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Abstract

Identifying drug-drug interactions (DDIs) is a major challenge in drug development. Previous attempts have established
formal approaches for pharmacokinetic (PK) DDIs, but there is not a feasible solution for pharmacodynamic (PD) DDIs
because the endpoint is often a serious adverse event rather than a measurable change in drug concentration. Here, we
developed a metric ‘‘S-score’’ that measures the strength of network connection between drug targets to predict PD DDIs.
Utilizing known PD DDIs as golden standard positives (GSPs), we observed a significant correlation between S-score and the
likelihood a PD DDI occurs. Our prediction was robust and surpassed existing methods as validated by two independent
GSPs. Analysis of clinical side effect data suggested that the drugs having predicted DDIs have similar side effects. We
further incorporated this clinical side effects evidence with S-score to increase the prediction specificity and sensitivity
through a Bayesian probabilistic model. We have predicted 9,626 potential PD DDIs at the accuracy of 82% and the recall of
62%. Importantly, our algorithm provided opportunities for better understanding the potential molecular mechanisms or
physiological effects underlying DDIs, as illustrated by the case studies.
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Introduction

Drug-drug interaction (DDI) is a significant cause of adverse

drug reactions (ADRs), especially in patient populations on

multiple medications. A recent study indicated that medications

were commonly used together in older adults, with nearly 1 in 25

individuals potentially at risk of a major DDI [1]. Approximately

70% of interactions are clinically relevant and contribute to the

majority of ADRs [2]. DDIs occur when the pharmacologic effect

of a given drug is altered by the action of another drug [3], leading

to unpredictable clinical effects. DDIs can be categorized into

three types: pharmaceutical, pharmacokinetic (PK), and pharma-

codynamic (PD) [4,5]. Pharmaceutical interactions occur because

of a physical or chemical incompatibility. A PK interaction occurs

when one medication alters the absorption, distribution, metab-

olism, or excretion of another, changing the drug concentrations

arriving at the target sites. PD interactions occur if one drug has an

antagonistic, additive, synergistic or indirect pharmacologic effect

on another.

Current studies mainly focused on PK (especially Cytochrome

P450 enzymes) DDIs and established experimental and simulation

approaches to test for metabolic or transporter-based drug

interactions [6]. However, a large number of DDIs cannot be

explained at the PK or pharmaceutical levels and are supposed to

be potential PD DDIs (Figure S1, Materials and Methods). Many

of these interactions are not easily discernible because the endpoint

is often a potentially serious adverse event rather than a

measurable change in the concentration of the drug [5]. Typically,

the potential PD DDIs were mainly based on sporadic cases

reported during clinical trials. A number of severe PD DDIs are

not identifiable in the early stage and result in great losses to

human health. Thus far, the computational solutions to predict

DDIs have used two distinct approaches. The first approach,

termed similarity-based, predicted DDIs by measuring the

similarity of drug information. As an example, Gottlieb et al [7]

utilizes multiple drug-drug similarity measures to predict DDI. In

this respect, many previous methods which were originally

designed for inferring novel potential targets of drugs based on

various types of data, such as structures [8], targets [9], indications

[10], side-effects [11] and gene expression profiles [12], can also be

used to infer drug interactions. The second approach is the

knowledge-based approach that predicts DDI from scientific
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literature [13], an electronic medical record database [14] and the

FDA Adverse Event Reporting System [15]. However, both

approaches suffer from several limitations, such as the necessity to

distinguish drug classes and the inability to handle novel drugs for

which limited reports exist [7]. More importantly, they seldom

consider drug actions and their clinical effects in the context of

complex biological networks.

To ameliorate this situation, we adopted a network pharma-

cology strategy [16], which considers drug actions and their

clinical effects in the context of molecular network systems, and

proposed an algorithm to systematically predict PD DDIs. Using

known PD DDIs as golden standard positives (GSPs), we

demonstrated the superiority of our algorithm over previously

published methods. The predictions also agreed with similar

clinical side effects between the drugs, which was further

incorporated with S-score to increase the prediction performance

through a Bayesian probabilistic model. Importantly, our methods

provided not only a comprehensive list of potential PD DDIs, but

it also opportunities for further understanding of the molecular

mechanism and physiological effect underlying DDIs.

Results

PD DDIs are reflected at the molecular network level
To determine whether the network pharmacology strategy can

be used to understand DDIs, specifically PD DDIs, we first

investigated whether PD DDIs are reflected at the network level.

We examined the distribution of the targets of drug pairs with

known PD DDIs among the 1,249 FDA-approved drugs collected

in DrugBank [17] in a protein-protein interaction (PPI) network

from HPRD [18]. The connection for any possible drug pairs was

measured by the minimum shortest path between their targets in

the PPI network (Figure 1A, Materials and Methods). Out of the

21,049 drug pairs that have minimum target distances of zero, 924

(4.4%) were known PD DDIs (Figure 1B), which represents a ,6-

fold enrichment compared with all possible drug pairs. This is

expected because drug pairs with minimum distances of zero are

those sharing at least one overlapping target, and these have been

reported to have a high probability to form DDIs [9]. More

importantly, we found that the smaller the minimum distance

between two drugs’ targets the more likely a PD DDI occurs

(Figure 1B), suggesting PD DDIs can be discerned at the PPI

network level. In fact, the drug pairs with the minimum distance

#3 already cover the majority (.80%) of the known PD DDIs

(Figure 1C). Overall, the average distance of known PD DDI

targets is significantly shorter than the global average of possible

drug pairs in the network (P-value,2.2E-16, Wilcoxon rank sum

test).

An algorithm for predicting PD DDIs through PPI
network

Based on the above observation, we designed a metric for

systematically predicting PD DDIs by considering drug actions in

the context of the PPI networks. First, drugs were mapped onto a

PPI network based on their drug-target associations (Figure 2A).

Second, many drugs exert their therapeutic or adverse effects by

interfering with tissue-specific molecular targets that are usually

located in the same tissue where a pathological process occurs

[19]. Therefore, we weighed the PPI in the network by Pearson’s

correlation coefficient (PCC) of their encoding genes’ expression

profile across 79 human tissues [20] (Figure 2B). Then we defined

a target-centered system for each drug, which includes drug targets

and their first-step neighboring proteins in the PPI network

(Figure 2C). Finally, we defined a system connection score (S-

score) to describe the connection between two target-centered

systems in the PPI network as the following (Figure 2D):

S{score~
�xx{m0

s=
ffiffiffi

n
p

where �xx,s and n represent the mean, standard deviation and

number of the cross-tissue expression PCC of edges connecting

two drug-centered systems, respectively; m0 represents the average

PCC of all edges in the network as background. In addition, if two

target-centered systems share a gene, an artificial edge with PCC

of 1 is added between the two systems. Thus, S-score reflects the

tightness of connection between two target-centered systems in the

network, which not only depends on the number of edges

connecting the genes in these two target-centered systems but also

on the similarity in expression patterns across tissues.

Performance evaluation and comparison with other
methods

To evaluate our scoring scheme, we calculated S-scores for all

possible drug pairs among the list of FDA-approved drugs. Using

known PD DDIs collected in DrugBank as GSPs, we first

evaluated the correlation between S-score and the likelihood that

a PD DDI occurs. Indeed, the occurrence of PD DDIs decreased

with decreasing S-scores among all possible drug pairs (Figure 3A).

Additionally, there was a highly significant correlation between S-

score and the hits enrichment of GSPs (R2 = 0.66, P-value = 4.3E-

52) (Figure 3B). It indicated that the likelihood of a PD DDI to

occur is high if the two drugs’ targets are highly connected in PPI

network and co-expressed in the same tissues. Next, we used

receiver operating characteristic (ROC) curves to examine the

performance of our algorithm. We compared our prediction with

previously published methods (Materials and Methods, Text S1):

(1) target overlap, connecting two drugs if share at least one target

[9]; (2) target distance, connecting two drugs by their minimum

distance of shortest path between targets on PPI network

(Materials and Methods); (3) P-score, connecting two drugs by

their side-effect similarities [11]; (4) C-score, connecting two drugs

by their gene-expression signatures connectivity [12]; (5) indication

overlap, connecting two drugs if they share a similar indication

[10]; (6) text mining, connecting two drugs based on a co-

occurrence scheme [13]; (7) TWOSIDES, a database of

polypharmacy side effects for pairs of drugs mined from FDA

Adverse Event Reporting System [15]; (8) INDI, a method

predicted DDIs utilizing multiple drug-drug similarity measures

Author Summary

Drug-drug interaction (DDI) is an important problem in
clinical practice. In this study, we developed a novel
algorithm for systematically predicting pharmacodynamic
(PD) DDIs through protein-protein-interaction (PPI) net-
works. We calculated a score to predict potential PD DDIs
by integrating the information from drug-target associa-
tions, PPI network topology and cross-tissue gene expres-
sion correlations. The scoring system was validated by
known PD DDIs and agreed with similarities in drug clinical
side effects, which we further integrated to increase the
prediction performance. Our approach not only outper-
formed previously published methods in predicting DDIs,
but also provided opportunities for better understanding
the potential molecular mechanisms or physiological
consequences underlying DDIs.

Network-based Prediction of Drug-Drug Interaction
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Figure 1. PD DDIs reflected at the molecular network level. (A) A representative example of drug target distance: the minimum distance of
the shortest path between two drugs’ targets on PPI network. (B–C) Hit rate (B) and coverage(C) of known PD DDIs among the drug pairs grouped
by their target distances on the PPI network.
doi:10.1371/journal.pcbi.1002998.g001

Figure 2. Algorithmic pipeline. (A) Mapping drugs onto PPI network through drug-target associations. (B) Weighting PPI network by gene
expression profile across human tissues. (C) Defining target-centered system, including known drug-targets and their first-step neighbor protein on
PPI network. (D) Scoring systematic connectivity based on drugs’ target-centered systems (S-score). (E) Scoring phenotypic similarity based on drug
clinical side effects (P-score). (F) Cross-validating between S-score and P-score. (G) Integrating by a Bayesian probabilistic model. (H) Validating the
prediction performance using GSP DDIs from two independent databases, DrugBank and STITCH. (I) Comparing with other methods. (J) Explaining
the molecular mechanisms of the polypharmacy side effects recorded in TWOSIDES.
doi:10.1371/journal.pcbi.1002998.g002

Network-based Prediction of Drug-Drug Interaction

PLOS Computational Biology | www.ploscompbiol.org 3 March 2013 | Volume 9 | Issue 3 | e1002998



[7]. Targets-based methods (target overlap, target distance and S-

score) are better than those using indication, gene-expression

signatures or side-effect similarities to connect drugs (Figure 3C).

Importantly, S-score, by integrating the information from drug-

target associations, PPI network topology and cross-tissue gene co-

expression, has the best performance (Figure 3C). Interestingly,

using different types of known DDIs as GSPs (Materials and

Methods), we found that S-score mainly predicted PD, but not PK

or pharmaceutical DDIs (Figure 3D). Using the DDIs recorded in

DrugBank as GSPs, we also observed that our method outper-

formed previous methods (Figure S2A). By using the drug-drug

associations with medium text mining confidence score from the

STITCH database [13] as another evaluation criterion, we also

confirmed the robustness of S-score in predicting potential DDIs

(Figure S2B), even for our novel predictions which excluded the

known DDIs in DrugBank (Figure S2C). These results excluded

the possibility that the performance of S-score was associated with

biases of our semi-automatic text-mining method of classifying

known DDIs into three types, and demonstrated the good

performance of S-score is independent of the GSPs used.

Expectedly, taking a negative set with a different size had a

negligible effect on the result (Figure S2D).

Drugs having predicted DDIs produce similar side effects
To further validate our predictions, we examined the pheno-

typic effects of our predictions using published drug clinical side

effect data [21]. Based on the observation that similar disorder

phenotypes indicate overlapping molecular mechanisms [22], we

asked whether two drugs have similar clinical outcomes if they are

highly connected in their target-centered systems (Figure 2E and

2F). We measured the phenotypic connections between two drugs

by their side-effect similarities (P-score) following a published

algorithm, which was originally designed to infer novel potential

targets of marketed drugs [11]. The drug pairs with high S-scores

indeed had more similar phenotypes (Figure 3E, P-value = 2.0E-72,

Wilcoxon rank sum test). Thus, S-score calculated using PPI

network might partially explain the drug phenotypic overlap.

Integration by a Bayesian probabilistic model
To further increase the prediction performance, we integrated

the evidences from S-score and P-score as a likelihood ratio (LR)

using a Bayesian probabilistic model (Figure 2G, Materials and

Methods). As a result, we observed a clear improvement of

prediction specificity and sensitivity (Figure 3C). The area under

the ROC curve (AUC) increased from 0.674 to 0.731. In

particular, for drug pairs with both evidences, the AUC of LR

(defined as LR(S-score and P-score)), approached 0.812

(Figure 3C). We applied the algorithm to the FDA-approved

drugs and generated a list of prioritized drug pairs where PD DDIs

might likely occur. Overall, the list of 9,626 drug pairs with LR(S-

score and P-score) .2 were 7.5-fold enriched for known PD DDIs

against all possible drug pairs (Table S1), which represents an

accuracy of 82% and a recall of 62% (Materials and Methods). To

further assess our novel predictions, we evaluated the potential side

effects of our novel predictions against the TWOSIDES database

[15], which collected polypharmacy side effects for pairs of drugs

from the FDA Adverse Event Reporting System (Figure 2J). We

observed a significant overlap between our novel predictions and

TWOSIDES (P-value,2.2E-16, Fisher’s exact test), where 27% of

the novel predictions overlapped the list of TWOSIDES. The

percentage approached 60% for our top 100 novel predicted drug

pairs (Table S1). The prioritized list together with the available

drug indication information, such as whether two drugs were likely

co-used, can provide the rationale for which PD DDIs we should

be mindful of during clinical trials or treatment.

Case studies
The most common drugs at the top of the prioritized list of

potential PD DDIs were associated with tricyclic antidepressants

(TCA) (Table S1), which are primarily used in the clinical

treatment of mood disorders such as major depressive disorder

(MDD) and dysthymia. It has been reported that patients taking

antidepressants have more opportunities to experience DDIs,

because antidepressants are often prescribed for months or years.

In addition, patients with depressive disorders typically have

comorbid symptoms that require administration of concomitant

medications [23]. Although many of these drug interaction

mechanisms remain unclear, it is recommended that concomitant

therapy of TCAs should be used with caution considering the

major clinical significance [24,25]. As an example, within the top

10 predicted DDIs, a potential interaction was predicted between

two TCAs (desipramine and trimipramine) (Table S1). Such an

interaction has been reported to increase the risk of additive QTc-

prolongation and serious ventricular arrhythmias in DrugBank

[17]. In our network model, the target-centered systems of these

two drugs highly overlapped and connected with correlated cross-

tissue gene expression (Figure 4A), which is indicated by an S-score

of 9.6 (Student’s t-test P-value,2.2E-16, compared to all possible

drug pairs). Interestingly, both of two drugs’ target-centered

systems are enriched in genes associated with the Gene Ontology

‘‘regulation of heart contraction’’ (GO:0008016) (P-value = 6.9E-5

and P-value = 1.6E-3, respectively), which might help in explaining

the molecular basis of the potential outcome of the concomitant

administration of the two drugs.

Our novel predictions together with the information from

TWOSIDES provided opportunities for better understanding the

potential molecular mechanisms or physiological effects underly-

ing DDIs (Figure 4B, Figure S3 and Text S1). As an example, an

interaction was predicted to exist between zonisamide and

memantine (Figure 4B). Zonisamide is a sulfonamide anticonvul-

sant approved for using as an adjunctive treatment of partial

seizures in adults with epilepsy by blocking sodium and calcium

channels, which leads to the suppression of neuronal hypersyn-

chronization (i.e. convulsions) [17]. Memantine, an amantadine

derivative used in the treatment of Alzheimer’s disease, exerts its

action through uncompetitive NMDA receptor antagonism, which

protects against elevated concentrations of synaptically released

glutamate in the brain of demented patients [17]. The two drugs

do not have common targets, but do have similar cross-tissue

expressions between their drug-centered systems (S-score = 6.5, P-

value,2.2E-16) and similar side effects (P-score = 73.5, P-

value,2.2E-16). Although it has not been reported in DrugBank

[17], TWOSIDES recently reported that this drug pair has an

significant association with the adverse event thrombocytopenia

(P-value = 1.36E-177) in the FDA Adverse Event Reporting

System, which cannot be clearly attributed to the individual drugs

alone [15]. Our analysis reveals that the genes in two drug target-

centered systems are highly enriched in genes significantly highly

expressed in the ‘‘Platelet’’ (UP_TISSUE) (P-value = 8.8E-3).

Interestingly, such an interaction cannot be predicted based only

on the knowledge of their drug targets as neither of the individual

drug’s target gene set is related to the thrombocytopenia symptom.

Yet, consistent with their intended effects, emantine’s targets are

enriched for ‘‘N-methyl-D-aspartate selective glutamate receptor

complex’’ (GO:0017146) (P-value = 1.4E-2), which is involved in

Alzheimer’s disease [26], while zonisamide’s targets are enriched

for ‘‘voltage-gated sodium channel complex’’ (GO:0001518) (P-

Network-based Prediction of Drug-Drug Interaction
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value = 3.1E-4), which is involved in pathological alterations in

epilepsy [27].

Additional examples of novel predictions of the PD DDIs can be

found in Figure S3 and Text S1.

Discussion

Despite the many methods previously applied to identify

potential drug interactions from different aspects, these approach-

Figure 3. Performance evaluations. (A) All possible drug pairs ranked and binned into groups by their S-score. (B) Fold-enrichment of hits of
known PD-like DDIs in each bin (y-axis) plotted against average S-score (x-axis). (C) ROC curves to evaluate the performance of various scoring
methods using DrugBank PD-like DDIs as GSPs. (D) ROC curves to evaluate the prediction performance of S-score using three types (PD, PK,
pharmaceutical) or known DDIs in DrugBank as GSPs. (E) Associations of S-score with drug clinical side effect similarity (P-score). Average of P-score
(y-axis) is plotted for top N% of drug pairs ranked by S-score (x-axis). P-value for top 5% drug pairs against all possible drug pairs was calculated from
Wilcoxon rank sum test.
doi:10.1371/journal.pcbi.1002998.g003

Network-based Prediction of Drug-Drug Interaction
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Figure 4. Case studies. (A) Desipramine and trimipramine. (B) Zonisamide and memantine. The drug target-centered systems (ellipse) colored for
different drugs, includes drug targets (vee) and their first-step neighboring proteins (circle) in the PPI network. The edges in the network were
weighted by the PCC based on cross-tissue expressions.
doi:10.1371/journal.pcbi.1002998.g004

Network-based Prediction of Drug-Drug Interaction
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es have various limitations. To our knowledge, we for the first

time, present an algorithm for systematically predicting PD DDIs

by considering drug actions and their clinical effects in the context

of complex PPI networks. The integration of various sources of

information such as drug targets, network topology, cross-tissue

gene expression correlations and side effect similarity indeed give

rise to a better performance in predicting DDIs than those

obtained with individual data sources. Finally, our network model

provides opportunities for better understanding the potential

molecular mechanisms or physiological effects underlying DDIs.

However, like other computational-based techniques in this

field, there still exists a gap between our scientific predictions in

theory and clinical application. First, limited by the current

knowledge of the molecular network as well as the robustness of

the biological system itself, our prediction only provides the

relative likelihood of the occurrence of a PD DDI. Second, as

currently only a few types of data were used for prediction, the

prediction power is bound to improve when integrated with more

clinical data, if available, and complemented with recently

published DDI prediction methods from different aspects. Last,

the predicted potential PD DDIs are not necessarily always

harmful but sometimes can also be beneficial [28]. Even though

the current GSPs include only a small number of beneficial

interactions, such interactions may occur through the same

mechanism - overlapping network, in which case can be predicted

by our method. With these further improvements, our method can

be potentially applied in drug discovery and development, serving

as an in silico systematic screen to provide a list of prioritized

potential PD DDIs in a cost-effective manner or be applied to

relabeling drug interaction warnings for marketed drugs. Our

method can also reveal potential mechanisms or effects underlying

DDIs and provide the necessary scientific evidence for further

investigation of the drugs during clinical trials. These mechanisms

could be valuable for rational poly-medication among existing

drugs for new purposes to enhance beneficial drug combinations

while avoiding harmful DDIs.

Materials and Methods

Data sets
Drug information was downloaded from DrugBank database

(http://www.drugbank.ca/) on May 9, 2011. In DrugBank, a drug

target is defined as ‘‘a protein, to which a given drug binds,

resulting in an alteration of the normal function of the bound

molecule and a desirable therapeutic effect’’. In our further

analysis, we mainly focused on the list of 1,249 FDA-approved

drugs which include 4,776 associations with 1,289 targets. A PPI

network, including 34,998 edges, was taken from Human Protein

Reference Database (HPRD; http://www.hprd.org/) [18] on Dec

7, 2010. To weight the edges in the network, we used PCC based

on the pair-wise gene expression profiles in 79 human tissues [20].

Prediction assessment
Golden Standard Positives (GSPs)/Negatives

(GSNs). To measure the performance of predicted drug

interactions, 14,746 known DDIs from DrugBank which are

defined as ‘‘interact, interfere or cause adverse reactions when

taken with two drugs’’, were used as GSPs. We separated these

DDIs into three classes based on their clinical label descriptions

using a semi-automatic text mining method: (1) pharmaceutical

interactions, where the description label contains any of the

keywords- ‘‘physicochemical’’, ‘‘non-absorbable’’, ‘‘solution’’; (2)

PK interactions, where the label contains any of the keywords-

‘‘CYP’’, ‘‘absorption’’, ‘‘distribution’’, ‘‘metabolism’’, ‘‘excretion’’,

‘‘concentration’’, ‘‘level’’, ‘‘metabolite’’, ‘‘metabolized’’, ‘‘enzyme

inducer’’, ‘‘clearance’’; (3) PD-like interactions - the rest. The

classification has also been used in a paper recently published [7].

In total, it resulted in 82 pharmaceutical DDIs, 3,259 PK DDIs

and 11,405 PD-like DDIs (Figure S1). In our analysis, we used the

PD-like DDIs as GSPs if not stated otherwise. Since the true

negative set of DDIs is not available, similar to a recent study [7],

we randomly generated a set of drug pairs (not part of the GSPs)

with five-times the size or an equal size as the GSPs, as the GSNs.

The difference in the size of the GSNs has negligible effect on the

result (Figure 3C and S2D). Therefore, we used GSNs with an

equal size as the GSPs if not stated otherwise.

To demonstrate the robustness of our method in predicting

potential DDIs, 32,403 drug-drug associations (among the drugs

listed in DrugBank) with medium text mining confidence score

(.400) from STITCH database (http://stitch.embl.de/) were

used as another evaluation criterion.

Fold enrichment. To evaluate whether the drug pairs

identified by high S-score are more likely to occur GSP DDIs,

all possible drug pairs were ranked by the S-score and binned into

groups of 1,000 drug pairs. Fold enrichment over background is

defined as (m/n)/(M/N), where m is the number of GSPs among all

possible M GSPs within each bin of n drug pairs among the total of

N all possible drug pairs.

ROC curve. We used ROC curves to evaluate the perfor-

mance of our prediction. True positive rate (TPR) and false

positive rate (FPR) are defined as:

TPR~
TP

TPzFN

FPR~
FP

FPzTN

where TP represents true positive, TN represents true negative, FP

represents false positive, FN represents false negative.

Accuracy and recall. For a drug pair with both evidences

from S-score and P-score, we used LR(S-score and P-score) .2 as

the threshold to determine whether a PD DDI might actually

occur between the two drugs. Accuracy and recall are defined as:

Accuracy~
TPzTN

TPzTNzFPzFN

Recall~
TP

TPzFN

Comparison with other methods
To compare the prediction performance of our algorithm with

previously published methods, we selected several representative

methods in the field of DDI prediction [7,13,15] and also covered

some approaches that were originally designed for inferring novel

potential targets of drugs but can also be used to infer drug

interactions [8,9,10,11].

Target overlap. Yildirim et al constructed a ‘drug network’,

with nodes representing drugs, and two drugs connected to each

other if they share at least one target protein [9].

Target distance. Instead of simply calculating the overlap

between two drugs’ targets, we measured the connection between

drug targets by their minimum shortest distances in PPI network.

Network-based Prediction of Drug-Drug Interaction
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Shortest path between any two targets was first searched using

Dijkstra’s algorithm. Then, we selected the minimum distance of

the shortest path between their targets to describe the distance of

two drugs on PPI network (Figure 1A).

C-score. The expression connectivity score (C-score) of all

possible drug pairs are locally calculated following the algorithms

of Connectivity Map [12], which uses gene-expression signatures

to connect small molecules based on the assumption that cells

treated by drugs with similar mechanisms of action generally

exhibit correlated gene expression profile. The drug, batch and

gene expression information of all ,6,000 drug treatments were

downloaded from cMAP website (http://www.broadinstitute.org/

cmap/) on May 27, 2011.

P-score. Campillos et al used side-effect similarities (P-score)

to measure the connection between two drugs to infer novel

molecular interactions between drugs and potential targets [11].

We calculated the phenotypic similarity following their algorithm

by using a more comprehensive side effects resource of ,800

drugs downloaded from a public side effect resource (http://

sideeffects.embl.de/) that connects 888 marketed drugs to 1,450

side effect terms [21].

Indication overlap. In Berger and Iyengar’s work, drugs

were connected if sharing a common therapeutic indication

described by the Anatomical Therapeutic Chemical Classification

System (ATC) third level codes [10]. It is based on the notion that

co-administration of drugs for a common indication may enhance

clinical overlapping outcome, which is moderate when given

alone. The drug and ATC-code mapping was downloaded from

DrugBank on May 9, 2011.

Text mining. The text mining score between two drugs

indicating their association based on a co-occurrence scheme were

downloaded from the STITCH database [13] (http://stitch.embl.

de/) on June 11th, 2012.

TWOSIDES. TWOSIDES is a database of polypharmacy

side effects for pairs of drugs mined from FDA Adverse Event

Reporting System [15]. It contains 868,221 significant associations

between 59,220 pairs of drugs and 1,301 adverse events. Drugs

were connected if they are associated with at least one adverse

event that cannot be clearly attributed to the individual drugs

alone.

INDI. Gottlieb et al [7] predicted 46,709 non- cytochrome

P450 (CYP)–related DDIs utilizing multiple drug-drug similarity

measures, named INferring Drug Interactions (INDI).

Bayesian probabilistic model
To integrate the evidences from network system connectivity

score (S-score) and drug phenotypic similarity score (P-score), we

used a Bayesian probabilistic model described in Xia et al [29],

where the Bayesian model has been proven to be particularly

competent in predicting PPIs by integrating various evidences.

The method has also been used to combine the different types of

clues for predicting PPIs in a paper recently published [30].

Briefly, in the Bayesian probabilistic model, each score is

automatically weighted according to its confidence level. The

scoring schemes (S-score, P-score) were integrated as a likelihood

ratio (LR) for drug pairs to be true positive DDIs versus true

negative DDIs by multiplying from all the independent evidences

as following:

LR(S{score,P{score)~ P
i~S,P

i
LR(i{score)

LR(i{score):
P(i{scoreDpos)

P(i{scoreDneg)

where LR(i-score) represents the likelihood ratio of evidence i-score.

It relates prior and posterior odds according to the Bayes rule:

Oposterior~LR(i{score) �Oprior

Oposterior~
P(posDi{score)

P(negDi{score)
, Oprior~

P(pos)

P(neg)

where the terms ‘posterior’ and ‘prior’ refer to the condition before

and after considering the evidence information i-score; the prior odds

(Oprior) of finding the positive and negative hits can be can be

calculated by considering the total number of GSP/GSN DDIs

within all the possible drug pairs; the posterior odds (Oposterior) can be

calculated by binning all possible drug pairs into discrete intervals

according to the evidence i-score. We defined LR (S-score and P-

score) for drug pairs with both evidences, while LR (S-score or P-

score) for those with at least one evidence, respectively.

Functional annotation analysis
Functional annotation analysis was performed using the

DAVID web-server [31].

Availability
The datasets used in this paper and the core code in calculating

the S-score were packaged and provided on our website http://

www.picb.ac.cn/hanlab/DDI.

Supporting Information

Figure S1 Three types of known DDIs curated in DrugBank. (A)

Classification of DDIs in DrugBank using a semi-automatic text

mining method. (B) Percentage of three types of known DDIs

curated in DrugBank.

(EPS)

Figure S2 ROC curves to compare the prediction performance

of various scoring methods. (A) GSP DDIs from DrugBank known

DDIs. (B) GSP DDIs from STITCH DDIs with medium text

mining confidence score. (C) GSP DDIs from STITCH DDIs with

medium text mining confidence score to evaluate novel predictions

by each scoring method, which excluded the known DDIs in

DrugBank. (D) GSP DDIs from DrugBank PD DDIs and GSN

DDIs randomly selected 5-times as large as the positive set

(Materials and Methods).

(EPS)

Figure S3 Additional case studies. (A) Atenolol and Meperidine

and (B) Mirtazapine and Propranolol. The figure legend is the

same as those in Figure 4.

(EPS)

Table S1 List of drug pairs with LR (S-score and P-score) .2.

(XLSX)

Text S1 Appendix with detailed comparison with the recently

published methods and discussion on additional case studies of

novel PD DDIs predicted.

(DOCX)
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