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1 Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands, 2 Academic Collaborative Centre AMPHI,

Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 3 School of Mathematical Sciences, University of

Nottingham, Nottingham, United Kingdom

Abstract

Classical approaches to estimate vaccine efficacy are based on the assumption that a person’s risk of infection does not
depend on the infection status of others. This assumption is untenable for infectious disease data where such dependencies
abound. We present a novel approach to estimating vaccine efficacy in a Bayesian framework using disease transmission
models. The methodology is applied to outbreaks of mumps in primary schools in the Netherlands. The total study
population consisted of 2,493 children in ten primary schools, of which 510 (20%) were known to have been infected, and
832 (33%) had unknown infection status. The apparent vaccination coverage ranged from 12% to 93%, and the apparent
infection attack rate varied from 1% to 76%. Our analyses show that vaccination reduces the probability of infection per
contact substantially but not perfectly (VÊES = 0.933; 95CrI: 0.908–0.954). Mumps virus appears to be moderately
transmissible in the school setting, with each case yielding an estimated 2.5 secondary cases in an unvaccinated population

(R̂R0 = 2.49; 95%CrI: 2.36–2.63), resulting in moderate estimates of the critical vaccination coverage (64.2%; 95%CrI: 61.7–
66.7%). The indirect benefits of vaccination are highest in populations with vaccination coverage just below the critical
vaccination coverage. In these populations, it is estimated that almost two infections can be prevented per vaccination. We
discuss the implications for the optimal control of mumps in heterogeneously vaccinated populations.
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Introduction

Mass vaccination programs for childhood diseases have been

highly successful in reducing the incidence and public health

impact of the targeted diseases. Nevertheless, with the exception of

smallpox, eradication has not been achieved, and outbreaks

continue to occur even in highly vaccinated populations [1–4]. A

prominent example is that of mumps, which has re-emerged in the

past decade in highly vaccinated populations throughout the world

[5–7]. The question arises as to whether this re-emergence is due

to current vaccines becoming less effective, or to reduced vaccine

coverage which allows the virus to spread in partially vaccinated

populations [8].

In the Netherlands, large outbreaks of mumps genotypes D and

G have occurred in recent years [9–11]. Since 1987, a combined

MMR (measles-mumps-rubella) vaccine containing live attenuated

virus is routinely given at 14 months and 9 years of age.

Vaccination coverage has been high ever since introduction of the

vaccine in 1987 (90–95%). Nevertheless, there are municipalities

in which vaccination coverage is substantially lower [12,13].

To determine whether the outbreaks of mumps are the result of

low vaccination coverage or insufficient protection conferred by

the vaccine, we estimate vaccine efficacy using outbreak data from

ten primary schools in the Netherlands [9,11]. The total number

of children included in our study is 2,493, of whom 510 had a

reported mumps infection. Vaccination coverage in these schools

ranged from 12%–93%, and infection attack rates ranged from

4% to 76%, with highest attack rates occurring in schools with the

lowest vaccination coverage and lowest attack rates in schools with

high vaccination coverage (Table 1). Notably, the attack rates in

unvaccinated individuals varied from more than 80% in schools

with low vaccination coverage (,15%) to lower than 25% in

schools with high vaccination coverage ($75%), indicating

substantial differences in the infection pressure between schools.

Classical methods to estimate vaccine efficacy from outbreak

data compare the infection attack rates in the vaccinated versus

unvaccinated groups (i.e. the cohort method) [14,15]. This

method, however, has significant drawbacks. First, it is not

straightforward to take account of missing data on vaccination and

infection status. This is unfortunate as outbreak data are almost

never complete, and judicious choices will have to be made to

avoid introducing systematic bias in the parameter estimates. Even

more importantly, the cohort method fails to acknowledge that the

probability of infection of an individual is dependent on the

number of infections in the population, i.e. on the infection status

of others.

To take account of the dependencies between individuals that

arise naturally in infectious disease outbreaks we base the statistical

analyses on a Bayesian inferential framework using infectious

disease transmission models. In this framework, missing vaccina-
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tion and infection information is imputed in a consistent manner,

thereby making efficient use of the available information, and

enabling precise estimation of vaccine efficacy and the critical

vaccination coverage needed to prevent epidemic outbreaks

[16,17]. The basis of our statistical analyses is the contact process

that specifies how often and with which person-types each person

makes infectious contacts, i.e. contacts that are sufficient for

transmission if the sender is infected and the receiver as yet

uninfected [18–20]. The contact process specifies a directed graph,

of which the connected component with the initial infective as the

root determines which individuals are ultimately infected. Estima-

tion of the epidemiological parameters (basic reproduction

number, vaccine efficacy) is based on the likelihood of directed

graphs that are compatible with the data.

The analyses reveal that mumps vaccine effectively prevents

infection, and that herd immunity against mumps is achieved with

moderate vaccination coverages. We argue that resource-limited

catch-up vaccination efforts should be focused at communities

with intermediate vaccination coverages, thereby maximizing both

the direct and indirect benefits of vaccination.

Results

Vaccine efficacy and the critical vaccination coverage
Our baseline scenario assumes a common transmissibility and

vaccine efficacy across schools. The analysis indicates that mumps

is moderately transmissible (R̂R0 = 2.49; 95%CrI: 2.36–2.63), and

that the vaccine reduces the probability of transmission by more

than 90% per contact that would have resulted in transmission to

an unvaccinated person (VÊES = 0.933; 95CrI: 0.908–

0.954)(Figure 1). The differences between the apparent and

estimated vaccination coverages and attack rates are small (,2%

and ,5%, respectively; Tables 1–2).

We use estimates of transmissibility and vaccine efficacy to

obtain estimates of the critical vaccination coverage. The analyses

yield an estimated critical vaccination coverage of 0.642 (95%CrI:

0.617–0.666), indicating that herd immunity in the school setting

can be obtained with moderate vaccination coverages. Estimates

of transmissibility and vaccine efficacy are used to obtain an

estimate of the number of infections prevented per vaccination.

This number is highest for vaccination coverages just below the

critical vaccination coverage, as at these values the slope of attack

rate versus vaccination coverage is steepest (Figure 2). The number

of infections prevented per vaccination near the threshold

coverage is well approximated (using a Taylor series expansion)

by2VES . Hence, it is expected that the (direct and indirect)

benefits of vaccination are such that 2VÊES&1:9 infections can be

prevented per vaccination if the initial vaccination coverage is

just below the threshold value, which is estimated by

VÊE{1
S 1{R̂R{1

0

� �
~0:64.

Schools with low versus high vaccination coverage
Schools in our study population span a large range of possible

vaccination coverages, and it is of interest to evaluate the

consistency of the estimates of vaccine efficacy and pathogen

transmissibility. Figure 2 shows the relation between vaccination

coverage and infection attack rate in the ten schools, together with

Table 1. Summary statistics of the study population.

number of
persons

number
infected

vaccination
coverage

attack rate in
unvaccinated persons

attack rate in
vaccinated persons

overall
attack rate

all schools 2493 510–1342 0.62* 0.68 (485/709) 0.03 (25/952) 0.31

school 1 432 205–369 0.12 0.86 (204/237) 0.03 (1/31) 0.76

school 2 338 135–289 0.13 0.82 (131/160) 0.17 (4/24) 0.73

school 3 259 68–159 0.42 0.72 (68/94) 0 (0/74) 0.40

school 4 184 40–70 0.54 0.53 (37/70) 0.04 (3/84) 0.26

school 5 130 13–33 0.75 0.46 (13/28) 0 (0/82) 0.12

school 6 263 28–171 0.76 0.70 (19/27) 0.10 (9/93) 0.23

school 7 194 6–43 0.78 0.19 (6/31) 0 (0/126) 0.04

school 8 227 3–27 0.79 0.05 (2/41) 0.01 (1/162) 0.01

school 9 258 6–119 0.93 0.18 (2/11) 0.03 (4/134) 0.04

school 10 208 6–62 0.93 0.30 (3/10) 0.02 (3/142) 0.04

The column ‘number infected’ shows the possible range of actual infections, ranging from the number known to be infected to the sum of this number and the number
of persons with unknown infection status. Vaccination coverages and attack rates are calculated using persons with known vaccination status (vaccination coverage),
and known vaccination and infection status (attack rates). See Tables S1, S2 for the complete data.
*: averaged over schools.
doi:10.1371/journal.pcbi.1003061.t001

Author Summary

Less than two decades ago, it was generally believed that
in developed countries infectious diseases such as measles,
mumps, and pertussis were under firm control via
vaccination. Nowadays, it is increasingly recognized that
this picture has been overly optimistic. A central question
is whether recurrent disease outbreaks are caused by
vaccination coverage having dropped below safe levels, or
by vaccines having become less effective. To answer this
question, the authors study outbreaks of mumps in
primary schools in the Netherlands. Using disease trans-
mission models, the authors estimate vaccine efficacy and
the critical vaccination coverage needed to prevent large
outbreaks. The analyses show that the vaccine has been
highly effective in preventing infection, but that vaccina-
tion coverage has been insufficient in some schools. The
authors argue that catch-up vaccination campaigns aimed
at populations with intermediate vaccination coverage will
be most efficient, as these would maximize the (direct and
indirect) benefits of vaccination.

Mumps Vaccine Efficacy
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the theoretical relation between vaccination coverage and attack

rate in a large population, and simulations of a finite population.

Overall, the correspondence between the observed and simulated

data is excellent for schools with low vaccination coverage and

high attack rates, while there is a tendency for higher attack rates

than expected in schools with high vaccination coverage and a

small number of infections.

To investigate the information contained in the data by school

we perform analyses in which each school is equipped with its own

transmissibility and vaccine efficacy. It appears that precise

estimates of transmissibility and vaccine efficacy can be obtained

in schools with high attack rates (schools 1–4), but not in schools

with only a handful of infections (schools 7–10). In fact, in schools

with less than 10 confirmed infections credible intervals of the

reproduction number range from well below 1 to more than 3,

while vaccine efficacy estimates can range from less than 0.20

(schools 8–10) to almost 1 (schools 7–10; Table 3, Figure 3).

Further, the analyses show that in schools with high attack rates

(schools 1–4) the parameter estimates are quite close to those of the

baseline scenario, indicating that estimates of transmissibility and

vaccine efficacy in the baseline scenario are dominated by schools

with large numbers of infections and low vaccination coverages.

Estimation of vaccine efficacy by the cohort method
In comparison with our estimates of vaccine efficacy as the

reduction in the probability of infection (Table 3), estimates of

vaccine efficacy by the cohort method tend to be somewhat lower

in schools with low vaccination coverage and high infection attack

Figure 1. Posterior distributions of the basic reproduction number and vaccine efficacy (A) and vaccination coverages and attack
rates (B) when assuming common parameters across schools (baseline scenario). The median of the basic reproduction number is 2.49
(95% CrI: 2.36–2.63) and the median of vaccine efficacy is 0.933 (95CrI: 0.908–0.954). The estimated critical vaccination coverage is 0.642 (95% CrI:
0.617–0.666).
doi:10.1371/journal.pcbi.1003061.g001

Table 2. Estimates of vaccination coverage and attack rate per school when assuming common epidemiological parameters
across schools (baseline scenario).

unvaccinated vaccinated vaccination coverage attack rate

total infected total infected

school 1 382 (372–389) 327 (315–337) 50 (43–59) 3 (1–6) 0.12 (0.10–0.14) 0.77 (0.74–0.79)

school 2 293 (286–301) 243 (232–256) 45 (37–52) 6 (4–11) 0.13 (0.11–0.15) 0.74 (0.70–0.78)

school 3 150 (141–158) 110 (101–119) 109 (101–117) 3 (0–8) 0.42 (0.39–0.45) 0.44 (0.41–0.47)

school 4 84 (79–90) 45 (41–50) 100 (94–104) 4 (3–6) 0.53 (0.51–0.56) 0.27 (0.24–0.30)

school 5 33 (30–37) 15 (13–18) 97 (93–100) 0 (0–2) 0.75 (0.72–0.77) 0.12 (0.10–0.15)

school 6 67 (59–76) 50 (42–59) 196 (187–204) 20 (14–27) 0.75 (0.71–0.78) 0.27 (0.23–0.30)

school 7 42 (38–46) 10 (7–13) 152 (148–156) 0 (0–3) 0.78 (0.76–0.80) 0.05 (0.04–0.07)

school 8 48 (45–52) 3 (2–5) 179 (175–182) 1 (1–2) 0.79 (0.77–0.80) 0.02 (0.01–0.03)

school 9 18 (13–25) 6 (3–11) 240 (233–245) 11 (7–16) 0.93 (0.90–0.95) 0.07 (0.05–0.09)

school 10 13 (10–17) 4 (3–7) 195 (191–198) 5 (3–8) 0.94 (0.92–0.95) 0.05 (0.03–0.06)

Estimates are represented by posterior medians with 95% credible intervals.
doi:10.1371/journal.pcbi.1003061.t002
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rates (schools 1–4; Table 4, Table S3). Moreover, in these schools

credible intervals tend to be slightly broader when using the cohort

method. The most conspicuous difference, however, is that in

populations with high vaccination coverage (schools 7–10), vaccine

efficacy is sometimes estimated with fair precision when using the

cohort method, even though the number of infections is very small

(#6).

Discussion

Our analyses have shown that mumps is moderately transmis-

sible in the setting of primary schools, and that the vaccine used in

these populations is highly effective in preventing infection. These

results are largely in line with earlier studies [5,6], but contrast

with a recent study that suggested that outbreaks of mumps in

populations with large-scale vaccination programs may be due to

the vaccine having become less effective in preventing infection

[4]. The younger average age of our study population and the fact

that these outbreaks have been caused by viruses of different

genotypes (genotype D versus genotype G) may help explain these

contrasting findings. Since genotype D viruses are genetically

distant from the current vaccine virus (Jeryl Lynn strain, genotype

A) our results indicate that the Jeryl Lynn-based vaccine is highly

effective in curbing transmission to vaccinated persons, even if

genetic differences between the vaccine and outbreaks strains are

substantial [8].

Estimates of the transmissbility of mumps are most precise in

schools 1–4, i.e. in schools with low vaccination coverage and large

numbers of infections. In these schools, the basic reproduction

number is estimated at 2.5, 2.3, 2.8, and 2.5, with credible

intervals ranging from 1.9 to 3.2. Vaccine efficacy, on the other

hand, is estimated most precisely in schools 1, 3, 4, and 5 (Table 3,

Figure 3). In these schools, estimates of vaccine efficacy are 0.97,

0.99, 0.94, and 0.98, with credible intervals ranging from 0.84 to

1. These schools have low vaccination coverage and high levels of

exposure (i.e. high attack rates) but still more than 30 vaccinated

persons. In school 2 the exposure level has been high but the

number of vaccinated persons is too small for precise estimation of

vaccine efficacy. In schools with high coverage, vaccine efficacy

cannot be estimated with any precision, as in these schools it is

uncertain whether escape from infection is caused by the vaccine

or by a lack of exposure.

The schools included in this study differ greatly with respect to

vaccination coverages (range: 12%–93%) and infection attack

rates (range: 4%–76%). Nevertheless, estimates of vaccine efficacy

are remarkably consistent across schools (Table 3, Figure 3). In

fact, only in schools with just a handful of infections (#6) (schools

8–10) does the estimated vaccine efficacy drop below 0.88. In these

schools, credible intervals of vaccine efficacy are wide, and

estimates are less determined by the information contained in the

data than by the prior distribution of vaccine efficacy. This is also

the reason that estimates of vaccine efficacy in the baseline

scenario are dominated by schools with low vaccination coverages

and high attack rates, as these schools contain much more

information than schools with high vaccination coverages and low

infection attack rates (Figure 2).

Schools in our study were included based on confirmed mumps

infections. It is therefore possible that large outbreaks are more

likely to be detected and included than small outbreaks. In other

Figure 2. Relation between vaccination coverage and overall
attack rate in the baseline scenario. The figure shows the medians
of the posterior vaccination coverages versus posterior attack rates in
the ten schools (blue dots), the deterministic final size attack rate using
the posterior medians of the basic reproduction number and vaccine
efficacy (dotted line), and the results of simulations in populations of
size 200 using samples from the posterior distributions of the basic
reproduction number and vaccine efficacy (black line: median; grey
area: 2.5%–97.5% percentiles). See text for details.
doi:10.1371/journal.pcbi.1003061.g002

Table 3. Overview of the analyses per school (cf. Figure 3).

basic reproduction number (R
^

0) vaccine efficacy (VE
^

S) critical vaccination coverage (q
^

C)

school 1 2.5 (2.3–2.7) 0.97 (0.91–1.0) 0.63 (0.59–0.67)

school 2 2.3 (2.1–2.5) 0.87 (0.67–0.96) 0.65 (0.57–0.80)

school 3 2.8 (2.4–3.3) 0.99 (0.96–1.0) 0.66 (0.60–0.70)

school 4 2.5 (1.9–3.2) 0.94 (0.84–0.98) 0.64 (0.51–0.74)

school 5 3.6 (2.1–6.0) 0.98 (0.89–1.0) 0.74 (0.54–0.85)

school 6 3.0 (2.2–3.9) 0.88 (0.78–0.94) 0.76 (0.66–0.83)

school 7 1.9 (0.73–3.8) 0.95 (0.67–1.0) 0.51 (0–0.77)

school 8 1.1 (0.25–3.5) 0.67 (0.06–0.96) 0.10 (0–1)

school 9 0.96 (0.31–2.9) 0.67 (0.08–0.92) 0 (0–0.74)

school 10 1.6 (0.40–4.5) 0.80 (0.16–0.96) 0.46 (0–0.85)

The table shows the estimates of the basic reproduction number, vaccine efficacy, and critical vaccination coverage. Estimates are represented by posterior medians
with 95% credible intervals.
doi:10.1371/journal.pcbi.1003061.t003
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words, it is conceivable that the inclusion process systematically

favours inclusion of schools with uncharacteristically high attack

rates, thereby leading to selection bias. For schools with low

vaccination coverage (and high attack rates) this is arguably not a

problem as variation in outbreak sizes is expected to be minor,

given the sizes of the schools included (Figure 2). For schools with

high vaccination coverage, however, selection bias may well have

played a role, and may explain the relatively high attack rates in

some of these schools (school 6 and to a lesser extend schools 9–10)

(Figure 2). Fortunately, one could argue that our statistical

methodology provides a natural weighting of schools, in which

schools with small number of infections have lower weight than

schools with high number of infections. If specific details were

available on the inclusion process, one could envisage extension of

the analyses in which the selection process is modelled explicitly.

This, however, would introduce more model options, additional

parameters to be estimated, and would certainly lead to a more

complicated analysis.

We have assumed throughout that infections outside the school

played a marginal role. Again, this assumption is probably less

problematic in schools with low vaccination coverage and high

infection attack rates than in schools with high vaccination

coverage and lower attack rates, as variation in the expected

number of infections is expected to be small in schools with low

vaccination coverage. Moreover, there was no sustained commu-

nity transmission during the study period, suggesting that the

impact of infection outside the schools may have been small.

Nevertheless, it would be interesting to extend the current

analyses, e.g., along the lines of [21,22] by inclusion of other

major transmission settings.

Classical estimates of mumps transmissibility have been based

on the mean age at infection in the pre-vaccination era ([23] and

references therein), or on seroprevalence data from the pre-

vaccination era [24,25]. These analyses yielded estimates of the

basic reproduction number in fully unvaccinated populations that

are substantially higher (,7–20) than our estimates (,2–3). It

should be noted that these population-based estimates cannot

directly be translated to our school-based estimates. Still, should

those early estimates be indicative of the current transmissibility of

mumps at the population level, then not only are schools an

important transmission route but other settings also have the

potential to contribute significantly to overall transmission. Again,

to assess the contribution of different settings to the overall

Table 4. Estimates of vaccine efficacy by the cohort method,
i.e. as 1 minus the relative risk of infection in vaccinated
versus unvaccinated persons (1{RR).

vaccine efficacy (12R
^

R )

school 1 0.93 (0.81–0.99)

school 2 0.76 (0.56–0.92)

school 3 0.98 (0.93–1.0)

school 4 0.91 (0.80–0.98)

school 5 0.97 (0.90–1.0)

school 6 0.84 (0.73–0.93)

school 7 0.96 (0.83–1.0)

school 8 0.75 (0.0–0.98)

school 9 0.78 (0.25–0.96)

school 10 0.90 (0.68–0.98)

Estimates are represented by posterior medians with 95% credible intervals. See
text for details.
doi:10.1371/journal.pcbi.1003061.t004

Figure 3. Estimated reproduction numbers (top, blue dots) and vaccine efficacies (bottom, gray dots) per school, with associated
95% credible intervals (cf. Table 3). Note that estimated vaccine efficacy is consistently high in schools with high exposure (schools 1–6), but
cannot be estimated with any precision in schools with low exposure (schools 8–10).
doi:10.1371/journal.pcbi.1003061.g003
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transmission dynamics, it would be desirable to extend the current

studies beyond the school setting, by including household

information and, in the specific case of this study, information

on the churches attended by the participants [9]. This, however, is

only possible if detailed information were available on these

settings, not only with respect to their composition but also with

respect to vaccination and infection status of a sizeable part of the

population.

Vaccine efficacy and transmissibility together determine the

critical vaccination coverage needed to prevent epidemic out-

breaks. In our study, estimates of the critical vaccination coverage

are 64% (95%CrI: 62%–67%) in the baseline scenario, and range

from 63% (95%CrI: 58%–68%; school 1) to 76% (95%CrI: 66%–

83%; school 6) in schools with more than 10 confirmed infections

(schools 1–6). This indicates that the critical vaccination coverage

does not need to be as high as suggested by early population-based

estimates, which are in the range of 86%–95%.

In none of the analyses presented here have we made a

distinction between children who had been vaccinated once and

those that had been vaccinated twice. This was done because

preliminary analyses and previous results [9,11] could not find any

evidence for differences in vaccine efficacy between the two

groups. In view of the data this is not unexpected, as the total

number of infections in vaccinated children was small, and as

attack rates in the two subpopulations were identical (15 infections

among the 582 children who had been vaccinated once; 10

infections among the 370 who had been vaccinated twice). The

fact that attack rates were identical is somewhat surprising, as one

could have expected more infections in the group that had been

vaccinated only once, more than five years ago. For completeness,

we have presented the full data in Table S2.

Further, in our analyses we assume that the vaccine works by

reducing the probability of transmission (i.e. we assume a leaky

vaccine), rather than by providing all-or-nothing immunity. This

was done for simplicity, and since the current data do not allow us

to distinguish between the different workings of the vaccine. If

additional data was available, e.g., on the pre-outbreak antibody

titres, one could consider extension of the method by using pre-

outbreak antibody titres as an indicator for the ‘level of immunity’,

and use this indicator to estimate how the level of pre-existing

immunity relates to the probability of infection. In most situations,

however, such information will be hard to get, as this would

necessitate a large prospective study.

Our definition of vaccine efficacy has a clear-cut biological

interpretation (reduction of the probability of infection per

contact). This makes it possible to meaningfully average over

populations with varying vaccination coverages and exposure

levels, and also to extrapolate beyond the study population. This

contrasts with traditional estimates of vaccine efficacy that are

based on a comparison of attack rates in vaccinated and

unvaccinated individuals (the cohort method), or that simply use

the vaccination status of the infected individuals together with the

population vaccination coverage (the screening method) [14,26].

Vaccine efficacy estimated by these methods lack a clear biological

interpretation, and in essence assumes that a person’s risk of

infection is independent of whether or not others in the population

are infected. This makes interpretation of the estimates problem-

atic, and forbids estimation of the critical vaccination coverage

[15,27–29].

Even though our definition of vaccine efficacy differs funda-

mentally from vaccine efficacy measured by the cohort method,

the results are quantitatively in fair agreement with traditional

estimates, especially in populations with low vaccination

coverage and large number of infections (Table 3 versus

Table 4 and Table S3). In schools with high vaccination

coverage and small numbers of infections the reverse tends to be

true, and estimates of vaccine efficacy generally are both higher

and more precise when using the cohort method. For instance,

in school 10 there are 6 confirmed infections, and vaccine

efficacy is poorly estimated in our analysis (95%CrI: 0.16–0.96)

but with fair precision by the cohort method (95%CrI: 0.68–

0.98). This is arguably an artefact of the latter method’s

assumption that all 139 uninfected vaccinated persons have

been exposed to an infected person, thereby artificially

increasing the precision of the estimates of vaccine efficacy.

Our results point to strategies to efficiently allocate catch-up

vaccination efforts in heterogeneously vaccinated populations. No

additional vaccination is needed in schools with high vaccination

coverage (.75%, say) as these are already protected against

epidemic outbreaks affecting a large fraction of students. Similarly,

allocating vaccines to schools with low vaccination coverage

(,50%, say) is inefficient as it does not markedly reduce the

probability of infection for those who are not vaccinated, i.e. the

indirect benefits of vaccination are small in these populations. Our

analyses suggest that vaccination of populations in the range

between these two extremes is most efficient, and that in these

populations a single vaccination can potentially prevent almost

two infections. Of course, in practice other considerations, for

instance on ethical issues, communication, and cost-effectiveness

would also come into play.

Methods

Study design and data collection
In the Netherlands, several large outbreaks of mumps virus

(genotype D) occurred in 2007–2009. We collected data from

children attending primary schools with evidence of mumps virus

transmission (report of at least one laboratory confirmed mumps

case or more than one clinical mumps case) [9,11]. Children’s

parents were asked to fill out a questionnaire asking for

information on the child’s vaccination status and occurrence of

mumps. Individual data on vaccination status were also retrieved

from the national Dutch vaccination register. When these were not

available, we used the self-reported vaccination status (vaccinated/

unvaccinated). Children who were vaccinated more than twice

(one case), and who were reported to have had mumps before

September 2007 (three cases) were excluded. The study was

approved by the medical ethics committee of the University

Medical Centre Utrecht and the Radboud University Nijmegen

Medical Centre. The data are presented in Table 1 and Tables S1,

S2.

Estimation of vaccine efficacy in a disease transmission
framework

Model structure. The analyses are based on the distribution

of the number of persons infected in an outbreak [16–18].

Specifically, we use so-called final size distributions of a two-type

SEIR (susceptible-exposed-infectious-recovered) model in which

the two types represent unvaccinated and vaccinated persons.

In SEIR models, each individual in the population can either be

susceptible (i.e. healthy), exposed (infected but not able to infect

others), infective (infected and able to infect others) or recovered (not

infectious and now immune). We assume that infectious contacts are

made at the level of the school, and not at other organizational levels

(e.g., class, household, community). These assumptions seem

reasonable since there was no evidence of sustained community

transmission during the study period, while only limited information

was available on class structure within schools.
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We focus on estimation of two key epidemiological quantities,

the basic reproduction number R0 which quantifies the transmis-

sibility of the pathogen, and vaccine efficacy VES which

determines the reduction in the probability of infection for those

who have been vaccinated. We use a Bayesian inferential

framework in which these parameters are estimated and the

missing information is imputed.

Throughout we assume that a pair of individuals makes contacts

at a rate that is inversely proportional to the school size N, thus

ensuring that each person makes an identical expected number

of contacts per unit of time. Specifically, whilst infective an

unvaccinated person makes infectious contacts with each

unvaccinated individual according to a Poisson process of

rate l
N

, and with each vaccinated individual according to a

Poisson process of rate 1{VESð Þ l
N

, where VES represents

vaccine efficacy for susceptibility [1]. All Poisson processes are

assumed mutually independent. Notice that vaccine efficacy as

defined here can be interpreted as the reduction in the

probability of infection for a contact that would have resulted

in infection if the contacted person was unvaccinated. Hence,

we have 0ƒVESƒ1 by definition.

Final size data alone do not allow us to estimate parameters with

respect to calendar time, but only relative to other model

parameters. To set a time-scale, and for simplicity, we therefore

assume that the infectious period (i.e. the time that an individual is

in the infective state) is fixed at length 1 time unit and set the basic

reproduction number R0equal to the contact rate parameter l. An

alternative possibility, which could also be incorporated into our

modelling and inference framework, is to assume that infectious

periods are exponentially distributed with mean 1, which yields a

geometric distribution for the number of contacts made by an

individual whilst they remain infective [30,31]. In practice, this

alternative choice of infectious period distribution rarely makes

any material difference to the results [18].

Our model contains two epidemiological parameters, namely

the basic reproduction number R0 determining overall trans-

missibility, and vaccine efficacyVES which quantifies the extent

to which vaccination reduces the probability of becoming

infected by a single contact. In a large population with

vaccination coverage q the reproduction number in the early

stages of an epidemic, Rq, takes a simple form, namely

Rq~R0 1{q VESð Þ [32]. The critical vaccination coverage qc

which makes major outbreaks highly improbable is found by

solving the above equation for Rq~1, yielding

qc~VE{1
S 1{R{1

0

� �
:

This equation is used to estimate the critical vaccination

coverage directly from estimates of the basic reproduction

number and vaccine efficacy.

The parameters R0, VES , and q also determine outbreak size in

a large population through the final size equations

zU~1{exp { 1{qð ÞRUU zU{qRVU zVð Þand zV ~1{exp { 1ðð
{qÞRUV zU{qRVV zV Þ, where zU and zV denote the fractions

infected in the unvaccinated and vaccinated groups, and Rij

(i,j[ U ,Vf g) represent the type-reproduction numbers [32]. In our

model we have R.U~R0 and R.V ~ 1{VESð ÞR0.

The likelihood function. In a Bayesian framework the key

object of interest is the posterior density of the model parameters p
given data d, p p djð Þ. Using Bayes’ rule the posterior density can be

expressed as p p djð Þ!p d pjð Þp pð Þ, where p d pjð Þ is the likelihood

and p pð Þ the prior density of the parameters. In practical

applications, this formulation is of limited use because the

likelihood p d pjð Þ can be extremely complicated, even if no

infection or vaccination information is missing. We therefore

adopt an alternative approach in which attention is shifted to the

joint posterior density of the parameters of interest and random

directed graphs (digraphs) G which describe the potential

pathways of infection. Specifically, a given graph Gdescribes all

directed contacts made between individuals, some of which may

correspond to actual infections (e.g. a link from an infective to a

susceptible) while others may not (e.g. a link from a susceptible to

an infective). Knowledge of G, and the identity of the initially

infective individual(s), determines which individuals in the

population ultimately become infected, i.e. the final outcome. Full

details of this method are given in [18,19] and so we now recall the

salient points in our setting.

The augmented posterior density is given by

p p,G djð Þ!p d p,Gjð Þp G pjð Þp pð Þ,

where p d p,Gjð Þp G pjð Þ is the augmented likelihood, and p pð Þ is

the prior density of the parameters [18]. The (augmented)

likelihood contains two factors, of which the first indicates whether

a certain combination of parameters and digraphs is compatible

with the data, i.e. p d p,Gjð Þ~1 if the parameters and digraphs are

compatible with the data, and p d p,Gjð Þ~0 otherwise. The second

factor gives the likelihood of a certain infection graph conditional

on the values of the transmission parameters. For a single school

the likelihood of a digraph G given parameters p, p G pjð Þ, is given

by the product of the likelihoods of all infectious links and non-

links (i.e. the absence of an infectious link) in the set of infected

and potentially infected persons, times the product of all non-

links from infected persons to persons who were known to be

uninfected. Hence, in a school with n1 infected persons, n2

potentially infected persons, and n3 uninfected persons, p G pjð Þ
is given by the product of the probabilities of all

n1zn2ð Þ n1zn2{1ð Þ links and non-links in the set of infected

and potentially infected persons, times the product of the

probabilities of the non-links from persons that are infected in

the digraph to persons who are known to be uninfected. Since

there are at least n1 infected persons and n3 uninfected persons

the number of non-links to uninfected persons is at least n1n3. It

can be higher if some of the persons with unknown infection

status are infected, and reaches a maximum of n1zn2ð Þn3 if all

persons with unknown infection status are infected.

The above description can be made mathematically precise

[18,19]. If we denote by I the (unobserved) set of infected

individuals (of which there are at least n1 and at most n1zn2), by

I� the set of individuals who are known to be infected together

with the individuals who may or may not have been infected, by J

the set of individuals who are known to be uninfected, by U (for

unvaccinated) and V (for vaccinated) the possible person types,

by t ið Þ[ U ,Vf g the type of an individual with label i, by pt ið Þt the

probability that there is a link from the individual with label i to

an individual of type t, by nit the number of links from

individual i to persons of type t, by Nt the number of individuals

of type t in I� (
P

t[ U , Vf g
Nt~n1zn2), and by Mt the number of

individuals of type t in J (
P

t[ U , Vf g
Mt~n3), then the likelihood

p G pjð Þ is given by

p Gjpð Þ~

P
i[I�

P
t[ U ,Vf g

p
nit
t ið Þt 1{pt ið Þt
� �Nt{1 t ið Þ~tf g{nitxP

i[I
P

t[ U ,Vf g
1{pt ið Þt
� �Mt :

ð1Þ
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Recall that we assume that the infectious periods are of fixed

duration. Together with our earlier assumption that contacts are

made according to mutually independent Poisson processes with

rates that are inversely proportional to school size, the infection

probabilities pst (s,t[ U ,Vf g) are given bypst~1{exp { Rst
N

� �
,

where Rst are the type-specific reproduction numbers, Our

parameterization implies R.U~R0 and R.V ~ 1{VESð ÞR0.

Scenarios and estimation. The parameter vector p contains

the epidemiological parameters R0 and VES , and the unknown

vaccination statuses. Throughout, the basic reproduction number

and vaccine efficacy are assigned uninformative uniform prior

distributions (0ƒVESv1 and R0w0). We further assume that the

probability that a person with unknown vaccination status is

vaccinated is given by the observed vaccination coverage of the

school in which the person resides (Table 2). We consider two

scenarios: One in which both R0 and VES are identical across

schools, and the other in which R0 and VES are estimated for each

school separately.

The posterior density is explored using a Markov chain Monte

Carlo method, whereby the missing vaccination statuses are

included as latent parameters [18–20]. Digraphs are updated by

adding and deleting edges at random from I�. Specifically, we use

a birth-death construction for updating, in which infectious

contacts between any two persons that are (potentially) infected

are chosen uniformly at random [18–20]. The Metropolis-

Hastings acceptance probability of adding an infectious link to a

digraph G resulting in a digraph G0, is given by
p G0 Dpð Þ
p GDpð Þ

‘max{‘G

‘Gz1
,

where ‘max~ n1zn2ð Þ n1zn2{1ð Þ is the maximum number of

infectious contacts, and ‘G~
P

i[I�

P

t[ U ,Vf g
nit the number of infec-

tious contacts in I�. Likewise the acceptance probability of an

attempt to delete an edge is
p G0 Dpð Þ
p GDpð Þ

‘G

‘max{‘Gz1
, where it is understood

that digraphs that are not compatible with the data have zero

likelihood. Notice that, in contrast to earlier studies, the likelihood

ratio of two graphs differing by one link in general does not reduce

to the likelihood ratio of having an infectious contact at a

particular position versus not having an infectious contact at that

position [18–20]. In particular, it is possible that by adding or

deleting an infectious contact the number of infected persons

increases or decreases by more than one, because an addition or

deletion of an infectious contact could result in the addition or

deletion of a number of vertices to the connected component

which determines the final size. Hence, updating of the graphs

requires calculation of the full likelihood of the proposed graph,

which is a computationally expensive operation, resulting in long

runtimes if the number of infected persons is large.

The basic reproduction number and vaccine efficacy are

updated with a random-walk Metropolis algorithm using Gaussian

proposal distributions with standard deviations of 0.2–2 and 0.02–

0.2, respectively. Vaccination statuses are updated by flipping the

vaccination status of a randomly selected person with unknown

vaccination status [20]. The index case is assumed to be an

unvaccinated person.

Updating is performed in blocks, in the order 1) update the

value of the reproduction number, 2) update the value of vaccine

efficacy, 3) for each school update the vaccination status of a

randomly chosen person with missing vaccination information, 4)

for each school attempt to add an infectious contact, and 5) for

each school attempt to delete an infectious contact. Each cycle of

the chain thus contains 32 updating events. To improve mixing

every 50th cycle the positions in the digraph of infected persons

(both vaccinated and vaccinated) are randomly permuted so that

the chain does not get stuck in topologies from which links to

persons with unknown infection status cannot easily be removed.

Notice that this operation leaves the topology of the graph intact

(distribution of links and types), and thus does not affect the

likelihood.

After running a number of exploratory analyses output is

generated for a single chain of length 30,000–50,000, of which the

last 20,000–25,000 cycles are used to obtain a thinned sample of

size 5,000 or 10,000. Inspection of convergence of the chain is

performed visually. Run times are approximately 7–10 days on a

3.2Ghz eight-core workstation.

Simulated outbreaks
To explore the correspondence between the parameter

estimates with the data, we simulated outbreaks in schools of size

200 using the digraph construction described above. To prevent

early extinction we introduced three infectious persons with

random vaccination status in each simulation. For each vaccina-

tion composition, we generated 5,000 random digraphs with the

values of the basic reproduction number and vaccine efficacy

sampled without replacement from the posterior distribution.

Subsequently, for each graph we calculated the attack rate among

those that were initially susceptible, and present the median and

2.5% and 97.5% percentiles of the resulting distributions (the

black line and grey area in Figure 2).

Estimation of vaccine efficacy by the cohort method
To compare our results with estimates of vaccine efficacy using

the cohort method [14], we have calculated vaccine efficacy as

1 minus the relative risk of infection in vaccinated versus

unvaccinated persons. In these analyses only information of

persons with known vaccination and infection status was taken into

account (Table S1). As in the above we employ a Bayesian

framework in which the probabilities in the unvaccinated and

vaccinated groups are assigned uniform prior distributions,

yielding beta-binomial posterior distributions for the infection

probabilities. Estimates are obtained using Markov chain Monte

Carlo (MCMC) methods, specifically by taking a thinned sample

of 10,000 from a converged chain of length 500,000. Table S3

reports classical (frequentist) estimates of vaccine efficacy using the

cohort method [14].

Supporting Information

Table S1 Overview of the outbreaks of mumps in Dutch

primary schools. See Ruijs et al. (2011) (ref [9]) and Snijders et al.

(2012)(ref [11]) for details.

(DOC)

Table S2 Summary statistics of the study population, distin-

guishing between one and two vaccinations (cf. Table 1). The

column ‘number infected’ shows the possible range of actual

infections, ranging from the number known to be infected to the

sum of this number and the number of persons with unknown

infection status. Vaccination coverage and attack rates are

calculated using persons with known vaccination status (vaccina-

tion coverage), and known vaccination and infection status (attack

rates).

(DOC)

Table S3 Classical estimates of vaccine efficacy by the cohort

method, i.e. as 1 minus the relative risk of infection in vaccinated

versus unvaccinated persons (Orenstein et al. 1985) (ref [14]).

Approximate 95% confidence intervals of the parameter estimates

are given between brackets.

(DOC)
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