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Abstract

Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key
challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of
multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as
different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix
algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of
cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and
mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply
Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets
of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also
novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in
transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or
gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and
is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software.
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Introduction

Cancer is a disease driven in part by somatic mutations that

accumulate during the lifetime of an individual. The declining

costs of genome sequencing now permit the measurement of these

somatic mutations in large numbers of cancer genomes. Projects

such as The Cancer Genome Atlas (TCGA) and International

Cancer Genome Consortium (ICGC) are now undertaking this

task in hundreds of samples from dozens of cancer types. A key

challenge in interpreting these data is to distinguish the functional

driver mutations important for cancer development from random

passenger mutations that have no consequence for cancer. The

ultimate determinant of whether a mutation is a driver or a

passenger is to test its biological function. However, because the

ability to detect somatic mutations currently far exceeds the ability

to validate experimentally their function, computational approach-

es that predict driver mutations are an urgent priority. One

approach is to directly predict the functional impact of somatic

mutations using additional biological knowledge from evolutionary

conservation, protein structure, etc. and a number of methods

implementing this approach have been introduced (see [1–4]).

These methods are successful in predicting the impact of some

mutations, but generally do not integrate information across

different types of mutations (single nucleotide, indels, larger copy

number aberrations, etc.); moreover, these methods are less

successful for less conserved/studied proteins.

Given the declining costs of DNA sequencing, a standard

approach to distinguish driver from passenger mutations is to

identify recurrent mutations, whose observed frequency in a large

cohort of cancer patients is much higher than expected [5,6].

Nearly all cancer genome sequencing papers, including those from

TCGA [7–10] and other projects [5,11,12], report a list of

significantly mutated genes. However, driver mutations vary

greatly between cancer patients – even those with the same

(sub)type of cancer – and this heterogeneity significantly reduces

the statistical power to detect driver mutations by tests of

recurrence. One of the main biological explanations for this

mutational heterogeneity is that driver mutations target not only

individual genomic loci (e.g. nucleotides or genes), but also target

groups of genes in cellular signaling and regulatory pathways.

Consequently, different cancer patients may harbor mutations in

different members of a pathway important for cancer develop-

ment. Thus, in addition to testing individual loci, or genes, for

recurrent mutation in a cohort of patients, researchers also test

whether groups of genes are recurrently mutated. Since exhaustive

testing of all groups of genes is not possible without prohibitively

large sample sizes (due to the necessary multiple hypothesis testing

correction), current approaches focus on groups of genes defined
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by prior biological knowledge, such as known pathways (e.g. from

KEGG [13]) or functional groups (e.g. from GO [14]), and

methods have been introduced to look for enrichment in such pre-

defined groups of genes (e.g. [15–17]). More recently, methods

that identify recurrently mutated subnetworks in protein-protein

interaction networks have also been developed, such as NetBox

[18], MeMO [19], HotNet [20], and EnrichNet [21].

Knowledge of gene and protein interactions in humans remain

incomplete, and most existing pathway databases and interaction

networks do not precisely represent the pathways and interactions

that occur in a particular cancer cell. Thus, restricting attention to

only those combinations of mutations recorded in these data

sources may limit the possibility for novel biological discoveries.

Thus algorithms that do not make this restriction – but also avoid

the multiple hypothesis testing problems associated with exhaus-

tive enumeration – are desirable. Recently, the RME [22] and De

novo Driver Exclusivity (Dendrix) [23] algorithms were introduced

to discover driver pathways using combinatorial constraints derived

from biological knowledge of how driver mutations appear in

pathways [24,25]. In particular, each cancer patient contains a

relatively small number of driver mutations, and these mutations

perturb multiple cellular pathways. Thus, each driver pathway will

contain approximately one driver mutation per patient. This leads

to a pattern of mutual exclusivity between mutations in different

genes in the pathway. In addition, an important driver pathway

should be mutated in many patients, or have high coverage by

mutations. Thus, driver pathways correspond to sets of genes that

are mutated in many patients, but whose mutations are mutually

exclusive, or approximately so. We emphasize that the driver

pathways exhibiting patterns of mutually exclusivity and high coverage are

generally smaller and more focused than most pathways annotated in the

literature and pathway databases. The latter typically contain

many genes and perform multiple different functions; e.g. the ‘‘cell

cycle’’ pathway in KEGG contains 143 genes. It is well known that

co-occurring (i.e., not exclusive) mutations are observed in these

larger, multifunctional biological pathways [25]. The RME and

Dendrix algorithms use different approaches to find sets of genes

with high coverage and mutual exclusivity: RME builds sets of

genes from pairwise scores of exclusivity, while Dendrix computes

a single score for the mutual exclusivity of a set of genes, and finds

the highest scoring set. The aforementioned MeMO algorithm

[19] also considers mutual exclusivity between mutations, but only

for pairs of genes that have recorded interactions in a protein-

protein interaction network. Thus, MeMO does not attempt to

identify driver pathways de novo and can only define subnetworks in

existing interaction networks. While many of the strongest signals

of mutual exclusivity are between genes with known interactions,

below we show examples in cancer data of mutual exclusive

mutations between genes with no known direct iterations.

The two existing de novo algorithms, RME and Dendrix,

consider the detection of only a single driver pathway from the

pattern of mutual exclusivity between mutations. However, it is

well known that mutations in several pathways are generally

required for cancer [26]. There is little reason to assume that

mutations in different pathways will be mutually exclusive, and in

contrast may exhibit significant patterns of co-occurrence across

patients. Multiple pathways may be discovered using these

algorithms by running the algorithm iteratively, removing the

genes found in each previous iteration, and such an approach was

employed for Dendrix [23]. However, such an iterative approach

is not guaranteed to yield the optimal set of pathways.

Here we extend the Dendrix algorithm in three ways. First, we

formulate the problem of finding exclusive, or approximately

exclusive, sets of genes with high coverage as an integer linear

program (ILP). This formulation allows us to find optimal driver

pathways of various sizes directly – in contrast to the greedy

approximation and Markov Chain Monte Carlo algorithms

employed in Dendrix. Second, we generalize the ILP to

simultaneously find multiple driver pathways. Third, we augment

the core algorithm with additional analyses including: examining

gene sets for subtype-specific mutations, summarizing stability of

results across different number and size of pathways, and imposing

greater exclusivity of gene sets.

We apply the new algorithm, called Multi-Dendrix, to four

somatic mutation datasets: whole-exome and copy number array

data in 261 glioblastoma (GBM) patients from The Cancer

Genome Atlas (TCGA) [7], whole-exome and copy number array

data in 507 breast cancer (BRCA) patients from TCGA [8], 601

sequenced genes in 84 patients with glioblastoma multiforme

(GBM) from TCGA [7] and 623 sequenced genes in 188 patients

with lung Adenocarcinoma [27]. In each dataset Multi-Dendrix

finds biologically interesting groups of genes that are highly

exclusive, and where each group is mutated in many patients. In

all datasets these include groups of genes that are members of

known pathways critical to cancer development including: Rb,

p53, and RTK/RAS/PI(3)K signaling pathways in GBM and p53

and PI(3)K/AKT signaling in breast cancer. Multi-Dendrix

successfully recovers these pathways solely from the pattern of

mutual exclusivity and without any prior information about the

interactions between these genes. Moreover, Multi-Dendrix also

identifies mutations that are mutually exclusive with these well-

known pathways, and potentially represent novel interactions or

crosstalk between pathways. Notable examples include mutual

exclusivity between: mutations in PI(3)K signaling pathway and

amplification of PRDM2 (and PDPN) in glioblastoma; mutations

in p53, GATA3 and cadherin genes in breast cancer.

Finally, we compare Multi-Dendrix to an alternative approach

of iteratively applying Dendrix [23] or RME [22], two other

algorithms that search for mutually exclusive sets. We show that

these iterative approaches typically fail to find an optimal set of

pathways on simulated data, while Multi-Dendrix finds the correct

Author Summary

Cancer is a disease driven largely by the accumulation of
somatic mutations during the lifetime of an individual. The
declining costs of genome sequencing now permit the
measurement of somatic mutations in hundreds of cancer
genomes. A key challenge is to distinguish driver mutations
responsible for cancer from random passenger mutations.
This challenge is compounded by the observation that
different combinations of driver mutations are observed in
different patients with the same cancer type. One reason
for this heterogeneity is that driver mutations target
signaling and regulatory pathways which have multiple
points of failure. We introduce an algorithm, Multi-Dendrix,
to find these pathways solely from patterns of mutual
exclusivity between mutations across a cohort of patients.
Unlike earlier approaches, we simultaneously find multiple
pathways, an essential feature for analyzing cancer
genomes where multiple pathways are typically perturbed.
We apply our algorithm to mutation data from hundreds
of glioblastoma, breast cancer, and lung adenocarcinoma
patients. We identify sets of interacting genes that overlap
known pathways, and gene sets containing subtype-
specific mutations. These results show that multiple cancer
pathways can be identified directly from patterns in
mutation data, and provide an approach to analyze the
ever-growing cancer mutation datasets.

Identifying Multiple Pathways in Cancer
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pathways even in the presence of a large number of false positive

mutations. On real cancer sequencing data, the groups of genes

found by Multi-Dendrix include more genes with known biological

interactions. Moreover, Multi-Dendrix is orders of magnitude

faster than these other algorithms, allowing Multi-Dendrix to scale

to the latest whole-exome datasets on hundreds of samples, which

are largely beyond the capabilities of Dendrix and RME. Multi-

Dendrix is a novel and practical approach to finding multiple

groups of mutually exclusive mutations, and complements other

approaches that predict combinations of driver mutations using

biological knowledge of pathways, interaction networks, protein

structure, or protein sequence conservation.

Results

Multi-Dendrix algorithm
The Multi-Dendrix algorithm takes somatic mutation data from

m cancer patients as input, and identifies multiple sets of mutations,

where each set satisfies two properties: (1) the set has high coverage

with many patients having a mutation in the set; (2) the set exhibits

a pattern of mutual exclusivity where most patients have exactly

one mutation in the set. We briefly describe the Multi-Dendrix

algorithm here. Further details are provided in the Methods

section below.

We assume that somatic mutations have been measured in m
cancer patients and that these mutations are divided into n
different mutation classes. A mutation class is a grouping of different

mutation types at a specific genomic locus. In the simplest case, a

mutation class corresponds to a grouping of all types of mutations

(single nucleotide variants, copy number aberrations, etc.) in a

single gene. We represent the somatic mutation data as an m|n
binary mutation matrix A, where the entry Aij is defined as follows:

Aij~
1 if gene j is mutated in patient i

0 otherwise:

�
ð1Þ

More generally, a mutation class may be defined for an

arbitrary genomic locus, and not just a gene, and may distinguish

different types of mutations. For example, one may define a

mutation class as single-nucleotide mutations in an individual

residue in a protein sequence or in a protein domain. Or

alternatively, one may separate different types of mutations in a

gene (e.g. single-nucleotide mutations, deletions, or amplifications)

by creating separate mutation classes for each mutation type in

each gene. We will use this later definition of mutation classes in

the results below. For ease of exposition we will assume for the

remainder of this section that each mutation class is a gene.

Vandin et al. [23] formulate the problem of finding a set of

genes with high coverage and high exclusivity as the Maximum

Weight Submatrix Problem. Here the weight W (M)~DC(M)D{v(M)
of a set M of genes is the difference between the coverage DC(M)D,
the number of patients with a mutation in one of the genes in M,

and the coverage overlap v(M), the number of patients having a

mutation in more than one gene in M. Vandin et al. [23]

introduce the De novo Driver Exclusivity (Dendrix) algorithm [23]

that finds a set M of k genes with maximum weight W (M).
While finding single driver pathways is important, most cancer

patients are expected to have driver mutations in multiple

pathways. Dendrix used a greedy iterative approach to find

multiple gene sets (described below), that is not guaranteed to find

optimal gene sets. Identification of multiple driver pathways

requires a criterion to evaluate possible collections of gene sets.

Appealing to the same biological motivation as above, we expect

that each pathway contains approximately one driver mutation.

Moreover, since each driver pathway is important for cancer

development, we also expect that most individuals contain a driver

mutation in most driver pathways. Thus, we expect high

exclusivity within the genes of each pathway and high coverage

of each pathway on its own. One measure that satisfies these

criteria is to find a collection M~fM1,M2,:::,Mtg of gene sets

whose sum of weights is maximized.

We define the Multiple Maximum Weight Submatrices

problem as the problem of finding such a maximum weight

collection. We solve the Multiple Maximum Weight Submatrix problem

using an integer linear program (ILP), and refer to the resulting

algorithm as Multi-Dendrix (see Methods). In addition, the ILP

formulation used in Multi-Dendrix uses a modified weight

function Wa(M)~DC(M)D{av(M), where aw0 is a parameter

that adjusts the tradeoff between finding sets with higher coverage

C(M) (more patients with a mutation) versus higher coverage

overlap v(M) (greater non-exclusivity between mutations). We use

this parameter in the breast cancer dataset below. In contrast,

Dendrix was limited to a~1.

Simulated data
We compare Multi-Dendrix to iterative versions of Dendrix

[23] and RME [22] on simulated mutation data with both driver

mutations implanted in pathways in a mutually exclusive manner

and random passenger mutations. The goal of these simulations is

to compare Multi-Dendrix to other algorithms that identify

mutually exclusive genes on straightforward datasets that contain

multiple mutually exclusive sets. We generate mutation data for

m~160 patients and n~360 genes as follows. We select a set of

four pathways P~(P1,P2,P3,P4) with each Pi containing four

genes. We select the coverage C(Pi) uniformly from the following

intervals: 0:75m,0:9m½ �, 0:6m,0:75m½ �, 0:45m,0:6m½ �,
0:3m,0:45m½ �, respectively. The size of this dataset and the

varying coverages of the pathways model what is observed in real

data (see 1 Somatic Mutation data) and is consistent with models

of mutation progression where driver mutations accumulate in

pathways [28]. For each pathway Pi, we select DC(Pi)D patients at

random and add a driver mutation to exactly one gene from the

set Pi. Thus, the driver mutations in each pathway are mutually

exclusive. We then add passenger mutations by randomly

mutating genes in each patient with probability, q, the passenger

mutation probability.We used values of q similar to our estimates for q

on the TCGA GBM and Lung cancer data sets (in 1 Somatic

Mutation data below), which were q~0:001 and q~0:0005,

respectively. We emphasize that these simulations do not model all

of the complexities of somatic mutations in cancer e.g. gene-

specific and patient-specific mutation rates, genes present in

multiple pathways, etc.

Since the Dendrix and RME algorithms are designed to find

single pathways, we compared Multi-Dendrix to iterative versions

of these methods that return multiple gene sets. For Dendrix we

used the iterative approach described in [23]: apply Dendrix to

find a highest scoring gene set, remove those genes from the

dataset, and apply Dendrix to the reduced dataset, repeating these

steps until a desired number t of gene sets are found. We will refer

to this algorithm as Iter-Dendrix. Thus, Iter-Dendrix returns a

collection P~ P1,P2, . . . ,Ptð Þ of t gene sets such that

W (P1)§W (P2)§ . . . §W (Pt). We implemented the analogous

iterative version of RME, and will refer to this algorithm as Iter-

RME. We compared the collection M of gene sets found by each

algorithm to the planted pathways P, computing the symmetric

difference d(P,M) between M and P as described in Methods.

Identifying Multiple Pathways in Cancer
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Table 1 shows a comparison of Multi-Dendrix, Iter-Dendrix,

and Iter-RME on simulated mutation data for different values of

q. Note that we do not show comparisons to Iter-RME for

q§0:005 as Iter-RME did not complete after 24 hours of runtime

for any of the 1000 simulated mutation data sets. While the RME

publication [22] analyzed mutation matrices with thousands of

genes and hundreds of patients, this analysis (and the released

RME software) required that mutations were presented in at least

10% of the samples, greatly reducing the number of genes/

samples input to the algorithm. In fact, a threshold of 10% will

remove nearly all genes in current whole-exome studies (see 1
Comparison of Multi-Dendrix and RME).

For 0:0005ƒqƒ0:015, Multi-Dendrix identifies collections of

gene sets that were significantly closer (pv0:01) to the planted

pathways P than the collections found by either Iter-Dendrix and

Iter-RME. These results demonstrate that Multi-Dendrix outper-

forms other methods, even when the passenger mutation

probability q is more than 15 times greater than the value

estimated from real somatic mutation data. For qƒ0:0001, the

differences between Multi-Dendrix and Iter-RME were not

significant.

We also compared the runtimes of each algorithm on the

simulated datasets. Multi-Dendrix was several orders of magnitude

faster than Iter-Dendrix and Iter-RME on all datasets (Table 2).

Note that as the passenger mutation probability q increases, the

number of recurrently mutated passenger genes increases. Multi-

Dendrix scales much better than Iter-RME and maintains a

significant advantage over Iter-Dendrix, completing all simulated

datasets in less than 5 seconds.

We evaluated how the runtime of Multi-Dendrix scales to larger

datasets. Using the same passenger mutation probabilities

0:0001ƒqƒ0:02 listed above, we calculated the average runtime

in seconds of Multi-Dendrix for ten simulated mutation matrices

with m~100,200,400,800,1600,3200,6400,12800,22000 genes

and n~1000 patients, more than the number of patients to be

measured in any cancer study from TCGA. In each case, we run

Multi-Dendrix only on the subset of genes that are mutated in

more than the expected number nq of samples. For the largest

dataset with m~22000 genes, the average number of genes input

to Multi-Dendrix for the highest and lowest passenger mutation

probabilities are *9700 and *2100, respectively. (Table S1

shows the average number of input genes for varying m and q.)

The average runtime for this largest dataset is under one hour

(average of 54.4 minutes). Figure S1 shows the runtimes for

varying m and q.

The Multi-Dendrix Computational Pipeline
We incorporate the Multi-Dendrix algorithm into a larger

pipeline (Figure 1) that includes several additional pre- and post-

processing tasks including: (1) Building mutation matrices for input

into Multi-Dendrix; (2) Summarizing Multi-Dendrix results over

multiple values for the parameters t, the number of gene sets, kmin

the minimum size of a gene set, and kmax the maximum size of a

gene set; (3) Evaluating the statistical significance of results; (4)

Examining Multi-Dendrix results for mutually exclusive sets

resulting from subtype-specific mutations. We describe these steps

briefly below, with further details in the Methods and Supporting

Information.

First, we build mutation matrices A from somatic mutation

data. We use several steps to process single-nucleotide variant

(SNV) data, copy number variant (CNV) data, and to combine

both types of data. Second, in contrast to simulated data, on real

data we do not know the correct values of the parameters t, kmin,

and kmax. Thus, we consider a reasonable range of values for these

parameters and summarize the results over these parameters into

modules. We build a graph, where the nodes are individual genes (or

mutation classes) and edges connect genes (respectively mutation

classes) that appear in the same gene set for more than one value of

the parameters. We weight each edge with the fraction of

parameter values for which the pair of genes appear in the same

gene set. The resulting edge-weighted graphs provide a measure of

the stability of the resulting gene sets over different parameter

values. By choosing a minimum edge weight, we partition the

graph into connected components, or modules. One may choose to

use these modules as the output of Multi-Dendrix.

Table 1. A comparison of the algorithms on simulated
mutation data with varying passenger mutation probability q.

Avg. distance d from planted pathways

q Multi-Dendrix Iter-RME Iter-Dendrix

0.0 0:02+0:19 0.01+0.12 0:30+0:86

0.0001 0.02+0.18 0.01+0.16 0.30+0.86

0.0005 0.04+0.23 0.10+0.40 0.35+0.89

0.001 0.10+0.35 0.32+0.60 0.44+1.01

0.005 0.44+0.71 – 0.75+1.07

0.01 1.03+1.00 – 1.20+1.15

0.015 1.68+1.16 – 1.78+1.26

0.02 2.17+1.24 – 2.21+1.29

Italicized rows correspond to values of q approximated from real cancer
datasets. Each entry is mean (m) and standard deviation (s) (across 1000
simulations) of the distance d(P,M) between the planted set of pathways P

and the collections M found by each algorithm. The minimum distance d~0

indicates an algorithm found the planted pathways exactly, while the maximum
distance d~16 indicates that an algorithm did not find any of the genes in the
planted pathways. Bold text indicates the top performing algorithm for each
value of q. Multi-Dendrix is the top performer for all values of q except the
smallest q~0:0001. The differences between Multi-Dendrix and both Iter-
Dendrix and Iter-RME are statistically significant (pv0:01) for 0:0005ƒqƒ0:01.
For qw0:001, Iter-RME did not complete after 24 hours of runtime.
doi:10.1371/journal.pcbi.1003054.t001

Table 2. A comparison of the runtimes of Multi-Dendrix, Iter-
RME, and Iter-Dendrix on simulated mutation data with
varying passenger mutation probability q.

Avg. runtime (secs)

q Multi-Dendrix Iter-RME Iter-Dendrix

0.0001 0.28 19.22 609.79

0.0005 0.28 17.36 621.22

0.001 0.50 123.16 610.21

0.005 1.46 w86, 400 672.43

0.01 2.60 w86, 400 711.55

0.015 4.06 w86, 400 730.85

0.02 4.93 w86, 400 727.82

Runtimes for each algorithm are reported as the mean runtime of 10 runs for
each value of q. Note that Multi-Dendrix has runtimes under 5 seconds for all
datasets, and is orders of magnitude faster than the other methods for each q.
For Iter-RME, we report a runtime of w86,400 seconds for q§0:005 as Iter-RME
did not complete within one day. Simulations were performed on machines
running 64-bit Debian Linux with Xeon 2.8 GHz processors and a maximum of
8 GB of available memory.
doi:10.1371/journal.pcbi.1003054.t002

Identifying Multiple Pathways in Cancer
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Third, we evaluate the statistical significance of our results using

two measures. Since the collection M with high weight W ’(M)
may not be surprising in a large mutation matrix A, the first

measure evaluates the significance of the score W ’(M) maximized

by Multi-Dendrix. We evaluate whether the weight W ’(M�) of the

maximum weight collection M� output by Multi-Dendrix is

significantly large compared to an empirical distribution of the

maximum weight sets from randomly permuted mutation data.

We generate random mutation data using the permutation test

described in [19]. This test permutes the mutations among the

genes in each patient, preserving both the number of mutated

genes in each patient and the number of patients with a mutation

in each gene while perturbing any patterns of exclusivity between

mutated genes. Note that this permutation test requires running

Multi-Dendrix many times to determine statistical significance for

a single parameter setting. Thus, the runtime advantages of Multi-

Dendrix compared to Iter-Dendrix and Iter-RME are very

important in practice on real datasets.

Next, we evaluate whether the collection M� output by Multi-

Dendrix contains more protein-protein interactions than expected

by chance by applying our direct interactions test on a PPI network

constructed from the union of the KEGG and iRefIndex PPI

networks. The direct interactions test computes a statistic n of the

difference in the number of interactions within and between gene sets

in M�, and compares the observed value of n to an empirical

distribution on 1000 permuted PPI networks (full details of the test

are in } Evaluating known interactions). These permuted networks

account for the observation that many genes that are frequently

mutated in cancer also have large degree in the interaction

network – either due to biological reasons or ascertainment bias.

We use an interaction network to assess biological function rather

than known pathways (e.g. KEGG pathways or GSEA sets)

because most of these pathways are relatively large, while the gene

sets found by Multi-Dendrix that exhibit exclusivity tend to be

much smaller, each containing only a few genes.

Finally, we examine possible correlations between the mutually

exclusive sets reported by Multi-Dendrix and particular subsets of

samples. A number of cancers are divided into subtypes according

to pathology, cytogenetics, gene expression, or other features.

Since mutations that are specific to particular subtypes will be

mutually exclusive, disease heterogeneity is an alternative expla-

nation to pathways for observed mutually exclusive sets. For

example, [29] report four subtypes of GBM based on gene

expression clusters, and show that several mutations – including

IDH1, PDGFRA, EGFR, and NF1 – have strong association with

individual subtypes. Unfortunately, if the subtypes are unknown

there is no information for Multi-Dendrix, Dendrix, RME, or

other algorithms that analyze mutual exclusivity to distinguish

between mutual exclusivity resulting from subtypes and mutual

exclusivity resulting from pathways or other causes. If subtypes are

known, two possible solutions are to analyze subtypes separately,

or to examine whether patterns of mutual exclusivity are

associated to these subytpes. We annotate results by known

subtypes as a post-processing step in Multi-Dendrix.

Somatic mutation data
We applied Multi-Dendrix and Iter-Dendrix to four somatic

mutation matrices: (1) copy number variants (CNVs), small indels,

and non-synonymous single nucleotide variants (SNVs) measured

in 601 genes in 84 glioblastoma multiformae (GBM) patients [7];

(2) indels and non-synonymous single nucleotide variants in 623

sequenced genes in 188 Lung Adenocarcinoma patients [27]; (3)

CNVs, small indels, and non-synonomous SNVs measured using

whole-exome sequencing and copy number arrays in 261 GBM

patients [7]; and (4) CNVs, small indels, and non-synonymous

SNVs measured in 507 BRCA patients. We will refer to these

datasets as GBM(2008), Lung, GBM, and BRCA below. We

removed extremely low frequency mutations and known outliers

from these datasets as described in Methods. After this processing,

the GBM(2008) dataset contained mutation and CNV data for 46

genes in 84 patients; the Lung dataset contained somatic mutation

for 190 genes in 163 patients; the GBM dataset contained

mutation and CNV data for 398 genes in 261 patients; and the

BRCA dataset contained mutation and CNV data for 375 genes in

507 patients. We focus here on presenting results from the latter

two datasets because they are the latest whole-genome/exome

datasets and most representative of the datasets that are now being

produced and will be analyzed now and in the coming years.

Results with the first two older and smaller datasets from targeted

sequencing are described in the Supporting Information.

We compute 2ƒtƒ4 gene sets, each of minimum size kmin~3
and maximum size ranging from 3ƒkmaxƒ5. We summarize the

results over these 9 different parameter values into modules using

the procedure described above.

Figure 1. The Multi-Dendrix pipeline. Multi-Dendrix analyzes integrated mutation data from a variety of sources including single-nucleotide
mutations and copy number aberrations. Multiple gene set are identified using a combinatorial optimization approaches. The output is analyzed for
subtype-specific mutations and summarized across multiple values of the parameters: t, number of gene sets, and kmax, maximum size per gene set.
doi:10.1371/journal.pcbi.1003054.g001
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Mutually exclusive sets in Glioblastoma (GBM)
We applied Multi-Dendrix and Iter-Dendrix to the GBM

dataset, considering EGFR amplification as a separate event (see

Methods). The algorithms report the same results over all values of

the parameters except kmax~5, where Iter-Dendrix includes the

IRF5 gene in a gene set with RB1, CDK4(A), and CDKN2A/

CDKN2B(D), and MSL3. However, Multi-Dendrix is significantly

faster running in 142 seconds compared to 37,786 seconds (over

10 hours) for Iter-Dendrix.

We summarize the results of these different parameter choices

by connecting genes that appear in the same gene set at least twice,

resulting in four modules (Figure 2). These four modules include

all the genes (except ERBB2) that are: (1) members of the three

signaling pathways highlighted in the TCGA GBM study [7], and

(2) are mutated in w5% of the samples. The weight W ’(M) of all

collections found by Multi-Dendrix on the GBM dataset are

significant Pv0:0001) and the direct interactions statistic n of

these four modules is also significant (P~0:002). Three of the four

modules also contain a significant number of interactions

(Pv0:05). In addition to these four modules, two additional

mutation classes, CNTNAP2 and deletion of 10q26.3, each appear

in one choice of parameters for Multi-Dendrix. Since these are not

part of a larger module, they are not analyzed further. Figure S2

shows a combined mutation matrix with all four modules.

The first module includes the amplification of CDK4, mutation

of RB1, and a deletion that includes both CDKN2A and

CDKN2B. This module is mutated in 87.7% (229/261) of the

samples, and are discovered for all parameter choices. These four

genes are members of the RB signaling pathway (as annotated in

[7]) involved in G1/S progression (P~9:7|10{14 by Bonferonni-

corrected hypergeometric test): CDKN2A and CDKN2B inhibits

CDK4, which in turn inhibits RB1. In addition for 7/9 parameter

choices, this module includes mutations in MSL3. MSL3 is a

member of the MSL (male-specific lethal) complex that has a

major role in dosage compensation in Drosophila. While this

complex is conserved in mammals, the specific function of human

MSL3 is unknown. However, the MSL complex also includes the

histone acetyltransferase MOF which is involved in cell cycle

regulation of p53 and may play a role in cancer [30]. Thus, the

mutual exclusivity of mutations in MSL3 and the other well-

known members of the RB signaling pathway is intriguing and

deserves further study. This module contains two interactions

(P~0:005).

The second module includes mutations and deletion of PTEN,

mutations in PIK3CA, mutations in PIK3R1, mutations in IDH1,

and an amplification that includes PDPN and PRDM2. The

module is mutated in 62.8% (164/261) of the samples. PTEN,

PIK3CA, and PIK3R1 are all members of the RTK/RAS/PI(3)K

signaling pathway (as annotated in [7]) involved in cellular

proliferation (P~3:2|10{11). IDH1 is not a known member of

this pathway; moreover, IDH1 is preferentially mutated in the

proneural subtype of GBM [29]. Deletions in PTEN are also

associated with the proneural subtype of GBM, although they are

not considered a defining feature of this subtype (as IDH1

mutations are) and do not result in a gene expression signature

[29]. However, there are no reports that PTEN, PIK3CA, or

PIK3R1 mutations are subtype specific, and thus the mutual

exclusivity of IDH1 and the remaining genes in this set is not

simply explained by subtypes. PRDM2 is not known to be part of

the RTK/RAS/PI(3)K signaling pathway. PRDM2 is a member

of the histone methyltransferase superfamily, interacts with the RB

protein [31], and is proposed as a tumor suppressor in colorectal

cancer [32]. PDPN is used as a molecular marker for glioma, due

to its association with clinical outcomes [33]. Our results suggest

that PDPN and PRDM2 may have an undiscovered role in GBM

as well. This module contains three interactions (P~0:001).

The third module includes mutations in TP53, the amplification

of MDM2, the amplification of MDM4, mutations in NLRP3, and

the deletion involving AKAP6 and NPAS3. This module is

mutated in 57.8% (151/261) of the samples, and appears for every

parameter choice for tw2. TP53, MDM2, and MDM4 are

members of the p53 signaling pathway (P~9:7|10{14), a critical

and frequently altered pathway in GBM involved in senescence

and apoptosis. NPAS3 is a transcription factor expressed in the

brain and implicated in psychiatric disorders including schizo-

phrenia [34,35]. In addition, NPAS3 was recently shown to act as

a tumor suppressor in astrocytomas, with a possible role in

glioblastoma progression and proliferation [36]. This module

contains three interactions (P~0:001).

The fourth module includes mutations in EGFR, the amplifi-

cation of PDGFRA , and the deletion of RB1. This module is

mutated in 45.6% (119/261) of samples, and appears for t~4.

EGFR and PDGFRA are members of the RTK/RAS/PI(3)K

signaling pathway (P~8:9|10{9), and RB1 is a member of the

RB signaling pathway. While EGFR and PDGFRA both interact

with RAS, there are no reported direct interactions between these

three proteins. In addition, mutations in these three genes are

significantly associated with two of the expression subtypes

reported in [29]: mutations in EGFR and the deletion of RB1

are associated with the Classical GBM subtype, and the

amplification of PDGFRA is significantly associated with the

Proneural subtype. Thus, it appears that the mutual exclusivity

discovered by Multi-Dendrix is a result of subtype-specific

mutations, despite PDGFRA and EGFR being a member of the

same biological pathway.

In summary, we see that subtype-specific mutations provide an

alternative explanation for observed mutual exclusivity and

confound the identification of driver pathways. However, on the

GBM data subtype-specific mutations are a minor feature in the

data, and Multi-Dendrix successfully identifies de novo portions of

three critical signaling pathways in GBM.

Mutually exclusive sets in Breast Cancer (BRCA)
We applied Multi-Dendrix and Iter-Dendrix to the BRCA

dataset. We found that for most values of the parameters t and

kmax, the results combined the most frequently mutated genes into

a single gene set despite the fact that these genes had high coverage

overlap (Figures S4 and S5). That is, for a gene set M, high

Figure 2. Multi-Dendrix results on the GBM dataset. (Left) Nodes represent genes in four modules found by Multi-Dendrix using t~2, . . . ,4
gene sets of minimize size kmin~3 and maximum size kmax~3, . . . ,5. Genes with ‘‘(A)’’ appended are amplification events, genes with ‘‘(D)’’
appended are deletion events, and genes with no annotation are SNVs. Edges connect genes that appear in the same gene set for more than one
value of the parameters, with labels indicating the fraction of parameter values for which the pair of genes appear in the same gene set. Color of
nodes indicates membership in three signaling pathways noted in [7] as important for GBM: RB, p53, and RTK/RAS/PI(3)K signaling. Shape of nodes
indicates genes whose mutations are associated with specific GBM subtypes, and dashed edges connect genes associated with different subtypes.
The direct interactions statistic n of this collection of gene sets is significant (P~0:002). (Middle) Known interactions between proteins in each set and
p-value for observed number of interactions. (Right) Mutation matrix for each of four modules with mutual exclusive (blue) and co-occurring
mutations (orange).
doi:10.1371/journal.pcbi.1003054.g002
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coverage DC(M)D was outweighing a high coverage overlap v(M)
in the weight function W (M)~DC(M)D{v(M) optimized by

Multi-Dendrix. To enforce greater mutual exclusivity, we

increased the coverage overlap penalty to a~2:5 from its default

value of a~1.

Using a~2:5, Multi-Dendrix identifies four distinct modules

(Figure 3). These four modules overlap with three pathways known

to be important in BRCA: p53 signaling, PI(3)K/AKT signaling,

and cell cycle checkpoints. In addition, they include genes recently

identified by [8] as important BRCA genes. These modules cover

a smaller proportion of samples than our results on the GBM

dataset even though they include the same number of genes,

suggesting greater mutational heterogeneity or disease heteroge-

neity (i.e. subtypes) in the breast cancer dataset. Indeed, breast

cancers are commonly divided into four major subtypes: Luminal

A/B, Basal, and HER2 type. We annotate the subtype-specific

mutations below, and Table S6 lists the significant associations

between mutations and subtypes. The weight W 0(M) of all

collections found by Multi-Dendrix on the BRCA dataset are

significant (Pv0:01), and the direct interactions statistic n of these

four modules is also significant (Pv0:001). In addition, one

module is significantly enriched for interactions (Pv0:05). In

addition to these four modules, five additional genes (SF3B1,

CCDC150, COL23A1, C20orf26, PCDHA5) each appear in one

choice of parameters for Multi-Dendrix. Since these are not part of

a larger module, they were not further analyzed. Figure S3 shows a

combined mutation matrix with all four modules.

The first module includes the deletion of PTEN, mutations in

PIK3CA, PIK3R1, AKT1, HIF3A, and the amplification of

genomic region 12p13.33. These six mutation classes are mutated

in 61% (308/507) of the samples, and this module is discovered for

all values of the parameters. PTEN, PIK3CA, PIK3R1, and

AKT1 form the core of the PI(3)K/AKT signaling pathway, as

annotated in [8] (Pv10{15): AKT1 is known to interact with

PTEN, PIK3R1, and PIK3CA, while PTEN inhibits PIK3CA and

PIK3R1. These genes constitute five of the eight genes mutated in

the PI(3)K/AKT signaling pathway, as reported by [8]. One of the

other mutation classes in this module is the amplification of 12p in

82 samples. This amplification event has been reported before in

BRCA, although the likely target of this amplification is unknown

[37]. This module contains six interactions (Pv0:001).

The second module includes mutations in the genes TP53,

CDH1, GATA3, CTCF, and GPRIN2. These five genes are

mutated in 56% (283/507) of the samples, and are discovered for

each parameter choice. TP53 is a member of the p53 signaling

pathway, while GATA3, CDH1, and CTCF are well-known for

their role in breast cancer and are involved in metastasis and

proliferation. The loss or downregulation of CDH1, the E-

cadherin gene located on 16q22.1, is implicated in breast cancer

invasion and proliferation (reviewed in [38]). CTCF, also located

on 16q22.1, has been found to act as a tumor suppressor in breast

cancer through mechanisms similar to CDH1 [39]. GATA3 is a

transcription factor that regulates immune cells, and has long been

known to be involved in breast cancer tumorigenesis [40].

Recently, a novel role for GATA3 was discovered, whereby

GATA3 suppresses breast cancer metastasis through inhibition of

E-cadherin promoters [41]. This module contains zero known

interactions.

The third module includes the deletion of MAP2K4 and

mutations in MAP3K1, PPEF1, SMARCA4, and WWP2. These

five mutations occur in 44.4% (225/507) of the samples, and this

module is identified when the number t of gene sets is at least 3.

MAP3K1 and MAP2K4 are both members of the p38-JNK1

stress kinase pathway as reported in [8], and are involved in the

regulation of apoptosis. Both MAP3K1 and MAP2K4 are serine/

threonine kinases, while PPEF1 is a serine/threonine phosphatase.

The targets of PPEF1 are unknown, although there are reports

that PPEF2, another member of the gene family, does interact

with the p38-JNK pathway through the gene ASK1 [42].

SMARCA4 is also a known cancer gene, and has been shown to

have a role as a tumor suppressor in lung cancer [43]. This module

contains one interaction (P~0:179).

The fourth module includes the amplification of CCND1 and

mutations in MAP2K4, RB1, and GRID1. These four mutations

occur in 36.3% (184/507) of the samples, and this module is

discovered when the number t of gene sets is 4. CCND1 and RB1

encode interacting proteins that play a role cell cycle progression.

CCND1 encodes the cyclin-D1 protein that inhibits the retino-

blastoma protein encoded by RB1 via hyperphosphorylation. The

hyperphosphorylation of RB inactivates its role as a tumor

suppressor, and thus mutations that target either CCND1 or

RB1 are thus important for proliferation in cancer [44]. Mutations

in MAP2K4, as discussed above for the third module, target the

p38-JNK1 pathway, and MAP2K4 is not known to have any

interactions with CCND1 or RB1. This module contains one

interaction (P~0:1).

We separately ran Multi-Dendrix on mutation data restricted to

the 224 Luminal A patients, the 124 Luminal B patients, the 93

Basal-like patients, and the 58 HER2-enriched patients (as

annotated in [8]) using different values of a for the different sized

datasets (see Supporting Information } BRCA subtypes for details).

The gene pair {TP53, GATA3} from the Multi-Dendrix modules

is also identified by Multi-Dendrix when restricting to basal-like or

luminal B samples. The same is true for the gene pair {AKT1,

PIK3CA} in HER2-enriched and luminal A subtypes. Thus, the

mutual exclusivity between mutations in these pairs of genes is not

a result of subtype-specific mutations. On the other hand, the

mutual exclusivity between 12p13.33 amplification and PIK3CA

mutation appears to be an effect of subtypes, as these aberrations

are associated with basal-like and luminal A subtypes, respectively

(Table S6), and these two aberrations are not grouped into the

same module on any Multi-Dendrix run of individual subtypes.

These results show that mutual exclusivity can result from

mutational heterogeneity within pathways, disease heterogeneity

with subtype-specific mutations, or both.

Discussion

We introduce an algorithm Multi-Dendrix that simultaneously

finds multiple cancer driver pathways using somatic mutation data

from a collection of patients. Multi-Dendrix finds combinations of

somatic mutations solely from the combinatorial pattern of their

mutations with no prior knowledge of pathways or interactions between

genes. On simulated data, Multi-Dendrix outperforms iterative

versions of Dendrix and RME, two previous algorithms for

identifying single driver pathways. Multi-Dendrix finds optimal

Figure 3. Multi-Dendrix results on the BRCA dataset. Graphical elements are as described in Figure 2 caption, except for the following. Color of
nodes indicates membership in four signaling pathways noted in [8] as important for BRCA: p53 signaling, PI(3)K/AKT signaling, cell cycle
checkpoints, and p38-JNK1. The top row of each mutation matrix annotates the subtype of each patient. The regulatory interaction between GATA3
and CDH1 is shown as a dashed line. The direct interactions statistic n of this collection of gene sets is significant (Pv0:001).
doi:10.1371/journal.pcbi.1003054.g003
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groups of mutually exclusive mutations even in the presence of

significant noise where the passenger mutation rate is 15 times

greater than observed in real data. Multi-Dendrix is orders of

magnitude faster than iterative versions of Dendrix and RME and

scales to the analysis of mutations in thousands of genes from

hundreds of cancer patients. Finally, Multi-Dendrix finds optimal

solutions over a range of sizes for the individual gene sets, while

Dendrix examines only a fixed size gene set for each run.

We apply Multi-Dendrix to multiple cancer datasets, including

glioblastoma and breast cancer data from The Cancer Genome

Atlas, two of the most comprehensive somatic mutation datasets

from high-throughput sequencing data. Multi-Dendrix finds

multiple driver pathways of interacting genes/proteins including

portions of the p53, RTK/RAS/PI(3)K, PI(3)K/AKT, and Rb

signaling pathways. At the same time, we identify additional genes

whose mutations are mutually exclusive with mutations in these

pathways. Intriguingly, these additional genes are transcription

factors or other nuclear proteins involved in regulation of

transcription ( SMARCA4, NPAS3, PRDM2, and MSL3). In

general, gene transcription is the downstream ‘‘output’’ of

signaling pathways, suggesting that mutations in these downstream

targets may be substituting for mutations in the upstream (and

presumably more general) signaling pathways.

Our results demonstrate the advantages of simultaneously

finding sets of mutually exclusive genes. However, there can be

multiple explanations for observed mutual exclusivity in a set of

genes including both pathways (i.e., interactions between genes) as

well as disease heterogeneity (i.e., cancer subtypes). Interpretation

of Multi-Dendrix results should consider these various explana-

tions. To facilitate these analyses, we include additional steps in

the Multi-Dendrix pipeline to compare the results sets of

mutations to known gene interactions and/or known subtypes in

the samples.

Our Multi-Dendrix analysis shows an interesting feature of

mutual exclusivity between SNVs and deletions in tumor suppressor

genes. In the glioblastoma data, we find that SNVs in PTEN and the

deletion of PTEN are mutually exclusive. It is not clear whether this

is a genuine biological feature of the mutational process, where

either SNVs or deletions (but not both) are present in different

samples, or merely an artifact of the mutation calling. Regarding the

latter, it is possible that SNVs are more challenging to detect in

hemizygous samples, where the other allele has been deleted.

There are several extensions that might further improve the

Multi-Dendrix algorithm. First, the ILP used in Multi-Dendrix

finds optimal solutions effectively, but is not guaranteed to

rigorously examine suboptimal solutions. This is in contrast to

the Markov Chain Monte Carlo (MCMC) approach used by

Dendrix that samples suboptimal solutions in proportion to their

weight. Extending the MCMC approach to simultaneous discov-

ery of multiple pathways, or perhaps using the ILP to initialize a

sampling procedure are interesting directions for future research.

Second, the weight function used by the Multi-Dendrix algorithm

does not explicitly incorporate co-occurrence of mutations

between genes in different gene sets. Instead, the weight function

is highest for gene sets with high coverage and approximate

exclusivity, which may co-occur in many patients simply due to

high coverage (a trivial example is when all gene sets have full

coverage, and thus all mutations co-occur across gene sets). As

noted in [25], co-occurrence of mutations is known to be

important in large biological pathways, and thus algorithms that

explicitly optimize for collections of gene sets where mutations

between gene sets co-occur a surprising amount may have an

advantage in identifying key components of these larger biological

pathways.

We anticipate that Multi-Dendrix will be useful for analyzing

somatic mutation data from different types of cancer and with larger

cohorts of patients, such as those now being generated by The

Cancer Genome Atlas (TCGA) and other large-scale cancer

sequencing projects. However, mutual exclusivity and high

coverage are not the only criteria for selecting driver mutations,

and thus the model optimized by Multi-Dendrix has some

limitations. As noted above, it is well-known that each patient has

multiple driver mutations and there are many examples of co-

occurring mutations. Some of these co-occurring mutations are

clearly in different pathways, although this depends on one’s

definition of a pathway. Large, multi-functional ‘‘pathways’’ such as

the cell-cycle pathway do indeed exhibit co-occurring mutations; on

the other hand, co-occurring mutations appear to be less common

in directly interacting genes/proteins. In addition, the coverage, or

frequency, of important driver mutations may vary considerably,

according to the stage at which patients are sequenced, or extensive

disease heterogeneity. Private mutations that are unique to a single

individual in a study might be driver mutations, but will not exhibit

a strong signal of mutual exclusivity. Multiple approaches are

required to prioritize somatic mutations for further experimental

study. Multi-Dendrix is a useful complement for analysis of

significantly mutated genes [6,45,46], functional impact [1–4],

pathway/network analysis [18–22], and other approaches.

Methods

Weight function for gene sets
Given a mutation matrix A, and a set M of genes (or equivalent

mutation classes), Vandin et al. [23] define the weight function

W (M) as follows. For a gene g, the coverage C(g)~fi : Aig~1g is

the set of patients in which gene g is mutated. Similarly, for a set M
of genes, the coverage is C(M)~|g[MC(g). M is mutually exclusive if

C(g)\C(g’)~1, for all g,g’[M, g=g’. A gene set in A is a column

submatrix of A with high coverage and approximate exclusivity.

Since increasing coverage may be achieved at the expense of

decreasing exclusivity, [23] define a weight W (M) on set M of

columns of A that quantifies both coverage and exclusivity of M. In

particular, they define the coverage overlap of M as

v(M)~
P

g[M DC(g)D{DC(M)D. Note that v(M)~0 when M is

mutually exclusive. Then W (M) is the difference between the

coverage and coverage overlap of M:

W (M)~DC(M)D{v(M)~2DC(M)D{
X
g[M

DC(g)D: ð2Þ

Note that for a mutually exclusive submatrix M,

C(M)~
P

g[M C(g) and therefore W (M)~C(M).

Vandin et al. [23] introduce the Maximum Weight Submatrix

Problem defined for an integer kw0 as the problem of finding the

m|k submatrix M of A that maximizes a weight W (M), show that

this problem is NP-hard and derive the De novo Driver Exclusivity

(Dendrix) algorithm to solve it. Dendrix is a Markov Chain Monte

Carlo (MCMC) algorithm that samples sets of k genes in proportion

to their weight W . While the MCMC algorithm is not guaranteed

to find a gene set of optimal W , the authors showed that applying

the method to real somatic mutation data produces gene sets with

high coverage and approximate exclusivity, and that the Markov

chain rapidly converges to a stationary distribution.

An ILP for the Maximum Weight Submatrix Problem
We formulate the Maximum Weight Submatrix Problem as an

integer linear program, which we refer to as DendrixILP(k). Given
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a mutation matrix A and gene set size k, DendrixILP(k) finds a

gene set M� with largest weight W (M�). A gene set M is

determined by a set of indicator variables, one for each gene j,

IM (j)~
1 if gene j is a member of gene set M,

0 otherwise:

�
ð3Þ

To compute the weight function W (M) in (2), it is necessary to

compute the coverage C(M). To do this, we define an indicator

variable for each patient i,

Ci(M)~
1 if gene set M is mutated in patient i,

0 otherwise:

�
ð4Þ

Then, DendrixILP(k) is defined as follows:

maximize
Xm

i~1

2:Ci(M){
Xn

j~1

IM (j):Aij

 !
ð5aÞ

subject to
Xn

j~1

IM (j)~k ð5bÞ

Xn

j~1

Aij
:IM (j)

 !
§Ci(M), ð5cÞ

for1ƒiƒm:

Note that the last constraint (5c) only forces Ci(M)~0 when all

genes in M are not mutated (i.e.
Pn

j~1 Aij
:IM (j)~0), but does not

force Ci(M)~1 when at least one gene in M is mutated as

required by (4). However, in the latter case the objective function

will be maximized when Ci(M)~1 and thus (4) is satisfied.

Note that removing equation (5b) from DendrixILP(k) above

produces a gene set with optimal W for any value of k, i.e. a gene

set M with maximum W (M) of any size. We will refer to this

variant of the ILP as DendrixILP. In addition, we can set bounds

on the size of the gene set M, kminƒDM Dƒkmax, by replacing

equation (5b) with

kminƒ

Xn

j~1

IM (j)ƒkmax: ð6Þ

We will refer to this variant as DendrixILP(kmin,kmax).

Multiple Maximum Weight Submatrices Problem
We define the following problem.

Multiple Maximum Weight Submatrices Problem. Given

an m|n mutation matrix A and an integer tw0, find a collection

M~fM1,M2, . . . ,Mtg of m|k column submatrices that maximizes

W ’(M)~
Pt

r~1 W (Mr).

Note that this problem is NP-hard, as stated above for the case

t~1. Further note that while the weight W ’(M) is increased by

greater mutual exclusivity between mutations within a gene set,

there is no restriction on the mutations between gene sets.

Moreover, collections with large weight W ’(M) will also tend to

have larger coverage C(Mr) of each individual gene set r. Thus,

optimal solutions will tend to produce a collection with the

property that many patients have a mutation in more than one

gene set; or alternatively, there may be pairs or larger sets of co-

occurring mutations, a phenomenon that has been observed in

cancer [25].

We solve the Multiple Maximum Weight Submatrix problem using

an integer linear program (ILP). We define an ILP, called Multi-

Dendrix, using the same definitions of Ci(M) and IM (i) as above:

maximize
Xt

r~1

Xm

i~1

2:Ci(Mr){
Xn

j~1

IMr (j):Aij

 !
ð7aÞ

subject to
Xn

j~1

IMr (j):Aij

 !
§Ci(Mr), ð7bÞ

for 1ƒiƒm,1ƒrƒt,

Xt

r~1

IMr (j)ƒ1,1ƒjƒm: ð7cÞ

We solve this ILP using CPLEX v12.3 using default parameters.

It is obvious that for a mutation matrix A, the collections M and I
of gene sets produced by Multi-Dendrix and Iter-Dendrix,

respectively satisfy W ’(M)§W ’(I). Multi-Dendrix can also

produce sets M with strictly larger weight than the sets I
produced by Iter-Dendrix. There are a number of ways this

might occur. First, there may be multiple gene sets Ir with

maximum weight on iteration r, and only one of these is

extended by the iterative algorithm. Second, the maximum

weight gene set Ir selected by Iter-Dendrix in the rth iteration

may not be a member of the optimal M; i.e. M may contain gene

sets that are suboptimal when considered in isolation. Third,

when kminvkmax Multi-Dendrix may select gene sets with fewer

than kmax genes if this maximizes the weight W ’(M) of the whole

collection. We find that all of these cases occur on real somatic

mutation data.

Multi-Dendrix can be extended to allow genes to be members of

more than one gene set. Such genes may be involved in multiple

biological processes. We define the parameter D to be the

maximum number of gene sets a gene can be a member of, and

the parameter t to be the number of overlaps allowed per gene set.

Then we replace Eq. 7c with
Pt

r~1 IMr(j)ƒD,Vj and add the

constraint
Pn

j~1

P
r’=r IMr

(j):IMr’ (j)ƒt,1ƒrƒt. Note that the

product in the second group of constraints must be encoded using

additional indicator variables and thus the number of additional

constraints grows rapidly as more overlaps between gene sets are

allowed. While this extension is implemented in the Multi-Dendrix

package, we did not use it for the results presented herein.

Simulations
We ran Dendrix with default parameters using 4|104n

iterations for the MCMC method, where n is the number of

genes. We also used the default parameters for RME. We ran each

algorithm with the true values t~4 and kmin~kmax~4. We

compared the collection M of gene sets found by each algorithm to

the planted pathways P, computing the difference between M and

P as follows:
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d(P,M)~ argmin
p

XDPD

r~1

DPp(r)DMrD,

where p is a permutation of (1,2,3,4) and D is the symmetric

difference between sets.

Construction of mutation matrices
We have two pipelines for building mutation matrices from

somatic mutation data: one for the whole-exome datasets and the

second for the targeted gene sequencing datasets, GBM(2008) and

lung adenocarcinoma. Here we describe the pipeline for the

whole-exome datasets. See Supporting Information for further

details on the targeted gene sequencing data processing.

Whole-exome and copy number aberration data

preparation. For the whole-exome datasets, we extracted

non-silent somatic mutations from MAF files and copy number

aberrations from GISTIC 2.0 [47] downloaded from the TCGA

portal:

N GBM: http://gdac.broadinstitute.org/runs/analyses__2012_09_13/

data/GBM/20120913/.

– MAF file: gdac.broadinstitute.org_GBM.Mutation_

Assessor.Level_4.2012091300.0.0./GBM.maf.annotated.

– GISTIC wide peaks: gdac.broadinstitute.org_GBM.

CopyNumber_Gistic2.Level_4.2012091300.0.0.tar.gz.

N BRCA: https://tcga-data.nci.nih.gov/docs/publications/

brca_2012/.

– MAF file: ‘‘Somatic MAF archive [tar.gz] (public access)’’.

– Segment data: ‘‘Merged segment file’’.

– GISTIC wide peaks: ‘‘Genes in focal peaks [xslx]’’.

We applied the following filters to remove genes from the

analysis:

N 10,443 genes in the GBM dataset and 11,428 genes in the

BRCA dataset mutated in fewer than 5 samples.

N 209 genes in the GBM dataset and 474 genes in the BRCA

dataset whose coding regions are longer than 6 Kb and had

fewer mutations than expected using a binomial test with an

estimate of 10{6 for the background mutation rate.

N 94 genes from both datasets that are observed to have

unusually high rates of somatic mutation in exome-sequencing

data, but are likely artifacts resulting from replication timing,

active transcription, and other factors (as reported by M.

Lawrence here: http://1.usa.gov/RBtuz7). These include

olfactory receptors, ‘‘cub and sushi’’ proteins, and TTN.

N 10 additional genes (KRTAP5-5, HEATR7B2, EML2,

CC2D1A, DUS3L, GABRA6, FLG, HYDIN, SUSD3,

CROCCL1) that also appear to be artifacts as they were

observed to have higher than average mutation rates, but with

no known role in cancer.

For copy number data, we used the ‘‘wide peaks’’ in the

GISTIC output as the copy number aberrations in each sample,

with copy number ratio thresholds of 0.1 and 20.1 for

determining if a segment is amplified or deleted, respectively.

We performed the following additional filtering of the copy

number data.

N We combine copy number aberrations that co-occur in the

same sample w50% of the time and are within 10 Mb of one

another into a single larger ‘‘meta’’ gene.

N We restricted analysis to 249 CNVs in the GBM data and 204

CNVs in the BRCA data that appeared in wide peaks with 20

or fewer genes or were given a peak label by GISTIC.

N For BRCA, we removed segments longer than 10 Mb.

N Remove wide peaks containing known fragile sites at PARK2

[48], WWOX [49], RPL5, and FAM19A5.

Note that in many cases, the wide peaks include multiple genes

which we combine into a single ‘‘meta’’ gene for Multi-Dendrix

analysis. We manually selected the target gene for the following

metagenes:

N For GBM, we selected CDK4, CDKN2A and CDKN2B,

PTEN, PDGFRA, MDM2, MDM4, PIK3R1, and RB1 as the

targets of their respective aberrations.

N For BRCA, we used the GISTIC peak labels as the target for

each aberration.

N In the GBM dataset, we treated EGFR as a separate event and

did not include it in the Multi-Dendrix analysis. EGFR

amplification is the most common amplification, and second

most common mutation (after CDKN2A/B deletion). There is

a significant co-occurrence between EGFR amplifications and

SNVs (p~9:4|10{5 by Fisher’s exact test), although EGFR

amplification occurs in 74 more samples than EGFR SNV.

After this filtering, we analyze a total of 398 mutation classes in

GBM and 375 mutation classes in BRCA (i.e. separating SNVs

and CNVs in individual genes or metagenes).

Evaluating known interactions
We assess whether the mutually exclusive gene sets found by

Multi-Dendrix are enriched for interacting genes using the

following direct interactions test. We use two analogous tests: one

test for collections, and one test for for individual gene sets.

For a collection P~(P1, . . . ,Pt), let a(P) be the fraction of

possible interactions between pairs of genes within each gene set Pi

that are observed and b(P) be the fraction of possible interactions

between pairs of genes in different pairs of gene sets Pi, Pj that are

observed. We define n(P)~a(P){b(P). Thus, a large value n(P)
indicates a collection with many interactions between genes in the

same gene set and few interactions between genes in different gene

sets. This measure models our assumptions that mutual exclusivity

should be strongest between genes that directly interact. More-

over, we also expect few interactions between genes in different

gene sets reported by Multi-Dendrix. Thus, the measure n is a

more strict measure of the topology of interactions than merely

counting the total number of observed interactions. Similarly, we

assess an individual gene set by counting the number of

interactions among genes in that gene set. Let r(P) be the

number of interactions among genes in P.

We assess the statistical significance of n and r by comparing the

observed value to the empirical distribution of n and r on an

ensemble of permuted networks with the same degree distribution.

We permute the network by swapping edges between pairs of

genes, so as to preserve the distribution of edges within the

network. We perform Q|DED edge swaps, where E is the edges in

the network and Q is some constant (we use Q~100 as

recommended for permuting graphs with fixed degree distribution

in [50]). This network permutation corrects for the observation

that many genes that are frequency mutated in cancer also have

many interactions in human PPI networks. Since frequently
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mutated genes typically appear in Multi-Dendrix results, the

number of interactions between genes in Multi-Dendrix results

might be higher than a random set of genes of the same size. When

performing the direct interactions test, we use a protein-protein

interaction (PPI) network constructed from the union of interac-

tions reported in KEGG [13] and iRefIndex 9.0 [51] containing

236,060 interactions among 15,257 proteins. We calculate p-

values from 1000 permuted versions of this combined network.

By examining only direct interactions between genes in our sets,

we might miss cases where genes do not directly interact, but have

a common interacting partner (e.g. EGFR, PDGFRA, and NF1 all

share RAS as an interacting partner in the fourth module of the

GBM results). Average pairwise distance is another commonly

used metric for assessing whether groups of genes are clustered on

an interaction network, and this metric might identify such cases.

However, the tradeoff is that the diameter (average pairwise

distance) of most biological interaction networks is small, and thus

many genes are close on the network. We found that average

pairwise distance was not a strict enough measure for examining

mutually exclusive gene sets (data not shown). Finally, note that

counting the number of interactions between genes in a PPI

network is only an approximate measure of biological function.

Current interaction networks have large number of false positive

interactions – particularly when interactions from high-throughput

experiments are included – as well as an unknown number of false

negatives. In addition, there is a problem of ascertainment bias as

cancer genes are some of the most studied human genes and many

of their interactions have been assessed.

Supporting Information

Figure S1 Multi-Dendrix runtimes on simulated datasets.

Average runtime (secs) of Multi-Dendrix on simulated data with

1000 patients and varying passenger mutation probabilities q and

number of genes. For each set of parameters, average runtime

across 10 simulations is reported. The average runtime of Multi-

Dendrix is under 3500 seconds for each dataset.

(EPS)

Figure S2 Multi-Dendrix results on GBM dataset as one

mutation matrix. The four modules are shown in alternating gray

backgrounds. For each module, patients are sorted first by those

with mutations in only the module (dark blue), then by patients

that have just one mutation in the module (light blue), and finally

by patients that have co-occurring mutations in that module

(orange). Upticks indicate amplification, downticks indicate

deletions, and full ticks indicate SNVs. The four modules found

by Multi-Dendrix on the GBM dataset cover 98.8% (258/261) of

the patients in the GBM mutation data.

(EPS)

Figure S3 Multi-Dendrix results on BRCA dataset as one

mutation matrix. Representation is as in Figure 5. The four

modules found by Multi-Dendrix cover 91.9% (466/507) of the

patients in the BRCA mutation data.

(EPS)

Figure S4 Multi-Dendrix results on the BRCA dataset with

a~1. Four genes (genes with degree zero) are output for only one

choice of parameter values. The remaining genes form two

connected components indicating that the collections are variable

across different values of the parameters. In comparison Multi-

Dendrix with a~2:5 (Figure 3) finds more stable results on this

dataset.

(EPS)

Figure S5 Iter-Dendrix results on the BRCA dataset. The

modules identified by Iter-Dendrix group the most frequently

mutated genes together (e.g. TP53 and PIK3CA) and thus there is

a large number of samples with co-occurring mutations in each

module. In comparison Multi-Dendrix with a~2:5 (Figure 3) finds

more stable with less co-occurrence of mutations within modules

on this dataset.

(EPS)

Figure S6 Multi-Dendrix results on the GBM(2008) dataset.

(EPS)

Figure S7 Multi-Dendrix results on the Lung dataset.

(EPS)

Figure S8 Multi-Dendrix results on the BRCA dataset restricted

to Basal-like patients.

(EPS)

Figure S9 Multi-Dendrix results on the BRCA dataset restricted

to Luminal A patients.

(EPS)

Figure S10 Multi-Dendrix results on the BRCA dataset

restricted to Luminal B patients.

(EPS)

Figure S11 Multi-Dendrix results on the BRCA dataset

restricted to HER2-enriched patients.

(EPS)

Figure S12 Multi-Dendrix results on the unfiltered GBM

mutation data.

(EPS)

Figure S13 Multi-Dendrix results on the unfiltered BRCA

mutation data.

(EPS)

Table S1 Average number of genes input to Multi-Dendrix

across 100 simulated datasets. We use a minimum threshold of nq,

the expected number of n total samples with a mutation. We

report the values for different number m of genes and the lowest

and (q~0:0001) highest (q~0:02) passenger mutation probabil-

ities. On all simulated datasets, Multi-Dendrix ’s average runtime

is v1 hour.

(PDF)

Table S2 p-values for the number of observed protein-protein

interactions in Multi-Dendrix results (direct interactions test) for

different values of parameters t, the number of gene sets, and kmax,

the maximum gene set size. The minimum gene set size, kmin~3
for all runs. The p-values were calculated from 1000 permuted

networks constructed from the union of the KEGG and iRefIndex

PPI networks.

(PDF)

Table S3 p-values for the number of observed protein-protein

interactions in Iter-Dendrix results (direction interactions test) for

different values of parameters t, the number of gene set, and kmax,

the maximum gene set size. The minimum gene set size, kmin~3
for all runs. The p-values were calculated from 1000 permuted

networks constructed from the union of the KEGG and iRefIndex

PPI networks.

(PDF)

Table S4 Significant associations (pv0:01) between mutations in

genes (SNVs, amplifications ‘‘(A)’’, or deletions ‘‘(D)’’) and three

subtypes from GBM consensus clusters. p-values were calculated using

Fisher’s exact test with a Bonferroni correction for multiple hypotheses.

(PDF)
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Table S5 Significant associations (pv0:01) between mutations

(SNVs, amplifications ‘‘(A)’’, or deletions ‘‘(D)’’) in the four BRCA

subtypes. p-values were calculated using Fisher’s exact test with a

Bonferroni correction for multiple hypotheses.

(PDF)

Table S6 Gene sets found by Iter-RME in the GBM(2008),

GBM, and BRCA datasets (after removing genes with mutation

frequency v10%) for maximum gene set size kmax~2, . . . ,5 and

and number t of gene sets t~2, . . . ,4. For all values of kmax, Iter-

RME returned only gene sets of size 2. ‘‘Iteration’’ column denotes

the index of each gene set Pi returned in each iteration of RME.

Only 4/12 gene sets contain an interacting pair of genes according

to the union of the KEGG and iRefIndex protein-protein

interaction network.

(PDF)

Table S7 Gene sets found by Iter-RME in the GBM(2008),

GBM, and BRCA datasets (after removing genes with mutation

frequency ,10%) for maximum gene set size kmax = 2,…,5 and

and number t of gene sets t = 2,…,4. For all values of kmax, Iter-

RME returned only gene sets of size 2. ‘‘Iteration’’ column denotes

the index of each gene set Pi returned in each iteration of RME.

Only 4/12 gene sets contain an interacting pair of genes according

to the union of the KEGG and iRefIndex protein-protein

interaction network.

(PDF)

Text S1 Further analyses of the mutation data and comparisons

of Multi-Dendrix, Iter-Dendrix, and RME.

(PDF)
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