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Abstract

The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where
individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later.
However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are
generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the
differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-
driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta
cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to
effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the
system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta
cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct
projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same
representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1
pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these
new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available
previously under the classical Hebbian model.
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Introduction

Over the past half century the hippocampus has provided fertile

ground for the work of mechanistic computational models to inform

empirical research. From the earliest investigations into Long Term

Potentiation to the complex dynamics of place cells, models of

hippocampal function have enabled a greater understanding of how

learning and memory emerges from more basic neural mechanisms

in this remarkable brain area. The paradigmatic theoretical model

guiding this work is the Hebb-Marr framework [1–3], which features

the core idea that Hebbian learning wires together neurons that are

firing together as part of a memory or engram representation, e.g., in

the central area CA3 of the hippocampus. With these connections

strengthened, the ability to pattern complete a partial memory cue to a

full representation of the original memory is enhanced. For this

pattern completion within CA3 to actually drive full memory recall,

it must trigger a chain reaction of pattern completion throughout the

cortex — although central to most theoretical accounts, the critical

role of the CA1 in this larger pattern completion process has not

been as widely recognized. Specifically, learning between CA3 and

CA1 neurons must take place at memory encoding, to enable the

CA1 to then drive entorhinal cortex (EC), which then drives the

higher-level association cortex areas that are bidirectionally inter-

connected with it. This plasticity at the CA3 to CA1 synapses indeed

may be the most important factor for subsequent memory recall [4].

It is the nature of this plasticity, and the learning that takes place in

the bidirectional connections between EC and CA1, that is the focus

of this paper.

We argue that, by taking into account the phase differences of

firing for these areas within the overall theta cycle of the

hippocampus [5,6], a powerful error-driven form of learning

emerges, which can result in much higher storage capacity than

the standard Hebbian learning mechanism. Furthermore, these

phase dynamics within the EC – CA1 bidirectional connections

enable the CA1 to very naturally learn to be a sparse, invertible

auto-encoder of the EC inputs, which has long been an important

but somewhat implausibly implemented feature of our computa-

tional models [7–10]. Thus, this new model, which we refer to as

the theta-phase hippocampus model, in reference to the theta

oscillation, provides a more unified and computationally powerful

model of hippocampal function. This model also enables us to

make more direct contact with a large base of evidence, in both

humans and rodents, relating hippocampal EEG oscillations to

learning and memory. Much of the progress within this literature

has been made in animal electrophysiology targeting hippocampal

representation during spatial navigation and recall, while evidence

from human EEG and intracranial recordings of oscillatory

interactions also shows connections to episodic memory.
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Modeling work, originally developed within the spatial naviga-

tion literature, suggested that connectivity between hippocampal

subregions is coordinated via the 3 to 8 Hz EEG theta oscillation

[5,6]. This work has also been extended into a more general

framework of hippocampal function including a proposed

extension from spatial navigation into episodic memory [8,11].

These investigations provide the foundation for the theta-phase

model described in the current work, in terms of establishing the

existence and functional role of the oscillatory coordination of

hippocampal subregions within an encoding and retrieval

dynamic. We build upon this foundation by showing how these

dynamics can lead to error-driven learning, and a concomitant

increase in overall storage capacity for the system. The

implementation of this theta-phase model is based directly on

the Complimentary Learning Systems neural network model of

the hippocampus [7,9,10], which is implemented within the Local,

Error-driven, and Associative, Biologically Realistic Algorithm

(Leabra) framework [12,13]. We assess the impact of the theta-

phase error-driven learning mechanisms by comparing it with an

otherwise identical model that uses a Hebbian learning rule, while

varying the number of units within the Dentate Gyrus (DG) and

area CA3, and measuring the models’ recall on a varying number

of learned patterns. These learned patterns are presented at test

with 25 percent of the pattern missing, and the models are

compared on their ability to complete the missing portion of the

pattern. Results show the error-driven signal performs significantly

better than the Hebbian learning rule.

Materials and Methods

Hippocampal Architecture
The model used in the current work is built upon a series of

structural and functional hypotheses based on anatomical and

physiological data, which have been captured in the complemen-

tary learning systems (CLS) model of the hippocampus [7,9]. The

Entorhinal Cortex (EC) in the model is assumed to be the cortical

gateway to the hippocampus. This gateway feeds through the

trisynaptic pathway (TSP) to the Dentate Gyrus (DG), CA3, and then

to CA1. Similarly, there is a parallel connection through the

monosynaptic pathway (MSP) from the EC to the CA1 (and back)

(Figure 1).

The TSP connections via the perforant path from EC to DG and

CA3 are broadly diffuse, and support the conjunctive binding of

various distributed pieces of information into an overall episodic

memory representation in the CA3. The CA3 has sparse and highly

separable patterns of activity (which are further pattern-separated

via the very sparse DG layer), resulting in substantially reduced

interference from synaptic weight changes, thus enabling rapid

learning of novel episodic or conjunctive information [7]. To recall

existing memories, the recurrent connections in CA3, along with

plasticity in the EC to CA3, as well as the DG to CA3 connections,

support pattern completion of missing information from retrieval

cues.

For pattern completion in CA3 to have any effect on the rest of

the brain, there must be a way to map the CA3 representation

back out to the neocortex. This occurs via connections from CA3

to CA1 (the Schaffer collateral pathway), and then from CA1 back

to EC, which then projects back out to the cortex to fill in the full

memory representation in the cortical areas where it can actually

be used in further cognitive processing. This Schaffer collateral

pathway is a key focus of the theta-phase model, where we can

train synapses in this pathway according to an error-driven

learning signal, instead of the standard Hebbian signal assumed in

other existing models.

The MSP between EC and CA1 is also essential for supporting

memory retrieval, in a way that is often under-appreciated in the

literature. This pathway is topologically organized, not diffuse,

which we capture by organizing the simulated neurons in EC and

CA1 into mutually interconnected slots, presumably encoding

different separable elements across all the cortical areas that

converge on the EC [14]. This slot architecture (Figure 1) enables

the MSP to develop separable invertible pathways where a given EC

input pattern can be encoded over a sparser representation in the

corresponding CA1 slot, and this CA1 representation can in turn

recover the full original EC slot pattern. The topographic nature

of this CA1 representation is important for providing a mapping

from cortex into the hippocampus and back out again. Weight

adjustments along the TSP form conjunctive representations that

bind information across the topography of EC and are important

for recreating a previously experienced state from incomplete

inputs (i.e., pattern completion). The Schaffer collaterals (the

connection between CA3 and CA1) provide the translation

between these two types of representations, allowing the conjunc-

tive representations learned in the TSP to influence the

topographic representations within CA1, and subsequently back

out to EC. In our previous CLS models, we have trained these

topographic slot mapping weights between EC and CA1 in an

offline manner prior to training the full hippocampal network. The

new theta-phase learning mechanisms now enables us to train this

important MSP pathway in a very natural manner, at the same

time as the rest of the hippocampal system learns.

To summarize, after learning, the model recollects studied items

by reactivating the original patterns via the trained weighted

connections between areas. The accuracy of this recall is scored as

a simple comparison between the originally studied ECin pattern

and the recollected ECout pattern. If the input pattern corresponds

to a non-studied pattern, or even if individual components of the

pattern were previously studied, but not together, the conjunctive

nature of the CA3 representations will minimize the extent to

which recall occurs. Conversely, when previously studied patterns

are presented in an incomplete or noisy input format, these

weights allow the hippocampus to recall the originally studied

pattern.

Theta Phase Learning
As noted previously, the original Complementary Learning

Systems (CLS) hippocampal model pretrained the invertible

mapping between EC and CA1 on a vocabulary of possible

patterns for a single slot [9]. The resulting weights for the

connections within this individual slot network were then

Author Summary

We present a novel hippocampal model based on the
oscillatory dynamics of the theta rhythm, which enables
the network to learn much more efficiently than the
Hebbian form of learning that is widely assumed in most
models. Specifically, two pathways, Tri-Synaptic and Mono-
Synaptic, alternate in strength during theta oscillations to
provide an alternation of encoding vs. recall bias in area
CA1. The difference between these two states and the
unaltered cortical input representation creates an error
signal, which can drive powerful error-driven learning in
both Tri-Synaptic and Mono-Synaptic pathways. Further-
more, the presence of these alternating modes of network
behavior (encoding vs. recall) provide an intriguing target
for future work examining how prefrontal control mech-
anisms can manipulate the behavior of the hippocampus.

Theta Coordination in Hippocampus
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replicated across all EC–CA1 slots (see Figure 1 where an

individual slot is highlighted) in the MSP. This restricts the space

of inputs possible to the vocabulary of patterns in which the slot

network was trained.

The alternative approach adopted in this work utilizes

simultaneous, independent learning along both the MSP and the

TSP. This dual-pathway learning is motivated by physiological

recordings within the subfields of rat hippocampi, along with

mathematical models of hippocampal function [6], in terms of the

3–8 Hz oscillatory EEG signal known as theta. The theta

oscillation can be found throughout the hippocampus and

surrounding cortex, however it is strongest and most consistent

when recorded within the region separating CA1 and DG known

as the hippocampal fissure. For this reason all references to theta

oscillations will be referring to the EEG signal measured at the

hippocampal fissure.

Figure 2A shows an illustration of hippocampal subfield

dynamics in relation to the fissure recorded theta oscillation

shown in red. This cartoon, derived from current source density

analysis [6,15], shows the current sinks into area CA1 alternatively

originating from either area CA3 in blue or EC layers II and III in

green. At the trough of fissure recorded theta, EC sources into

CA1 are at their peak and area CA3 is at its minimum. This

implies that EC has a strong influence over synaptic potentials

within area CA1 at this time. At the peak of fissure recorded theta,

CA3 sources are at their peak and EC influence has diminished.

This again suggests that CA3 input to area CA1 is now the

dominant influence, and EC is less so as compared to the trough of

the theta oscillation.

These dynamics are modeled within the neural network as, for

any given input pattern, three distinct time points of activation:

Theta Trough (TT), Theta Peak (TP), and Theta Plus (+) as shown

in Figure 2B. These three time points are modeled as three

independent settling processes across simulated neurons within the

differential equation described in eq. (1). The patterns of activation

that arise from these three time points are used to train the

weighted connections along the MSP and the TSP, where the

equations for the error-driven weight changes at these synapses are

shown in eqs. (6) and (7).

Specifically, input patterns are projected onto ECin which is

then allowed to project to CA1 and subsequently to area ECout,

while CA3 input to CA1 is inhibited. This creates a pattern of

activation dominated by the MSP which is then used to drive

learning within these connections. This is denoted as superscript
TT in eq. (6) for ‘‘Theta Trough’’, as this time point is analogous to

the connectivity dynamics at the trough of theta oscillations, where

EC strongly influences CA1, and CA3 influence is relatively low.

Following this, CA3 input onto CA1 is released from inhibition

while the influence from ECin onto CA1 is diminished. This

corresponds to the Theta Peak (denoted as TP in eq. (7)); a time

point that reflects strong influence from CA3 onto CA1. This time

point is analogous to the peak of the fissure recorded theta

oscillation where EC input to CA1 is weak, while CA3 input is

strong.

The final plus stage of activation (denoted with the + in eqs. (6)

and (7)) corresponds to ECin projecting onto ECout and area CA1,

and ECout projecting back onto CA1. The representations within

ECin and ECout will remain relatively static due to the direct

connection between them, which then forces CA1 to settle into a

representation that respects this symmetric mapping between ECin

and ECout. This provides the veridical ground truth in the error-

driven learning signal. In reference to eq. (3), this pattern of

activation is used for the plus stage learning signal in contrast to

the MSP’s TT and the TSP’s TP minus stage.

The alteration of these connections’ strength are manipulated in

the model by simply denying information flow through specific

subregion projections at select points in the settling process of the

differential equation shown in eq. (1). The three particular

projections that are manipulated in the model are

ECin?CA1,CA3?CA1, and ECin?ECout where the pattern

of manipulation that these projections are subjected to are

highlighted in Table 1. All other connections within the network

have no error-driven component to their weight adjustments, only

Hebbian, as seen in eq. (8).

Model Validation
The validation process adopted in this work is to compare the

theta-phase learning model described above with a simple Hebbian

learning model. The critical connections that utilize an error-driven

learning signal within the theta-phase model are the Mono-Synaptic

Pathway (ECin?CA1,CA1?ECout), as well as the Schaffer

collaterals (CA3?CA1). In contrast, these connections in the

Figure 1. Hippocampal connectivity. A) Schematic of hippocampal connections with Entorhinal Cortex(EC) B) Image of neural network model
used in this work on the right. Two pathways are highlighted: the Mono-Synaptic Pathway (MSP) in green, and the Tri-Synaptic Pathway (TSP) in blue.
An individual EC slot is highlighted in orange within the neural network on the right.
doi:10.1371/journal.pcbi.1003067.g001

Theta Coordination in Hippocampus
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comparison model use a purely Hebbian learning rule. The task run

across both models is a simple capacity test such that each model is

trained for 15 repetitions of an input pattern set (referred to as 15

epochs), and the performance of the two models is then tested by

measuring the accuracy of the recalled patterns of activation given

an input cue which has 25 percent of the trained pattern missing.

We explored three training regimes to contrast error-driven vs.

Hebbian learning. First, both the MSP and TSP utilized an error-

driven learning signal and was compared to a full Hebbian

network. We then compared the contribution of these two

pathways by using error-driven learning within either the MSP

and not the TSP, or conversely within the TSP and not the MSP.

Finally, to better compare against earlier models where the MSP

pathway was pretrained in advance, we compared pretrained vs.

non-pretrained MSP. In the pretrained MSP, only the MSP

pathway was trained for 15 epochs (on the same patterns used for

the overall training), followed by integrated training of both TSP

and MSP as described above. In the non-pretrained MSP, both

pathways were trained in the integrated fashion from the start.

The question of how network performance scales is addressed

by varying the training set size, and network size across multiple

levels of these two variables. The size of the input pattern set is

varied from 40 to 800 patterns to get a measure of model

Figure 2. Diagram of relation to physiological data and computational model. Figure adapted from [6] A) Relation of current-source/sink
analysis within subfields of the hippocampus and the fissure recorded theta oscillation. The blue histogram shows the strength of the Tri-Synaptic
Pathway’s(TSP) influence on area CA1 over time, and the green histogram shows the Mono-Synaptic Pathway’s(MSP) influence on CA1 on the same
time line. The orange line represents the fissure recorded theta oscillation in reference to these histograms. Dotted lines show the points of maximum
influence from either the TSP or MSP on CA1. B) Visual depiction of computational model shown at three sequential time points, with arrow weight
highlighting the manipulated connection strengths at those time points; connections not depicted imply there was no modification of connection
strength. The three time points of interest, theta peak, theta trough, and theta plus are shown with the influence of the MSP(shown in green) on CA1
strong at theta’s trough, the influence of the TSP(shown in blue) on CA1 strong at the peak, and the influence of ECin on ECout (shown in black), as
well as ECin to CA1 strong during theta plus. The transition from theta plus to the following theta trough is shown in the far right network.
doi:10.1371/journal.pcbi.1003067.g002

Table 1. Table of connection strength between subfields as a
function of theta phase.

Phase ECin?CA1 CA3?CA1 ECin?ECout

Theta Trough + 2 2

Theta Peak 2 + 2

Theta Plus + 2 +

The ‘+’ symbols represent unaltered connections, and ‘2’ symbols represent a
fully inhibited connection.
doi:10.1371/journal.pcbi.1003067.t001

Theta Coordination in Hippocampus
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performance across small and large training sets, with the

assumption that better performance on larger training sets is

more reflective of hippocampal function. Similarly, the size of the

network itself was varied by increasing the number of units within

the CA3 and DG layers, while holding a constant ratio between

them. This is done to try and maintain a connection to the original

biological constraints of the hippocampal circuit, and for this

reason a ratio of 5 DG units to 1 CA3 unit was adopted, as this

generally reflects the ratio in the human hippocampus [14,16].

Maintaining this ratio, the total units within CA3 were varied from

10 to 100 units, which in turn corresponds to a varying of DG

units from 50 to 500.

Finally, input patterns were constructed, and memory retrieval

performance measured, based on the slot topology in the EC

layers (as highlighted in Figure 1). This slot structure is intended to

capture the modality segregation within EC, and within each slot

we assume there is a vocabulary of different patterns, which reflect

the representational repertoire within those modalities. We

generated a vocabulary of 100 distributed activity patterns, with

a minimum hamming distance of 10 between each vocabulary

pattern generated. A complete input pattern used in the model

validation process was then constructed by selecting a single

pattern from these 100 vocabulary patterns for each of the EC

slots. With 8 slots, a total of 1008 (npatterns raised to the nslots power)

unique ECin patterns are possible, however only 800 were used in

the testing of these models. These vocabulary patterns were

similarly used to estimate error within the networks’ output by

comparing, within a given slot, the output pattern of activation

with all other vocabulary patterns. If, for the given input pattern,

the slots’ output at the ECout layer is closest to the vocabulary

pattern it was trained on, it is considered correct, and otherwise

considered incorrect. This closest-pattern calculation is done

across each of the slots for every input pattern, and if any slot

shows an incorrect response the network output for that input

pattern is counted as incorrect. This measurement is referred to as

Name Error in the results section, and is thought to better represent

the potential for clean up of hippocampal output as compared to

more standard measures such as Sum Squared Error (SSE). It also

has the advantage of not requiring any further threshold or other

parameterization. It should be noted that this measure of error,

compared to a SSE, deemphasizes single unit based errors in

output in favor of an emphasis on distributed patterns of error

across groups of units.

Learning Framework
The model is implemented in the Leabra framework which uses

a combination of supervised and Hebbian learning [13]. What

follows is a coarse description of the essential components within

this framework necessary for understanding the current work. The

activation function for a given unit is a threshold based neuronal

model with continuous valued spike rate as output. Each neuron’s

membrane potential (Vm(t)) is updated using the following

differential equation:

dVm(t)

dt
~t

X
c

gc(t)�ggc(Ec{Vm(t)) ð1Þ

Here, 3 channels (gc) summed across in the membrane potential

calculation are: e excitatory input, i inhibitory input, and l leak

current. Excitatory input is calculated as the average over all

weighted inputs coming into a unit (gej
(t)~ 1

n

P
i xiwij ), where xi is

the activity of sending unit i and wij is the weighted connection

between sending unit i and receiving unit j. All principal weights

between units are excitatory while local circuit inhibition controls

positive feedback loops. Leabra assumes a winner take all dynamic

through a set-point inhibitory current (gi), producing a kWTA (k-

Winners-Take-All) dynamic. kWTA is computed via a uniform

level of inhibitory current for all units within a layer. Finally leak

current (gl(t)) is a constant value set to 0.1

Activation of communication (yi(t) for a given unit i) with other

units is a thresholded function of membrane potential:

yi(t)~
1

1z c½Vm(t){H�z
� �{1

ð2Þ

Here c is the gain factor which is set to a constant value of 100,

and H is the firing threshold value which is set to a constant of 0.5

within a units dynamic range of 0 to 1.

The Leabra framework utilizes a biologically plausible error-

driven learning algorithm which is equivalent to Contrastive

Hebbian Learning (CHL) [17]. Leabra uses two stages of

activation; the minus stage is the initial activation or expected

output of the network, while the plus stage is the provided target

output activation. The Leabra weight updating component

between sending units (x) and receiving units (y) is thus calculated

as:

DCHLij~½xz
i yz

j {x{
i y{

j � ð3Þ

The + and 2 superscripts represent the plus and minus phase

components respectively. In addition to the error-driven learning

of CHL, a pure form of Hebbian learning is also used. Here the

weight change is calculated using only the target, or plus phase,

activations

DHebbij~yz
i (xz

i {wij) ð4Þ

This learning rule can be seen as computing the expected value of

the sending unit’s activity conditional on the receiver’s activity

[13]. Finally these two learning rules are proportionally weighted

(lmix) along with a learning rate parameter, E, for the combined

learning rule used in this work:

Dwij~E½lmix(DHebb)z(1{lmix)(DCHL)� ð5Þ

The theta-phase learning approach uses the learning framework

described above within a particular dual-pathway architecture.

The target, or plus, component of the error signal (superscript ‘+’ in

eqs. (6) and (7)) is activation acquired from the ECin layer

projected onto ECout, and allowed to propagate back on to area

CA1 which settles into a pattern of activation constrained by static

representations in ECin and ECout. Similarly ECin projects along

the TSP providing a plus phase activation within DG and CA3,

however projections from CA3 onto CA1 are inhibited. Error

signals used in weight adjustment are then calculated by taking the

difference between this plus phase activation and the two distinct

time points within the theta cycle (peak and trough), yielding two

distinct error signals. Specifically, the MSP connections are

adjusted according to an error signal acquired from the difference

between plus phase activation and activation patterns acquired

during the trough of theta (superscript TT in eq. (6)). It is critical to

remember in the trough of theta there is no influence on ECout

representations from area ECin, while in the plus phase ECin

projects onto ECout. The difference in CA1 activation patterns at

Theta Coordination in Hippocampus
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the conclusions of these two phases allows for the calculation of an

error signal that is used to adjust the weighted connections within

the MSP. Similarly, the TSP connections are adjusted according

to an error signal acquired from the difference between the plus

phase activation and the activation during the peak of theta

(superscript TP in eq. (7)). In the peak of theta CA3 has a strong

influence on CA1, while in the plus phase CA1 is influenced solely

by the MSP. This change in CA1 representations allows for a error

signal tailored to best adjust the TSP connections to more closely

match the stimulus driven representation of the plus phase

activations. All other connections, within the network, i.e. ECin

to DG and CA3, DG to CA3, and recurrent connections within

CA3, have no error-driven component to their weight adjustment

(eq. (8)).

MonoSynapticPathway

DCHLECin?CA1~E½ECz
in CA1z{ECTT

in CA1TT �

DCHLCA1?ECout~E½CA1zECz
out{CA1TT ECTT

out �

DCHLECout?CA1~E½ECz
outCA1z{ECTT

out CA1TT �

8>><
>>:

ð6Þ

TriSynapticPathway

DCHLCA3?CA1~E½CA3zCA1z{CA3TPCA1TP�
� ð7Þ

Otherwise DCHL~0f ð8Þ

Settling dynamics within the network are dictated by the

temporal evolution of Equation 1. This dynamic process, within

every unit, is allowed 30 time steps to settle into its equilibrium

state for each of the three phases within the theta cycle, thus

yielding a total of 90 time steps for each full theta oscillation. All

activation values within the network are reset to 0 at the onset of

theta trough but are allowed to be carried over from trough to

peak and finally from peak to the plus phase without alteration. All

manipulations of Hebbian vs. error-driven learning where done

via the lmix parameter as shown in eq. (5). Values used to

instantiate full Hebbian learning implies a lmix value of 1, while

error-driven learning used a lmix value 0f 0.001. This implies that

error-driven networks also used a very small amount of Hebbian

weight adjustment which we believe is implicit in normal neural

circuitry.

Results/Discussion

Figure 3 shows the comparison of various network configu-

rations. In panel A the theta-phase network with error-driven

learning in the MSP and TSP is compared with a fully Hebbian

learning network across various network sizes and trained input

pattern set sizes. Plots are shown as a function of network size,

where the number of CA3 units are shown on the x-axis which

implies that the number of DG units for that network are 5

times that of CA3. Training set size, shown on the y-axis refers

to the number of patterns a given network was trained and

tested on. Surface plots of the average Name Error, on the z-

axis, across the full training set are shown on the left for both the

theta-phase and the Hebbian network. Each cyan dot in the

surface plots represents a measured data point where both

network types were tested in the network-size by training-set-

size space. Each data point is the average within network type

across 5 random weight initializations. These points were then

fit to a 3D surface for visualization. The difference between

theta-phase and Hebbian surfaces is shown on the right. These

differences are compared using a random bootstrap method

where Name Error values are sampled with replacement from

both network types into two groups and a distribution of

difference values is calculated to produce a null hypothesis. Data

points with p values less than 0.005 are shown in the difference

plot with an asterisk.

Similarly, in panel B of Figure 3 a more fine grained follow up

test of performance shows a network with error-driven learning in

the TSP and Hebbian learning in the MSP (labeled TSP ErrDrv)

compared against a network with Hebbian learning in the TSP

and error-driven learning in the MSP. This secondary test

attempts to evaluate the relative importance of error-driven

learning within these two pathways on overall performance. These

results are then further tested by comparing pretrained MSP

connections to non-pretrained MSP connections. These results are

not shown in a similar style as Figures 3A and B as these

pretrained networks yielded results nearly identical to non-

pretrained networks. Figure 3C shows performance plots from

individual networks within these three comparisons; here the

overlap in pretrained and non-pretrained results can be seen in

comparison to the other two comparisons shown in Figures 3A

and B.

Results, shown in panel A of Figure 3, of the comparison

between network models shows that the error-driven learning,

provided by the theta coordination of subfield influence on CA1,

out-performs the purely Hebbian based learning network.

Investigating this relationship further, in panel B of Figure 3 it is

shown that the crucial connection that leads to this benefit is

between CA3 and CA1 along the TSP. There is little difference in

performance when the TSP uses Hebbian learning (plot labeled

MSP ErrDrv) compared to when the full network is exclusively

using Hebbian learning. Conversely, when the TSP (specifically

the connection between CA3 and CA1) takes advantage of the

error-driven learning signal, performance is dramatically in-

creased, and approaches Name Error levels achieved when both

TSP and MSP are using error-driven learning signals (shown in

Figure 3B and C). Contrasting performance from the full

ThetaPhase network with the TSP error-driven network shows

that there is indeed some performance benefit in the ThetaPhase

network compared to TSP error-driven network, suggesting some

synergy between the TSP and MSP over and above the benefit

from the TSP error-driven network alone.

Our comparison of the effects of pretraining on the MSP, as was

done in our earlier models, revealed very little difference as shown

in Figure 3C. This is of considerable practical benefit, as it is often

difficult to anticipate the full range of input pattern variability

needed for pretraining, and it also increases the overall plausibility

of our model, by eliminating any need for this extra step in the

model.

These results provide insight as to how these learning signals

compare across multiple network sizes and varying training set

sizes. Looking at the difference in network performance we can see

a divergence towards better error-driven performance as training

size and network size increases. Many hippocampal models used

within the literature test on relatively small training sets and with

small network sizes; usually of the size required for the task or

phenomena being modeled. Results from the current work suggest

that Hebbian performance may not scale with these dimensions as

expected, and that a more robust learning signal such as that

provided by error-driven learning may be necessary to provide

realistic performance in more ecologically valid network sizes and
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training set sizes. Given the significant performance advantages of

the error-driven learning mechanism, and its biological support in

the theta-phase coordination process, it would be surprising if the

biological hippocampus did not also leverage this form of error-

driven learning. In sum, we argue that this model represents a

significant advantage over the existing Hebbian-based models of

hippocampal learning, and can provide a predictive framework for

future empirical studies.

The idea of temporal differentiation between Mono-Synaptic

and the Tri-Synaptic pathways along the theta wave, as shown in

previous hippocampal modeling work [5,6], provides a well

founded framework for how theta oscillations interact with

behavior. The key contribution of this work to these models is a

demonstration that the invertible mapping in and out of area CA1

along the Mono-Synaptic Pathway can be learned in tandem with

the connections along the Tri-Synaptic Pathway, and that these

oscillatory dynamics enable a form of powerful error-driven

learning. Further, these results suggest that error-driven learning

in the Schaffer collaterals connecting CA3 to CA1 are a crucial

component in stabilizing this invertible mapping in the Mono-

Synaptic Pathway, and providing the performance advantage

shown in Figure 3.

The mapping of distributed representations into and out of area

CA1 is a problem that has not been adequately addressed in

previous models. Many models have used a simplified symmetric

representation between hippocampal subregions [5,6]. This allows

for a transparent interpretation of subregion processing, however it

reduces the ecological validity of the model’s processing. An early

model of episodic memory allowed for learning within this invertible

mapping between EC and CA1, however the representations used

were relatively small and simplified [8]. The current work shows

that error-driven learning is a key component behind the

requirement of relatively complex representational transformation

between subregions. The attempt to match the hippocampal

architecture and representational complexity within this work

provides insight into these more subtle issues that are often assumed

in other models of the hippocampus. The simulations done in this

work show that the representational transformation into and out of

the hippocampus is a non-negligible problem, and that more robust

learning signals than the standard Hebbian model are required for

accurate recall within large training data and small network sizes.

The current model provides a simplified version of oscillatory

processes within a discretized time frame, as compared to previous

models [5,6]. The peak and trough time points being modeled in

the current work can be thought of as stimulus driven at the trough

of theta, and recall driven at the peak of theta [6], however these

processes are implemented within the model as two relatively

discontinuous patterns of activation that get integrated together

when calculating the weight changes in the learning algorithm.

Additionally, the plus phase of activation, i.e. the ground truth

within the error calculation, is proposed as a projection of the

superficial EC layers onto the deep layers of the EC. Computa-

tionally within the model this is implemented after both the trough

and peak of the theta oscillation have completed, however we

conceptualize the theta cycle to begin on the trough of the

oscillation where the MSP is strongly active, and we therefore

speculate that this plus phase projection would occur within the

descending theta cycle following the peak but just before the

trough. In Figure 2 we show the plus phase to occur at the trough

of theta, however the model predicts that the plus phase would

occur anytime between theta peak and theta trough. In some sense

the plus phase is a transition from theta peak to theta trough where

the onset of the plus phase is marked by the inhibition of the TSP

and a projection from the superficial layers of EC to the deep

layers. This allows for the error-driven contrasting of this plus

phase pattern of activation with the preceding theta trough and

theta peak patterns. Indeed, laminar recordings from Entorhinal

Cortex support this theta phase reversal in deep layers compared

Figure 3. Comparison of network performance contrasting Hebbian and Error Driven learning rules. Network performance plotted
across various network sizes and training set sizes. A) Surface plots of the average Name Error across the full training set plotted on the left for both
the theta-phase (i.e. error-driven learning in both MSP and TSP) and the Hebbian network, and the difference between theta-phase and Hebbian
surfaces plotted on the right with an asterisk showing values significantly(p,0.005) different from 0. Cyan dots in the surface plots are data points
where performance was measured B) Same Name Error surface plots with the left panel (labeled TSP ErrDrv) showing performance from a network
with error-driven learning in the TSP and Hebbian learning the MSP. Middle panel (labeled MSP ErrDrv) shows performance from a network with
Hebbian learning in the TSP and error-driven learning in the MSP. Difference between these two shown on the right. C) Plot of network performance
taken from A and B for a single network size of 80 CA3 units and 400 DG units. Line color is shown in A and B where these data were extracted from
the surface plots, and the magenta and purple lines(labeled TSP+PT and MSP+PT respectively) come from networks with the same error-driven
configuration as in B, however these networks were pretrained on the input patters for 15 epochs within the MSP. Full surface plots for these two
networks are not shown.
doi:10.1371/journal.pcbi.1003067.g003
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to superficial [18], and a recent investigation into the microcircuits

within EC layers supports the increased firing from superficial EC

to deep EC just preceding the trough of ongoing theta oscillations

[19]. Future electrophysiological work could test these temporal

dynamics further by stimulating at these various stages of the theta

wave to try and disrupt or enhance this theoretical cascade of

activation.

Previous models have labeled activation patterns associated with

theta peak and trough as Encoding during the trough, and Retrieval

during the peak, which our model also captures [5,6,20]. This

separation of functionality between the two pathways might allow

for other systems to interact with the nominal theta cycle to

influence these processes and thereby bias the hippocampus

towards one process over the other. A growing base of empirical

evidence within the rodent literature suggests that oscillatory

coherence within the theta band between frontal regions and the

hippocampus is correlated with successful retrieval [21–23]. In

humans these interactions could provide the framework for some

form of volitional control over either encoding or retrieval. Future

empirical work in humans could probe this relationship between

encoding and retrieval within the hippocampus as well as its

interaction with other systems. The current model would suggest

that disruption of the theta oscillation during the trough of theta

would alter the encoding of new experiences, while disruption at

the peak of theta would alter the retrieval of previous experiences.

The question of how incoming stimuli align to these phase

dynamics is somewhat unclear, however constraints from previous

empirical work do exist. There is evidence suggesting that theta

oscillations show a phase resetting approximately 200 ms after

stimulus onset [24–26]. The entry point into the theta wave on

these phase resets, however, show a difference in study vs. test

items where test items enter on the descending wave of theta while

study items enter on the ascending wave. Our model suggests that

there would be a plus phase following the descending theta wave,

and would be evident through the projection from the superficial

layers of EC to the deep layers. This task dependent phase reset

could help to target this plus phase dynamic, and potentially

determine whether it is more associated with start of a given theta

oscillation or with the end.

There are many limitations within the current work in regards

to the scope of biological components, and we do not mean to

suggest that this model accurately reflects all aspects of

hippocampal function. For example, the discrete nature of the

two time points modeled, i.e. trough and peak, within the theta

cycle could be better approximated by having a continuous change

of activation after the plus phase. The current work simplifies the

more continuous change of activation at the end of a Theta cycle

by resetting activation after the plus phase. Additionally, there are

hippocampal subfields, in particular the Subiculum [27], which

are not included within this model. We are currently exploring the

addition of a Subiculum layer within our model which modulates

the learning rate of connections into CA1. The Subiculum-

mediated modulation focuses on increasing the learning rate for

novel stimuli, and reducing the learning rate for well learned Tri-

Synaptic Pathway (TSP) representations, theoretically allowing for

the reduction of interference in the otherwise purely Hebbian

learning in the TSP (e.g., in perforant pathway projections from

EC to CA3). Although no current explorations are underway, area

CA2 could also provide an augmentation to our model of the MSP

[28]. This area would fit in as a intermediary between the ECin

and CA1, providing a non-topographic representation across the

slots of Entorhinal Cortex, and potentially increasing the learning

capacity along this pathway.

In conclusion, within the subfields modeled, we have accurately

represented the known connectivity and topology using a

biologically motivated neural network framework. Further, we

have included coordination between those subfields through the

currently understood inhibitory processes as modulated by theta

oscillations. Building upon this framework in future projects can

provide a strong foundation in the known biological constraints,

and representational complexity of the hippocampal circuit.
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