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Abstract

We develop a coarse-grained stochastic model for the influence of signal relay on the collective behavior of migrating
Dictyostelium discoideum cells. In the experiment, cells display a range of collective migration patterns, including
uncorrelated motion, formation of partially localized streams, and clumping, depending on the type of cell and the strength
of the external, linear concentration gradient of the signaling molecule cyclic adenosine monophosphate (cAMP). From our
model, we find that the pattern of migration can be quantitatively described by the competition of two processes, the
secretion rate of cAMP by the cells and the degradation rate of cAMP in the gradient chamber. Model simulations are
compared to experiments for a wide range of strengths of an external linear-gradient signal. With degradation, the model
secreting cells form streams and efficiently transverse the gradient, but without degradation, we find that model secreting
cells form clumps without streaming. This indicates that the observed effective collective migration in streams requires not
only signal relay but also degradation of the signal. In addition, our model allows us to detect and quantify precursors of
correlated motion, even when cells do not exhibit obvious streaming.
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Introduction

Eukaryotic cells frequently transduce external chemical gradi-

ents into directed cell migration [1], a phenomenon known as

chemotaxis. Seminal work in the last few decades has identified

components of the intracellular biochemical networks mediating

cell response to external chemical gradients and found that

responsive components such as the phosphoinositide lipids (PIPs),

PI3K, and PTEN are highly conserved across cell types. In these

efforts, our model organism (Dictyostelium discoideum) has been a

useful source for discovery of network components and the

development of quantitative models exploring plausible mecha-

nisms for mediating directional sensing. Despite the vast similar-

ities in gradient detection among D. discoideum and mammalian

cells including neutrophils and neurons, D. discoideum chemotaxis

displays a striking collective phenomenon not often found in other

cell types where D. discoideum cells responding to the extracellular

chemical signal cyclic-AMP (cAMP) tend to migrate in a head-to-

tail fashion termed streams. In response to an external cAMP cue,

D. discoideum cells synthesize and secrete cAMP relaying the initial

signal to nearby cells. Many cell types, including neutrophils,

macrophages, and epithelial cells, have potential signal relay loops,

but they do not tend to migrate in streams in a standard

chemotaxis assay.

Building on previous work [2–5], we develop a minimalistic

model for D. discoideum migration and signal relay in a linear

gradient. Our model incorporates recent experimental measure-

ments on cell migration persistence [6], independence of signal

strength [5], and migration mechanism and lag in reorienting to

signals [7]. We use the model to ask what aspects of the signal relay

loop promote streaming. We find that a balance between fast

secretion and degradation are needed to match experimental

observations. To constrain the migration parameters, we measure

the time autocorrelations and the fluctuations of the cell motion

from our experimental systems and we suggest the possible use of

these metrics to find evidence of signal relay in cells that do not

display streams. Our efforts are motivated by recent experiments

on D. discoideum, that show a notable visual distinction between

cells that relay signals, and cells that both relay and degrade the

signal. Wild-type cells, which emit cAMP and degrade cAMP, can

form streams where cells are aligned head to tail, while mutant

PDE1- cells that are unable to degrade cAMP form transient,

aberrant streams that lead to clusters [8].

When food is plentiful, D. discoideum cells exist as single cells and

chemotax towards the bacterial metabolic product folic acid.

When food is removed, D. discoideum transitions from single cell to

collective behavior - through the spontaneous secretion and

detection of cAMP. The cooperative behavior of this spontaneous

transition was found to follow Winfield synchronization and, the

emergence of pulsatile, signaling centers is beautifully described in

[5]. These pulses travel through a population of D. discoideum in

spiral waves [9,10]. Secretion of the extracellular phosphodiester-

ase (PDE1) is essential for the spontaneous transition [11]. Each

pulse of external cAMP detected by cells results in an increase in
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gene expression promoting collective behavior [12], and after 4–

6 hours of cAMP mediated development, cells begin to aggregate.

In order to determine the essentials for chemotaxis and streaming

separate from those needed for development, researchers often

provide exogenous pulses of cAMP [12,13]. From these studies, it

has been found that cAMP secretion is essential for streaming, but

not for chemotaxis. Cells lacking adenyl cyclase A, the enzyme

primarily responsible for internal cAMP production during

aggregation, will chemotax to cAMP without forming streams

[14]. Development and chemotaxis to cAMP in cells lacking the

gene for PDE1 can be rescued through periodic addition of

partially purified PDE1. Cells lacking PDE1 secretion will

chemotax to cAMP and form transient streams to a central source

of cAMP, though in linear gradients, such as the under agar

assays, the streams appear thicker than wild type [8]. Spontaneous

aggregation by developed PDE1 null cells can be recovered with

the addition of a uniform bolus of exogenous PDE1, though the

bolus is insufficient to recover the spatial extent of the streams.

Because we intend to examine a minimalistic model, we include

continuous, local cAMP secretion and a constant background of

cAMP degradation.

The dynamics of the pre-aggregation stage of D. discoideum

development was analyzed by Potel and Mackay [15], where they

observed the motion of cells and calculated various dynamic

quantities, such as the mean speed and the mean square

displacement of cells and used Furth’s persistent motion model

[16,17] to explain their observations. Futrelle et al. [18]

investigated chemotactic response to an external signal for early,

middle and late developed cells for different duration and

frequencies of cAMP pulses. In particular, the chemotactic index

and the speed of the cells during development were analyzed, and

significant timescales that define the dynamics were extracted,

including the response time to a change in cAMP gradient which

they estimated to be on the order of 20 seconds. Gingle [19]

measured the smallest cell density &2500 cells=mm2, above which

collective motion occurs. Gingle and Robertson [20] showed that

this limit density depends on the development time of the cells.

The spontaneous emergence of traveling waves in a population

of D. discoideum cells has attracted interest of the mathematics and

physics communities and lead to the development of several

computational models to test hypothesis for mechanisms involving

signal transduction, signal relay, and gradient sensing. Pioneering

work by Martiel and Goldbeter used a differential equation

approach based on the receptor activation and desensitization

dynamics [21] to explain the pulses of cyclic AMP. In addition to

modeling the receptor dynamics, following models studied

mechanisms in D. discoideum chemotaxis including wave propaga-

tion of cAMP signals in an inhomogeneous excitable medium

[9,22–25], directional sensing via receptor activation followed by

further intracellular signaling [26–28], and physical forces that

regulate cell-cell or cell-surface interactions [29–32].

Other models of chemotaxis focus on stochastic aspects of the

cellular processes. These models discuss mechanisms including

stochastic dynamics of directional sensing and speed control [2,33–

36], 0memory0 associated with membrane deformations [37–39],

extension of new pseudopods conditional on the locations of

existing ones [40–41]. Recent models of chemotaxis study the

effects of noise due to fluctuations in receptor binding as well as the

noise arising from subsequent internal responses [4,42–46]. In the

simplest models directional sensing is represented as stochastic

dynamics of a single angular variable (which represents the density

asymmetry of both the occupied receptors and further downstream

processes such as PIP3 regulation). Schienbein et al. [33] showed

that the dynamics of the stochastic angle agrees very well with the

directional sensing dynamics of granulocytes during galvanotaxis.

The stochastic angle model was also implemented for D. discoideum

chemotaxis by including receptor kinetics and chemical gradient

steepness [4]. In this work we choose to capture the stochastic

effects by associating the stochasticity of the previously described

angular variable with the measured fluctuations in the direction of

motion.

The focus of our study is on modeling, simulating, and

analyzing collective motion arising from chemotaxis and signal

relay. While collective motion, chemotaxis, and signal relay have

all been investigated before, this work focuses on collective

behavior in the presence of a linear gradient without fluid flow.

The linear, no-flow gradient geometry has been used in

conjunction with Zigmond chambers and underagar assays but

was cumbersome and often replaced with point sources, such as a

micropipette, which leads to convergent cell trajectories even in

the absence of signal relay. A linear gradient has been recently

incorporated into a microfluidic system which can simultaneously

monitor multiple gradient conditions and cell lines (using EZ-

TAXIScan system (ECI, Japan) [47]). By monitoring many

parallel conditions we are able to clearly analyze signal relay

and differentiate different types of collective motion. It also allows

us to validate metrics for detection of collective behavior that

should be useful for the analysis of a number of other

investigations of cell signaling that are starting to be carried out

in this signal geometry. Linear gradients have been introduced for

quantitative studies of gradient sensing, but recent work in

microfluidics devices has been carried out in chambers with fluid

flow which flushes out signal relay (e.g., in Refs. [45,46]).

The controlled linear gradient allows us develop a quantitative

phenotype for the onset of signal relay between cells. We are able

to tune the relative strength of signal relay continuously, by

varying the linear gradient strength. This allows us to measure

collective behavior based on correlations between cell trajectories.

We anticipate that our systematic studies will be valuable for a

broad range of investigations of collective cell behavior. Indeed cell

trajectories in such linear gradient chambers are starting to be

collected to investigate signaling pathways that regulate chemo-

taxis in various types of cells (e.g., D. discoideum [48], neutrophils

[49,50], eosinophils [51], and osteoclasts [52]).

Author Summary

Collective cell migration is observed in various biological
processes including angiogenesis, gastrulation, fruiting
body formation, and wound healing. Dictyostelium dis-
coideum, for example, exhibits highly dynamic patterns
such as streams and clumps during its early phases of
collective motion and has served as a model organism for
the study of collective migration. In this study, facilitated
by experiments, we develop a conceptual, minimalistic,
computational model to analyze the dynamical processes
leading to the emergence of collective patterns and the
associated dependence on the external injection of a
cAMP signal, the intercellular cAMP secretion rate, and the
cAMP degradation rate. We demonstrate that degradation
is necessary to reproduce the experimentally observed
collective migration patterns, and show how our model
can be utilized to uncover basic dependences of migration
modes on cell characteristics. Our numerical observations
elucidate the different possible types of motion and
quantify the onset of collective motion. Thus, the model
allows us to distinguish noisy motion guided by the
external signal from weakly correlated motion.

Modeling Signal Relay in Directed Cell Migration
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Results

Experiments in linear chemical gradient classifies the
collective response of relay systems to externally
imposed signals

The EZ-TAXIScan system uses an etched silicon chip to form

6 separate channels for chemotaxis experiments in a linear

geometry [47]. Each channel contains two buffer wells on

opposite sides of a thin, terraced gap (260 microns long, 1:2 mm

wide and 5 microns deep). Cells are gently pipetted into one well

and allowed to settle to the glass surface. The opposite channel is

filled with cAMP and diffusion sets a linear gradient in the

channel within 5 minutes. Cells, responding to the external signal

enter the terraced region and travel 260 microns towards the

other side. Parallel to the edges of the terrace are small columns

(20 microns long, 8 microns apart) that set the vertical spacing,

but provide little impedance to cell motion. If not modulated by

cAMP or by PDE1 secreted by the cells, the imposed gradient

stays constant at least for 60 minutes [47,51]. This type of setup

provides a good signaling geometry for separating the effect of

intercellular communication and an imposed gradient. Fig. 1A

and Fig. 1B show time lapse images of wild-type cells and mutant

cells under the influence of a linear (downward in the figures)

cAMP gradient. At t~0 cells placed in a reservoir without cAMP

begin to move into the chamber (at the top boundary in the

figures). Although the cells are initially introduced uniformly in

the horizontal direction (5 min panel of Fig. 1A and Fig. 1B),

wild-type cells are attracted to each other and form streams

(32 min panel of Fig. 1A), which in this example evolve to

swirling groups (60 min. panel of Fig. 1A). The mutual attraction

of the cells is due to the enzyme adenyl cyclase A (ACA) localized

at the back of the cells [14]. ACA synthesizes intracellular cAMP,

which diffuses into the extracellular medium. As shown in Fig. 1B,

mutant cells (aca-), lacking ACA, do not exhibit collective motion

and, throughout the time-course of the experiment, move without

streaming or clumping in the direction of the external cAMP

gradient.

To analyze these observed migratory behaviors, we use a cell

tracking algorithm to determine cell displacement vectors over a

short time interval Dt of the position of the center of the imaged

intensity of each cell. We define a motion angle h as the angle of a

cell’s displacement vector with respect to the imposed cAMP

gradient. Fig. 1C shows representative tracks of cells during

chemotaxis (color coded according to real time). Fig. 1D shows

the distributions of the angle h for aca- cells, subject to four

different external cAMP gradient strengths, increasing by a factor

of 10 from panel to panel. The spread of h reflects the

competition between noise and the ability of cells to sense and

react to the gradient. Note that the width of the distributions first

decreases with increasing gradient strength then decreases

indicating an optimum. This finding agrees with observations of

Fuller et al. [45], which shows that the chemotactic response is

limited by external noise (noise due to receptor-ligand binding)

for small local cAMP concentration and by internal noise (noise

due to subsequent internal signaling) for higher local cAMP

concentration.

The distributions in Fig. 1D show that the cells do not

always orient in the direction of the extracellular gradient

(h~0). As discussed in [53] the gradient-sensing mechanism is

stochastic with many sources of noise that can cause random

deviation from the direction of the external gradient. Our data

for the angular distributions suggest that above a threshold

gradient the cell orientation is independent of the gradient

strength. Below this threshold (e.g., see the 5nM panel of

Fig. 1D), the width of the h distribution increases with decrease

of the gradient [45]. In what follows we focus on the regime

where the cell migration is less sensitive to the gradient

strength.

For several representative cells, Figs. 2A–C show the time

autocorrelation of C(t)~Scos h(t){h(tzt)½ �T{S cos2 h(t)T,

where the angle brackets denote an average over time for cells

that are located in the region between the cell exit plane and the

mid plane of the gradient chamber (lower half of the panels in

Figs. 1A and B, (the number of cells are n~33, n~47, and n~79,

respectively)). The reason for restricting the averaging to the half

of the chamber on the cell exit side is to eliminate any bias of the

cell orientation angle distribution due to influence of the process of

entry into the chamber. For small angles (cos h&1{h2=2) the

autocorrelation is C(t)&Sh(t)h(tzt)T. The variance of h,

dh2&C(0), is plotted as a function of the distance from the

starting point of the cells in Fig. 2D for the three different gradient

strengths. In the next section we develop a model which estimates

the level of the fluctuations in the displacement (dashed line in

Fig. 2D). Previous studies on eukaryotic HaCaT cells highlight the

dependence of velocity autocorrelations on two time scales [37].

Nevertheless, we see from Figs. 2A–C that SC(t)T can be well

fitted to a dependence of the form e{DtD=t0 parametrized by the

single characteristic time t0. The fits for the average correlations

SC(t)T for the individual gradient strengths are displayed in

Figs. 2A–C. The single time scale, t0, is approximately constant

over the two orders of magnitude in the external cAMP gradient

strengths (t0~0:84 min, 0:94 min and 1 min for Fig. 2A, Fig. 2B,

and Fig. 2C). This time scale is roughly consistent with the

dynamics of contractions of cells [31].

Modeling collective migration of D. discoideum in a linear
gradient chamber enables quantitative description of
collective responses to externally imposed signals

The characteristic size of eukaryotic cells is an order of

magnitude larger than that of bacterial cells, and, in contrast with

the sensing by bacterial cells, eukaryotic cells can sense the

difference in chemoattractant concentration between the front and

the back of a cell, thus detecting spatial gradients without moving.

For D. discoideum, gradient sensing is accomplished via a G-protein

coupled receptor and downstream signaling pathways [54].

Models of chemotaxis treating the cAMP signal transduction

mechanism, including the biochemical details such as receptor

desensitization [21] and adaptation [55], demonstrate the

emergence of the experimentally observed cAMP waves. In the

present paper our modeling approach will differ somewhat from

past works (e.g., Refs. [9,22,24,56]) in that we seek a model that is

simple enough that its relatively few parameters can be inferred

from experiments, yet is still capable of capturing the distinctions

between streams and clumps seen in our experiments on D.

discoideum.

We model cells as self-propelled soft disks of radius r0~7:5mm.

For each cell i we specify the location of its center and its

orientation by the two-dimensional vectors ri(t) and ni(t) (by

definition Dni D~1). We specify locations of the cells using a

rectangular x{y coordinate system, where the chamber in which

the cells move is located in 0ƒyƒLy. In the experiment, the

chamber boundaries, y~0 and y~Ly, have perforations and are

thus permeable to transport of cells and cAMP. The speed of each

cell v0 is assumed to be well-approximated as constant in time

(12mm=min), independent of signal strength, in agreement with

controlled chemotaxis experiments [6]. The cAMP concentration

field is denoted C(x,y,t). In the experiment the cells are deposited

Modeling Signal Relay in Directed Cell Migration
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in a large reservoir (corresponding to yv0 in the model) where

there is no externally injected cAMP. This experimental condition

is modeled by a Dirichlet boundary condition on the cAMP

concentration, C(x,0,t)~0 at y~0, and by introducing individual

discrete cells at y~0 with a uniform flux JD cells per unit time per

unit length in x (each newly introduced cell’s orientation is initially

in the y{direction). In addition, the experiment has an aqueous

solution of cAMP in a large reservoir on the other side of the

chamber (corresponding to ywLy in the model), and the cAMP

concentration in this reservoir stays constant during the course of

the experiment. This is modeled by a Dirichlet boundary

condition at y~Ly, C(x,Ly,t)~C0, along with the removal of

cells when they reach y~Ly. We applied periodic boundary

conditions in x, such that C(x,y,t)~C(xzLx,y,t) and each cell

that leaves the chamber at a lateral boundary, x~0 or at x~Lx,

reenters the chamber at the other end. Using these definitions, we

propose the following minimal, agent-based model for cell motion

in our experimental setup,

Figure 1. Time lapse images during the chemotaxis of wild-type and mutant cells in linear cAMP gradient. (A) Wild-type cells can relay
the signal by secreting cAMP from their tails. They form streams which are unstable towards swirling clumps. (B) The mutant cells (aca-) lacking the
ACA enzyme cannot secrete cAMP and thus undergo uniform motion in the direction of the external cAMP gradient. (C) Some representative tracks
of aca- cells obtained with the tracking algorithm. Vector displacements along the tracks are color coded according to real time. (D) Distributions of
the angle representing the displacement of cells exposed to different constant gradient amplitudes with respect to the vertical axis. The panel labels
(5 nM to 5 mM) denote the cAMP concentration in the reservoir.
doi:10.1371/journal.pcbi.1003041.g001

Modeling Signal Relay in Directed Cell Migration
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dri

dt
~v0ni ð1Þ

dni

dt
~vni|

+C

D+CD
zjizf i

� �
|ni

� �
ð2Þ

LC

Lt
~D+2C{nCzs

X
i

d(r{ri): ð3Þ

The first equation corresponds to the constant speed

assumption.

The second equation dictates that the unit vector specifying the

cell’s orientation ni(t) is attracted toward the direction of the

vector,

gi(t)~
+C

D+CD
zjizf i , ð4Þ

with relaxation time v{1. This relaxation time may be thought of

as including both the chemically determined time for a cell to

‘perceive’ the gradient, as well as the time it takes the cell to

mechanically turn its orientation. The first term in gi is a unit

vector in the direction of the cAMP gradient. Note that, in accord

with the observed similarity of the second, third, and fourth panels

of Fig. 1D, this term is independent of the level of cAMP (i.e.,

invariant to the transformation C(x,y)?(const:)|C(x,y)). The

second term ji~(jx
i ,j

y
i ) in gi is white noise,

Figure 2. The time autocorrelation and variance of h. A-Cð Þ SC(t)T versus t for three different imposed cAMP gradient strengths
corresponding to cAMP concentrations of 50 nM (black bullet), 0.5 mM (black square) and 5 mM (black triangle) in the reservoir on the cell exit side of

the gradient chamber. The solid lines are best fits to SC(t)T~e{t=t0 yielding values for t0 of 0:84 min, 0.94 min and 1 min. Autocorrelations are

obtained from n~33, n~47, and n~79 cells, respectively. Error bars represent the standard deviation. (D) The variance SC(0)T%dh2 , versus the
distance y from the cell input side of the gradient chamber for the three gradient strengths in Figs. 2A–C is plotted using the same symbols black
bullet, black square and black triangle.
doi:10.1371/journal.pcbi.1003041.g002
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Sjl
i(t)T~0, Sjl

i(t)j
l’
i’(t’)T~gdii’dll’d(t{t’) ; l[fx,yg : ð5Þ

The third term f i in gi is a repulsive ‘force’ modeling a soft two-

body contact interaction between neighboring cells,

f i~f0
f̂f i

D̂ff i D
, f̂fi~

X
rj[Si

ri{rj

Dri{rj D
1{

Dri{rj D
2r0

� �
, ð6Þ

where Si is the region Dr{ri Dƒ2r0. In Eq. (6) we have taken the

form of the repulsive force to decrease linearly with distance from

the center of the cell. We have also tried other forms for the Dri{rj D
dependence of the repulsive force and found that no qualitative

differences occurred. Szabo et al. [57] and Chate et al., [58]

discuss the effect of adding cohesive (i.e., attractive) forces in

modeling tissue cells. The parameter f0 determines the strength of

the repulsion force.

Eq.(3) is the diffusion equation governing the evolution of the

distribution of the cAMP density, with constant diffusivity

D~400mm2=sec [59]. The parameter s is the cAMP secretion

rate of a cell. The cAMP decays at a rate n which can be spatially

nonuniform and is approximately proportional to the concentra-

tion of the degradation enzyme phosphodiesterase PDE1 [25]. We

introduce a degradation inhomogeneity suitable for our experi-

mental setup in the following section.

cAMP degradation has a non-linear profile due to the
experimental conditions

The cAMP degradation rate n in Eq. (3) is meant to account for

the presence of the cAMP degrading enzyme PDE1 with n
assumed proportional to the enzyme density CPDE1. Since PDE1 is

secreted by the cells themselves and then diffuses, we can expect

that CPDE1 and hence n are time and space dependent quantities

obeying an equation similar to Eq. (3) for the cAMP density

C(x,y,t), but with the term analogous to the degradation in Eq. (3)

omitted. In the interest of simplicity, for our minimalist model, we

wish to circumvent a full time-dependent diffusion equation model

for CPDE1. Instead, we assume that a time-independent steady

state that is homogeneous in x is established for the CPDE1 (we

show in Text S1 that this is justified for the conditions of our

experimental setup). This corresponds to n depending on y but not

x and t, n~n(y). Furthermore, in steady state, the x-averaged cell

flux in the y-direction must, by conservation of cell number, be

independent of y in the linear gradient chamber, and its value

everywhere in the chamber must be the same as the cell injection

flux JD at y~0. In the simplest case, without clumps, the x{t

averaged density of cells in the external linear gradient region will

thus be roughly uniform in y and of the order of JD=v0. Thus the

x{t averaged PDE1 density �CCPDE1(y), satisfies a one-dimension-

al, time-independent diffusion equation of the form

DPDE1
d2

dy2
�CCPDE1zSPDE1~0 : ð7Þ

Here we approximate SPDE1 as constant in y and given by

sPDE1JD=v0 where sPDE1 is the production rate of the PDE1 per

cell per unit time; DPDE1 is the diffusivity of the PDE1 and is

approximately 100mm2=sec [60]. In addition, we will argue that

the appropriate boundary conditions on the PDE1 density are
�CCPDE1(y)~0 at y~0 and y~Ly. Solution of Eq.(7) with these

boundary conditions leads to the model,

n(y)~4n0
y

Ly

1{
y

Ly

� �
: ð8Þ

That is, n(y) varies parabolically in y; n(0)~n(Ly)~0, and has its

maximum value n0 in the center of the chamber, y~Ly=2. In our

numerical explorations we mostly use the model Eq. (8). We also

note that in other experiments, depending on the experimental

setup, n(y) may have different dependence on y. For comparison,

we repeated our numerical runs with the spatially constant form

n(y)~
2

3
n0, where the numerical prefactor (2=3) is chosen so that

the total amount of PDE1 in 0ƒyƒLy is the same as for Eq. (8)

(i.e.,
Ð Ly

0 ndy is the same). The spatially constant form for n was

used in other models of D. Discoideum chemotaxis [9,21,22,24]. The

results (shown in Text S1) are qualitatively similar to the results

presented here.

We now outline how we motivate the use of the boundary

conditions CPDE1(0)~CPDE1(Ly)~0 (more detailed quantitative

justification is given in Text S1). In our experiments, cells are

placed in the reservoir located in yv0. The cells then rapidly sink

to the bottom of the reservoir (z~0). The reservoir has a vertical

thickness that is more than 2|103 times larger than the vertical

thickness of the linear gradient chamber. The same dimensions

apply for the reservoir in ywLy. The bottom glass surface (z~0)

of the reservoir in yv0 extends into yw0, where it forms the

bottom plane of the linear gradient chamber and of the reservoir

in ywLy. Cells that are on the bottom of the yv0 reservoir supply

a source of cells for entry at y~0 into the linear gradient chamber.

The cAMP-degrading-enzyme PDE1, secreted by cells in the yv0
reservoir are assumed to be transported vertically upward by small

convection flows in the reservoir fluid into the vertically large

region zw0 of the reservoir. In contrast, the distribution of the

PDE1 emitted by the cells in 0ƒyƒLy is constrained to the much

thinner vertical region defined by the chamber dimensions. Thus,

in the linear gradient chamber the PDE1 density cannot be

attenuated to low levels by spreading vertically. As quantitatively

shown in Text S1, based on this consideration, the enzyme density

in yv0 and ywLy is much less than in the interior of the

chamber. This leads to our previously stated approximate

boundary conditions, CPDE1(0)~CPDE1(Ly)~0, used in obtain-

ing Eq. (8).

Normalization of parameters
In order to systematically determine the essential dependence of

the behavior of the model on its parameters, we introduce

appropriate nondimensionalizations. We define the dimensionless

spatial coordinates (x’,y’) by x’ : ~x=Ly and y’ : ~y=Ly. The

dimensionless time scale t’ is defined as t’ : ~vt, and the

dimensionless cAMP density C’ is defined as C’ : ~C=C0. With

the rescaled variables, the cAMP boundary conditions become,

C’(1,t’)~1 and C’(0,t’)~0. Additionally, the white noise is

transformed to Sji(t’1)ji(t’2)T~g’d(t’1{t’2), where g’ : ~vg.

The model equations with the rescaled variables and Eq. (8) for

n(y) can now be written as

dr’i
dt’

~v’0ni ð9Þ

dni

dt’
~ni| gi|nið Þ ð10Þ
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LC’
Lt’

~D’+’2C’{4n’0y’(1{y’)C’z
s’
�NN

X
i

d(r’{r’i) , ð11Þ

where v’0 : ~
v0

vLy

, D’ : ~
D

vL2
y

, n’0 : ~
n0

v
, �NN : ~

JDL2
y

v0

, and

s’ : ~
sJD

vC0v0
. The integral of the summation

P
i d(r’{r’i) over

the square 0ƒx’ƒ1, 0ƒy’ƒ1 is the number of cells in the

unnormalized square 0ƒxƒLy, 0ƒyƒLy and is roughly �NN . In

the situations we investigate �NN is always large compared to unity.

Thus the term �NN{1
P

i d(r’{r’i) roughly plays the role of a

normalized density whose nominal value is one. With these

normalizations, the parameters in our model are D’,n’0,s’,v’0, g’,
and �NN. We wish to explore the variation of the system behavior as

a function of parameters. This is clearly an impossible task to carry

out for the full set of 6 dimensionless parameters just listed. Thus

we now seek to restrict our detailed considerations to just a few of

these parameters whose influence is, we think, the most interesting.

If we regard v for the cells as fixed, then the parameter D’ is

dictated by the experimental setup. Experimentally, the typical cell

speed v0 and hence v’0 is observed to be roughly the same for wild

type, and mutant cells [6], and we therefore take v’0 as fixed. The

noise term g’ will be fixed by the experimental observations (e.g.,

Fig. 1D) which imply that it does not vary significantly across the

different experimental conditions investigated (see Text S1). Thus

we will keep D’, v’0 and g’ fixed at the appropriate estimated

values. Furthermore, we suspect that the qualitative behavior of

the system will be insensitive to the precise value of �NN so long as
�NN&1 (the situation we are interested in). Thus our main

numerical model explorations will focus on how the model

behavior depends on n’0 and s’.
We now further discuss our reason for interest in varying n0’ and

s’. First, with respect to n’0, in reference [8] a genetic perturbation

to the cells results in mutants lacking the ability to produce the

degradation enzyme PDE1 (but still emitting cAMP). In our model

this corresponds to setting n’0~0. In our numerical experiments

we will explore a continuous dependence on n’0, partly because n0

is not well determined, but also to understand the difference

between mutant cells that do not emit PDE1 (i.e., pdsA-/PEC

cells) and wild-type cells. We also suggest that it may be useful for

future experiments to explore continuous dependence on PDE1

secretion rate (i.e., n’0) which might be realized by introducing a

mixture of wild-type and mutant PDE1- cells. Regarding

variations of s’, we note that the secretion of cAMP from cells s,

is biologically inhibited for another type of mutant, the aca- cells.

Also, in our experiments, we change the external concentration of

cAMP, C0. The biological and chemical changing of the

parameters, s and C0, both yield change of s’~sJD=(vC0v0).
(Also, s’ could be tuned by changing the yv0 reservoir cell density

and hence JD, but we have kept JD constant in our experiments.)

Parameters
Aside from s and n0 the parameters we used in our simulations

are summarized in Table 1. We assume that the cell parameters in

this table (i.e., r0, v0, D, v, g, f0) are the same for wild-type cells

(s=0) and mutant cells (s~0). In the absence of mutual attractions

through cell’s secretion of cAMP, a Fokker-Planck version of

Eqs.(1–6) can be solved analytically (see the Text S1), and gv in

Eq. (5) can be determined by matching the analytical result to

experimental observations of mutant cells. Also, we estimate v as

being of the order of t{1
0 determined from our experimentally

observed time-autocorrelation of the orientation vector (Fig. 2A),

where t0 is defined at the end of the previous section. This time

scale is comparable to the contraction rate of D. discoideum cells

which in the work of Satulovsky et al. [31] is considered as the bulk

relaxation time. We note that the real cells’ secretion rates of

cAMP and of PDE1 are not well quantified and can be varied by

drug treatment or by the use of mutant cells. Thus we will regard s

and the PDE1-level-dependent parameter n0 as variable param-

eters and investigate how the dependence of the collective cell

dynamics depends on them.

Results of numerical simulations capture experimentally
observed migration patterns

The model equations, Eqs.(1–6) are simulated numerically.

Figs. 3A–3C show representative cell tracks for three different

values of the normalized cAMP secretion rate s’. For all three of

these cases n’0 is fixed at n’0~2:25, which we estimate to be

consistent with previous experimental measurements [21]. The

color at a given point on a cell track in Figs. 3A–3C indicates the

time that the cell making the track was at that point, where red

corresponds to the beginning of the simulation and blue

corresponds to the end of the simulation. Figs. 3D–3F show

representative snapshots, where the position and the orientation n
of the cell is indicated by an ellipse (at normalized time t’~71 for

D, E, and F). In the top panels of Fig. 3 (Figs. 3A and 3D), the

relative cAMP secretion rate is very small (i.e., s’%1). This regime

mimics the aca- mutant cells, and our numerical results

qualitatively agree with the experimental observations of aca-

cells (cf., 32 min panel of Fig. 1B). For larger values of s’, and

depending on t’, our numerical results can be classified under two

main categories, streams (Fig. 3E) and clumps (Fig. 3F). At

moderate s’ (Fig. 3E) streams are evident. At higher s’, Fig. 3F

shows that multiple clumps of cells form. From the corresponding

tracks of cells shown in Fig. 3C, it is seen that the cells stay within

the clumps and the clumps have almost no motion in the y’
direction.

Table 1. Simulation parameters.

Symbol Description Value

r0 Cell radius 7:5 mm

v0 Self-propulsion speed 12 mm=min

D Diffusion constant of cAMP 0:024 mm2=min

v{1 Response time 1 min

g Amplitude of Gaussian white noise 0:33 min

f0 Repulsive force constant (dimensionless)
ffiffiffiffiffi
10
p

Lx Width of the simulation box 1 mm

Ly Length of the simulation box 0:33 mm

Parameters used in the numerical simulations. Except for the force constant f0 ,
all the cell parameters in this table (i.e., r0 , v0 , D, v and g) are obtained from
experiments. The response time is obtained from the autocorrelations of the
displacement vector. The noise amplitude g was calculated from the variance of
the h distribution, where the angle h represents the orientation of the
associated displacement vector.
doi:10.1371/journal.pcbi.1003041.t001
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Dynamics of collective migration is quantified by the
mean progression speed and cell density

To go beyond the visual comparison of our simulation results

with our experimental observations, a quantitative description of

the three modes of group cell motion described above (i.e.,

uncorrelated motion, streams, and clumps) is desirable. We define

the normalized mean progression M(y’,t’), by M(y’,t’)~DSn(t’)TD,
where the angle brackets denote an average of cells in the region

between y’{D=2 and y’zD=2, where D~0:05 (cf., [61,62]). We

denote by ~M(t’) the average of M(y’,t’) over 0ƒy’ƒ1, and we

denote by �M(y’) the time average of M(y’,t’) taken over the last

quarter of the simulation (82:5vt’v110). Another useful measure

is the normalized averaged cell density �rr(y’), computed by

averaging over the region y’{D=2 to y’zD=2 with D~0:05 and

normalized so that
Ð 1

0
�rr(y’)dy’~1.

First, Fig. 4A shows the ensemble average of ~M(t), denoted by

~M 0(t), for the aca- cell experiment (in gray) and for a single

model simulation (in black). The model parameters for the run

are n’0~2:25 and s’~0:033, which correspond to the aca-

mutant cells. To make a fair comparison, for the experimentally

obtained fM’M’(t) we filtered out cells that move at a slower speed

than what we considered in our model (i.e., vvv0). We calculate

~M 0(t) for a group of randomly selected cells in the 0vy’v1
region. Since our tracking algorithm cannot track all the cells

available in this region, the experimentally obtained ~M(t) is

represented by this ensemble average. To compare our experi-

mental result to our numerical simulation results, we calculate

~M 0(t) from our simulation by sampling cells in the simulation so

as to match the number of cells for which ~M 0(t) is experimentally

calculated.

We show in Figs. 4B and 4C how �MM(y’), and �rr(y’) vary with the

distance from the cell reservoir, y’, for the three values of s’ used to

obtain the cell tracks shown in Fig. 3 with n’0 fixed at the same

value used for Fig. 3. In these plots, �M(y’), and �rr(y’) are averaged

over several runs (this average is denoted by ½~M(t)�), where the

error in the mean is shown by vertical error bars, which is

calculated by the standard deviations of the runs divided by the

square root of the number of runs. In the low s’ regime (solid

curves in Figs. 4B and 4C), corresponding to Figs. 3A and 3D,

Fig. 4A shows that, �M(y’) saturates to 0:9 in the upper half of the

gradient chamber, y’ *> 0:5, while Fig. 4B shows that

�rr(y’)%1+10% is approximately uniform. The density profiles

measured from the time lapse images (a rough estimate calculated

from the image intensity) fairly agree with those obtained from our

simulations. For PDE1- cells, our model suggests that the cAMP

secretion levels are small compared to the wild-type cells exposed

to the same imposed gradient. The density profiles measured from

the time lapse images (a rough estimate calculated from the image

intensity) fairly agree with those obtained from our simulations.

For PDE1- mutant cells, our model suggests that the cAMP

secretion levels are small compared to the wild-type cells exposed

to the same imposed gradient. In determining the cAMP secretion

rate we assumed same noise level compared to the wild-type cells.

Therefore, in conjunction with findings from our model, our

experimental observations suggest that the lack of degradation of

external cAMP results in either reduced signal relay or increased

noise level in gradient sensing (corresponding to receptor

Figure 3. Cell tracks from simulations for the three representative modes of collective motion, uncorrelated motion, streaming, and
aggregation. (A) For a relatively slow cAMP secretion rate (s’~0:083) the cells move independently, showing no sign of collective motion. (B) If the
cAMP secretion is moderate (s’~0:665) cells form streams. (C) For high relative cAMP secretion rate (s’~1:327) cells exhibit aggregation and therefore
form clumps. Figs. (D–F) are snapshots from the same simulations exhibiting the spatial organization of the cells.
doi:10.1371/journal.pcbi.1003041.g003
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desensitization). The comparison and the details of the density

estimate are shown in Text S1.

As shown in Figs. 3B and 3E, for t’~71, streams emerge in the

regime of moderate s’ (plotted as the gray dashed curves in

Figs. 4B and 4C). These streams start to aggregate in the upper

half of the gradient chamber, and this results in a decrease in �M
and a corresponding increase in �rr. Compared to the low s’
regime, the streams cause an increase in the cell density (the peak

at y’%0:8).

In the high s’ regime (plotted as the black dashed curves in

Figs. 4B and 4C), �rr(y’) is even more peaked than in the moderate

s’ regime. This apparently leads to a peak in the cAMP density

which leads cells to start aggregating in the lower half of the

gradient chamber. Streams form close to the reservoir, where cells

enter the gradient chamber. To form streams, newly entering cells

acquire laterally (x-directed) converging velocity components.

Since the cell speeds are fixed at v0, this causes �M(y’) to decrease

(see the region 0:2 y’ 0:5 in Fig. 4B) and �rr(y’) to increase. This

apparently leads to a more localized secretion of cAMP, which

overcomes the externally imposed cAMP concentration causing

the clumping seen in Figs. 3C and 3F.

In Fig. 4D the maximum �rr(y’) in the region 0:5ƒy’ƒ1 is plotted

versus the corresponding �M(y’). Each point in this figure is obtained

from a single numerical run. The points are color coded with respect

to the n’0 and s’ used in the numerical run. Fig. 4D shows that points

are clustered in two regions. The first region, where r is large and

M is small [(r *> 3), M 0:3], corresponds to large clumps, while

the second region, where r is small and M is large [(r%1),

M%0:9], corresponds to the uncorrelated motion. The points

between these two regions correspond to runs where cells form

streams which either generate clumps (i.e., points closer to the first

region) or move through the 0:5ƒy’ƒ1 region and leave the

gradient chamber (i.e., points closer to the second region).

Stream formation is robust when external cAMP is
degraded

In our model there are two time scales, n{1 and s{1 (the cAMP

degradation rate and the local cAMP production rate), and we

explored their effects. Fig. 5 shows results for M(y’,t’) averaged

over 0ƒy’ƒ1 and 82:5ƒt’ƒ110 (i.e., the last quarter of the

simulation), as well as over a large number of model simulations

(*1000). These averages are labeled fMg in the figure. The top

panel of Fig. 5A shows fMg as a function of s’ for n’0~2:25.

Fig. 5A shows that fMg decreases as s’ increases. In the region

0:8 *> s’ *> 0:5, where fMg decreases fastest, streams occur, but

clumps are rare (e.g., Figs. 3B and 3E). The bottom panel of

Fig. 5A is for a very small value of n’0 (n’0~0:015), modeling

mutant cells that cannot degrade cAMP. In this case we see that

there is a sharp decrease in fMg in the range 0:3 *> s’ *> 0:2. Below

this range the simulations show roughly uniform cell density, while

above this range clumps occur. Compared to the slow degradation

regime, in the fast degradation regime (top panel of Fig. 5A) the

Figure 4. Mean progression speed and the cell density are used in quantifying collective motion. (A) ~M(t) is used to compare
experimental data (aca- with C0~5 mM) with a representative single run that is obtained with model parameters that mimic the experimented aca-

mutant cells. (B) and (C) show respectively, �M(y’), and �rr(y’) as a function of the distance from the cell reservoir for n’0~2:25, and three different cAMP
secretion rates. Error bars are obtained from different realizations with the same simulation parameters for each curve and represent the standard

error of the mean. (D) The maximum r(y’) in the region y’w0:5 is plotted against its corresponding �M(y’). Each point corresponds to a single
numerical run. For (A), when the cells enter the chamber at y’~0, we initialize the cell orientation vectors ni for cell i according to a distribution of the
angle h with respect to the y{axis, where this distribution is uniform in the range, {p=2vhvp=2. This is done so as to roughly match the

experimental ~MM(t) at t%0.
doi:10.1371/journal.pcbi.1003041.g004
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streaming behavior is robust. In the slow degradation regime, the

streams form for only a short period which is followed by

formation of clumps. Recent experiments demonstrate that stream

formation is impaired, if cells cannot degrade external cAMP [8].

Fig. 5B summarizes results for our simulations (color coded), as a

function of s’ (plotted on the horizontal axis) and n0’ (plotted on the

vertical axis). The data in the top (bottom) panel of Fig. 5A

corresponds to a horizontal cut through Fig. 5B at the arrow,

n’0~2:25 (0:015), on the vertical axis of Fig. 5B. Fig. 5B shows that

the width of the range of s’, where streams occur, decreases as n’0 is

lowered. Additionally, the onset of stream generation with respect

to s’ becomes smaller with decreasing n’0.

Discussion

Our model explains different observed modes of collective

motion of motile cells. Our main new finding is that signal relay

alone is not enough to arrange migrating cells into collectively

moving streams. However, when the signal is not only relayed but

also degraded, stable streams form. Our model is minimal,

involving a relatively small number of potentially experimentally

deducible parameters.

Based on our numerical results, we suggest experiments where

the transition between streaming and clumping can be experi-

mentally tested by changing the effective values of our model

parameters. One suggestion is that the value of n can be effectively

reduced by either mixing wild-type and PDE1- mutants or by

changing the amount of PDE1 added during the PDE1- mutant

cell development.

The relaxation time v{1, obtained from our experimental

observations, is associated with the membrane retraction time

scale. In addition, the time scale corresponding to the noise

amplitude g&20 sec is associated with the formation time of

pseudopods [63]. These parameters could be altered by adding

drugs or changing the developmental procedures. For example,

introducing a drug that inhibits the PI3 kinase severely reduces the

pseudopod generation frequency [63] and hence both v and g{1.

Additionally, recent studies show drastic change in the collective

motion behavior of wild type cells when they are prepared over a

longer development time [64]. In this case v and g{1 are reduced

in agreement with the observed reduction of stream formation

[64]. Thus, we believe that our model can be utilized to quantify

changes in the collective motion in response to modifications of

cell characteristics.

In our model, we have only focused on the extracellular cAMP

dynamics given in Eq. (3) with the objective of reproducing the

patterns in Fig. 1 with as few physical processes as possible. We

modeled the motion of the cells according to the the dynamics of

sensing the signal with the phenomenological equation Eq. (2).

Models that include additional processes (not included in our

model) are capable of explaining additional phenomena. E.g.,

models of cAMP signal transduction including receptor desensi-

tization [21] and adaptation [55] show the generation of

experimentally observed cAMP waves including spiral waves

[3,9,56]. In addition, the observed rotating vortex structure of the

aggregates can be explained by other self-propelled particle models

which allow cells to adjust their propulsive force [65]. In the future

Figure 5. Mean progression fMg, as a function of relative signaling rate s’, and relative degradation rate n’0. (A) fMg as a function of s’.
Error bars are obtained from many numerical realizations (between 10{30) and represent the standard error of the mean. In the top panel, the
degradation rate is comparable to the experimentally obtained degradation of the phosphodiesterase. In the bottom panel, we used small cAMP
degradation rate, which models the mutant PDE1- cells, incapable of secreting the enzyme that degrades cAMP. (B) fMg as a function of the relative
cAMP secretion and relative cAMP degradation rates. The red regions correspond to uncorrelated motion. The dynamically unstable regions, where
streams are likely to form, of the (n’0 , s’) phase space is labeled with yellow and white. Blue regions are associated with aggregate formation.
doi:10.1371/journal.pcbi.1003041.g005
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we plan to modifying our model to investigate the effect of

dynamic cell-cell adhesion in stabilizing stream formation, and

aggregation.

Our model can be extended to include competition between the

gradient steepness, D+CD, and the local cAMP concentration, C, by

modifying Eq. (4) and introducing a competition between the noise

intensity and the concentration of the cAMP. A simple approach is

to impose the following limits: For small local cAMP concentra-

tion, the noise (second term in Eq. (4)) will have a higher effect in

the directionality (i.e. independent random motion). In contrast,

for high local cAMP concentration, the contribution from the

noise to local cAMP concentration ratio should be small compared

to the gradient steepness to local cAMP concentration ratio. When

the model is extended to include this competition, we can define

an organization time scale as a measure of cellular organization.

Thus, we can measure the efficiency of stream formation not only

with respect to signal relay but also with respect to the efficiency of

directional sensing.

We believe that our simplified approach, used here for D.

discoideum can be extended to more complex cells exhibiting signal

relay, such as neutrophils [49,66]. For neutrophils, signal relay is

less well understood [49]. However, our numerical simulations can

be utilized to distinguish uncorrelated motion from weak signal

relay: Using our simulations in conjunction with linear gradient

experiments where cells do not converge naturally to an external

signal, we can calculate the effect of signal relay on the mean

progression speed, as well as the development of an inhomoge-

neous density due to cell-cell attraction, even in the case of very

small signal relay that is not sufficient to lead to discernible clumps

or streams. Moreover, our model can be potentially extended to

include the dependence of signal relay on cell density, in order to

compare the dynamics to those observed in Ref. [67], which

proposes a quorum sensing mechanism that can quantify the

persistent random walk of D. discoideum at different phases of

development as well as different densities. Another potential use of

our model is to model migration when subpopulations of cells have

different signal sensing, and signal relay capabilities. A prominent

example of such collective migration is the motion of neural crest

cells, a collective process during embryonic development. Recent

experiments suggest that mathematical models of the neural crest

migration require subpopulations having different chemotactic

responses [68].

Methods

Experiments in linear cAMP gradient
To examine the chemotactic dose response, cell migration was

recorded at 12 second intervals for 1 hour in the EZ-TAXIScan

chamber (Effector Cell Institute, Tokyo, Japan). In the absence of

wild-type cells the device establishes a well-defined, stable cAMP

gradient during the course of the experiment [47]. Dictyostelium

discoideum cells, wild-type cells (ax3) and its ACA null mutant cells

(aca-) were prepared as described previously in Ref. [6]. PDE1-

cells were prepared as described previously in Ref. [8].

Computational implementation
There are two modules in our numerical simulation code, the

first module consists of the equations of motion given in Eqs. (1)–

(3) which defines the position and the direction of motion of cells

based on the local gradient in the neighborhood of each cell. The

second module calculates the diffusive time evolution of cAMP due

to the external signal and dynamic local intercellular signals and

provides the updated gradient vector field for use in the first

module. Simultaneous evaluation of these two modules generates

cell tracks. The diffusion equation (Eq. (3)) for the cAMP is solved

explicitly on a square grid with spacing Dx~Dy~3:3mm using a

forward time and central space Euler method. In the numerical

simulations the time step is Dt~0:235 (Dx)2

D
&0:007 seconds, which

is well in the stable range of the numerical algorithm. For

implementing the numerical evaluation of C’ the diffusion

equation is discretized with Dx’~Dx=Ly and Dt’~vDt. The

Laplace operator can be replaced by the discretized Laplace

operator and the Dirac-d function is discretized in one dimension

as d(x’~nDx’)?d(i,n)=Dx’, where d(i,n) is the Kronecker-d
function, it is zero except for i~n. Thus, the value of the cAMP

field at x’~nDx’ and y’~mDx’, where n and m are integers, is

updated according to

C0(x,y,tzDt)~C0(x,y,t)zm0½D0(C0(xzDx0,y0,t0)

zC(x0{Dx0,y0,t0)zC0(x0,y0zDx0,t0)

zC(x0,y0{Dx0,t0){4C0(x0,y0,t0))

{n0y0(1{y0)(Dx0)2C0(x0,y0,t0)z

s0
X

i

d(n,Ex0i=Dx0E)d(m,Ey0i=Dx0E)� ,

ð12Þ

with m’ : ~Dt’=(Dx’)2. In Eq. (12), Ex’i=Dx’E rounds its argument

to the nearest integer. The same Dt’ is used in evaluating the

equations of motion (Eqs. (1) and (2)). Table 1 shows the definitions

and values of the parameters used in the numerical simulations.

Supporting Information

Figure S1 Results for the uniform cAMP degradation
scheme. (A) The degradation rate as a function of the distance

from the cell reservoir, where n0~3. (B) M(y’) is shown for three

representative relative cAMP secretion rates, whose dynamics is

shown in Fig.3. (C) r(y’) for the same relative cAMP secretion

rates used in the upper panel. (D) Maximum r(y’) in the

0:5ƒy’ƒ1 region, is plotted against its corresponding M for all

numerical simulations with constant degradation scheme. Each

point represents a single numerical realization and is color coded

with respect to s’. (E) fMg is plotted against s’, where the each

data point is obtained from averaging many numerical realizations

(10{30). The vertical bars represent the error in the mean, which

is calculated by the standard error from many realizations.

(TIF)

Figure S2 Density profile measurements. The density,

r(y’), is plotted against the distance from the cell reservoir for wild-

type cells moving in low cAMP concentration in the reservoir (left),

wild-type cells moving in high cAMP concentration in the

reservoir (center) and aca- mutant cells moving in high cAMP

concentration in the reservoir (right). The density profile is

obtained both from experiments and simulations of the model for

(A) n’0~3, s’~0:665, (B) n’0~3, s’~0:528, (C) n0’~3, s’~0:033,

(D) n’0~0:015, s’~0:265. Each simulation data point is obtained

from averaging many numerical realizations. The vertical bars in

both experimental and simulation data represent the standard

error of the mean.

(TIF)

Text S1 The supplementary text provides details re-
garding the assumptions used in our model in addition
to comparison of numerical results with experimental
observations.

(PDF)
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67. Golé L, Rivière C, Hayakawa Y, Rieu JP (2011) A quorum-sensing factor in
vegetative Dictyostelium discoideum cells revealed by quantitative migration

analysis. PLoS ONE 6: e26901.
68. McLennan R, Dyson L, Prather KW, Morrison JA, Baker RE, et al. (2012)

Multiscale mechanisms of cell migration during development: theory and
experiment. Development 139: 2935–44.

Modeling Signal Relay in Directed Cell Migration

PLOS Computational Biology | www.ploscompbiol.org 13 May 2013 | Volume 9 | Issue 5 | e1003041


