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Abstract

Efficient cognitive decisions should be adjustable to incoming novel information. However, most current models of decision
making have so far neglected any potential interaction between intentional and stimulus-driven decisions. We report here
behavioral results and a new model on the interaction between a perceptual decision and non-predictable novel
information. We asked participants to anticipate their response to an external stimulus and presented this stimulus with
variable delay. Participants were clearly able to adjust their initial decision to the new stimulus if this latter appeared
sufficiently early. To account for these results, we present a two-stage model in which two systems, an intentional and a
stimulus-driven, interact only in the second stage. In the first stage of the model, the intentional and stimulus-driven
processes race independently to reach a transition threshold between the two stages. The model can also account for
results of a second experiment where a response bias is introduced. Our model is consistent with some physiological results
that indicate that both parallel and interactive processing take place between intentional and stimulus-driven information.
It emphasizes that in natural conditions, both types of processing are important and it helps pinpoint the transition
between parallel and interactive processing.
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Introduction

Research on human action control typically distinguishes

between two types of action: re-actions issued in response to some

external stimulus event and voluntary actions based on an internal

decision to act [1,2]. There has been a long-standing debate on

whether these two types of action are controlled by two different

brain systems. Some studies using neurophysiological, behavioural

or neuropsychological methods suggest that this is indeed the case

[3–6; for review, see Refs. 2,7]. Patients suffering from ‘‘utilization

behaviour’’ (UB), for example, show a strong tendency to use

objects they spot in the environment without any clear need or

purpose [8]. This behaviour has been explained in terms of a lack

of inhibition and modulation of the external action system due to

damage in the voluntary system [8]. Other studies, however, point

to the existence of common control mechanisms. In a recent study

[9], for example, participants were asked to prepare and execute

left- or right-hand voluntary actions. Occasionally, the voluntary

action preparation was interrupted by a stimulus requiring either a

left- or right-hand response. The results showed that increased

voluntary motor preparation, as assessed by the readiness

potential, produced faster stimulus-driven responses on congruent

trials (i.e., when participants voluntarily prepared the same hand

that was also used in response to the target stimulus) than on

incongruent trials. This suggests that voluntary and stimulus-

driven actions share some central preparatory mechanisms.

It is evident that voluntary and stimulus-driven action control

are at least to some extent based on separate mechanisms, for the

simple reason that stimulus-driven but not voluntary action control

needs to be linked to the perceptual system. Conversely, it is also

obvious that voluntary and stimulus-driven action control are to

some extent based on common mechanisms, as it seems

undisputed that the most final steps of action execution use the

same cerebral structures. Therefore, we propose that an appro-

priate model to account for voluntary and stimulus-driven actions

should be composed of two stages, a first stage where the two types

of actions are dissociated and a second stage where they are

combined. Thus, the issue is not whether there are one or two

systems but rather where the transition between the two stages is.

As a consequence, to better understand the interaction between

voluntary and stimulus-driven action control, we need to develop

tools that embrace the notion of the existence of both differences

and commonalities between voluntary and stimulus-driven action

and that are capable of pinpointing them.

The goal of the current study is to provide evidence for a two-

stage model of action control. Our study is very tightly rooted in a

new methodological approach developed by Stanford and

colleagues [10–12]. Participants are required to initiate a choice

response to a left or right target stimulus. Importantly, the target is

presented with a variable delay, called gap, after participants began

to prepare their action. For very short gaps the action is truly

stimulus-driven, whereas for long gaps, it is truly intentional, as

participants no longer have the time to take the stimulus into

account. For intermediate gap durations, the target is possibly able

to influence the ongoing voluntary action preparation. This

paradigm mimics situations in which we have to anticipate and
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start preparing an action even before the stimulus the action is

supposed to respond to is available, for instance, when a goal

keeper has to anticipate where the opponent will shoot the ball and

prepare his action even before having any visual cue. The

paradigm enables us to investigate whether, and if so, how and

from when on voluntary and stimulus-driven action preparation

interact.

In one of the studies the present expriment is based on

investigated monkeys were required to perform internally/

externally chosen left/right saccades [10]. The authors proposed

a race-to-threshold model where motor preparation for left/right

responses accumulates over time to account for the data [13–15].

Models where perceptual evidence accumulates over time have

indeed been supported by both behavioral and neurophysiological

studies [13–17]. However, this particular type of task [10] is not

purely perceptual in nature. The participant first starts to prepare

an action without the perceptual information being available. It is

clear that the evidence accumulated during this stage is not

‘‘perceptual’’, but rather internal. To this extent, the paradigm is

close in spirit to another one used in action control [18].

To capture this aspect of the task, the current research focuses

on how, precisely, internal (voluntary) and external (stimulus-

driven) accumulation of evidence interact. To model our results we

conceptualize internal and external accumulation of evidence as a

two-system process having both a separate and a common stage.

This hybrid model includes a transition threshold below which the

signals accumulate separately, and above which they interact

(resulting in facilitation in case of congruent and interference in

case of incongruent actions). Our experiments also allows us to

quantify the relative importance of each stage, thus demonstrating

that they are both necessary.

Results

Experiment 1: Behavioral results
In our task [10], participants were presented with a Go Signal

followed by the appearance of a Target Signal to the left or the right

of fixation and a distractor object on the other side (see Fig. 1). The

target was defined by its color (red or green) chosen randomly for

each trial and indicated to the participant as the color of the

fixation point. Participants were instructed to press a key (Go Key)

in response to the Go Signal and immediately afterwards to initiate

a choice response to the side of the target (left or right). The Target

Signal was presented after the Go Key with a variable delay called

gap. Therefore, in trials where the gap is too long, participants had

to initiate their choice response even before appearance of the

Target Signal. In order to prevent participants from waiting for

the presentation of the target and from answering systematically

too quickly without taking into account the target, a feedback

procedure was introduced that encompassed both speed and

accuracy performance (see Methods for details). All participants

had an accuracy above chance (mean = 71.5% correct,

SD = 5.8%).

We present data pooled across all ten participants. As

anticipated, accuracy significantly decreased as the gap increased

(F(10,99) = 9.4, p,0.0001), simply because participants did not

have any opportunity to revise their initial decision if the gap was

too long. In addition, Response Times (RT), that is, the time

between the Go Key press and the choice response, increased

gradually with increasing gap (F(10,99) = 6.6, p,0.0001). Howev-

er, the slope of RT increase with gap was less than one for all

participants (mean estimated slope = 0.34, maximum of the upper

bound of the 95% individual confidence interval = 0.71) indicating

that participants possibly waited for the target to appear on some

trials but not all (Fig. 2 A–B).

A key variable of the analysis is the raw Processing Time (rPT)

introduced by Stanford and colleagues (10). The rPT is the time

during which the target information was available before the

choice response was carried out. More precisely, the raw

processing time is defined as: rPT = RT { Gap. Thus, positive

values correspond to a choice response after target onset, and

negative values correspond to a response before target onset. The

percentage of correct choice responses increased sharply with rPTs

(Fig. 2C): under a critical value of rPT (202 ms6.4, s.e. computed

with a Bootstrap procedure) responses were given at random

whereas above this value accuracy reached quickly 100%. Fig. 2D

shows the normalized distribution of the rPTs separately for

correct and error trials. The distribution of correct choice

responses looks like the superposition of two component distribu-

tions, one identical to the rPT distribution in the case of erroneous

responses, and one specific to correct responses. This component

reflects actions carried out without perceptual information being

taken into account (because the rPT was too short). The second

component of the correct distribution, corresponding to longer

rPTs, reflects actions in response to the target.

Modeling
We propose a hybrid model in which the decision of a particular

choice response is the result of a two-stage race between an

internal variable that codes randomly for one or the other response

and an external variable that codes for the target side. During the

first stage of the race, the two variables accumulate independently,

each at a constant rate drawn from a lognormal distribution of a

certain mean and variance. The internal variable starts accumu-

lating as soon as the Go key is pressed while the external variable

starts accumulating only at the appearance of the target (see Fig. 3).

Indeed, until target presentation the participant has no sensory

information to rely on.

It is only after both variables crossed a first threshold, the

Transition Threshold, that the common stage starts where the

external variable influences the internal one. We distinguish

congruent from incongruent trials depending on whether internal

Author Summary

The topic of our study is the interaction between intentional
and externally-driven actions. The contemporary literature
on motor control in primates clearly distinguishes two
neural mechanisms for these two types of actions. We
believe that this distinction is artefactual and comes in part
from the fact that intentional and externally-driven actions
have been studied by different groups of researchers, using
different methodologies. In real life however, voluntary
planned actions such as making a cup of tea are often
interrupted by other actions in response to the outside
world. In the present study, we specifically investigate the
interaction between intentional and externally-driven ac-
tions. We asked participants to anticipate their response to
the delayed appearance of a target. We find strong
interactions between the prepared action and the target-
triggered response: perceptual decisions are quicker when
the two actions are congruent. To account for our
behavioral results, we propose a computational model that
is based on two stages, the first in which external and
internal evidence accumulate separately, and the second in
which internal processes are modulated by externally-
driven ones. This model allows us to establish that
intentional and externally-driven actions really interact only
in half of the decision making process.

Intentional and Reactive Decisions
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and external variables code for the same or different responses. In

congruent trials, the external facilitates the internal variable. In

contrast, in incongruent trials, the external inhibits the internal

variable. The first variable to cross the second threshold, the

Response Threshold, triggers execution of the action it codes. In our

task the action is most often triggered by the internal variable

because the internal variable always starts accumulating first.

However, it can happen (especially for short gaps) that the external

crosses the second threshold before the internal crosses the first

threshold. In that case that resembles a traditional reaction time

experiment, the action is purely triggered by the external stimulus.

Please notice that the RT distributions are necessarily a mixture

of congruent and incongruent trials (where internal and external

variables coded for the same or different responses). However, the

congruency of the two variables is in principle unknown to the

experimenter, as the internal decision of the participant is not

known. To deal with this problem, we present a method to

estimate the distributions for the two types of trials (congruent and

incongruent) in the second Experiment.

The model includes seven parameters: the means mi,með Þ and

standard deviations si,seð Þ of the lognormal distribution of the

internal and external accumulation rates, the Transition Thresh-

old ht (the Response Threshold is set arbitrarily to 1000, all other

parameters being scaled relative to this value),the acceleration

factor A that represents the time needed for the external variable to

fully influence the internal one, and an execution delay eD.

Table 1 presents the values of the parameters corresponding to

the best fit for each participant obtained by maximizing the

likelihood of the rPT distribution (the averaged model fit is

represented as continuous lines in Fig. 2).

Because our task is similar to that used by Stanford et al. [10],

we can compare the performance of our hybrid model with their

model, which is a single race-to-threshold between two decision

variables, representing right and left choices. The two variables

start accumulating with randomly drawn rates, then, after the gap,

color discrimination affects the decision process by accelerating the

variable representing the target side and decelerating the variable

of the distractor side. Without affecting the spirit of their model,

we used a slightly simplified version that contained only eight

parameters rather than eleven (see Text S1). We also compared

our model to a simpler version of it that was used in another task

[19], a version of the drift diffusion model [13] adapted to our task

and an Ornstein-Uhlenbeck process [20]. In this model there is

only an independent race stage without then transition threshold.

We compared the models at the group level [21] using BIC

(Bayesian Information Criterion) and AIC (Akaike Information

Figure 1. Sequence of trial events. The fixation dot indicates the target color. As soon as the participant hears a sound, the Go Signal, she is
required to press one of two Go Keys (‘2’ or ‘8’ on a numeric keypad). Which Go Key to press is indicated by the pitch of the Go signal. After a variable
time Gap (0–330ms) that starts when the participant presses the Go Key, a target and a distracter dots appear on either side of the fixation dot. The
participant has to initiate her motor response (pressing the key on the left or right of the Go Key to indicate her choice of target location)
immediately after pressing the Go Key, even though the actual location of the target is available only after the Gap.
doi:10.1371/journal.pcbi.1003013.g001

Intentional and Reactive Decisions
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Criterion) for each model and each subject as a measure of

evidence. The performance of our model was superior to the other

models: the exceedance probability [21], i.e. the probability that

our model was the more frequent in our population of subject, was

greater than .95 both for the AIC criteria and the BIC criteria (see

Table S1, S2 in Text S1 for the individual AIC and BIC values).

Experiment 2: Introducing a bias to estimate the
congruent/incongruent distributions

Our model is based in part on the accumulation of evidence of

an internal variable that is aimed arbitrarily to one side or the

other. When this internal variable crosses the transition threshold,

it starts to be affected by the stimulus-driven process. At that point,

Figure 2. Behavioral results and model performance in Experiment 1. In A, B, and C behavioral data for N = 10 subjects are represented in
dashed red lines with the red area corresponding to 61 s.e. of inter-subjects variability. Results labeled ‘‘model’’ are the averaged fit of the ten
subjects using parameters of Table 1. (A) Percentage of correct responses as a function of time gap. (B) Mean reaction time (RT) with standard
deviation for the whole data set as a function of time gap. (C) Percentage of correct responses as a function of raw Processing Time (rPT). (D)
Normalized frequencies of rPT for correct (red area) and incorrect trials (green area). In C and D bin width is 35 ms. See Fig. S1 in Text S1 for the fit of a
typical subject.
doi:10.1371/journal.pcbi.1003013.g002

Figure 3. Illustration of congruent and incongruent trials in the Hybrid model. The internal variable starts accumulating as soon as the Go
Key is pressed whereas the external variable starts accumulating after tGap which varies across trials. During the first stage, the two variables
accumulate independently. As soon as both variables have entered the common part (at tc), the external variable starts influencing the internal one:
for congruent trials (A) the internal accumulation rate increases in a smooth way to reach the sum of the initial internal rate and the external rate. (B)
In incongruent trials the internal variable is inhibited and its rate decreases to reach the difference between the initial internal rate and the external
rate. Note that congruent trials are always correct, whereas incongruent trials can be incorrect.
doi:10.1371/journal.pcbi.1003013.g003

Intentional and Reactive Decisions
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the stimulus-driven process can either facilitate or inhibit the

intentional process, depending on whether the initial decision is

congruent or incongruent with the stimulus. Unfortunately, in our

first experiment, there is no way to analyze separately the

congruent and incongruent conditions, simply because we do not

know what the initial decision was. Rather than asking explicitly to

the participant what his initial decision was at the end of each trial,

we slightly modified the design of our first experiment. In order to

estimate the rPT distributions separately for congruent and

incongruent trials, we introduced a frequency bias in the second

experiment. Unbeknown to the participants, the probability of the

target being on one or the other side depended on the pitch of the

Go signal. We refer to the side that had the higher probability

(65%) to be the target side as the ‘‘more frequent side’’.

Eleven out of fourteen participants expressed the expected

response bias for the more frequent side. The bias ranged from

55% to 75% (mean = 65.3%, SD = 6%). The data of these eleven

participants were analyzed together. The remaining three subjects

were excluded from the analysis either because the bias was too

extreme or absent. The basic features of the results of Experiment

2 are identical to Experiment 1 (see Fig. S2 in Text S1).

We adapted our hybrid model to this second experiment. In the

model described earlier, both sides were chosen with the same a

priori probability. The response bias in the current experiment is

modeled by introducing a bias a on the choice of the internal

variable for the more frequent side. If participants did adapt

perfectly to our experimental setup, the value of a should be 0.65.

The new hybrid model including this additional bias parameter

was adjusted to the individual data; the average of the best fits for

each subject is superimposed on the curves in Fig. S2 in Text S1

and their parameters are shown in Table 2.

In the model, the external and the internal variables either code

for the same side or they code for different sides, thereby defining

congruent and incongruent trials. As a consequence, rPT

distributions can be seen as the mixtures of two distributions

corresponding to congruent and incongruent trials. Because of the

bias in the model, the proportion of correct trials on the more

frequent side is a for congruent trials and (1- a) for incongruent

trials. On the less frequent side, the proportion of correct trials is

(1- a) for congruent trials and a for incongruent trials. Using a

linear transformation accounting for the bias we can thus estimate

the rPT distributions for correct congruent and incongruent trials

(Fig. 4). The figure reveals that target information needs more time

to influence incongruent trials than congruent ones, notably the

incongruent model distribution peaks 48 ms later than the

congruent one. Keeping in mind that the external variable always

codes for the correct side, error trials are thus necessarily

incongruent trials. Therefore, the rPT distribution of error

incongruent trials can be computed by taking all the error trials

together.

Discussion

The aim of the present study was to assess and model the

interaction of stimulus-driven and voluntary action control.

Participants were presented with the stimulus of a speeded

perceptual discrimination task during the preparation of a

voluntary action. Depending on the time gap between the

beginning of the trial and the presentation of the target stimulus,

voluntary action preparation was differently advanced when the

target appeared, thus, enabling us to trace the effect of voluntary

action preparation on stimulus-driven behavior.

In the first experiment, a good predictor of accuracy was the

raw processing time rPT, which is the time during which the target

information was available before the stimulus-driven choice

response was executed. For short rPTs, response accuracy was at

chance. However, as soon as rPTs exceeded a critical value, it

rapidly increased to reach ceiling performance. In other words, for

Table 1. Model parameter values in Experiment 1.

Participant hT si me si se eD(ms) A

1 552 1.4 1.4 1.2 0.3 125 21

2 493 1.6 1.0 1.7 0.4 129 11

3 404 1.4 1.1 0.8 0.5 120 76

4 428 1.1 0.9 1.3 0.4 111 81

5 528 2.1 1.4 1.9 0.4 130 10

6 559 2.3 1.3 1.8 0.4 127 21

7 502 1.5 1.5 0.7 0.4 141 73

8 491 1.0 1.7 0.8 0.4 138 8

9 498 1.0 1.4 0.6 0.3 121 106

10 427 1.4 1.2 1.2 0.5 173 12

doi:10.1371/journal.pcbi.1003013.t001

Table 2. Model parameter values in Experiment 2.

Participant hT si me si se eD(ms) A a

1 427 1.0 1.3 0.4 0.4 102 5 0.66

2 584 1.6 1.0 1.2 0.3 130 56 0.62

3 830 1.3 1.1 0.3 0.3 109 81 0.74

4 341 0.6 1.7 0.8 0.8 103 62 0.71

5 623 1.2 0.6 0.8 0.3 109 31 0.58

6 464 1.1 1.5 1.2 0.6 102 28 0.73

7 300 0.5 1.2 0.6 0.3 102 12 0.62

8 338 0.9 2.1 0.6 0.5 102 8 0.60

9 525 1.0 1.0 1.3 0.4 92 103 0.46

10 438 1.1 1.9 2.1 0.2 102 93 0.56

11 382 1.6 1.3 0.6 0.4 140 81 0.53

doi:10.1371/journal.pcbi.1003013.t002

Intentional and Reactive Decisions
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short rPTs participants performed in an internal mode, choosing

the response at random. It is only for longer rPTs that they take

target information into account. The transition between purely

internal and based-on-evidence modes was very fast although we

analyzed the pooled data set. This shows that both the critical rPT

value and the fast transition are quite robust among participants,

since inter-subject variability would smooth the curve. Overall, our

behavioural results are thus very much in line with the two

monkeys’ behaviour in in Stanford et al.’s study [10]. A critical

difference in the behavioural pattern concerns the RT that are

longer in our study, which is consistent with the fact that saccades

initiations (as in the monkey study) are much faster than manual

response [22].

To account for the shape of the distribution of rPTs, we

suggested a physiologically founded model, the hybrid model,

which is in essence a two-stage race model between a variable of

the external and a variable of the internal action system. Our

model is ‘‘hybrid’’ in two ways. First because it incorporates two

systems, external and internal, secondly because the race has two

stages: a stage at which evidence in the two systems accumulates

independently and a later stage at which evidence accumulation in

the two systems interacts. The distinction between internal and

external systems follows the literature of stimulus-driven and

voluntary action [5,6,8,18,23]. A recent study [24] that combines

functional magnetic resonance imaging (fMRI) and pattern

recognition shows that this distinction between two systems is also

relevant in the framework of perceptual decision making. Indeed,

this study shows that decisions regarding highly visible stimuli are

predicted by visual brain areas, whereas it is not the case for low

visibility when participant decisions are at chance level. In the

latter case, the precuneus, which has been shown to encode ‘‘free’’

decisions [25], is a good predictor of the final choice. However,

our hybrid model does not reduce to a simple ‘‘switch’’ between a

guessing system and a perceptual decision system since it has two

stages. This fits with the growing body of evidence that

information processing is not purely sequential [26]. The

distinction of these two stages is based on the fact that the

external and the internal action routes are necessarily separated at

least up to some point, since the external system needs to make

contact to visual processing, and probably merged from that point

on. As outlined above, the hybrid model fits our data very well,

better than models that only incorporate a single system or a single

stage [10,13,19,20].

Since, in the hybrid model, accumulation of evidence occurs in

two systems, an external and an internal system, a particular trial

can be congruent or incongruent, external and internal variables

either coding for the same response or for different responses,

respectively. The congruency of a trial determines how the two

variables interact in the second stage of processing. In congruent

trials the internal variable is facilitated, whereas in incongruent

trials, it is inhibited. As a consequence rPTs of the based-on-

evidence component should be longer in incongruent than in

congruent trials. To test our model it was therefore essential to

have rPT distributions separately for congruent and incongruent

trials. However, note that it is difficult to know whether a

particular trial is congruent or incongruent, since this information

requires access to the variable coding for the internally chosen

action. One solution to this problem is to ask participants at the

end of the trial which action they initially prepared and, using

some brain imaging technique (e.g., EEG), to cross-check the

introspection of the subject (e.g., by means of ERPs; see Ref. [9]).

Here we chose a different approach: instead of relying on

participants’ introspection, we decided to deduce the congruent/

incongruent distributions analytically in the second experiment.

To do so, we made the probability of the target being presented on

one or the other side depends on the pitch of the Go signal. Due to

the induced response bias a, the rPT distributions of correct trials

result from a proportion of a congruent and (1-a) incongruent

Figure 4. Congruent and incongruent distributions. Model and behavioral rPT distributions for congruent (in blue) and incongruent trials
(green for correct and red for error trials), for N = 11 participants. Data curves (dashed lines) are obtained from the distributions for more frequent size
and less frequent size via a linear transformation. The colored area around the dashed lines represent +/2 s.e. of inter-subject variability. Model
curves are the averaged individual fits of the eleven subjects using the parameters given in Table 2. Bin width is 35 ms. (See Fig. S2 in Text S1 for the
rest of model and behavioral performance).
doi:10.1371/journal.pcbi.1003013.g004

Intentional and Reactive Decisions
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trials for the more frequent response and from a proportion of (1-

a) congruent and a incongruent trials for the less frequent

response. Thus, in Experiment 2, we were able to estimate the rPT

distributions for correct congruent and incongruent trials by

means of a linear transformation; this was not possible in

Experiment 1, where a= 1- a, making a linear transformation

impossible. The results show that ‘‘based-on-evidence’’ incongru-

ent trials correspond to longer rPTs than congruent trials,

suggesting interaction between the internal and the external

system. This is in agreement with the results reported in a recent

study [9] in which the authors found reaction times to be longer

for incongruent than for congruent trials.

The hybrid model also allows us to estimate the relative amount

of processing required in the two stages (independent and

common), as the relative importance of the two stages is captured

by the value of the transition threshold. Experiments 1 and 2

revealed that a considerable amount of processing is done in both

stages so that both stages are necessary. In both experiments, the

mean threshold was approximately around 50% of the overall

evidence accumulation, showing that about half of processing is

done separately and the other half in a combined way. Moreover,

the individual participant variability is well capture by our model.

In most previous modeling attempts, only one stage is present:

either the two variables accumulate independently of each other or

they interact during the whole race. For instance, a recent study

[27] introduced several race-to-threshold units to model a Go-No

Go task. If the variable in the Stop unit reaches its threshold before

the variable in the Go unit, it cancels the race of the later (see also

Ref. [28]). It is important to keep in mind that even though they

are simultaneous, the races in the different units stay independent

of each other: the rate of accumulation of one variable is not

influenced by any other. In other models, like the leaky

accumulator [15], variables inhibit each other during the whole

process. For instance, on the late distractor effect in saccadic

inhibition [29] has been successfully modeled by a dual input

combined with mutual.

To our knowledge, only one recent study has also proposed a

two-stage diffusion model. In an effort to account for behaviors

that resemble a change of mind in the course of a manual action,

Resulaj and colleagues [30] introduced a change of mind bound

and a change of mind deadline to the original diffusion process.

This model can be seen as the concatenation of two diffusion

processes where a second diffusion can be initiated after a first

decision. In contrast, our model clearly distinguishes a first stage

where two variables are processed independently from a second

stage where these variables interact. We believe that models based

on two stages of processing will be inspiring for future attempts of

modeling race-like phenomena.

Methods

Ethics statement
Participants were voluntary and gave their informed consent.

Research was approved by the Ethics committee for biomedical

research (CERB) Ile de France II.

Participants
Ten healthy participants with normal or corrected-to-normal

vision participated in the first experiment (6 males, 4 females;

mean age: 23 years and 3 months, SD: 1 year and 3 months).

Fourteen healthy participants with normal or corrected-to-normal

vision participated in the second experiment (8 male, 6 female;

mean age: 23 years and 5 months, SD: 2 years and 1 month). All

subjects were naive with respect to the goal of the experiment.

Material
Visual stimuli were presented on a computer screen LIYAMA

HM 903 DTA (19 in). The experiment was controlled using

Matlab and the Psychtoolbox [31,32]. Visual stimuli were two

colored dots (target and distractor), one red and one green

presented each on one side of a third dot. The color of the central

dot varied randomly from trial to trial. It was either red or green.

Each dot had a radius of 44 pixels and the distance between the

central dot and the peripheral dots was of 134 pixels, viewing

distance was 50 cm. An auditory signal of 50 ms duration

indicated the beginning of the task (Go signal). Its pitch varied

randomly on each trial. It was either high (1500 Hz) or low

(600 Hz).

Task details
Experiment 1. From the beginning of the trial and until the

Go signal, the participant was required to keep the ‘‘Home Key’’

pressed (Key 5 of the numeric keys of a standard keyboard). Before

the (Go signal) was presented, a dot appeared in the center of the

screen; its color was either red or green: this indicated the color of

the future target. After a delay randomly drawn from a normal

distribution of mean 1.6s and standard deviation 0.1s, an auditory

stimulus, the Go signal, was presented. Its pitch was either high or

low, thereby indicating the part of the numeric keypad the

participant have to use in the current trial. Just after the sound had

been presented, the participant was required to press one of the

two Go Keys: if the pitch was high, the participant had to press

Key 8 (Go Key 1), if it was low s/he had to press Key 2 (Go Key

2). Immediately after having pressed the Go key, the participant

had to initiate a motor action either to press the Key on the right

(9 and 3 for Go Key 1 and 2 respectively) or on the left of the Go

Key (7 and 1 for Go Key 1 and 2 respectively), although at this

point the identities of the target and distracter are still unknown.

These are revealed later after a time gap that was drawn from a

uniform distribution and varied between 0 and 330 ms (measured

from the moment the Go Key was pressed on) when a red and a

green dot appeared on either side of the central dot. The

participant was required to press the key on the side of the target.

The participant received feedback every 20 trials in the form of

2 scores: speed points corresponding to the number of trials over

the 20 last trials for which the responses was quick enough (the

delay between the auditory signal and the response had to be less

than 850 ms) and accuracy points corresponding to the number of

correct responses over the last 20 trials.

The experiment was divided into two sessions of about 45 min

each. The first session consisted in a training phase and the first

part of the test phase. The second session consisted in the second

part of the test phase. During the first part of the training phase,

only the speed score was given as a feedback, whereas during the

second part of the training phase both scores were provided.

Experiment 2. Experiment 2 was identical to Experiment 1,

except that a bias was introduced. Unbeknown to the participant,

the probability of the target being left or right of the central dot

depended on the pitch of the Go signal. For half of the

participants, after a high pitch, the target color appeared more

often on the right side (in 65% of cases); after a low pitch, the

target color appeared more often on the left side (65%). For the

other half it was the other way round. In the analysis we refer to

‘‘more frequent’’ side and ‘‘less frequent’’ side collapsing data

across the sounds and the two groups of participants. For instance,

in the first group of participants, the ‘‘more frequent side’’ side

refers to right if the sound was high pitched and left if the sound

was low pitched.

Intentional and Reactive Decisions

PLOS Computational Biology | www.ploscompbiol.org 7 April 2013 | Volume 9 | Issue 4 | e1003013



Data analysis
In the two experiments we analyzed the pooled data of all

subjects excluding trials in which reaction time (RT) deviated

more than 4 standard deviations from the mean. We fitted the

Hybrid model, the single independent stage model [19], the

diffusion model [13], the Ornstein-Uhlenbeck process [20] and

Stanford et al.’s model [10] by maximizing the likelihood of the

rPT distribution for each subject independently. We used the same

procedure in the second experiment to fit the Hybrid model with

the internal bias as an additional parameter. In the second

experiment, we inverted the matrix
a 1{a

1{a a

� �
to find the

weights of the renormalized distribution of rPT for congruent and

incongruent trials as a mixture of the renormalized distribution of

rPT for ‘‘more frequent’’ and ‘‘less frequent’’ trials. We set a= .65,

the true bias.

Model description
In the Hybrid model, the decision process is split into two stages.

During the first stage, internal and external variables accumulate

without interacting until they reach their transition threshold and

enter the common part. In the common part, internal and external

variables interact in a way that depends on the congruency of

internal and external variables. The label (i.e., left or right) of the

internal variable is drawn randomly from a Rademacher

distribution. The initial accumulation rate r0
i of the internal

variable during the first stage is drawn from a lognormal

distribution of mean mi and standard deviation si,

i.e.r0
i *N(mi,si). Similarly, the accumulation rate re of the external

variable during the first stage is drawn from a lognormal

distribution of mean me and standard deviation se, i.e.

re*N(me,se). The internal variable starts accumulating as soon

as the go Key has been pressed at time t0 whereas the external

variable starts accumulating as soon as the cues have appeared on

the screen, i.e. at time t0ztGap (we consider no afferent delay for

sake of simplicity). We can thus write the value of the variables at

each time t during the first phase: xi(t)~ t{t0ð Þ:r0
i and

xe(t)~ t{t0{tGap

� �
:re (for twt0ztGap).

Once both variables have reached the transition threshold at

time tc, where tc is the first t to verify xi(t)whT and xe(t)whT , the

accumulation rate of the internal variable is influenced by the

external variable. More precisely, we have a distinction between

congruent and incongruent trials:

N In congruent trials, the final internal rate will be the sum of the

internal rate and external rate: r
f
i ~r0

i zre:

N In incongruent trials, the final internal rate will be the

difference of the internal rate and of the external rate:

r
f
i ~r0

i {re:

The transition between r0
i and r

f
i is continuous and follows the

differential equation:

N dri

dt
~A for congruent trials

N dri

dt
~{A for incongruent trials

The first variable to reach the common threshold determines

the side chosen, and the time at which it crosses the response

threshold plus the execution delay (eD) gives the reaction time.

Models comparison
We compared our Hybrid model with three other models based

on the rPT distribution obtained for each participant in the first

experiment. We used simulations to compute the likelihood of

each participant distribution of rPT under each model and sets of

parameters (see Text S1). The best set of parameters was obtained

by maximizing the likelihood (L) for each model, then we

computed the AIC and BIC for each subjects using the following

formulae for a model using p parameters, and n observed rPTs:

AIC~2p{2 ln(L)

BIC~p ln(n){2 ln(L):

Supporting Information

Text S1 Text S1 provides details about the model comparison

we perform, and displays the corresponding fits of a typical

participant.
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3. Deiber MP, Honda M, Ibañez V, Sadato N, Hallett M (1999) Mesial motor

areas in self-initiated versus externally triggered movements examined with

fMRI: effect of movement type and rate. Journal of Physiology 81: 3065–

3077.

4. Jenkins I, Jahanshahi M, Jueptner M, Passingham R, Brooks D (2000) Self-

initiated versus externally triggered movements. Brain 118: 913–933.

5. Waszak F, Wascher E, Keller PI, Aschersleben G, Rosenbaum DA, et al (2005).

Intention-based and stimulus-based mechanisms in action selection. Experi-

mental Brian Research 162(3): 346–356.

6. Welchman AE, Stabley J, Schomers MR, Miall RC, Bülthoff HH (2010) The

quick and the dead: when reaction beats intention. Proc R Soc London B 277:

1667–1674.

7. Krieghoff V, Waszak F, Prinz W, Brass M (2011) Neural and Behavioral

Correlates of Intentional Actions. Neuropsychologia 49(5): 767–776.

8. Boccardi E, Della Salla S, Motto C, Spinnler H (2002) Utilisation behavior

consequent to bilateral SMA softening. Cortex 38: 289–308.
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