Abstract

The large size of metabolic networks entails an overwhelming multiplicity in the possible steady-state flux distributions that
are compatible with stoichiometric constraints. This space of possibilities is largest in the frequent situation where the
nutrients available to the cells are unknown. These two factors: network size and lack of knowledge of nutrient availability,
challenge the identification of the actual metabolic state of living cells among the myriad possibilities. Here we address this
challenge by developing a method that integrates gene-expression measurements with genome-scale models of
metabolism as a means of inferring metabolic states. Our method explores the space of alternative flux distributions that
maximize the agreement between gene expression and metabolic fluxes, and thereby identifies reactions that are likely to
be active in the culture from which the gene-expression measurements were taken. These active reactions are used to build
environment-specific metabolic models and to predict actual metabolic states. We applied our method to model the
metabolic states of Saccharomyces cerevisiae growing in rich media supplemented with either glucose or ethanol as the
main energy source. The resulting models comprise about 50% of the reactions in the original model, and predict
environment-specific essential genes with high sensitivity. By minimizing the sum of fluxes while forcing our predicted
active reactions to carry flux, we predicted the metabolic states of these yeast cultures that are in large agreement with
what is known about yeast physiology. Most notably, our method predicts the Crabtree effect in yeast cells growing in
excess glucose, a long-known phenomenon that could not have been predicted by traditional constraint-based modeling
approaches. Our method is of immediate practical relevance for medical and industrial applications, such as the
identification of novel drug targets, and the development of biotechnological processes that use complex, largely
uncharacterized media, such as biofuel production.
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Introduction

The metabolic state of a cell is defined by the distribution of all its

metabolic fluxes. It constitutes a significant aspect of cellular

phenotype and is of both medical and industrial relevance. There

are, for instance, striking differences in the metabolic states of healthy

and cancer cells. Healthy cells rely predominantly on oxidative

phosphorylation as a means to drive ATP synthesis, but cancer cells

ferment profusely, converting the majority of the glucose and

glutamine they consume into lactate [1]. Moreover, some cancer cell

lines have been shown to synthesize lipids by reductive carboxylation

of glutamine-derived a2ketoglutarate [2]. On the industrial side,

efforts towards redirecting metabolic fluxes for the production of

industrially relevant metabolites continue to drive the study of

metabolism in industrial microorganisms [3].

The advent of genome-scale constraint-based models of

metabolism enables the study of metabolic fluxes in whole-cells.

The large size of these metabolic models, however, entails the

challenge of identifying the actual metabolic state of cells among

the myriad possibilities allowed by stoichiometric and thermody-

namic constraints. To illustrate this point, Figure 1 shows a toy

pathway in which a five-carbon biomass precursor is synthesized

from a two- or from a three-carbon substrate. Figure 2 shows that

this very small toy network supports no less than 8 different flux

distributions. This multiplicity of possible flux distribution

motivates studies aimed at the utilization of experimental data to

reduce the flux distribution space and improve the predictions of

metabolic states using constraint-based models of metabolism [4].

Nutrient availability places an enormous constraint on the space

of possible flux distributions. For instance, in our toy model, there

are only two flux distributions compatible with the absence of the

two-carbon substrate (Figure 2). However, in many important

medically and industrially relevant situations, cells live in poorly

characterized environments. For example, the media used in

industrial fermentations have complex and variable compositions

[5], and the nutrients available to pathogens in host environments

are poorly characterized [6]. The difficulties associated with the

precise determination of the nutrients available to cells in complex

variable media or within a host, stand in stark contrast with the

relative ease with which transcript abundances can be quantified.

It is reasonable to expect gene expression to be a major

determinant of the cell’s flux distribution. However, the under-
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standing of the relationship between transcript levels and

metabolic fluxes has been challenged by the confounding

observations that, for both prokaryotes and eukaryotes, transcript

levels correlate poorly with protein concentrations [7–16].

Furthermore, for Saccharomyces cerevisiae, fluxes have been reported

to correlate poorly with both transcripts and protein levels [17–

19]. Despite these poor correlations, when transcript and protein

measurements from Escherichia coli were analyzed in the light of a

genome-scale model of metabolism, evidence for a coordinated

expression of metabolic genes became apparent [20].

Several methods for integrating transcript measurements and

genome-scale models of metabolism have been proposed (e.g. [21–

24], reviewed in [25]). We highlight two methods that were

proposed to build tissue- and condition-specific models using gene

expression as their sole input [26,27]. Importantly these methods

do not require knowledge upon nutrient availability nor require

assumptions about the metabolic objectives of cells. Jerby et al.

[26] proposed the Model Building Algorithm (MBA). This method

requires the definition of a set of ‘high-probability core reactions’

(cH) by, for instance, selecting reactions associated with highly

expressed genes [28]. The MBA heuristically prunes reactions

outside the cH set to generate the smallest network in which all cH

reactions can carry a flux. A different method called integrative

Metabolic Analysis Tool (iMAT) was proposed by Shlomi et al.

[27]. iMAT maximizes the number of reactions whose flux is

consistent with the measured gene-expression. First, a set of highly

expressed reactions (rH) and a set of lowly expressed reactions (rL)

are defined. Thereafter, iMAT finds a flux distribution that

maximizes the sum of the number of rH reactions that carry a flux

and the number of rL reactions that do not carry a flux. This flux

distribution is predicted to be the part of the network that is active

in the condition from which the gene expression measurements

were taken.

Here we present a method that uses gene-expression as the sole

source of information to build environment-specific metabolic

models. We introduce a novel exploration of the alternative

optimal solutions to the optimization problem proposed by Shlomi

et al [27] and identify reactions that are active in all optimal

solutions, which we call high-frequency reactions (HFR). Hypoth-

esizing that HFR are likely to be active in the environment under

study, we build environment-specific models by minimizing the

size of the network subject to the constraint that all HFR should be

able to carry flux. Using this method we modeled the metabolic

states of S. cerevisiae growing on yeast-extract peptone media,

supplemented with either glucose or ethanol. Our modeling

predicts, with high sensitivity, genes that are essential for growth

specifically on glucose or on ethanol. Remarkably, we predict the

Crabtree effect [29] in yeast cells growing on glucose, and that

cells growing on ethanol rely exclusively on oxidative phosphor-

ylation for ATP synthesis. All these predictions, we emphasize,

were achieved without knowledge of which nutrients are available

to the cells. Importantly, such detailed and physiologically relevant

predictions have not been achieved by any other method we are

aware of.

Results/Discussion

The study of metabolic fluxes is enormously aided by genome-

scale reconstructions of metabolic networks. The large size of these

networks, however, entails the challenge of identifying the actual

metabolic state of living cells among a very large number of

possibilities. Here we present a method that integrates gene-

expression measurements with genome-scale models of metabo-

lism to: i) identify reactions that are likely to be active, ii) constrain

the space of possible flux distributions, and iii) predict the

metabolic states of cells growing in completely uncharacterized

environments. We applied this method to model the metabolism of

S. cerevisiae growing on two different media, uncovering essential

aspects of yeast energy metabolism.

Metabolic constraint-based model
In this study we used genome-scale constraint-based model of

yeast metabolism by Mo et al. [30] with modifications introduced

by Szappanos et al. [31]. As we aimed at modeling metabolism in

situations where nutrient availability is unknown, we enabled the

free uptake or secretion of all exchange metabolites in the model.

To obtain a gapless model, we identified dead-end reactions using

Figure 1. Toy metabolic network. This network enables the
synthesis of a five-carbon biomass precursor from a two- or from a
three-carbon substrate. The network’s gene-to-reaction mapping is
depicted with diamonds indicating highly (green) and lowly (red)
expressed genes. Two reactions (r3 and r7) are each associated with two
genes. For r3 any of the two gene-products suffices to catalyze the
reaction (OR logic gate). For r7, both gene-products are needed
together to bring about catalysis (AND logic gate). Highlighted in blue
is a flux distribution that maximizes the number of reactions that are
consistent with their gene expression. Note that the highlighted flux
distribution results in four agreements between reaction fluxes and
their expression (r2, r3, r5, and r6) and one disagreement (r7).
doi:10.1371/journal.pcbi.1002988.g001

Author Summary

Metabolic fluxes are steady-state rates of metabolite
interconversion within living cells. They determine the
rates of growth and product formation, and are of
biotechnological and medical importance. An important
and pressing question is how to identify the actual
distribution of fluxes in living cells among the manifold
possibilities that complex metabolic networks allow. One
way to address this question is to constrain the space of
possibilities using gene-expression measurements. Here
we present a method that uses gene-expression measure-
ments to infer the metabolic state of cells growing in
uncharacterized environments. We applied this method to
model the metabolism of Saccharomyces cerevisiae grown
with glucose or ethanol as main energy source. Our
modeling enables the prediction of genes that are
essential for growth in either environment. We also show
that our method predicts aspects of the energy metabo-
lism of these cultures that are in large agreement with
what is known about yeast physiology. Our method is of
direct practical importance in the fields of biotechnology
and medicine, such as in vivo drug target identification,
where nutrient conditions are largely unknown.

Inferring Metabolic States Using Gene-Expression
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Flux Variability Analysis (FVA) [32] and deleted them. The

resulting gapless model, with unrestricted uptake or secretion of all

exchange metabolites, was used as a starting point for our method.

It comprised 777 metabolites, 710 genes and 1092 reactions, and is

provided in the Supplementary Dataset S1.

Classifying reactions as highly or lowly expressed
The first step into constraining the space of possible flux

distributions using gene-expression measurements is to translate

these measurements into reaction-expression calls. Gene expres-

sion measurements for yeast cultures growing on YPD (yeast-

extract, peptone, dextrose) and YPEtOH (yeast-extract, peptone,

ethanol) were obtained from Gasch et al [33]. For each condition,

we ordered genes according to their expression level and classified

the top 15% highest expressed genes as ‘highly expressed’ and the

bottom 15% lowest expressed genes as ‘lowly expressed’ (Supple-

mentary Table S1). Our choice of these 15% thresholds was

motivated by the observation that the distribution of gene-

expression values was approximately log-normal. Hence these

threshold would classify genes with expression values about one

standard deviation above and below the population’s mean as

highly or lowly expressed, respectively.

Gene-expression calls defined as described above were trans-

lated into reaction-expression calls using the metabolic model’s

detailed Boolean gene-to-reaction mapping ([31], Supplementary

Table S2). The number of highly expressed reactions was similar

in YPD and YPEtOH (194 and 184, respectively) whereas the

number of lowly expressed reactions was lower in YPD (94) than in

YPEtOH (144). The identities of reactions classified as highly (rH)

or lowly expressed (rL) are reported in the Supplementary Table

S3.

Predicting active and inactive reactions
We formulated predictions of which reactions are likely to be

active or inactive in YPD or YPEtOH by integrating gene-

expression measurements with a model of yeast metabolism. First

we used iMAT [27], which is described by Eqs. 1–6, to maximize

the number of reactions whose flux is consistent with the measured

gene-expression, the so-called agreement score. The inputs of this

optimization are: a stoichiometry matrix, two vectors containing

the upper and lower flux bounds for each reaction, and two sets of

reactions classified by their expression as highly expressed (rH) or

as lowly expressed (rL). Reactions that are neither highly nor lowly

expressed do not influence the optimization, but many will be

included in the resulting flux distribution. As an illustration,

Figure 1 shows a toy metabolic network with the flux distribution

obtained using iMAT highlighted in blue. Note that this flux

distribution is consistent with expression measurements of four (r2,

r3, r5 and r6) of the five reactions classified as either highly or

lowly expressed. Further note that the optimal flux distribution

includes reactions that are neither highly nor lowly expressed (i.e.

r4, r8, r9 and r10).

Our method to predict reactions that are likely to be active or

inactive, stems from the realization that the flux distribution

obtained by iMAT is one among many that maximize the

agreement score. For example, in our toy model, three of the eight

possible flux distributions maximize the agreement score (Figure 3).

In order to circumvent the arbitrariness of the particular flux

distribution returned by the Mixed Integer Linear Program

(MILP) solver in a single optimization, we made the MILP solver

explore the space of alternative optima by forcing each and every

reaction in the network to be: i) inactive, ii) to proceed in the

forward direction and, in the case of reversible reactions, iii) to

proceed in the reverse direction as well. In each of these cases, we

maximized the agreement score of the modified optimization

problem, and selected those solutions achieving the maximum

agreement score. For our toy model, Figure 3 summarizes the

reaction modulations with which the three alternative flux

distributions that maximize the agreement score are found. Note

that different sets of reaction modulations force the MILP solver

upon the same flux distribution, and that neither systematic

inactivation of reactions nor systematic forcing of reactions to be

active, separately, suffices to find all alternative optimal flux

distributions. Notably, not all enzyme modulations yield optimi-

zation problems that can be solved, and among those that can be

solved, some achieve suboptimal agreement scores.

As a means to predict which reactions are likely to be active or

inactive in the condition of interest, we counted the number of

Figure 2. Possible flux distributions in the toy metabolic network. The toy metabolic network in Figure 1 supports eight different flux
distributions, all of which are consistent with the model’s stoichiometric and thermodynamic constraints.
doi:10.1371/journal.pcbi.1002988.g002

Inferring Metabolic States Using Gene-Expression
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times that each reaction was found to be active among the

alternative optimal flux distributions. Reactions that were active in

all alternative optimal solutions defined a set of high-frequency

reactions (HFR) and are predicted to be active. Reactions that

were always inactive defined a set of zero-frequency-reactions

(ZFR) and are predicted to be inactive. The number of ZFR in

YPD and YPEtOH (76 and 95, respectively) was lower than that of

HFR (433 and 414, respectively). It is important to note that HFR

and ZFR sets comprise different reactions than the rH and rL sets.

For instance, not all highly expressed reactions are within the HFR

set. Moreover, the HFR set includes some reactions that are lowly

expressed (12 and 24 reactions for YPD and YPEtOH, respec-

tively). The resulting sets of ZFR and HFR for yeast cultures

growing on YPD or YPEtOH are reported in the Supplementary

Table S4.

Building environment-specific metabolic models
We built environment-specific metabolic models hypothesizing

that HFR and ZFR are likely to be active and inactive,

respectively, in the condition of interest. To this end we first

deleted all ZFR, and thereafter used MBA to minimize the size of

the network with the constraint that all HFR must be able to carry

flux. We call our method ‘EXploration of Alternative Metabolic

Optima’ (EXAMO), and summarize it in Figure 4. The YPD- and

YPEtOH-specific models resulting from this procedure include

about 50% of the reaction in the parent model. The overlap of the

reactions in the YPD and YPEtOH models is 60%. Hence

although similar in size, these two models are very different in

content. The Supplementary Dataset S2 includes python scripts

that detail and implement EXAMO, and step-by-step instructions

for running these python scripts. The Supplementary Dataset S1

reports the resulting YPD- and YPEtOH-specific models as lists of

reactions.

Predicting environment-specific essential genes
Genome-wide measurements of essential genes have been used

frequently as a means to validate constraint-based models of

metabolism (e.g. [34]). Moreover, these models have been

successful in predicting genes that are essential for the growth of

pathogens, opening new avenues in the identification of drug

targets to fight infection [6]. Frequently, the nutrients available to

pathogens in host environments are largely unknown. In such

situations, metabolic models are used to predict the set of genes

that would be essential for growth in any environment. These

environment-independent essential genes are predicted using Flux

Balance Analysis (FBA) based gene essentiality analysis [34] in

models where the free uptake or secretion of all exchange

metabolites is enabled.

However, it is well known that nutrient availability determines

the essentiality of genes [35]. For example, the ICL1 gene in S.

cerevisiae, is essential for growth on minimal medium when acetate

or ethanol are provided as carbon sources, but is dispensable for

Figure 3. Exploration of alternative optimal flux distributions. Three alternative flux distributions that maximize the number of reactions
whose flux is consistent with their gene expression, for the toy pathway in Figure 1, are shown in the central column. The panels to the left and right
summarize the enzyme modulations that force the MILP solver to find the flux distributions in the central column. The modulations and resulting flux
distributions are organized by rows. The leftmost column summarizes the reactions whose inactivation result in the finding of the flux distribution in
the central column. Note that there are multiple reactions that when forced to be inactive each give rise to the same flux distribution in the central
column. Note furthermore that the flux distribution in the third row cannot be found by the inactivation of a reaction. The rightmost column
summarizes the reactions that when forced to carry a flux in the indicated directions, enable finding the flux distributions in the central column. Like
with the inactivation of reactions, there are multiple reactions that when forced to carry flux in the indicated direction give rise to the same flux
distribution. The flux distribution in the second row of the central column cannot be found by forcing any reaction to be active.
doi:10.1371/journal.pcbi.1002988.g003
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growth on sugars or three-carbon substrates [36]. Building

environment-specific models without knowing the environment

but relying on gene-expression measurements can be seen as an

effort to decode how the transcriptome describes the cells’

environment. The extent to which this decoding is successful can

be tested by contrasting the sensitivity of real cells to gene deletions

with the predictions made with our environment-specific models.

To address this issue, we contrasted our model predictions with

the results of two large-scale gene essentiality studies in S. cerevisiae

[37,38]. In the first study, by Giaever et al. [37], a library of single

gene deletion mutants was constructed on YPD, covering 96% of

the annotated open reading frames in S. cerevisiae. Single-gene

deletion mutants that failed to grow on YPD were identified as

essential for growth in this medium. The second study, by Snitkin

et al [38], measured the growth phenotype of 465 of the single

gene deletion mutants constructed by Giaever et al in 16 different

conditions. Of these 16 conditions, we chose to model growth on

YPEtOH because gene-expression measurements were available

[33], and because it yielded one of the highest numbers of

environment-specific essential genes [38].

Using FBA-based gene essentiality analysis [34], we computed

lists of genes that are predicted to be essential for growth by the

YPD and YPEtOH metabolic models we built with EXAMO. For

YPD, the predicted essential genes could be compared directly

with the measured growth phenotypes, but in the case of YPEtOH

the scope of the measurements excludes genes that are essential for

growth on YPD, since these mutants were unavailable for testing

on YPEtOH. For this reason, the sets of genes measured to be

essential for growth on YPD were subtracted from both, the set of

genes measured and the set of genes predicted to be essential for

growth on YPEtOH. The sensitivity of these predictions indicated

that EXAMO uncovered 61% of the genes essential for growth on

YPD and 77% of the genes essential for growth on YPEtOH. The

positive predictive values of the predictions were 26% and 18% for

YPD and YPEtOH, respectively.

Figure 5 compares the sensitivity and positive predictive value of

our predictions (EXAMO) with those obtained with: i) high-

expression as a proxy for essentiality (HEG), ii) FBA-based gene

essentiality analysis using a model constructed with Shlomi et al.’s

iMAT [27] (Eqs. 1–6), and iii) FBA-based gene essentiality analysis

using a model constructed with Jerby et al.’s MBA [26]. For both

YPD and YPEtOH, EXAMO achieves the highest sensitivities.

The positive predictive value of all methods is below that of the

environment-independent model (horizontal blue line), implying

that the discovery of environment-specific essential genes is

achieved at the cost of some false positive predictions. We

evaluated the influence of the thresholds used to classify genes

according to their expression levels by evaluating the sensitivities

and positive predictive values using 10 and 20% as thresholds. For

the thresholds tested, the sensitivity of the predictions made with

EXAMO were the highest, whereas different methods performed

best for different thresholds with regard to their positive predictive

values (Supplementary Figure S1).

Model predictions of metabolic states reveal aspects of
yeast physiology

By building environment-specific models of metabolism, we

predict drastically reduced spaces of possible flux distributions

available to yeast cultures growing on YPD of YPEtOH. We then

asked whether we can use these models to infer the actual

metabolic state of these cells and, thereby, reveal aspects of yeast

physiology. As a means of predicting a specific flux distribution, a

point within the flux distribution space, we minimize the sum of all

fluxes [39,40]. Minimizing the sum of fluxes, rather than

maximizing biomass production, has the advantage of not having

Figure 4. EXploration of Alternative Metabolic Optima (EXAMO). Environment-specific metabolic models are built in a two-step process.
First, gene expression measurements are integrated with the original, environment-independent model. The exploration of alternative flux
distributions that maximize the agreement score yields two sets of reactions: zero- and high-frequency reactions. Second, zero-frequency reactions
are deleted and the Model Building Algorithm [26] is used to reduce the network with the constraint that all high-frequency reactions should be able
to carry flux.
doi:10.1371/journal.pcbi.1002988.g004
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to impose boundaries on the uptake of nutrients, and is thus

compatible with the condition of not having information about

nutrient availability. It implies the hypothesis that cells economize

the amount of catalyst invested in metabolic networks. Here we

propose a novel minimization of the sum of fluxes that is subject to

the constraint that all HFR and the biomass synthesis reaction

must carry flux (Eqs. 8–13).

Supplementary Tables S5 and S6 report the flux distributions

we predict for yeast cells growing on YPD and YPEtOH,

respectively. In this discussion we focus our attention on the

predicted energy metabolism of these two cultures. For YPD

cultures, our modeling predicts that 99% of the ATP production is

ascribable to the glycolytic enzymes phosphoglycerate kinase and

pyruvate kinase, that glucose (and not another sugar) serves as the

cells’ main energy source, and that 90% of the consumed glucose is

fermented. Importantly, we also predict that oxidative phosphor-

ylation is not impaired and that indeed it is responsible for a small

fraction of the ATP production. These predictions are in large

agreement with the repeatedly observed Crabtree effect [29],

which describes the phenomenon whereby yeast ferments glucose

aerobically in the presence of high glucose concentrations. It may

be noted that the maximization of biomass production, the most

commonly used objective function used in FBA studies, is at odds

with the Crabtree effect, because fermentation of glucose leads to

lower biomass yields than its respiration [41]. Contrary to our

expectations, however, the regeneration of the NADz consumed

by glyceraldehyde-3-phosphate dehydrogenase is not predicted to

occur through the production of ethanol by alcohol dehydroge-

nase. Our modeling predicts that indole-3-acetaldehyde acts as an

electron acceptor forming indole-3-ethanol at a rate that closely

matches that of glyceraldehyde-3-phosphate dehydrogenase. We

should remark that the prediction of the Crabtree effect is not an

artifact introduced by the minimizing the sum of fluxes by itself.

Minimizing the sum of fluxes in the original yeast model without

constraining HFR to carry flux, results in a flux distribution in

which 80% of the NADH produced in the cytosol is respired. Thus

not the predominantly fermentative metabolism associated with

the Crabtree effect.

In stark contrast with our predictions for YPD cultures and in

line with what is known about yeast physiology, for YPEtOH

cultures we predict that all ATP is produced by oxidative

phosphorylation. The main sources of electrons feeding the

electron transport chain, and thus maintaining the proton motive

force, are the reactions catalyzed by: aldehyde dehydrogenase

(25%), malate dehydrogenase (26%) and succinate dehydrogenase

(45%), with minor contributions by isocitrate dehydrogenase and

pyruvate dehydrogenase. Our modeling predicts that acetalde-

hyde, which can be produced from ethanol via a single reaction,

serves as the main energy source. Figure 6 shows the predicted

fluxes through the TCA cycle. The majority (95%) of the succinate

feeding the (mitochondrial) succinate dehydrogenase is produced

outside the mitochondrion. About 60% of the cytosolic succinate is

produced via isocitrate lyase, with the concomitant glyoxylate

production being used to synthesize glycine. The remaining 40% is

produced by a network of four reactions (glutamate decaboxylase,

4-aminobutyrate transaminase, succinate semialdehyde dehydro-

genase, and aspartate transaminase), which overall stoichiometry

involves the consumption equimolar amounts of oxaloacetate and

glutamate to produce equimolar amounts of aspartate and

succinate, with the concomitant production of NADPH and

CO2. Our modeling predicts that the majority of NADPH (99%) is

produced by the reaction catalyzed by succinate semialdehyde

Figure 5. Comparing the quality of gene essentiality predictions. The sensitivities and positive predictive values (PPV) of the prediction of
essential genes are shown for YPD and YPEtOH. The methods compared are EXploration of Alternative Metabolic Optima (EXAMO), Highly Expressed
Genes as proxies for essential genes (HEG), Shlomi et al’s integrative Metabolic Analysis Tool (iMAT, Eqs. 1–6) [27], and Jerby et al. ’s Model Building
Algorithm (MBA) [26]. The blue horizontal line marks the sensitivities and PPVs achieved with the yeast model when the free uptake and secretion of
all exchange metabolites is allowed. These genes predicted to be essential for growth using the original yeast model, unconstrained by gene
expression measurements, are predicted to be essential regardless of which nutrients are available to the cells.
doi:10.1371/journal.pcbi.1002988.g005
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dehydrogenase, whereas the pentose phosphate pathway makes

a negligible contribution. This latter prediction is supported by

experiments in which yeast cells were grown in chemostats with

ethanol as their only carbon source. These experiments suggest

that indeed the contribution of the pentose phosphate pathway

to the synthesis of NADPH is very minor [17]. The predictions

achieved with EXAMO for YPEtOH are also beyond the

capabilities of traditional FBA approaches, which in the

absence of information about nutrient availability do not

predict a two-carbon substrate as main energy source.

Moreover, when the composition of YPEtOH is used to

constrain the identity of metabolites that can be taken up,

FBA predicts amino acids to serve as energy sources.

Furthermore, it should be noted that neither iMAT nor MBA

were capable of predicting the aspects of energy metabolism in

YPD and YPEtOH described above.

In summary, we developed a method that used gene-expression

measurements and genome-scale models of metabolism to infer

the metabolic states of cells living in completely uncharacterized

environments. Our method yields predictions about the essenti-

ality of genes in specific environments with higher sensitivities than

alternative methods. The metabolic states predicted by our

method are in large agreement with what is known about yeast

physiology with the prediction of the Crabtree effect as a

prominent example. The consideration of the quality of gene-

essentiality and metabolic state predictions together, encourages us

to suggest that our method contributes to the decoding of the way

the transcriptome represents the metabolic state of cells. Our

method is also of immediate practical value, as it can be used to

identify potential drug targets against infection that would be

specifically effective within the host, where nutrient availability is

largely unknown, or to distinguish metabolic states of health and

diseased tissues in vivo. It may also be used to predict which

nutrients are being consumed in complex industrial substrates, and

contribute in research efforts towards the development of biofuel

producing processes where many incompletely characterized

media are tested.

Methods

Metabolic constraint-based model
We used the genome-scale constraint-based model of yeast

metabolism by Mo et al. [30] with modifications introduced by

Szappanos et al. [31]. This reconstruction comprises 1228

metabolites, 904 genes and 1575 reactions. With the objective of

modeling metabolism in completely uncharacterized environ-

ments, we set the lower and upper boundaries of all exchange

reactions to {1|106 and 1|106, respectively. These changes

enable the free uptake or secretion of all exchange metabolites in

the model. Some of the model’s reactions are dead-end reactions,

incapable of carrying flux under any condition. We identified these

reactions using FVA [32], and deleted them from the metabolic

model. Metabolites that, after elimination of dead-end reactions,

were not associated with any reaction were deleted as well. The

resulting trimmed network comprised 777 metabolites, 710 genes

and 1092 reactions.

Figure 6. Predicted tricarboxylic acid cycle fluxes in YPEtOH cultures. The network of mitochondrial and cytosolic tricarboxylic acid cycle
reactions is shown. The thickness of the arrows is drawn in proportion to the predicted fluxes. Acetaldehyde is predicted to be the main energy
source and grey arrows indicate an alternative route through which ethanol could be used as energy source. In the cytosol a network of non-TCA
reactions (glutamate decarboxylase, 4-aminobutyrate transaminase, succinate semialdehyde dehydrogenase, and aspartate transaminase) that
convert oxaloacetate and glutamate into succinate and asparate with concomitant production of CO2 and NADPH is shown as a single arrow.
Metabolite abbreviations: AcAld (acetaldehyde), Asp (aspartate), Cit (citrate), Fum (fumarate), Glu (glutamate), Glx (glyoxylate), Mal (malate), Oaa
(oxaloacetate), Succ (succinate).
doi:10.1371/journal.pcbi.1002988.g006
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Classifying reactions as highly or lowly expressed
Our objective is to use gene-expression measurements to infer

the metabolic state of cells growing in uncharacterized environ-

ments. To this end, we classified the reactions in the model as

highly (rH) or as lowly (rL) expressed, based on gene-expression,

using the constraint-based model’s detailed Boolean gene-to-

reaction mapping (Supplementary Table S2).

The model’s Boolean gene-to-reaction mapping accounts for

the fact that some enzymes are protein complexes, composed of

proteins encoded by two or more genes, and for the existence of

isoenzymes (cf. Figure 1). The requirement of several gene-

products for one enzyme is described by the AND rule, whereas

the possibility of different isoenzymes catalyzing the same reaction

is described by the OR rule. For example, a reaction catalyzed by

either one of two isoenzymes, each of which is a protein complex

composed of two different gene products, would be described by

the Boolean expression:

((gene1 AND gene2) OR (gene3 AND gene4)). Where genes 1

and 2 constitute the first isoenzyme, and genes 3 and 4 constitute

the second.

Gene-expression measurements for yeast growing on yeast-

extract peptone medium supplemented with either glucose (YPD)

or ethanol (YPEtOH), were taken from Gasch et al. [33]. We

classified the top 15% highest expressed genes as ‘highly

expressed’, and the bottom 15% lowest expressed genes as ‘lowly

expressed’. The yeast model’s gene-to-reaction mapping was then

used to classify reactions based on the expression of their

associated genes. The classification of reactions associated with

single genes is straightforward. In the case of reactions catalyzed

by protein complexes, the reaction is classified as lowly expressed if

any of its associated genes is lowly expressed. It is classified as

highly expressed if all of its associated genes are highly expressed.

In the case of reactions catalyzed by isoenzymes, a reaction is

classified as lowly expressed if all its isoforms are lowly expressed,

and classified as highly expressed if any of the isoforms is highly

expressed.

Maximizing the agreement between fluxes and gene
expression

The rH and rL reaction sets, composed on the basis of gene-

expression measurements, were used as inputs of an optimization

that searches for a flux distribution that maximizes the sum of two

numbers: the number of rH reactions carrying flux, and the number

of rL reactions that do not carry a flux. We will refer to this sum as

the ‘agreement score’. This optimization was proposed by Shlomi et

al. [27] and is subject to stoichiometric, thermodynamic and

enzyme-capacity constraints. We added the constraint that the

biomass reaction should have a non-zero flux. The optimization was

formulated as a mixed integer linear program (MILP):

max
v,yf ,yr,y

X
i[rH

y
f
i zyr

i

� �
z
X

i[rL
yi

� �
ð1Þ

subject to S:v~0 ð2Þ

lbƒvƒub ð3Þ

vizy
f
i (lbi{e)§lbi, i[rH ð4Þ

vizyr
i (ubize)ƒubi, i[rH ð5Þ

lbi(1{y)ƒviƒubi(1{y), i[rL

v[Rm

y
f
i , yr

i , y[½0,1�:

ð6Þ

The mass conservation constraint is enforced by Eq. 2, where S is

an n|m stoichiometric matrix, in which n is the number of

metabolites and m is the number of reactions, and v is the flux

vector. Thermodynamic (directional) and capacity constraints are

enforced by Eq. 3, where lb and ub are the vectors containing

lower and upper flux boundaries, respectively. For each reaction

in the highly expressed set (rH), yf and yr are Boolean variables.

When yf ~1, the flux through the reaction is forced to be larger

than the threshold e (Eq. 4). Conversely, when yr~1, the flux is

forced to be smaller than {e, i.e. to proceed in the reverse

direction (Eq. 5). Following Shlomi et al. [27] an e of 1.0 was used

throughout this study. For each reaction in the lowly expressed

set (rL), the Boolean variable y forces the flux through the

reaction to zero when equal to 1 (Eq. 6).

Exploring alternative optimal solutions
Solving the MILP in Eqs. 1 to 6 yields a flux distribution that

maximizes the number of reactions whose fluxes are consistent

with the expression of their genes. However, it is not the only

possible flux distribution that achieves the maximum agreement

score. In order to force the MILP solver to explore alternative

optimal solutions, we modulated the flux through each reaction

by changing its flux boundaries (Eq. 3). Each reaction was

forced, in turn, to be inactive or to carry a positive flux (we). If

the reaction was reversible, it was also forced to carry a negative

flux (v{e), i.e. to proceed in the reverse direction (see Figure 3).

For each reaction modulation we solved the MILP in Eqs. 1 to 6,

and verified whether the maximum agreement score was

achieved. In this way, we gathered a collection of flux

distributions, all of which achieve the maximum agreement

score. Next, we counted the number of times that each reaction

was active among these alternative flux distributions, and defined

two sets of reactions. High-frequency reactions (HFR) are those

that are active in all alternative optima, and zero-frequency

reactions (ZFR) are those that are inactive in all the alternative

optima.

Building environment-specific metabolic models for S.
cerevisiae

Figure 4 summarizes the process of constructing environment-

specific metabolic models. First, we defined a set of HFR and a set

of ZFR by maximizing the agreement between fluxes and gene

expression, and by exploring the alternative flux distributions that

maximize the agreement score. Second, we deleted the set of ZFR

and then used the MBA [26] to heuristically prune reactions

outside the HFR set, with the constraint that all HFR should be

able to carry flux. We will refer to this method for the construction

of environment-specific models that starts with the exploration of

alternative optima for the MILP in Eqs. 1–6, and that

subsequently reduces the original model based on the ZFR and

HFR, as ‘EXploration of Alternative Metabolic Optima’ (EX-

AMO), and provide an implementation of it in the Supplementary

Dataset S2.
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Predicting environment-specific essential genes
As a means to validate these smaller environment-specific

models we compared their gene-essentiality predictions with

those of two large-scale gene essentiality studies of yeast

growing on YPD or YPEtOH. Giaever et al. [37] constructed

a library of single gene deletion mutants in YPD, covering 96%

of the annotated open reading frames in S. cerevisiae. Snitkin et

al [38] tested 465 of these YPD-viable mutants for growth on

YPEtOH.

We used our environment-specific metabolic models to predict

essential genes using FBA [34]. We then calculated the sensitivity

(tp=(tpzfn)) and the positive predictive value (tp=(tpzfp)) of our

predictions. Where true positive predictions (tp) refer to correctly

predicted essential genes, false negatives (fn) refer to genes

predicted to be dispensable that are actually essential, and false

positives (fp) refer to genes predicted to be essential but that are

actually dispensable. Because the mutant library was constructed

in YPD, mutants that would be essential for growth in YPD but

dispensable for growth in some other medium are not available.

For this reason, the scope of the gene essentiality study on

YPEtOH excludes genes that are essential for growth in YPD.

Thus, genes that are essential for growth on YPD were excluded

in the prediction sensitivity and positive predictive value of

YPEtOH.

To further appraise the usefulness of our method, we compared

its predictions to those of two other methods that integrate gene-

expression with constraint-based models of metabolism: Jerby et

al. ’s MBA [26] and Shlomi et al. ’s iMAT (Eqs. 1–6) [27].

Following Frezza et al. [28], for MBA we chose to use the rH as

the high-probability reaction set. For iMAT, we used the same rH

and rL sets as we used for EXAMO. We also compared our

predictions with those generated using highly expressed genes as

predictors for essentiality. Highly expressed genes were defined as

the 15% highest expressed genes. The quality parameters:

sensitivity and positive predictive value where calculated in the

same was as for EXAMO.

Predicting metabolic states
We hypothesized that HFR are likely to be active in the

condition of interest. To investigate whether this hypothesis yields

meaningful predictions for the metabolic state of the cells, we

computed flux distributions for cells growing on YPD or YPEtOH

by minimizing the sum of all fluxes in the environment-specific

models subject to the constraint that HFR must carry flux.

Minimizing the sum of fluxes requires that each reversible reaction

is separated into a forward (vf ) and a reverse (vr) reaction, for

irreversible reactions vr~0. To minimize the sum of fluxes with

the constraint that all HFR should carry flux and considering the

fact that some HFRs are reversible, we wrote the following mixed

integer linear program:

min
vf ,vr ,y

X
i

v
f
i zvr

i ð7Þ

subject to S:v~0 ð8Þ

lbƒvƒub ð9Þ

v
f
i §yi e i[HFR ð10Þ

v
f
i ƒyi ubi i[HFR ð11Þ

vr
i §(1{yi)e i[HFR ð12Þ

vr
i ƒ(1{yi)lbi i[HFR

v[Rm

y
f
i , yr

i[½0,1�:

ð13Þ

The mass conservation constraint is enforced by Eq. 8, where S is

a n|m stoichiometric matrix, in which n is the number of

metabolites and m is the number of reactions, and v is the flux

vector. Thermodynamic (directional) and capacity constraints are

enforced by Eq. 9, where lb and ub are the vectors containing

lower and upper flux boundaries, respectively. For each reaction in

the HFR set we defined an integer variable y. If the yi~1, v
f
i is

bound to the interval ½e, ubi� and vr
i ~0, hence forcing the reaction

to be active in the forward direction. On the other hand, if yi~0,

vr
i is bound to the interval ½{lbi, {e� and v

f
i ~0, this forcing the

reaction to be active in the reverse direction. In this study we chose

a value of 1 for e in all our calculations. Notice that these integer

variables force reversible reactions to be active in either direction,

prohibiting that the forward and reverse directions are simulta-

neously active. An implementation of the mixed integer linear

program described above is provided in the Supplementary

Dataset S2.

Supporting Information

Dataset S1 Constraint-based models as lists of reac-
tions. Versions of Mo et al’s yeast metabolic model [30], are

included as list of reactions in comma-separated-value (csv) files.

All model files start with iMM904, the identifier used by Mo et al

([30] MM: Monica Mo, 904 genes). ‘deadEndRxnsDeleted’

identifies the model after deletion of dead-end reactions (see main

text). ‘examo_glc’ and ‘examo_eth’ identify the YPD- and

YPEtOH-specific models built using EXAMO. The ‘15’ that ends

these two last file-names indicates the percentage threshold used to

classify genes as highly or lowly expressed.

(ZIP)

Dataset S2 EXAMO scripts. Scripts for running the EX-

AMO software are provided. The user’s manual lists the necessary

dependencies and explains how to run the scripts and what input

and output files are used and generated by each script.

(ZIP)

Figure S1 Gene essentiality predictions varying gene
expression thresholds. The sensitivities and positive predictive

values (PPV) of the predictions of essential genes are shown for

YPD and YPEtOH for three different thresholds used to define

highly and lowly expressed genes (see main text). The methods

compared are: EXploration of Alternative Metabolic Optima

(EXAMO –red circles), Shlomi et al’s integrative Metabolic

Analysis Tool (iMAT –blue diamonds) [27], and Jerby et al. ’s

Model Building Algorithm (MBA –green squares) [26]. The

horizontal line marks the sensitivities and PPVs achieved with the

yeast model when the free uptake and secretion of all exchange

metabolites is allowed. These genes predicted to be essential for

growth using the original yeast model, unconstrained by gene
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expression measurements, are predicted to be essential regardless

of which nutrients are available to the cells.

(EPS)

Table S1 Gene-expression calls. Based on the gene

expression measurements from yeast cells growing on glucose

(YPD) or ethanol (YPEtOH) [33], we classified the top 15%

highest expressed genes as ‘highly expressed’ (denoted with a ‘1’)

and the bottom 15% lowest expressed genes as ‘lowly expressed’

(denoted with ‘21’). Genes outside the highly and lowly expressed

sets are indicated with a ‘0’.

(XLSX)

Table S2 Boolean gene-to-reaction mapping. The ge-

nome-scale constraint-based model of yeast metabolism by Mo et

al [30] includes a detailed Boolean gene-to-reaction mapping,

which is provided here as a list of reaction names with their

associated reaction identifies (id) and their associated genes.

(XLSX)

Table S3 Reaction-expression calls. Reactions were classi-

fied by expression based on gene-expression calls (Supplementary

Table S1) and the metabolic model’s detailed Boolean gene-to-

reaction mapping (Supplementary Table S2). This list of reaction

includes only reactions that have one or more genes associated

with them. Highly expressed reactions (rH) are indicated with a

‘1’, lowly expressed reactions with a ‘21’ and all others with a ‘0’.

(XLSX)

Table S4 Lists of high- and zero-frequency reactions for
YPD and YPEtOH. High- and zero-frequency reactions

computed by integrating gene expression from yeast cultures

grown on YPD or YPEtOH [33] and a genome-scale model of

yeast metabolism [30]. High-frequency reactions (HFR) are those

that are always active among the all alternative optimal flux

distributions and zero-frequency reactions (ZFR) are those that are

always inactive (see main text).

(XLSX)

Table S5 Metabolic state of yeast cells growing on YPD.
Reaction stoichiometries, identifiers, names, associated genes and

predicted fluxes are listed. Reactions with absolute fluxes lower

than 10E-10 are not shown.

(XLSX)

Table S6 Metabolic state of yeast cells growing on
YPEtOH. Reaction stoichiometries, identifiers, names, associated

genes and predicted fluxes are listed. Reactions with absolute

fluxes lower than 10E-10 are not shown.

(XLSX)
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