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Abstract

Malaria and lymphatic filariasis (LF) continue to cause a considerable public health burden globally and are co-endemic in
many regions of sub-Saharan Africa. These infections are transmitted by the same mosquito species which raises important
questions about optimal vector control strategies in co-endemic regions, as well as the effect of the presence of each
infection on endemicity of the other; there is currently little consensus on the latter. The need for comprehensive modelling
studies to address such questions is therefore significant, yet very few have been undertaken to date despite the recognised
explanatory power of reliable dynamic mathematical models. Here, we develop a malaria-LF co-infection modelling
framework that accounts for two key interactions between these infections, namely the increase in vector mortality as LF
mosquito prevalence increases and the antagonistic Th1/Th2 immune response that occurs in co-infected hosts. We
consider the crucial interplay between these interactions on the resulting endemic prevalence when introducing each
infection in regions where the other is already endemic (e.g. due to regional environmental change), and the associated
timescale for such changes, as well as effects on the basic reproduction number R0 of each disease. We also highlight
potential perverse effects of vector controls on human infection prevalence in co-endemic regions, noting that
understanding such effects is critical in designing optimal integrated control programmes. Hence, as well as highlighting
where better data are required to more reliably address such questions, we provide an important framework that will form
the basis of future scenario analysis tools used to plan and inform policy decisions on intervention measures in different
transmission settings.
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Introduction

Malaria and lymphatic filariasis (LF) cause the largest public

health burden of all vector-borne diseases worldwide [1] with

around 350–500 million clinical episodes and 1 million deaths

every year caused by malaria [2] and more than 120 million

people globally infected with LF. The diseases are co-endemic in

many regions in sub-Saharan Africa and, importantly, are

transmitted by the same vector species, the Anopheles spp. mosquito

[3]. The infections can co-exist in both vectors [4,5] and hosts [6].

Interactions between malaria and LF parasites are thought to have

an effect on the transmission of both infections, in particular

through changes in vector mortality as a result of either single

infection or co-infection [7,8]. Interactions in the host are likely to

affect susceptibility and disease severity [9–13], and are deter-

mined by the effect the parasites have on immunological cytokines.

Cytokines are proteins secreted by the immune system carrying

signals to cells, mediating and regulating immunity, inflammation,

and the development of blood cells. They are commonly divided

into two categories – type 1 and type 2. Malaria is associated with

a Th1 response, with increases in the production of type 1

cytokines, including IFN-c and TNF-a [14], which stimulate

immunity and can result in extreme inflammatory responses.

Lymphatic filariasis induces both Th1 and Th2 responses [15,16].

Initially the response is Th1 biased, causing inflammation and

protecting against incoming larvae. Subsequently, Th2 responses

are induced, in particular cytokines IL-4, IL-10 and TGF-b
among others [14,17,18] which induce strong antibody responses

and act to limit and contain infection. As infection progresses, Th2

levels increase, decreasing the Th1 response.

Understanding how co-infection affects the dynamics and

control of important infectious diseases has become increasingly

significant as evidence of meaningful within-host interactions

between pathogens becomes better established [19–23]. Changes

in the course of infection of co-infected individuals have been

observed but, in general, the mechanisms of how transmission is

altered are poorly understood. For example, HIV-infected

individuals co-infected with Hepatitis C have been reported to
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experience a more rapid clinical progression compared to single

infected individuals [24,25]. Helminth infections are thought to

exacerbate malaria symptoms by causing blood loss (and thus

anaemia) and inhibiting the ability of the host to mount a Th1-

type immune response [21]. These examples highlight two key

ways in which co-infections can affect transmission and disease:

each infection alters the ability of the immune system to

adequately mount an immune response to the other infection, or

one infection has a related symptom that exacerbates the

associated symptoms and effects of the other infection.

Currently, there is little consensus on the effects of malaria and

helminth co-infection on human hosts. There is evidence that co-

infection can reduce [26,27] or increase [14,27,28] malaria

severity. A meta-analysis of 54 experiments conducted on

laboratory mice investigating the effects of helminth infection on

microparasite density suggested that the effect of interactions is

dependent on the species pair [11], although none of the studies

considered Wuchereria bancrofti (LF) and Plasmodium (malaria) co-

infection. However, it is thought that infection with W. bancrofti

increases mosquito susceptibility to Plasmodium infection, since

migration of microfilariae disrupts the midgut, allowing Plasmodium

easier access through the midgut to the salivary glands [3,5,29,30].

On the other hand, mosquitoes carrying worm parasites have been

found to reduce Plasmodium infectivity, with such vectors possessing

a lower infection intensity compared to uninfected mosquitoes

[31]. This suggests that reducing worm burden in a population

could increase mosquito susceptibility to malaria infection. These

mechanisms clearly need to be investigated further in natural

worm-Plasmodium-Anopheles systems before inclusion in co-infection

transmission models and we therefore do not consider this further

here. Similarly, there is also evidence suggesting that Plasmodium-

infected mosquitoes have higher numbers of W. bancrofti parasites

[3,29,32]. A study in Papua New Guinea found that co-infected

vectors are more common than we would expect from the

prevalence of single infections [5], suggesting that infected vectors

are more susceptible to other diseases. Co-infection has also been

reported to affect the size, development and density of larvae and

oocysts in the vector [32]. However, any advantages to disease

transmission due to increased susceptibility may be lost by the

reduction in survivorship caused by co-infection [5]. High levels of

L3 larvae in co-infected vectors increases mortality, reducing the

probability that vectors survive long enough to become infectious

and transmit these diseases [3,29], suggesting that this may be an

important regulatory mechanism underlying co-transmission of

malaria and filariasis.

The basic reproduction number, R0, is a key concept in

infectious disease epidemiology, which for a microparasite

infection is defined as the average number of secondary cases

generated per primary case in an entirely susceptible population.

For a macroparasitic infection, R0 may be analogously defined as

the average number of female offspring per adult female worm

surviving to reproduction in the absence of density-dependence

[33]. Consideration of this metric as a key measure of the

transmission potential of either infection thus raises the question of

how the reproductive potential of malaria or LF is modified in the

presence of the other. In particular, a better understanding of this

effect will be important for assessing the conditions under which

either disease will successfully invade (and co-existence of both

diseases may occur) into regions where the other is endemic. Given

that we adopt a deterministic compartmental co-infection model

here, the criteria for either disease to successfully invade reduces to

the standard criterion R0w1 (while this represents a necessary, but

not sufficient, condition in stochastic approaches).

Individually, malaria and LF models have been studied

extensively [34–41], and these have frequently included analysis

of key determinants of R0, but this study represents the first

attempt to develop a combined LF and malaria transmission

model. The modelling framework developed in this study is based

on the hypothetical macroparasite-microparasite co-infection

modelling framework developed in [42]. Explicitly modelling the

interactions between malaria and LF is important for understand-

ing how co-infection may impact the prevalence, reproduction

number and elimination thresholds of both diseases, which clearly

is also of import to quantifying the efficacy of integrated control

approaches.

It has been suggested that targeting only LF may actually

increase malaria incidence – LF infected mosquitoes have a higher

mortality than uninfected mosquitoes due to the costs of larval

burden [7], so eliminating LF increases vector lifespan, enabling

greater malarial parasite transmission. Here, we develop a model

of malaria and LF transmission to investigate (a) how these

diseases, and their interactions, may be concurrently included in a

consistent mathematical framework, (b) how effects due to

parasites within hosts and vectors affect the baseline transmission

dynamics of each disease in the presence of the other, and (c) how

the basic reproduction number of each disease is affected by

prevalence of the other.

Materials and Methods

Mathematical model background
A generic framework is developed in [42] for modelling

microparasite-macroparasite co-infections, using a simple SI

(susceptible-infected) model for microparasites in humans and a

macroparasite model tracking the number of worms in hosts

susceptible to, and infected with, the microparasite. Worms

subsequently produce eggs that are released into the environment

and may be passed to humans where they become adult

macroparasites. We use the basic ideas behind this approach

and apply these to the specific case of co-infection with malaria

and LF. This involves several new additions including (1) explicitly

Author Summary

Malaria and lymphatic filariasis (LF) are thought to be co-
endemic in many regions of Africa. Currently, most
interventions targeted at these infections do not consider
the impacts of co-infection. However, there have been
increasing calls to adopt integrated control programmes
that can achieve synergistic effects. Malaria and LF are
both vector-borne diseases transmitted by Anopheles spp.
mosquitoes, suggesting that well-designed vector control
strategies have the potential to affect the transmission of
both infections. In this study, we develop a modelling
framework incorporating the specifics of malaria-LF co-
infection to investigate how the transmission of each
infection is altered for a range of possible interaction
scenarios. We find that a control strategy that reduces LF
transmission (via mass drug administration, for example)
could potentially increase malaria prevalence. This work
illustrates the potential perverse effects of targeting just
one infection and emphasises the need to take into
account co-endemic diseases when designing control
programmes. The developed modelling framework can
provide the basis for exploring the mix of options for joint
control of these infections. We also highlight the need for
better data on how co-infection impacts hosts and vectors
in order for future predictions on both co-transmission
dynamics and control to become more reliable.

Modelling Malaria and LF Co-Infection
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modelling the vector population, with the external macroparasite

infective stage represented as larvae in the vector, (2) dividing the

human and vector populations into different compartments

depending on malarial status and modelling the macroparasite

population in each of these compartments, (3) including two

parasite stages in the host, namely adult LF worms and

microfilariae, (4) explicitly modelling the development of larvae

in the vector, and (5) capturing the effect of co-infection on host

infection dynamics.

Microparasite model formulation
The malaria component (Figure 1) of the full co-infection

framework takes the form of an SEIRS model for human hosts

(where we track the number of susceptible, exposed but not

infectious, infectious, and recovered hosts, respectively denoted

HS , HE , HI and HR) and an SEI model for vectors (with the

number of vectors susceptible, exposed but not infectious, and

infectious respectively denoted VS , VE and VI ), which are

assumed not to recover from infection should it arise [34,43].

Humans are assumed to be immune for a short duration after

recovering from infection, before re-entering the susceptible

population. Once an infectious mosquito bites a susceptible

human and Plasmodium parasites enter the blood, the host is

typically infected for several weeks before becoming infectious. If a

susceptible vector bites an infectious human, it may become

infected. The vector then becomes infectious at a rate dependent

on the duration of the parasite sporogonic cycle (which is

temperature-dependent, but typically takes around 12 days at

25uC [34]) and if it successfully bites a susceptible human,

infection is passed on and the cycle continues.

The number of humans progressing from susceptible to exposed

is determined by the force of infection from infectious vectors to

susceptible hosts, and depends on the biting rate a (defined as the

number of bites taken per vector per day) and the transmission

probability of infectious vectors successfully transferring infection

to susceptible humans. The rate at which humans move from

exposed to infectious is determined by the duration of latency, and

movement from infectious to recovered by the duration of

infectiousness. Humans become susceptible again according to

the rate at which immunity wanes. We also include host and

vector births and deaths. Progression of vectors from susceptible to

exposed is dependent on the force of infection from infectious

hosts, while the progression from exposed to infectious is

determined by the duration of the sporogonic cycle.

Macroparasite model formulation
The LF component (Figure 2) of the full co-infection model is a

simplified version of the model in [39] and extended in [40], where

we assume age-independent LF transmission. We include an

additional compartment in the model to represent the immature

stages of larval development within vectors. Worms in the host

produce microfilariae (mf), which may be ingested by biting

mosquitoes and develop first into immature larvae, and then L3

larvae, before entering another human host at the next blood

meal. These L3 larvae subsequently develop into worms in

humans and the process continues. In this basic model, the

number of worms, mf, immature larvae and L3 larvae are

respectively denoted W , M, ~LL and L.

Full co-infection model formulation
A simplified schematic (omitting all birth and deaths rates and the

labelling of rates in terms of model parameters) of the full co-infection

model is shown in Figure 3. The basic LF model is modified to account

Figure 1. Basic structure of the malaria model. See Tables 1 and 2 for a summary of state variables and parameters.
doi:10.1371/journal.pcbi.1003096.g001

Modelling Malaria and LF Co-Infection
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for the number of total worms and mf carried by hosts in each malaria

compartment, and we thus track the total number of worms and mf in

hosts who are susceptible, exposed (but not infectious), infectious and

temporarily immune (recovered) from malaria. We denote these state

variables WS , WE , WI and WR respectively for the worm burden and

MS , ME , MI and MR for the number of mf in humans. The number

of new worms entering each worm compartment at each time step is

determined by the biting rate of mosquitoes, the proportion of L3

larvae that leave mosquitoes and successfully enter the host, the total

number of L3 larvae across all vectors, and the lower probability of

worm development at higher total worm burden due to greater

individual-level immunity. The total number of worms in each

compartment is calculated by dividing the total worm burden up

according to the proportion of hosts in each malaria compartment.We

also account for the mortality of worms and humans, along with the

movement of worms between compartments due to the changing

malaria status of their hosts. The microfilaria equations are

parameterised in terms of the number of mf produced per worm

(per unit time per 20 mL of blood) and account for mf losses due to

natural mf mortality, death of the host, and movement to new

compartments due to changes in host malaria status.

Similarly, we track the number of underdeveloped larvae ~LL and

fully-developed L3 larvae L in vectors who are susceptible,

exposed or infectious with respect to malaria. We denote these ~LL�SS ,
~LL�EE and ~LL�II for immature larvae and L�SS , L�EE and L�II for L3 larvae

respectively, where the overbar notation in the subscript empha-

sises reference to the malaria status of vectors, rather than humans.

The number of larvae entering each developmental stage at each

time step is determined by the biting rate, the probability that an

mf enters a vector and successfully develops, and a density-

dependent uptake function that governs the maximum number of

mf that can be taken per mosquito. The rate of progression from

underdeveloped larvae to developed L3 larvae is simply tracked by

assuming a constant rate of progression. We include terms to

account for the death of L3 larvae and immature larvae upon

mosquito death, as well as larval movement between compart-

ments as vectors change malaria status. Table 1 summarises state

variables in the full model.

Interaction between the LF and malaria models occurs through

(a) changes in mortality of mosquitoes infected with LF (assumed

to be a linear hazard of L3 larval density), and (b) interaction

between microparasites and macroparasites within hosts through

the Th1/Th2 immune response, which affects the course of each

infection (discussed further shortly).

Consider first the LF component of the model (see Figure 2).

The number of worms and microfilariae in hosts are governed by

the differential equations:

dWS

dt
~ap1 p2 L

HS

H
g(Y )zbhWR

{(mWSzmh)WS{
acvh

H
VI WS,

ð1Þ

dWE

dt
~ap1 p2 L

HE

H
g(Y )

z
acvh

H
VI WS{(mWEzmhzmh)WE ,

ð2Þ

dWI

dt
~ap1 p2 L

HI

H
g(Y )zmh WE

{(mWIzmhzvh(W ))WI{chmWI ,

ð3Þ

dWR

dt
~ap1 p2 L

HR

H
g(Y )

zvh(W )WI{(mWRzmhzbh)WR,

ð4Þ

Figure 2. Basic structure of the LF model. See Tables 1 and 2 for a summary of state variables and parameters.
doi:10.1371/journal.pcbi.1003096.g002
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dMS

dt
~a

WS

H
zbh MR{(mMzmh)MS{

acvh

H
VI MS, ð5Þ

dME

dt
~a

WE

H
z

acvh

H
VI MS{(mMzmh)ME{mh ME , ð6Þ

dMI

dt
~a

WI

H
zmh ME{(mMzmhzvh(W ))MI{chmMI , ð7Þ

dMR

dt
~a

WR

H
zvh(W )MI{(mMzmhzbh)MR: ð8Þ

In addition, the function g(Y )~exp({zY ) represents an

immunity term for worms, where c is a variable (which can be

thought of as the ‘experience of infection’) that models the change

in immunity over time as a function of worm burden per host and

the current immunity level, and satsifies the equation

dY

dt
~

W

H
{

Y

30
. LF prevalence in hosts can be calculated using

Figure 3. Structure of the full malaria-LF co-infection model. (NB. Life stage transition arrows from each L compartment to each W
compartment should also strictly be present, but these are omitted here for clarity. All birth and deaths rates are also omitted, as well as the labelling
of rates in terms of model parameters).
doi:10.1371/journal.pcbi.1003096.g003

Table 1. State variables in the full co-infection model (where i~fS,E,I ,Rg and j~f�SS,�EE,�IIg).

State variable Definition

Wi Number of worms in hosts with malaria status i (where W~WSzWEzWI zWR)

Mi Number of microfilariae in hosts with malaria status i (where M~MSzMEzMI zMR)

~LLj Number of larvae under development in vectors with malaria status j (where ~LL~~LL�SSz~LL�EEz~LL�II )

Lj Number of larvae in vectors with malaria status j (where L~L�SSzL�EEzL�II )

Hi Number of hosts with malaria status i (where H~HSzHEzHI zHR)

Vj Number of vectors with malaria status j (where V~VSzVEzVI )

doi:10.1371/journal.pcbi.1003096.t001
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100 1{ 1z
M

k0zk1M

� �{k0zk1M
 !

(where k0 = 0.0029 and

k1 = 0.0236) [33]. For the number of immature and L3 larvae in

vectors:

d~LL�SS

dt
~ag(M)p3 p4 VS{ rz

achv

H
HI

� �
~LL�SS, ð9Þ

d~LL�EE

dt
~ag(M)p3 p4VEz

achv

H
HI

~LL�SS{(mvzr)~LL�EE , ð10Þ

d~LL�II

dt
~ag(M)p3 p4 VI zmv

~LL�EE{r~LL�II , ð11Þ

dL�SS

dt
~r~LL�SS{(mLzap1)L�SS{(mnzm’nL�SS)L�SS{

achv

H
HI L�SS, ð12Þ

dL�EE

dt
~r~LL�EEz

achv

H
HI L�SS

{(mLzap1zmv)L�EE{(mnzm0nL�EE)L�EE ,

ð13Þ

dL�II

dt
~r~LL�II zmvL�EE{mL L�II{(mnzm’nL�II )L�II , ð14Þ

where g(M)~k(1{exp({(r=k)M)) is the mf uptake function

(with baseline values r~0:19 larvae per mf per 20 mL of human

blood and k~4:5 L3 larvae). For the malaria components of the

model, the number of hosts and vectors in each compartment is

given by:

dHS

dt
~bh Hzbh HR{

acvh

H
VI HS{mh HS, ð15Þ

dHE

dt
~

acvh

H
VI HS{(mhzmh)HE , ð16Þ

dHI

dt
~mh HE{(mhzvh(W ))HI{chmHI , ð17Þ

dHR

dt
~vh(W )HI{(mhzbh)HR, ð18Þ

dVS

dt
~bvV{

achv

H
HI VS{(mnzm’n L�SS)VS, ð19Þ

dVE

dt
~

achv

H
HI VS{mvVE{(mnzm’n L�EE)VE , ð20Þ

dVI

dt
~mvVE{(mvzm’vL�II )VI , ð21Þ

where the effects of co-infection enter the malaria model through

an increase in vector mortlaity due to the presence of larvae and

the antagonistic Th1/Th2 response. Malaria prevalence in hosts is

given by HI/H. A list of model parameters is given in Table 2.

Modelling LF/malaria interactions
Modelling LF/malaria interaction in the host. Th1 and

Th2 responses are thought to be mutually inhibitory in the host

and the interplay between these immune responses can determine

the impact of co-infection. For example, LF infection may impair

type-1 dependent control of malarial infection [14,44] because the

anti-inflammatory cytokines IL-10 and IL-13, which are associated

with helminth infection [27], inhibit the production of Th1

cytokines such as IFN-c [44–46], suppressing the immune

response against malaria [13] and resulting in a longer duration

of infection. Th1 responses induced by malaria infection are

thought to improve host ability to fight LF infection by increasing

adult worm mortality. Here, we assume that Th1 and Th2

responses are antagonistic and that Th1/Th2 bias is determined

by the mean worm burden in hosts – as worm burden increases,

Th2 response is up-regulated and Th1 response down-regulated.

Immune responses are not directly modelled, but are instead

captured by key parameters in the model. Th1 immune response

to malaria is modelled by varying the recovery rate from malaria

(vh) and Th2 response to LF modelled by varying worm mortality

rate (mW ) in hosts. Both parameters are assumed to be functions of

worm burden. In co-infected hosts, when worm burden is low,

immune response is Th1 skewed and the recovery rate from

malaria (vh) nears its maximum value, while mW is high since the

Th1 response increases worm mortality. As worm burden

increases, immune response becomes more Th2-biased, Th1

levels decrease and worm mortality and malaria recovery rates

decrease. We set realistic values for vh and mW by defining

minimum and maximum values for each parameter.

We assume that the immune response is more Th1 skewed in

malaria infected individuals than malaria susceptible individuals

and we represent this by using higher values for worm mortality in

infected hosts, with the result that worms in infected hosts have a

shorter mean lifespan. We parameterise these response as:

mWS~(mmax
WS {mmin

WS) exp {c1

WI

HI

� �
zmmin

WS, ð22Þ

mWE~mWI~mWR~(mmax
WI {mmin

WI ) exp {c1

WI

HI

� �
zmmin

WI , ð23Þ

vh~(vmax
h {vmin

h ) exp {e
WI

HI

� �
zvmin

h , ð24Þ

where we assume baseline values 1=mmin
WS~10 years, 1=mmax

WS ~8

years, 1=mmin
WI ~8 years, mmax

WI ~6 years, c1~3 per worm,

1=vmin
h ~200 days, 1=vmax

h ~120 days and e~3 per worm.

Figure 4 represents the effect of a reduction in Th1 response with

increasing worm burden. It is unknown by how much increasing

worm burden inhibits Th1 response, but it is thought that if

parasites occupy distinct locations within the host, interactions

may be smaller, meaning less Th1 inhibition [9]. The impact of

increasing worm burden on worm mortality and malaria recovery

can be altered by changing the slope of the response curves to

explore different Th1/Th2 interaction scenarios, but for all

simulations here, we use the functions shown in Figure 4.

Modelling Malaria and LF Co-Infection
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Modelling LF/malaria interaction in the vector. Vectors

are thought to experience larval-dependent mortality as a result of

LF infection [47,48]. Increased mortality with larval infection in

Culex spp. mosquitoes has been reported in the literature – one

study found that approximately 90% of uninfected vectors and

72% of infected vectors survive 16 days after taking a blood meal

under laboratory conditions [48], while another found 21% higher

mortality after feeding on mf-positive hosts compared to mf-

negative hosts [49].

In Anopheles, however, there is little published data in this respect,

while the limited available data, although indicating similar overall

mortality rates to Culex (24% versus 27%), exhibits no association

between mf intensity and mortality [8]. However, Culex have been

studied more extensively and reports have shown increased

mortality with larval density [50,51]. Here, we assume a larval-

dependent vector death rate, in addition to baseline mortality, so

that the total mortality rate is mTOTAL
v ~mvzmv

0L=V , where L is the

total number of larvae, V is the total number of mosquitoes, mv is the

baseline death rate (i.e. with no larvae present), and mv
0 the

magnitude of larval-induced mortality.

Results

Time-series behaviour of the full model
With the parameters in Table 2, Figure 5 contrasts the

dynamics of malaria and LF with and without the presence of

the other infection. We find that malaria prevalence is lower in

humans when LF is present (Figure 5(a)). Host immunity is biased

towards a Th1 response in the absence of LF, corresponding to a

faster recovery from malaria and hence a decreased duration of

infectiousness; however, while the presence of LF induces a greater

Th2-skewed host immune response and would cause a slower

Plasmodium clearance rate and hence increase in malaria preva-

lence if acting in isolation, this effect is less significant than larval-

induced mortality decreasing vector life expectancy and hence the

time for onwards malaria transmission. For the (realistic)

parameter regime considered here, the net effect of LF presence

is therefore to reduce malaria prevalence (although we note the

importance of further experimental and field studies to address

uncertainties in parameterisations of these two interactions to

assess the generality and robustness of this result). The higher

vector death rate when LF is present (Figure 5b) due to larval-

Table 2. Parameters of the full co-infection model.

Parameter Definition Baseline value Details

a Biting rate (number of bites taken per vector per day) 0.2–0.5 days21 Parameter varied to assume vectors bite
on average once every 2 to 5 days

bh Birth rate of humans 1/18,250 days21 Equal to host death rate to ensure
constant population size

bv Birth rate of vectors 1/10z5|10{6 days21 Equal to vector death rate to ensure
constant population size

mh Death rate of humans 1/18,250days21 Assumes host average life expectancy
of 50 years

mW Death rate of worms 13/37500 days21 [39]

mM Death rate of microfilariae 1/300 days21 [39]

mv Death rate of vectors 0.1 days21 Approximate mortality at 25uC [56]

cvh Probability of infectious vectors transferring infection to
susceptible hosts

1/25 [57]

chv Probability of infectious hosts transferring infection to susceptible
vectors

9/100 [57]

a Production rate of mf per worm 1/15 days21 [39]

r Rate of development from immature to L3 larvae 0.08 days21 Development rate of [58] evaluated at
25uC

mh Rate at which infected hosts become infectious 1/10 days21 [57]

mv Rate at which infected vectors become infectious 0.02 days21 Evaluation of exp({mVjn)=n at T = 25uC
(where n~111=(T{16) for P.
falciparum) [34]

bh Rate at which humans return to susceptible from recovered 1/7 days21 Host population assumed to experience
loss of immunity within 1 week

p1 Proportion of L3 leaving mosquitoes per bite 0.414 [39]

p2 Proportion of L3 leaving mosquitoes that enter host 0.0003 [39,59]

mL Death rate of larvae 0 days21 Larval mortality assumed to arise only
due to vector mortality

m’vj Additional mortality rate of larval-infected vectors with malaria

status j~f�SS,�EE,�IIg
0.1 days21 Uncertain parameter varied in sensitivity

analysis (but within bounds to ensure
realistic vector mortality at 25uC)

p3 Probability of mf entering the vector upon biting an LF-infected
host

0.37 [39]

p4 Probability of mf entering the vector developing into L3 larvae 1 [39][25]

z Force of immunity (strength of immune response) 0.2 [39,59]

doi:10.1371/journal.pcbi.1003096.t002
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induced mortality also results in a decrease in vector malaria

prevalence and this again dominates over indirect effects due to

changing host immune response.

Host LF prevalence is similarly reduced when malaria is

present, since the presence of the microparasite elicits a more Th1-

skewed response, resulting in higher filarial worm mortality in

malaria-infected hosts and thus reduced LF prevalence. When

malaria is absent, host immune response is Th2-biased and acts to

sustain LF infection, rather than eliminate it, meaning that LF

worms live for longer. In mosquitoes, LF prevalence is lower when

malaria is present, since there are fewer worms in hosts and thus

fewer mf per blood meal that may eventually develop into infective

larvae.

The introduction of either infection into regions where the

other is endemic alters the prevalence of the original infection.

If malaria is introduced into an LF-endemic region, the

prevalence of LF decreases marginally in both hosts and

vectors (Figure 6), since worm mortality is higher in malaria-

Figure 4. Worm mortality rate and malaria recovery rate as functions of mean worm burden. Increases in worm burden skew the
immune system towards a Th2 response, lowering worm mortality rate (a) and human recovery rate (b) from malaria. The two curves in (a) represent
the worm death rate in malaria-infected (upper) and malaria-susceptible human hosts (lower).
doi:10.1371/journal.pcbi.1003096.g004

Figure 5. Malaria and LF prevalence in (a) humans and (b) mosquitoes with and without co-infection. Malaria and LF are introduced
simultaneously into a population in the presence and absence of co-infection (with a = 0.2 day21).
doi:10.1371/journal.pcbi.1003096.g005
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infected individuals, reducing overall worm burden. When LF

is introduced into regions with endemic malaria, host and

vector malaria prevalence decreases due to increased vector

death rate resulting from LF larval-induced mortality, meaning

that vectors have less time to complete sporogony and transmit

malaria parasites.

We also note the speed at which both diseases reach a new

equilibrium after introduction of the other infection. When

malaria is introduced into LF-endemic regions, malaria

prevalence quickly increases to its equilibrium level, while LF

takes around 12 years to reach its new endemic state (Figure 6).

Similarly, when LF is introduced into a malaria-endemic

region, it subsequently takes around 30 years to reach its

equilibrium, with malaria prevalence changing as soon as LF

begins to increase significantly). These temporal differences are

due to the significantly shorter lifecycle of malaria transmission

compared to LF – the time taken for individuals to become

infected with malaria and return to the susceptible class is less

than a year, while LF worms can survive in hosts for around 10

years and mf can live for around 300 days. In addition, malaria

transmission is more ‘efficient’ than LF transmission – only one

bite is required from malaria-infected vectors to infect a

human, whereas, on average, thousands of bites are needed

from LF-infected vectors to produce one filarial worm. The

dynamics of LF are therefore typically far slower and infections

take longer to ‘take-off’. Furthermore, LF takes even longer to

establish when malaria is present, since the immune response

remains Th1-skewed at low LF prevalence, resulting in an

increased worm mortality rate.

These results are dependent on model parameters. We briefly

explore the sensitivity of these results with respect to different

assumptions regarding the worm lifespan in infectious hosts

(Figure 7). Here, it is clear that when malaria is introduced into

LF endemic regions, the magnitude of the reduction in LF

prevalence depends on the extent to which malaria infection

reduces worm lifespan in infectious hosts.

Figure 6. Invasion of (a and b) malaria in LF endemic regions, and (c and d) LF in malaria endemic regions. Prevalence time-series, in
hosts and vectors, when introducing malaria or LF into endemic regions of the other.
doi:10.1371/journal.pcbi.1003096.g006
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The basic reproduction number R0

Various approaches may be used to derive R0, but arguably

the most general is that of the next-generation approach

introduced by [52], which holds, in principle, independent of

model structure. Consider first the basic reproduction number

of malaria in the presence of endemic LF, which we denote RM
0 .

Following the formalism of [53], we consider equations (16),

(17), (20) and (21) describing the dynamics of the infected

compartments in the malaria component of the model, from

which it is readily shown in Text S1 that calculating the

dominant eigenvalue of the next-generation matrix gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2mhmvHS(0)VS(0)chvcvh

(mvzmv
0L)(mvzmv

0Lzmv)H2(mhzmh)(chmzvh(W )zmh)

s
: ð25Þ

Substituting for vh(WI ), evaluating at the malaria-free equilib-

rium (where HS(0)~H, VS(0)~V and HI (0)~0), and defining

R0 as the number of new infectious individuals produced by a

single infectious individual in that class (which leads to the

required R0 being the square of (25); see [53]) gives

RM
0 ~

ma2mhmvchvcvh

(mvzmv
0L)(mvzmv

0Lzmv)(mhzmh)(chmzvmin
h z(vmax

h {vmin
h )e{e W

Hð Þzmh)
,
ð26Þ

which reduces to the standard R0 expression for malaria in the

absence of LF (i.e. when L~WI~W~0) and where m is the

number of vectors per host. Thus, the reproductive potential of

malaria is reduced by the presence of L3 larvae in infected and

infectious mosquitoes (through decreased vector life expectan-

cy), but increased due to the longer duration of host

infectiousness (resulting from down-regulation of the Th1

response in the presence of LF) as mean worm burden in

humans increases; further experimental data leading to more

reliable estimation of mv’, vh
max, vh

min, and e will enable more

robust quantitative conclusions to be drawn about the magni-

tude of these competing interactions on RM
0 (Figure S1).

Figure 7. Human LF prevalence as a function of worm death rate in malaria-infected hosts. Considerable differences in LF prevalence are
observed when malaria is introduced to the system depending on mean worm life expectancy.
doi:10.1371/journal.pcbi.1003096.g007
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To investigate how the R0 of malaria varies at different

background levels of LF, we consider a range of biting rates (the

largest of which are the most realistic) and vary the value of mm

(since this affects the equilibrium LF state, but without changing

R0
M, as well as representing a parameter that may be influenced

by LF controls) (Figure 8). The arrow on each biting rate curve

denotes increasing mm (where larger values imply shorter mf life

expectancy and thus lower LF prevalence). Figure 8 confirms the

analytical result from (13) that the R0 of malaria decreases as LF

endemicity increases, and this effect becomes increasingly

pronounced as the biting rate increases (with the steepest curves

at the highest biting rates).

The drop in R0
M with increasing LF is consistent with Figure 5,

which indicates that the introduction of LF causes malaria

prevalence to decrease in humans and mosquitoes. In seeking a

more complete understanding of the response of malaria

transmission to LF presence across the full range of parameter

space, however, it is nonetheless important to recognise that R0
M

arises as the product of human and mosquito components of the

parasite lifecycle. In some parameter regimes (not shown),

introducing malaria into LF-endemic regions can increase the

duration of human infectiousness (and hence human prevalence)

due to a Th2-skewed host response, yet vector prevalence remains

lower than if LF is not present due to the absence of larval-induced

mortality. In this case, since the proportional drop in mosquito

malaria prevalence is greater than the human component, the net

effect is an overall drop in malaria prevalence (and hence R0),

which is still consistent with (13), Figure 8, and standard theory on

the monotonic relationship between R0 and endemic prevalence

[33]. This subtle interplay between human and vector prevalence

to produce the observed response of R0
M to LF presence is

explored further in Figure S1 in Text S2 as a function of larval-

induced vector mortality and human recovery from malaria.

An identical approach may be followed to calculate the basic

reproduction number of LF in the presence of endemic malaria,

which we denote RLF
0 , by considering equations (1)–(14) describing

the LF component of the model. The need to track the number of

worms and mf in four possible host states of malaria, together with

the number of immature and L3 larvae within mosquitoes in three

malaria states, results in a high-dimensional next-generation

matrix (see Text S3). Evaluating this matrix at the LF-free

equilibrium and calculating the dominant eigenvalue yields a

closed-form solution for RLF
0 that is too unwieldy to reproduce

here, but that we note reduces, in the absence of malaria, to

RLF
0 ~

a2p1p2p3p4Vra

H(mmzmh)(ap1zmLzmv)((mmax
W {mmin

W )e
{

c1WI
HI zmmin

W zmh)

,
ð27Þ

a standard expression for the basic reproduction number of LF. In

our model, the only effect of malaria presence on LF transmission

is through the increased worm mortality rate in malaria infected

hosts. However, since the reproduction number describes the

number of new infections resulting from one primary infection in a

totally susceptible population (and is thus a meaningful transmis-

sion metric for only a short duration before saturation effects

occur), it is clear that the underlying malaria prevalence will not

significantly affect RLF
0 because new LF infections develop over a

considerably shorter time span than the time taken for LF worms

to die (even in malaria infected hosts where filarial worms

experience a higher death rate relative to hosts susceptible to

malaria). If malaria presence impacted microfilaria production or

larval dynamics, we would expect RLF
0 to be more strongly

dependent on malaria prevalence, but in the absence of these

effects, we obtain a very weak dependence (which does,

nonetheless, marginally reduce LF prevalence in both humans

and vectors and is thus consistent with Figure 5). Malaria does,

however, alter LF transmission dynamics when both infections are

endemic, as shown in Figures 5 and 6.

Discussion

The model presented here, for malaria and LF co-infection

within human and vector populations, represents the necessary

Figure 8. Dependence of R0
M on LF prevalence in hosts for different mosquito biting rates.

doi:10.1371/journal.pcbi.1003096.g008
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groundwork towards a scenario analysis tool that could be used

for policy planning. Three key interactions between the two

parasites are introduced very simply into the basic interaction-

free model through (1) increased mortality of vectors that are

infected by either or both parasites, (2) increased mortality of

LF worms in malaria co-infected hosts, and (3) increased

recovery period from malaria in LF co-infected hosts (with the

latter through modification of the human immune response

towards one parasite in the presence of the other). These

interactions, while reasoned judiciously here, are not expected

to be comprehensive and are used here, along with plausible

parameter values, to illustrate how these interaction terms

(mortality rates and rates of recovery from infection) might

appear in the expressions for R0 and subsequently impact the

prevalence of each infection in the presence of the other.

Nonetheless, there are other potentially important interactions

between these infections. For example, as discussed earlier,

there is the possibility of infection with one parasite affecting

vectors’ susceptibility to the other infection. Data on the effects

of LF-malaria co-infections is almost non-existent; however, we

can look at other helminth-malaria co-infections. In hosts, it

has been reported that schistosomiasis can both increase and

decrease the frequency of malaria attacks in co-infected

individuals [54,55], and that children with low intensities

(but not higher intensities) of schistosomiasis have significantly

lower P. falciparum densities than worm-free individuals [55].

Studies investigating how co-infection affects the course of

each infection, as well as studies exploring the immune

responses to co-infection, are needed to better inform the

interactions assumed in our model. Overall, such scenario

modeling is essential in an era of large scale Mass Drug

Adminstration (MDA) and control programmes of tropical

diseases, so that possible perverse effects are thought through

in advance.

The results here show that perverse outcomes might be more

complicated in a co-infection framework – even though the

presence of one parasite appears to decrease the R0 of the other

in both cases, the R0 calculated here is the overall value for the

entire lifecycle and therefore takes into account human and

vector components. The introduction of one parasite in the

presence of the other may reduce the overall prevalence, but

actually increase the prevalence in the humans while decreas-

ing it in vectors in certain parameter regimes. Figure 6 shows

that introducing LF reduces the prevalence of malaria,

suggesting that, if LF was eliminated from a co-endemic

region (using MDA, for example), this could actually result in

an increase in malaria prevalence. These effects obviously need

to be better understood so that inadvertant rises in human

prevalence are avoided and improving our parameterisation of

key interactions between malaria and LF epidemiology, such as

those considered here, through new experimental studies is

vital. In vectors, for example, better data on how susceptibility

to infection and mortality are altered by co-infection are

required. In humans, we need a better understanding of how

the interplay between the Th1 and Th2 responses affect the

ability of the host to mount an immune response to each

infection, specifically, the impact of LF infection on the

duration of malaria and whether or not malaria infection

reduces the number of LF worms. We also need to find ways to

translate the immune response findings from laboratory studies

into meaningful assertions about how co-infections alter key

epidemiological parameters in transmission models. In addi-

tion to these laboratory studies, parasite prevalence and

intensity in communities with both infections should be

monitored at high frequency prior to and during control

programmes for high quality time-series to which epidemio-

logical models such as ours can be fitted.

The factors influencing breakpoints – prevalence levels

below which parasites become extinct – are the relative sizes of

negative and positive density-dependent effects and the overall

value of the reproduction number. In our model, the included

density-dependencies are negative for the sake of simplicity,

and breakpoints will not occur, but we plan to examine this

important phenomenon in future work. Certainly, the changes

induced in the LF reproduction number by the presence of

malaria will alter the size of the breakpoint, though we have

shown that the effect of malaria on the R0 of LF will be small

for the interactions we include. An important next stage of our

work is also to fit the parameters to data from field sites in

which interventions have occurred and both infections have

been monitored. Large increases in the malaria parasite rate in

humans, following treatment for LF, would strongly determine

the interaction parameters occuring in R0
M, for example, as

would the impact upon LF of the treatment for malaria. With

commitment from international agencies and pharmaceutical

companies to treat infectious tropical diseases, such data

should become available soon and a parameterised modelling

tool would then become invaluable.

Supporting Information

Figure S1 The contribution to overall malaria preva-
lence (and basic reproduction number) from host and
vector populations as a function of larval-induced vector
mortality and Th1/Th2 host immune response. Panels A

and B correspond to mv’ = 0.01 larvae vector21 day21, C and D

consider mv’ = 0.1 larvae vector21 day21, and E and F represent

mv’ = 1 larvae vector21 day21. Panels in the first column (ACE)

correspond to vh
min = 1/180 day21, while those in the second

column (BDF) are run with vh
min = 1/360 day21.

(TIF)

Text S1 Derivation of the basic reproduction number of
malaria in the presence of LF.

(DOC)

Text S2 Sensitivity analysis of contributions of infection
levels in host and vector populations to overall malaria
prevalence.

(DOCX)

Text S3 Derivation of the basic reproduction number of
LF in the presence of malaria.
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