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Abstract

Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure
and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful
for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in
ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a
unifying property of these algorithms is that they quantify consensus in the network about a node’s state or capacity to
perform a function. The algorithms capture consensus by either taking into account the number of a target node’s direct
connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by
measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that
that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also
observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the
node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which
are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors.
However, in cases where nodes ‘‘form opinions’’ about other nodes using indirect information, like reputation, depth
algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless
the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively
capture breadth as well as depth. Finally, we discuss the algorithms’ cognitive and computational demands. This is an
important consideration in systems in which individuals use the collective opinions of others to make decisions.
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Introduction

A goal of many of network studies (e.g. [1–4]) is to predict the

effects of perturbations, such as extinction and predation events,

on network structure. Making these predictions requires informa-

tion about network connectivity (e.g. is the network scale-free,

exponential, etc.). When the connectivity is non-uniform, it is also

important to quantify variation at the node level in order to

identify nodes that, if removed, are likely to impact negatively

network stability. This is well recognized and many useful methods

have been developed for measuring this variation [1–2,5–14] in a

range of networks, including the world-wide web [5], food webs

describing trophic interactions [1,2], networks of interactions

between genes and proteins [6–10], and social networks, in both

animal and human societies [11–16].

Patterns of connectivity can also influence node function in the

larger system of which the network is a part. For example, in

previous work on the behavioral causes of multi-scale social

structure in primate societies [14,17–22] it was found that group

consensus about an individual’s ability to win fights – its social

power (see Sec. Primate communication network)–is population

coded in a status signaling network. In this system, individuals use

subordination signals to communicate to adversaries that they

perceive themselves to be the weaker opponent. The signals are

often repeated and are always unidirectional (emitted by one

individual in a pair but not the other). A single signal indicates that

the sender perceives the receiver capable of using force successfully

against him. The frequency of signals emitted (over some defined

time period) indicates the strength of the sender’s perception that

the receiver can successfully use force against him. In the work

cited above it was demonstrated that consensus in the group about

individual i0s ability to successfully win its fights can be calculated

by quantifying uniformity in the weighted in-degree distribution of

signals sent to i by its senders and weighting this score by the total

number of signals i received (this calculation is described in Sec.

Shannon consensus). The resulting score for i may not be the

preferred score for i of any specific group member, but can be said

to reflect the group’s collective view about how good i is at

winning fights. Correspondingly, the rank order associated with

the distribution of scores in the population might not match the
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preferred rank order of any single individual, but as the outcome

of integrating over all of the individual opinions, it can be said to

be the consensus social power rank order.

The data indicate that individuals can estimate their own social

power and also know something about how others in the group are

collectively perceived [17,20,23,24]. Consequently, social power is

informative about the likely cost of interaction when interactions

are not strictly pair-wise (a common feature of these systems and

the reason why a consensus-based definition is important) [17–19].

Under heavy-tailed power distributions, in which a few individuals

are disproportionately powerful, conflict management mechanisms

like third-party policing (a critical social function) can emerge and

are performed by nodes in the tail of the power distribution

[14,20]. Policing is an important social function because by

controlling conflict it facilitates edge building by nodes in the

signaling as well as other social networks [18,20]. These results

suggest that (1) network structure can encode node function and

that (2) measures that quantify agreement in node connectivity

patterns can be used to decode this population coding of node

function. In Table 1 we give several examples of other networks in

which node function might also be population coded and

consensus estimation could be useful for identifying important

nodes.

In principle, consensus about node state or function can be

quantified by measuring the uniformity of a node’s weighted in-

degree distribution [14], as in the above example, by measuring

the ‘‘flow’’ into and out of a node (depth), or using simple counts.

To capture these competing notions of consensus, we introduce a

variety of alternative information theoretic, diffusion, and count

algorithms that capture breadth and depth to different degrees,

and so serve as hypotheses about how functional variation in nodes

is encoded in interaction networks via consensus. The algorithms

take an interaction network as input and produce a vector of scores

for the nodes in the network as output. We interpret the score of

node i as the collective opinion, or consensus, about i0s state or its

capacity to perform a given behavior. We note that the algorithms

only quantify agreement in the connectivity patterns; what the

consensus is about– i0s state– depends on the type of interactions

in the interaction network. For example, in the work on power in

primate societies mentioned above, the interaction matrix

contained directed subordination signals. These signals have

special properties that allow them to reliably encode information

about the ability to win fights, which is the basis of power [19]. We

discuss the importance of the interaction matrix for the

interpretation of consensus in greater detail in Sec. Background

and motivation.

After introducing the algorithms, we compare their mathemat-

ical properties, and in a few cases, establish approximate

equivalence. We introduce three data sets that we use to

empirically evaluate how well the output of the algorithms predicts

node function out of sample. We investigate the properties of these

algorithms that make them predictive measures of consensus. The

data sets include a status communication network in a primate

society, a network of collaborating condensed matter physicists

from a prominent journal, and a functional linkage network of

yeast genes that influence viability and growth. Finally, we assess

the sensitivity of the algorithms to systematic error at the node

level and strategic manipulation of the network by nodes or small

sub-sets of the network.

Results

For all of the algorithms we consider, we begin with a matrix of

interactions M. (For discussion of data in the interaction matrix,

see Secs. Primate communication network, Physics collaboration

network, and Functional gene linkage network). We adopt the

convention that if the interactions are directed Mji, denotes the

number of interactions traveling from individual j to individual i.

Tables 2 and 3 contain alphabetical lists of all matrices and

variables used in the text.

The algorithms we compare fall into three classes with respect to

consensus: algorithms that accord higher scores to nodes with a

more uniform in-degree distribution (breadth algorithms), algo-

rithms that accord higher scores to nodes that are sinks in the

network (depth algorithms), and count based algorithms, like the

Borda count. For each algorithm, we construct a new matrix that

gives the strength of the interactions in a way that depends on

what the algorithm is meant to measure. For the breadth

algorithms, we calculate the strength of the interaction between

nodes j and i in a way that depends on all of i0s in-edges and

reflects the uniformity of the interactions from the whole

Table 1. The interpretation of consensus about the state of a
node, or its capacity to perform a behavior, depends on the
type of interactions constituting edges in the network.

Interaction Node State Functional Consequences

Subordination signal Social power Conflict management behavior

Collaboration Scientific reputation Grants awarded

Functional linkage Gene importance Growth/Fitness

Friendship Popularity Friends/Gifts

Citation Influence Grants/Positions

Trade Quality of goods Prevalence of goods

We suggest and find that the consensus about this state predicts function. This
result is strongest for the subordination signaling network, for which the
mechanistic basis of consensus is best understood and the data strongly
indicate that the subordination signals are not proxies for power but are direct
measures of it.
doi:10.1371/journal.pcbi.1003109.t001

Author Summary

Decision making in complex societies requires that
individuals be aware of the group’s collective opinions
about themselves and their peers. In previous work, social
power, defined as the consensus about an individual’s
ability to win fights, was shown to affect decisions about
conflict intervention. We develop methods for measuring
the consensus in a group about individuals’ states, and
extend our analyses to genetic and cultural networks. Our
results indicate that breadth algorithms, which measure
consensus by taking into account the number and
uniformity of an individual’s direct connections, correctly
predict an individual’s function even when some of the
group members have erred in their assessments. However,
in cases where nodes ‘‘form opinions’’ about other nodes
using indirect information algorithms that measure the
depth of consensus, like Eigenvector Centrality, are
required. One caveat is that Eigenvector Centrality is not
robust to error unless the network is transitive or
assortative. We also discuss the algorithms’ cognitive and
computational demands. These are important consider-
ations in systems in which individuals use the collective
opinions of others to make decisions. Finally, we discuss
the implications for the emergence of social structure.

Algorithms for Computing Consensus in Networks
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population to i. These measures therefore measure the breadth of

consensus.

We then perform matrix operations on the appropriately

transformed interaction matrix. The depth algorithms treat events

as a diffusion process over the network and weight more heavily

interactions with partners who themselves have many interaction

partners and so forth. To capture this chain-like property of

interactions, we do repeated matrix operations. These measures

therefore measure the depth of consensus. We can quantify depth

by the number of matrix operations required to perform the

algorithm or, equivalently, the length of the ‘‘chains’’ in the

network that affect the algorithm. Figure S1 shows a flow chart

that summarizes the steps required to derive the distribution of

consensus scores under each algorithm. We discuss the computa-

tional complexity of the algorithms in Section Cognitive and

computational complexity and in the Text S1, Section Compu-

tational complexity).

Breadth algorithms
Simple Consensus. The simplest measure of the breadth of

the interactions to a given node is the number of nodes that send it

interactions. To calculate this, we create a binary matrix B, where

Bji~1 if Mjiw0 and Bji~0 otherwise, and then take the sum,P
j Bji. We write 1 for a column vector of all ones and define the

vector

D~1T|B

so that Di is the number of nodes who send interactions to the

target node, i. We call this measure Simple Consensus.

Weighted Simple Consensus. Weighted Simple Consensus takes

into account the breadth of the interactions flowing into i and the

total frequency of i0s interactions, capturing the ‘‘magnitude’’ of

agreement. Total frequency is taken into account as well as

uniformity because we want to be able to distinguish a node that

has received ten interactions (e.g. signals) from each of ten other

nodes per unit time from a node that has received only one

interaction from each of ten nodes per unit time [14]. We define

the vector

R~1T|M

so that Ri is the weighted in-degree or number of interactions sent

to the target node i. We then define

Di~Ri
:Di,

which is the Weighted Simple Consensus score for node i.
Shannon Consensus. Shannon Consensus, like Weighted Sim-

ple Agreement, multiplies the uniformity of interactions by the

frequency of interactions or weighted in-degree (this measure was

introduced in [14], where it was called the Social Power Index). In

this case, the uniformity of the interaction weights is quantified

using Shannon entropy. Shannon entropy has the desirable

property that it is minimized (and in fact equals 0) when there is

only one partner, is maximized when all partners send the same

number of interactions (e.g. signals), and is an increasing function

of the number of partners. These properties agree with our

intuitions about consensus for the following reasons. When only

one node has an opinion consensus is not a meaningful concept,

consensus is maximal when everyone has the same opinion, and

the amount of consensus possible should increase as the number of

nodes involved increases (see Text S1, Section Sample entropy

issues, for discussion of sample entropy issues) [14].

Formally, we create a column stochastic interaction matrix S

such that Sji is the probability of one of i0s interaction flowing from

node j, Sji~
MjiP
k

Mki

. The Shannon entropy of this distribution is

{
P

j Sji log Sji

� �
. If we define the matrix ŜS such that

ŜSji~{Sji log Sji

� �
then we can write the vector of the entropies

of the interactions received by each node as

H~1T|ŜS

We then define

Pi~Ri
:Hi,

Table 2. Matrices used in the text.

Name Entries Definition

A redistribution probabilities
used for Eigenvector Centrality

we use Ai~
1

n

B binary interaction matrix Bji~q(Mji=0)

M interaction matrix Mji~# of interactions

from j to i

M 0 shuffled interaction matrix

P probabilities of direction of an
interaction used for David’s Score

Pji~
Mji

MjizMij

S column stochastic matrix used
for Shannon Consensus

Sji~
MjiP
k Mki

ŜS modified version of S used
for Shannon Consensus

ŜSji~{Sji log Sji

� �
V votes used for Borda Count Vji = rank given node j by

node i

W row stochastic matrix used
for Eigenvector Centrality

Wji~
MjiP
k Mjk

ŴW modified version of W

for Eigenvector Centrality
ŴWji~(1{w)WjizwAi

doi:10.1371/journal.pcbi.1003109.t002

Table 3. Variables used in the text.

Variable Definition

bi Borda Count

Ci Eigenvector Centrality with uniform redistribution

Di Simple Consensus (number of partners),
P

j Bji

Di Weighted Simple Consensus, Di
:Ri

DSi David’s Score

Hi Shannon entropy, {
P

j Sji log(Sji)

GLi Graph Laplacian

Pi Shannon Consensus, Hi
:Ri

Ri weighted in-degree, or number of interactions received,
P

j Mji

In the text, the subscript i on the algorithms is sometimes omitted, in which
case the variable refers to the vector of scores rather than a node’s score.
doi:10.1371/journal.pcbi.1003109.t003

Algorithms for Computing Consensus in Networks
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which is the Shannon Consensus score for node i. Shannon

Consensus thus accords high scores to nodes who receive many

interactions and who receive similar numbers of interactions from

each of their partners.

Given that the entropy of interactions received increases with

the number of interaction partners (the maximum entropy is in

fact equal to the logarithm of the number of interaction partners),

interaction partner number, Di, gives a rough estimate of the

entropy of interactions received. Di can therefore be thought of as

a cognitively and computationally simpler version of Shannon

Consensus.

Note. In previous work Flack and Krakauer [14] determined

whether Shannon entropy alone, Hi, is predictive of consensus

with respect to social power. It was found to be a poor predictor of

functional data as it can not distinguish between nodes in networks

with uniform in-degree differing in the amplitude of their edge

weights. Flack and Krakauer also considered total frequency of

interactions (in that case, subordination signals) received by a

target node, the weighted in-degree, or Ri, as a potential power

measure, but found this to be a poor predictor after controlling for

the degree of correlation between frequency and entropy present

in the data set (individuals who received many signals also received

them from many individuals). We discuss this issue, which relates

to the issue of sensitivity to source bias, in detail in Section

sensitivity of the algorithms to source biases, and we discuss related

count algorithms in Section Count algorithms.

Depth algorithms
Eigenvector Centrality. Unlike with the breadth algorithms,

where we consider only interactions directly between j and i,
interactions now bear the trace of the interactions that node j had with its

neighbors. By weighting the contributions of partners by their own

history of interactions, we allow for non-local effects. We can

capture these effects with the well-known algorithm Eigenvector

Centrality. This algorithm has previously been used to measure

authority or importance in networks ranging from food webs to

networks of websites to citation networks [1,2,5,25].

We now turn M into a row stochastic matrix W where Wji is

the number of edges from node j to node i, normalized by the total

number of edges coming from node j, and thus represents the

probability of one of node j0s interactions flowing to node i. In our

notation, Wji~
MjiP
k

Mjk

. If
P

k Mjk~0 (i.e. node j sends no

interactions), we set Wjj~1 and Wji~0 for i=j. In defining

Shannon entropy, we defined a column stochastic matrix S where

Sji represents the probability of one of i0s interactions flowing from

node j so that we could measure how uniformly the population

sends interactions to i. Here we use the row stochastic matrix W so

that we can measure the strength of the flow out from j to i.

A node in a graph should be considered more important if it is

central, that is, many other important nodes connect to it. Thus,

the Eigenvector Centrality of a node i is the sum of centralities of

the nodes j that connect to it weighted by the strength of the

connection from node j to i. A problem arises in this calculation if

there are nodes j that have no out-edges (in which case, Wjj is set

to 1): centrality will accumulate on these nodes and the centrality

scores corresponding to the nodes that do have out-edges, will be 0.

Eigenvector Centrality will be uninformative about the differences

in centrality between nodes that do have out-edges. Such

absorbing states are likely to be present in many data sets. For

example, in the primate group (see Sec. Background and

motivation), there is one individual who does not emit any

subordination signals and who will thus be an absorbing state. (As

discussed in Sec. Background and motivation, the monkeys only

signal if they perceive the receiver to be better able to win fights.

Additionally, the signals are unidirectional such that if j signals to

i, i will not signal back to j while the dominance relationship is

stable.)

One solution is to provide a vector A that adds some amount of

centrality to each node, with the condition that
P

i Ai~1 [2,5]. If

we define the matrix ŴW so that ŴWji~(1{w)WjizwAi, we can

define the vector C as the solution to C~C|ŴW where w[½0,1�.
Equivalently,

C~ lim
n??

1T|ŴW n:

Ci is then the Eigenvector Centrality score for node i. Eigenvector

Centrality has infinite depth since it is calculated by multiplying ŴW
with itself infinitely many times.

We use uniform redistribution probabilities, i.e. Ai~1=n for all

i, as in [2,5]. In the case of the primate communication network,

we considered several ‘‘socially principled’’ mechanisms for

redistribution, including various metrics computed using indepen-

dently collected affiliation data. These methods for redistribution

required additional computational steps and did not improve

prediction, so we do not present them here. We also have to

specify a redistribution weight w. For each test system, we find the

redistribution weight w that maximizes the predictive value of the

Eigenvector Centrality scores (w~:95 for the primate communi-

cation and scientific collaboration networks and w~0:05 for the

functional linkage network). We give further details and discuss

how to choose redistribution probabilities when independent

functional data is not available in the Supplementary Information

(Section Empirical evaluation of redistribution weights for

Eigenvector Centrality).

David’s Score. Another algorithm in the diffusion category is

David’s Score, a measure that has previously been used to generate

dominance hierarchies in animal societies [26–29]. Here, we use

the observed interaction frequencies to calculate the probabilities

of interactions (e.g. signals in the case of the primate network) being

given or received between each pair of nodes. Formally, we define

the matrix P such that Pji~
Mji

MjizMij
and then define the vector

DS~1T|(PzP2{PT{(PT )2)

DSi is then the David’s score for node i [15]. (In the case of an

undirected network, the number of interactions received and given

is the same so that David’s score will be identically 0.)

Equivalently, a node’s consensus score is given by

DSi~
X

j

Pjiz
X

j

Pji

X
k

Pkj

 !
{
X

j

Pij{
X

j

Pij

X
k

Pjk

 !
:

David’s score has a depth of two since it requires that P be

multiplied by itself twice.

The assumptions of this algorithm are similar to the assumptions

of Eigenvector Centrality. David’s score favors nodes that are

likely to receive interactions but unlikely to emit interactions. It

also takes into consideration the partners involved in these

exchanges, weighting more heavily (a) interactions received from

nodes who themselves receive many interactions and (b) interac-

tions that are sent to nodes that emit many interactions. We

further discuss the differences between Eigenvector Centrality and

David’s score in the Text S1, Section Comparison of David’s

Score and Eigenvector Centrality. This process could be

Algorithms for Computing Consensus in Networks
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generalized, using paths through the network of length up to any

integer n, but the scores start to converge at around n~15, as

shown in the Text S1, Section Extension of David’s Score. We

therefore use David’s score with n~2 as described above.

Graph Laplacian. The Laplacian of a function on a network

captures the amount of flow entering or leaving each node. This

can be imagined as heat flowing from hot areas to cool ones. We

take the Laplacian of the Shannon entropy scores Hi by defining

the vector

GL~H|(Rd{M)~1T| ŜS(Rd{M)
� �

where Rd is the diagonal matrix with the ith diagonal entry equal

to Ri, the weighted in-degree of node i. GLi is the Graph Laplacian

Consensus score of node i. Equivalently,

GLi~
X

j

Mji(Hi{Hj)

Graph Laplacian consensus has depth of two since it requires that

the matrix ŜS be multiplied by the matrix Rd{M.

The Laplacian should capture the amount of flow entering or

leaving a node. There is a high flow from node j to node i if the

weight of the edge from node j to node i is great and the difference

in H between node i and node j is large. A node with a high

entropy of interactions received and which receives many

interactions from partners whose entropy scores are low will be

given a high graph Laplacian score. Therefore, although the graph

Laplacian is taking into account agreement depth, the nodes it

treats as more informative are those about whom there is little

agreement.

Count algorithms
Here we consider one additional algorithm, the Borda count, for

computing consensus on networks. The Borda count is an

algorithm that is traditionally used to determine the outcome of

an election. Each member of a voting population ranks the

candidates of the election. This is analogous to each individual in a

primate group emitting signals to others in accordance with whom

they perceive as more or less likely to use force successfully. The

Borda count aggregates these preferences into one ranking over

the candidates.

Supposing that there are n candidates, each voter gives n votes

to his highest preference, n{1 to his next highest choice, on down

to one vote to his least favorite candidate. A voter can rank

candidates equally and the candidates’ votes in this case are the

average of the numbers of votes they would have received were

they not tied. A candidate’s score is the sum of his votes from each

voter. In the signaling case, the receiver of the most signals from a

given individual will receive n ‘‘votes’’ and the receiver of the

fewest signals from that individual will receive one ‘‘vote’’. In

unweighted networks, each individual ‘‘voter’’ divides the group

into nodes with whom he does or does not interact, giving the

same number of votes to the individuals in each class. Mathemat-

ically, we define a matrix V such that Vji is the rank given node i

by node j, where j gives rank n to its highest preference and rank 1
to its lowest preference, and define the vector

b~1T|V

bi is the Borda consensus scores for node i.

The Borda count is more coarse-grained than the total

frequency of interactions received because information about the

number of interactions received is lost and only the ordinal

ranking of nodes by the number of interactions received is used. It

does, however, convey information about agreement among

interaction partners. If we find that a node has a high score

under the Borda count, this indicates that many other nodes rank

the receiver highly and agree about its relative value to them.

Hence like Shannon Consensus it should be intrinsically sensitive

to certain kinds of bias in the interaction matrix (see Sec. Empirical

Comparison for further discussion).

Mathematical comparison
All of the algorithms we compare provide some measure of

consensus in a network about the state of a given node, such that

we expect they are positively correlated (these data are presented

in Sec. Basics of data set). In fact, we can describe these

correlations by deriving mathematical relationships between some

of the algorithms. The mathematical relationships between the

breadth algorithms are easiest to see. D, R and H are related by

the definition of D and a simple theorem about H:

0ƒDiƒRi

0ƒHiƒlog(Di)

Consider the definitions of Pi and Di:

Pi~Ri
:Hi

Di~Ri
:Di

These definitions make the mathematical relationships P and D
on the one hand and R,H,D obvious.

If the network is unweighted, then we can write the following

algorithms as a function of in-degree, Ri:

Di~Ri

Di~R2
i

Pi~Ri log(Ri)

GLi~Ri log(Ri){
X

j

Mji log(Rj)

bi~
n

2
:Rizx

where x is constant across nodes and depends on the total number

of edges in the network. In this case, the rankings generated by

these algorithms will be the same, although the actual values will

be different.

Eigenvector Centrality can be related to the redistribution

probabilities and in-degree. Recall that ŴW is the stochastic

transition matrix where ŴWji denotes the probability of walking

from node j to node i and Eigenvector Centrality is defined by the

Algorithms for Computing Consensus in Networks
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equation Ci~
Xn

j~1
CjŴWji: Since ŴW is stochastic, Ci§0 for all i

and we can choose Ci such that
P

i Ci~1. Since

ŴWji~wAiz(1{w)Wji, this gives Ci§wAi: If we let

C�~maxfC1, . . . ,Cng, then C�§0 and we can show that

Ci

C�
ƒnwAiz(1{w)RiW

�
i

where W �
i ~max W1i, . . . ,Wnif g. In the case that Ai~1=n for all

i, these bounds can be combined to give

w

n
ƒCiƒwC�z(1{w)RiW

�
i C�

This bound gives an indication of how Ci is related to the number

of interactions Ri received and the redistribution weights used in

the calculation of C. As we increase the redistribution weight w,

the minimum possible Eigenvector Centrality scores increases. In

general, nodes that engage in more interactions and that interact

with nodes with few other interaction partners will have higher

Eigenvector Centrality scores.

Empirical comparison
Much of the research on consensus aims to determine how a

group comes to a single decision, such as which direction to move,

who should be president, etc. [30–33]. In this study our aim is

somewhat different. Our goal is to quantify how much consensus

there is in the group (e.g. network) about the state of a node (is it on

or off, is it capable of performing a target function, etc.). Hence the

interpretation of consensus turns on the meaning of the edges in

the network, represented by the data in the interaction matrix, as

much as on the algorithm applied to the matrix to compute the

consensus scores for the nodes. It is therefore critical that the

interaction data used to construct the M matrix be chosen

carefully.

Below we provide basic details about the three test systems –a

primate status communication network, a collaboration network,

and a functional gene linkage network. We provide the biological

interpretation of the edges in the networks and of node state, and

we introduce the functional data used to empirically evaluate the

algorithm’s performance. We note that the mechanistic basis for

consensus as an important network measurement is best under-

stood for the primate communication network, and this fact is

reflected in that section’s length.

In Table 1 we provide interpretations of consensus scores for

several different kinds of networks in addition to those we describe

below.

Primate communication network
We are using a primate communication network in a large

captive social group of pigtailed macaques (Macaca nemestrina) to

measure social power, operationalized as group consensus about

individual i’s ability to win fights.

Background and motivation. Power dynamics are well

studied in this species. Information about power structure is

encoded in a network of subordination signaling interactions

[14,22]. Individuals send subordination signals (called silent bared

teeth displays or SBT’s) to receivers they come to perceive, through

a history of fighting, as likely to beat them during physical fights

[34–36]. The signal, when emitted in peaceful settings, commu-

nicates agreement to a subordinate role in a dominance

relationship [19,22]. The signal is unidirectional (nearly always

emitted by the same individual until the underlying asymmetry

grows small or is reversed) [19,34,36].

Fighting continues after the subordination contract has been

formalized through signal exchange, but at a reduced frequency

[22,35]. This provides a mechanism by which the relationship

might reverse in the future. Individuals appear to roughly track the

number of signals they have received, as well as the number of

individuals who send them subordination signals. The data suggest

that individuals use this information to determine how they are

collectively perceived [14,19]. Variation in this collective perception

gives rise to the distribution of social power, where social power is

defined operationally as the consensus opinion of group members

about whether an individual can win fights [14,21]. The data

suggest that information about power is valuable to individuals

because power predicts the cost individuals will pay during social

interactions [17]. Individuals appear to use this information when

choosing among alternative behavioral strategies [17,23,24].

The operational definition of social power given above is

derived from a concept of social power developed in [21] that rests

on the following foundational principles. Power is rooted in the use

of coercion and sanctions [37–40]. Power is fundamentally based

on perception [38,39] about the capacity to use force successfully

and is therefore subject to manipulation and error [14]. As such,

power is a relational concept [37–39,41] requiring repeated

interactions among individuals, rather than a property of any

single individual [42]. Power is normatively indeterminate [39,43]

in the sense that its exercise can result in undesirable or desirable

outcomes. Power is domain specific in that it need not apply or be

salient across all contexts [44]. Power must be temporally stable,

and must change on a slower timescale than the underlying

microscopic dynamics giving rise to it if it is to have any significant

effect on behavior [14,45]. The ability to exercise power can be

undermined by transient or contingent factors, including an

asymmetry in competitive motivation, third-party influences (like

opportunistic coalitions), and leverage [46,47]. Finally, although

power dynamics can be a feature of pair-wise interactions as well

as higher-order interactions, ‘‘social power’’ and the resultant

power structure are network concepts [48].

Power is considered a fundamental social variable [49]. Hence a

quantitative account for how a macroscopic social property like

power arises from behavioral and signaling interactions would be

highly informative for identifying those factors driving the

consolidation of social structure from individual (low level or

microscopic features) interactions.

Basics of data set. The data set used in our analyses to

construct the signaling interaction matrix was collected over a four

month period from a group of 84 pigtailed macaques (Macaca

nemestrina) housed socially in a large compound at the Yerkes

National Primate Center Field Station in Lawrenceville, Georgia

(see Section Methods). The matrix contains data on pair-wise

signaling interactions between socially mature individuals (n = 48).

The signal is the silent-bared teeth display introduced above. The

interactions are directed and the values in the matrix are weighted

so that Mji is the number of signals emitted from individual j to

individual i.

In addition to this matrix, we have data on approximately 1000

fights (Section Methods). These data include the level of aggression

interveners (third-parties to fights that become involved through

their own initiation) use when intervening, the frequency with

which support is solicited from third-parties, and the level of

aggression received by interveners in response to their interven-

tions. These data constitute the functional data we use to

empirically validate that the algorithms measure power.
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Note on dominance hierarchies. We note that in the

animal behavior community a standard approach to ordering

individuals based on dominance-related behavior is to construct a

dominance hierarchy. There are many well-known algorithms for

generating dominance hierarchies (e.g. the I&SI method developed

by de Vries [27,28]) but they are ill-suited as measures of

consensus because many of these algorithms order pairs of

individuals so that the order minimizes the number of intransi-

tivities in a matrix containing information about dominance

interactions (e.g. wins, subordination signals, etc.). This is

problematic because the degree of transitivity is a critical factor

influencing how much consensus there is in the group about an

individual’s state and algorithms that explicitly or implicitly take

the degree of transitivity into account are desirable. In addition,

the rank order generated by these kinds of dominance hierarchy

algorithms is strictly the outcome of pairwise assessments, rather

then the outcome of a whole group or population-level assessment.

Finally, the rank order produced by these algorithms is typically

ordinal. At least with respect to the study of power, a scalar

measure is desirable so that the the impact of variance in the

distribution of power on individual strategy and decision-making

can be studied. (We note, however, that in social systems with a

normal distribution of fighting abilities and perfect learning, there

should be no intransitivities in dominance relationships and in

such cases the distribution of power will best be described by a

uniform distribution that can be captured by an ordinal rank order

[50].)

Note on consensus about low status. In principle it is

possible to assess consensus about the inability to win fights (low

status) using the same algorithms we have presented in this paper.

However, assessments about low status would require a different

data set. The reason for this is that the subordination signal used in

our primate analyses is unidirectional and always emitted by the

opponent perceiving itself as weaker. Consequently signal emission

only tells us that the sender perceives the receiver to have high

status. Quantifying consensus about low status requires a signal that indicates

the sender perceives the receiver as weaker. Although these signals, called

formal dominance signals, are from an information theoretic

standpoint not as reliable indicators of status, some species do

use them (issues reviewed in [19]). The absence of signal exchange

in contrast can indicate many things, including that the (1)

individual withholding the signal perceives itself as stronger, (2)

individual withholding the signal perceives itself as equivalent, and

(3) that the individual withholding the signal has no opinion.

Physics collaboration network
We are using a collaboration network to measure reputation,

defined operationally as group consensus about whether to work

with a given scientist.

Background and motivation. In the scientific community, a

collaboration can be interpreted as an indication of complemen-

tary skill sets and ideas. Encoded in a collaboration network is a

collective perception of an individual’s scientific quality. One

might predict that an individual with many collaborators is widely

perceived to be a good scientist and is consequently more likely to

receive funding to support his or her research.

Basics of data set. A well-studied science collaboration

network is the condensed matter physicist network compiled by

Newman [15]. There are 40,421 condensed matter physicists

represented in the collaboration network, as reported in [15]. The

interactions are unweighted and undirected so that Mji~Mij is 1

if scientists j and i collaborated and 0 otherwise. We additionally

have independent data on grants awarded to 248 of those

scientists. We evaluate whether measures of consensus applied to

this physics collaboration network gives a reputation index that

predicts NSF grant-related success (see Section Methods for data

set details and definitions).

Functional gene linkage network
We are using a network of functional linkages between genes to

measure gene importance, defined operationally as group consen-

sus about whether to be functionally linked with a given gene (this

‘‘decision’’ could be made in either developmental or evolutionary

time).

Background and motivation. In recent years, data on the

interactions between genes has become readily available, partic-

ularly in the model system baker’s yeast, Saccharomyces cerevisiae [6–

10,51–56]. Data include the phenotypic effects of genes, the

physical properties of the proteins that are encoded by genes, and

information about gene function [6–10,51–56]. If a gene interacts

with many other genes, removal might have long-ranging effects.

Some studies have found that a gene’s position in functional

linkage networks is a good predictor of its function and of the likely

effects of a mutation [7,9,10,53].

We evaluate whether measures of consensus applied to a

functional gene linkage network produce an index of ‘‘impor-

tance’’ scores that predicts the effects of gene knockout on

organismal growth and viability as described below and in Section

Methods.

Basics of data set. To quantify consensus about gene

importance we use a previously described gene linkage network

that describes functional linkages between the genes in the yeast

genome [51,56]. Functional linkages between genes are associa-

tions that ‘‘represent functional constraints satisfied by the cell

during the course of the experiments’’ [56]. To establish this

network, functional genomic data were combined from multiple

types of experiments and databases to determine whether two

genes are involved in a similar function [51,56] (see Section

Methods). The interactions are unweighted and undirected so that

Mji~Mij is 1 if there is evidence for a functional linkage between

genes j and i and 0 otherwise.

We additionally use information about the phenotypic effects of

genes in the yeast genome (see Section Methods). Two phenotypic

effects reflect a gene’s overall importance. One measure is the

viability of organisms with a mutant version of the gene and a

second measure is the competitive fitness of organisms with a

mutant version of the gene. We call genes whose mutations lead to

inviable organisms essential and genes whose mutations lead to

viable organisms non-essential. These data are available for 4,378
of the 5,483 genes in the linkage network. We expect to find that

essential genes and those whose mutations lead to decreased fitness

will be more central or more highly connected in the functional

linkage network and will therefore receive higher scores from our

algorithms.

Algorithm outputs
Each algorithm produces as output a vector of scores for nodes

in the network. In Table S1 in Text S1 we present the correlations

between these outputs for each network . The distribution of

consensus scores for each of the networks, according to each of the

algorithms considered in this paper, is presented in Figures S2, S3

and S4. Within each data set, most algorithms suggest roughly

similar distributions. In the case of the signaling network, these

distributions look heavy-tailed, which is consistent with the

distributions of functional data. Additionally, for the signaling

network, two of the algorithms– Shannon Consensus and

Weighted Simple Consensus– produce distributions that are not
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significantly different than normal after log transform, indicating

they are consistent with the log-normal distribution.

Prediction of functional data
Criteria and issues. There are two main criteria we use for

evaluating the algorithms, (a) how well the indices produced by the

algorithms predict differences in function or behavior, and (b) how

sensitive the algorithms are to source biases in the interaction

matrix due to systematic error or attempts to manipulate the

output by strategically changing the input. An algorithm that is

insensitive to source biases would, for example, accord a high score

to a node simply because its total weighted in-degree is high. We

say such an algorithm is insensitive when it cannot ‘‘see’’ whether

the input to the target node is coming from many nodes in the

network, a small subset of nodes, or only a single node. For

example, in the case of power, an algorithm that accords a high

score to an individual who receives many signals but receives them

all from a single individual, would be considered insensitive to

source bias [14]. Although we tried to choose algorithms that by

virtue of their mathematical properties are sensitive source biases,

this is not always obvious, so we test for sensitivity to bias as part of

our analyses.

To evaluate the algorithms’ performance on the two criteria

introduced above, we must take into account two issues.

Prediction heterogeneity. Distributions of scores that range

over several orders of magnitude can result in prediction heterogeneity.

For example, in a heavy-tailed distribution many nodes will have

similar scores, whereas those sitting towards the tail of the

distribution will be more distinct. Any index with this kind of

distribution should be highly predictive for nodes in the tail and

less predictive for nodes in the bulk of the distribution, as these

nodes are more or less ‘‘equivalent’’. To control for prediction

heterogeneity without biasing the analyses a priori against other

types of distributions, we rank, according to the output of each

algorithm, nodes by their score and divide them into four

subgroups. The subgroups are slightly different for each algorithm

because the rank orders differ across algorithms. We regress the

dependent variables on the scores in top quartile, the top two

quartiles, the top three quartiles, all nodes, the bottom three

quartiles, the bottom two quartiles, and the bottom quartiles

(Figures 1, S5 and S6).

Timescales. Recall that the subordination signals the mon-

keys exchange are unidirectional. This property makes the signals

highly reliable indicators that the sender perceives the receiver as

capable of using force. This also allows individuals to formalize

their dominance relationships. A consequence (and advantage) of

this formalization is that the dominance relationships change on a

slower timescale than the outcome of fights [22], effectively

producing a separation of timescales. This separation of timescales

means we can disentangle the question of how much consensus

there is in the group that an individual is powerful from the study

of how individuals come to perceive one another as powerful. In

addition, because the power distribution is stationary over the

study period ([22]), we can study its impact on individual strategy

without worrying about feedback. Similarly, the collaboration

network and the data on NSF funding success come from two

nearly non-overlapping time periods. (The collaborations occurred

between January, 1995 and March, 2005 and the grants we use as

a measure of success were awarded between September, 2008 and

September, 2012, with one grant starting in September, 2004.) In

the gene network, there is separation of timescales between the the

formation of functional linkage network, which occurs on an

evolutionary timescale, and the phenotypic effects of each gene,

which occur on an ontogenetic timescale. In evolutionary time, the

phenotypic effects of a gene surely feedback to effect which other

genes its interacts with, but given an organism with a certain

functional linkage network it is the topology of the interaction

network that influences how important each gene is.

Primate communication network: Predicting effects of
social power

Our predictor variables are the social power indices produced

by the consensus algorithms. Dependent variables include: support

solicited – requests for support received by a third-party to a fight

from fight participants (should be positively correlated with

power); intervention cost – operationalized as the intensity of

aggression received by an intervener in response to its interven-

tions into fights among group members (should be negatively

correlated with); and intensity of aggression used by an intervener

during its intervention (should be negatively correlated) (these

variables are defined and the data collection methods are

described in Section Methods and in [14]). These dependent

variables are corrected for underlying variation in tendency to

fight (see Section Methods).

All algorithms are significantly correlated with the dependent

variables (pv0:005, Table 4). The best predictor of the dependent

variables is Weighted Simple Consensus, followed closely by

Shannon Consensus, and Eigenvector Centrality. The worst

predictors are David’s Score, Borda Count, and Simple Consen-

sus. The most highly predictive algorithms have very similar r2

values, so it is hard to differentiate between them based on their

predictive power alone. However, as we discuss below, these

algorithms vary in their sensitivity to source biases and in their

computational and cognitive complexity.

In this social system, there are a few individuals in the tail of the

power distribution who are disproportionately powerful [14,17].

This is borne out in our data, as the correlation between the

algorithm scores and the dependent variables is substantially

higher for the top quartiles than the bottom quartiles (Figure 1).

Collaboration network: Predicting effects of reputation
Our predictor variables are the reputation indices produced by

the consensus algorithms. The dependent variable is total amount

of grant money awarded to a PI or CoPI by the National Science

Foundation (see Section Methods). Of all the algorithms we

consider, only Eigenvector Centrality is significantly correlated

with this external variable (pv0:05, Table 4). Two reasons, one

mathematical and one sociological, appear to account for this

result.

First, Eigenvector Centrality can distinguish between nodes that

have identical local neighborhoods. In-degree can only take

integer values and there is presumably an upper bound on the

number of possible collaborators given time and other constraints.

In this network, the highest in-degree observed is 62 so that there

are 63 possible values, 0,1,2, . . . ,62, a node’s in-degree can take.

As Eigenvector Centrality can take any value between 0 and 1, it

can give different scores to nodes with the same in-degree. In other

words, Eigenvector Centrality uses global information to differen-

tiate between nodes that are locally identical. This effect is not as

noticeable in the subordination signaling network because there

are only 48 individuals in the signaling network and therefore less

degeneracy in the in-degree distribution.

Second, it is perhaps not surprising that for this kind of network

Eigenvector Centrality is more predictive of the dependent

variable than the breadth algorithms – although physicists

involved in the process of awarding grants to others are expected

to recuse themselves when confronted with an application from
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one of their own collaborators, they may be more likely to award

grants to collaborators of their collaborators. Therefore, having

many collaborators may not be that helpful in receiving grant

money, but scientists whose collaborators have many collaborators

may have an advantage.

Functional gene linkage network: Predicting effects of
importance

Our predictor variables are the importance indices produced by

the consensus algorithms. The dependent variables are the

viability and competitive fitness of organisms with mutated

versions of the gene. For each of our algorithms, the importance

scores for essential genes are significantly higher than the

importance scores for non-essential genes (pv0:001, Table 4).

Similarly, for each algorithm, the importance scores are signifi-

cantly negatively correlated with the competitive fitness variable

(pv0:001,Table 4). The most predictive algorithms are, in order,

Eigenvector Centrality C, Simple Consensus D, the Borda count,

and Shannon Consensus P. In differentiating between essential

and non-essential genes, Eigenvector Centrality is marginally

better than the other algorithms. In predicting competitive fitness,

the four most predictive algorithms perform equally well.

Figure 1. This figure shows for the primate communication network the fit of each algorithm to the functional data. The x-axis
indicates which subset of nodes are being considered– 1 is the top quartile, 2 is the top half, 3 is the top three quartiles, 4 is all nodes, 5 is the bottom
three quartiles, 6 is the bottom half, and 7 is the bottom quartile– where the quartiles may vary from algorithm to algorithm (see Section
heterogeneity). The r2 values for the three dependent variables are distinguished by color: support solicited (green), aggression used (blue),
intervention cost (purple). The multivariate r2 values are shown in red. The number in the each plot indicates the rank of each algorithm with respect
to its performance predicting the functional data. As expected, we find that the consensus scores for the top-ranked nodes are most predictive of the
functional data (see, Section Prediction heterogeneity).
doi:10.1371/journal.pcbi.1003109.g001
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With both external variables, the test statistics are noticeably

smaller for the Graph Laplacian than for the other algorithms. As

we showed above, on unweighted networks,

GLi~Ri log(Ri){
X

j

Mji log(Rj):

On both the collaboration and linkage networks, nodes with high

in-degree tend to interact with many other highly connected

nodes. For both networks, we find high correlations between in-

degree, Ri, and the sum of the in-degrees of a node’s neighbors,P
j MjiRj (r2~0:82, F (1,40419)~1:8|105, pv0:001 for the

collaboration network and r2~0:87, F (1,5481)~3:5|104,

pv0:001 for the linkage network). Nodes that have many

interactions with other highly connected nodes receive low Graph

Laplacian scores, a counterintuitive result that suggests the Graph

Laplacian is not a robust measure of consensus. We summarize the

predictive performance of the algorithms on the three data sets in

Table 5.

Sensitivity of the algorithms to source biases
An important question in evaluating the performance of a

consensus algorithm is how sensitive the algorithm is to

deficiencies in the data in the interaction matrix. Aspects of this

question have been addressed in previous work. Ghoshal et al. [57]

showed that in scale-free networks of sufficient size, if all edges in

the network are shuffled but the in-degrees maintained, the

ranking of the nodes according to eigenvector centrality is not

severely perturbed. This type of shuffle allows the researcher to

simulate the effects of missing or noisy data in the interaction

matrix on an algorithm’s output. We are particularly interested in

the effects on the algorithm’s output of nodes systematically

making errors in their assessments of the states of other nodes or

nodes attempting to manipulate social structure by ‘‘loading the

deck’’ or inflating the consensus scores of nodes by, for example,

Table 4. Tables of the predictive value of the scores produced by each algorithm for all nodes on the three data sets.

Support Solicited Intensity of Aggression Used Intervention Cost Multivariate

r2 p-value r2 p-value r2 p-value r2 p-value

D 0.41 ,0.001 0.17 .003 0.41 ,0.001 0.45 ,0.001

D 0.87 ,0.001 0.61 ,0.001 0.78 ,0.001 0.92 ,0.001

P 0.86 ,0.001 0.58 ,0.001 0.79 ,0.001 0.91 ,0.001

C 0.86 ,0.001 0.58 ,0.001 0.78 ,0.001 0.90 ,0.001

DS 0.37 ,0.001 0.15 0.005 0.41 ,0.001 0.44 ,0.001

GL 0.83 ,0.001 0.58 ,0.001 0.78 ,0.001 0.89 ,0.001

BC 0.52 ,0.001 0.25 ,0.001 0.51 ,0.001 0.56 ,0.001

(a). Here we report the r2 values and p-values for a linear regression of the functional data against the algorithm scores from the primate
communication network. Basics of the data set and functional data are described in Section basics of data set.

Total Grants Awarded

r2 p-value

D 0.004 0.33

D 0.000 0.83

P 0.002 0.45

C 0.025 0.01

GL 0.004 0.33

BC 0.004 0.33

(b). Here we report the r2 values and p-values for a linear regression of the functional data against the algorithm scores from the physicist
collaboration network. Basics of the data set and functional data are provided in Section basics of data set.

Essentiality Competitive Fitness

t-statistic p-value r2 p-value

D 15.64 ,0.001 0.04 ,0.001

D 10.46 ,0.001 0.02 ,0.001

P 14.38 ,0.001 0.04 ,0.001

C 15.66 ,0.001 0.04 ,0.001

GL 7.20 ,0.001 0.01 ,0.001

BC 15.64 ,0.001 0.04 ,0.001

(c). Here we report the t-statistics and p-values for comparing scores of essential and non-essential genes and the r2 values and p-values for a linear
regression of competitive fitness against the algorithm scores from the functional linkage network. In using a t-test to compare the mean scores for
essential and non-essential genes, the p-values are for a one-sided test with the alternative hypothesis that essential genes have greater scores.
Basics of the data set and functional data are given in Section basics of data set.

doi:10.1371/journal.pcbi.1003109.t004
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manipulating the weighted degree distribution. (One way to

manipulate the weighted degree distribution is to inflate a node’s

weighted in-degree by sending many signals.) Capturing this kind

of ‘‘deficiency,’’ which we call source bias requires a different kind of

shuffle.

First, we measure in our interaction matrices the correlation

between a node’s Shannon entropy (as defined in Sec. Shannon

consensus) and the total frequency of interactions it receives

(weighted in-degree or in-degree) (see Table S1 in Text S1). If

entropy and in-degree were poorly correlated, we could indepen-

dently evaluate the effects of receiving many interactions from

receiving interactions from many individuals. However, this is not

the case on the data sets we consider. We break the correlation by

systemically shuffling the data in the matrices such that we create

matrices with strong source biases but conserve the total number

of interactions (e.g. signals) received. We now have two matrices –

the original, unshuffled matrix, M and the shuffled matrix, M ’.
We then compute consensus scores for the nodes using the

unshuffled and shuffled matrices and assess how much the rank

order changes under the shuffle.

More specifically, for a given pair of interaction partners in the

network, say nodes i and j, we construct a matrix in which the

target node, i receives all of its interactions from partner node, j. If

the original network is directed, we hold constant the out-edges of i
in addition to holding constant i0s weighted in-degree. If the

original network is undirected, we maintain the symmetry. The

subordination signaling network is small enough so that we can

perform this shuffle for every pair of partners. However, the

collaboration network and the functional linkage networks are too

large to exhaust every pair of partners, so we choose 200 of the

nodes that are also represented in the functional data sets. Partner

nodes are chosen at random from the target node’s neighbors.

An algorithm is said to be sensitive to source bias if the rank

order of the shuffled matrix, M ’ differs from the rank order of the

original matrix, M. Large changes in the rank order indicate that

the test algorithm tends to give higher scores to nodes that interact

with many neighbors than to nodes that interact strongly with just

one other node and is an indication that the algorithm is sensitive

to source biases.

We find that Shannon Consensus P, and the Graph Laplacian,

GL, tend to be quite sensitive to source biases (Figure 2). This is

expected, as P and GL depend on the entropy of the receiving

distribution, which is by design 0 in the shuffled matrices.

By definition, in-degree, R, is maximally insensitive to source

bias as we hold it constant in our shuffle. Eigenvector Centrality,

C, is also fairly insensitive, but the explanation why is initially

counter-intuitive. As can be seen in Figure 2, Eigenvector

Centrality appears to be particularly insensitive to the shuffle for

the subordination signaling network, as the rank order for the

shuffled and unshuffled matrices for that network is very similar.

The reason for this is that in the subordination signaling network

individuals who receive many signals receive some of these signals

from partners who themselves receive many signals. In addition

individuals who receive many signals send very few signals. Hence

there is information about breadth encoded in the second and

third order connections (and so forth) in the network. Even if we

shuffle the matrix so that all of an individual’s signals come from a

single other node, as long as we hold constant the out-edges of i,

the in-edges to i are likely to be from an individual who itself

receives relatively many signals. Eigenvector Centrality, by

emphasizing paths through the network, takes these second and

third order connections into account. It is consequently likely to

get the rank order right, even after we reduce the diversity or

breadth in the first order or direct connections, as long as the

second and third order connections in the shuffled matrices

encode information about the first order connections in the

unshuffled matrices. See Text S1, Section Sensitivity of eigenvec-

tor centrality on transitive networks for more discussion of the

relationship between transitivity and sensitivity to source bias.

This suggests that measures of consensus that emphasize depth–

paths through the networks –also implicitly measure consensus

breadth when there is some degree of either assortativity or transitivity in the

network, and work well because of these features. In the absence of

transitivity, or when transitivity is very low, depth measures like

Eigenvector Centrality, should not perform well as measures of

consensus, unless, as in the case of the Graph Laplacian, they

explicitly incorporate Shannon information. In the Text S1 we

provide details on an additional analysis we performed to evaluate

algorithm sensitivity to source bias.

Discussion

The algorithms we investigate take as an input a matrix of

physical or social interactions. These interactions encode ‘‘per-

ceptions’’ or ‘‘opinions’’ about a target node’s state or abilities.

The algorithms produce as an output scores that quantify

agreement or consensus in the population about this state or

ability. We find that the best performing algorithms (in terms of

prediction and robustness) are those that capture the breadth of

agreement among a node’s population of partners (see Table 5).

Capturing the breadth of agreement requires quantifying the

diversity of the target node’s population of partners and weighting

this by the number of interactions. Our analyses suggest that

algorithms with these properties are robust to source biases in the

interaction matrix arising from efforts to manipulate output or

when nodes make systematic errors in assessing the state of a target

node.

Table 5. Summary of data sets and the most highly predictive algorithms, in order of their performance predicting the functional
data.

Network Functional Data Most Predictive Algorithms

Primate communication network support solicited, aggression used, intervention cost D, P, C, GL

Collaboration network grants awarded C

Gene functional linkage network viability of mutants, competitive fitness C, D, BC, P

Only the algorithms that significantly predict the functional data are included. Note that in many cases the differences in performance across the algorithms are small. In
addition, the r2 values are small for the functional gene network and the physicist collaboration network and large for the primate communication network. This
difference is probably due to the fact that the subordination signals are direct measures of power in the primate network, whereas the edges in the other networks are
either indirect/proxy measures of reputation and importance or are only one of many contributors to the variance.
doi:10.1371/journal.pcbi.1003109.t005
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We find that in a primate status communication network, the

most predictive algorithm is Weighted Simple Consensus, which is

also one of the more computationally minimal algorithms we

consider. In contrast to the class of algorithms that make use of

Shannon entropy, Weighted Simple Consensus is not particularly

sensitive to source bias. This suggests a tradeoff between

computational complexity and sensitivity to source bias.

In the physicist collaboration network indirect measures of an

author’s (the target node) state are important, as decisions about

the target node’s reputation can be based on the reputation of its

associates. Depth-based algorithms like Eigenvector Centrality

capture these indirect effects. One caveat is that these algorithms

only work as measures of consensus when networks are

characterized by an elevated degree of transitivity or assortativity.

We conclude that in general the uniformity based algorithms

are preferable but that Eigenvector Centrality is suitable if the

network is transitive or assortative and if there is a mechanistic

reason to believe that it is important to take second and third order

connections into account. We discuss these issues in greater detail

below.

Strengths and weaknesses of the algorithms
Breadth algorithms. The strength of the breadth algorithms

is that they clearly capture consensus. Shannon Consensus

captures consensus in a strong sense by quantifying uniformity

Figure 2. This figure shows show the sensitivity of each algorithm to source bias in the interaction matrix. For each algorithm, we
report the drop in rank induced when a node receives all of its edges from one of its neighbors. The point shows the mean correlation and the bars
show plus or minus one standard deviation. The algorithms are ordered from left to right by their predictive power for the primate communication
network. In the case of the primate communication network, we exhaust all possible pairs and in the case of the collaboration and functional linkage
networks, we choose 200 at random. A. Primate communication network. B. Physicist collaboration network. C. Functional linkage network of genes.
doi:10.1371/journal.pcbi.1003109.g002
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in the signaling distribution through entropy. This is reflected in

the fact that Shannon Consensus is sensitive to source bias, i.e.

changing an node’s signaling distribution is disruptive to the

scores output by Shannon Consensus. Simple Consensus and

Weighted Simple Consensus are also predictive and have the

advantage of being easier to calculate and so cognitively more

parsimonious. This is an important consideration if a goal is to

understand how nodes in the network are estimating how much

consensus there is among other nodes about their states, as would

be the case, for example, when individuals are making strategic

decisions based on estimates of their power. We discuss the issue

of computational complexity in greater detail in Sec. Cognitive

and computational complexity and in the Text S1, Section

Computational Complexity.

An obvious potential limitation of these algorithms is that they

consider only interactions of reach one (immediate neighbors) in

the signaling network. Furthermore, all partners are weighted

equally regardless of how many interactions they have with their

neighbors. This could be a weakness if nodes who themselves

receive many interactions are either more important sources of

information or better informed, or if nodes must rely on indirect

information to make decisions, as might be the case for the

collaboration network (See Section Collaboration network: Pre-

dicting effects of reputation).

Depth algorithms. The strength of the depth algorithms is

that they quantify agreement depth, such that the interactions of

nodes who themselves receive interactions from their neighbors

are weighted more heavily than the interactions of nodes receiving

few interactions from their neighbors. We suggested in Section

Collaboration network: Predicting effects of reputation that long-

range ties are important in predicting physicists’ grant-receiving

success, as individuals involved in granting awards may be

discouraged from favoring their direct collaborators, but not the

collaborators of their collaborators. In networks where nodes not

only can but are encouraged to use information about long-range

ties, the depth algorithms may perform better than the breadth

algorithms. However, we emphasize that this is likely only to be

the case if these networks contain many transitive relationships or

are assortative.

Given that the depth algorithms use more global information

about the network topology, they can help to differentiate between

nodes whose positions in the network are locally similar. As we

found with the physicist collaboration network, the ability of

Eigenvector Centrality to distinguish between nodes to which the

breadth algorithms gave identical scores made it more predictive

of the functional data. This could happen on any network that has

many nodes and where there is a constraint on the possible

number of in-edges, leading to multiple nodes sharing the same in-

degree.

Eigenvector Centrality can inappropriately assign high scores to

nodes simply because they receive many interactions from a small

group of partners This will not be a problem if the networks are

characterized by transitive relationships. However it is worth

noting that for such networks, the global structure used in

calculating Eigenvector Centrality may not be more informative

than the local structure used in the breadth algorithms.

The Graph Laplacian can be quite sensitive to source bias.

However, as we found with the collaboration and functional

linkage networks, if highly connected nodes are connected to other

highly connected nodes, the graph Laplacian produces a consensus

index that is not predictive of the functional data. This suggests

that the Graph Laplacian is not a good measure of consensus.

Count algorithms. The advantages of the Borda Count are

that it is a relatively simple measure to compute, and that it

overcomes many of the inconsistencies that arise in consensus-

based approaches to assigning value to individuals based on

scoring. Arrow’s impossibility theorem is one formulation of such

inconsistencies (although it is not clear that this is a problem when

the aim is to generate a consensus index rather than an optimal

rank order) [58,59]. A disadvantage is that it is highly-coarse

grained.

Whether the Borda Count contains information about agree-

ment among signalers depends on our definition of agreement.

Nodes receiving the same number of signals from many nodes will

not necessarily receive a high Borda count. However, nodes that

receive high Borda Counts are those whom all nodes signal to the

most frequently. This expresses agreement about relative rankings

if not about absolute strength.

That the Borda Count does not well predict the functional data

in the case of the subordination signaling network suggests it is not

capturing consensus. Additionally, on unweighted networks, the

Borda count is linearly related to in-degree. The Borda count is

more complex to calculate and does not provide any additional

information in the unweighted case, and hence we conclude it is

not a good measure of consensus.

Cognitive and computational complexity
The results reported in this paper and elsewhere([17], see also

[60–62]) suggest that at least in social networks nodes may be

making strategic decisions about social interactions using knowl-

edge of how they are perceived by the group. For example, the

individuals in the primate study group appear to estimates of their

relative power to make decisions about whether to intervene in

conflicts [17]. This requires that they have some knowledge of

moments or properties of the distribution of power (e.g. approx-

imate variance). An important question is how individuals extract

this information [22,63]. More generally, what do animals know

about social structure and collective dynamics, how precise are

their estimates, and what heuristics might they use to make

calculations [64]?

It would be useful, for example, to be able to quantify the

algorithmic complexity of each algorithm so that we could rank

calculations by some measure of computational difficulty (see also

[65]). Ideally, we would also like to know how sensitive each

algorithm is to the input data. (e.g. is the exact number of signals

received by individual i critical, or will a rough estimate do?) for

the output distribution of power to be a useful predictor of out of

sample data. Addressing this robustness question would help to

determine how much room there is to relax the mathematical

requirements of a given algorithm, and find a heuristic simple

enough for this study species.

Ranking the algorithms by their algorithmic complexity is a

long way off, if achievable at all. As is illustrated in Figure S1, we

can only crudely rank the algorithms given what we know about

the minimum number of steps each requires in order to estimate

critical quantities from an empirical perspective – the absolute

power of individual i, the relative power of i (e.g. where it falls in a

power distribution of a given type), and the moments of the power

distribution. In most circumstances it seems unlikely that we, or

the animals, would be interested in an isolated individual’s score.

This is because it is not her power value that is important, but

rather where an estimated value falls in a distribution of power

scores. Yet calculation of absolute and relative power require

different computational approaches and a preliminary assessment

suggests that the difficulty of these steps varies across algorithms.

We discuss these issues in greater detail in Text S1, Section

Computational complexity.
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In addition to approaching the problem of complexity

mathematically, we can approach it empirically by asking how

sensitive the algorithms are to imperfect information in the input

matrices. For example, perhaps the individuals in our system

cannot discriminate based on identity and can only remember

classes of individual (e.g. male or female, or matriline x or y, etc.), n
signals or n signalers, or an interaction history of length z. By

coarse-graining the input data, it is in principle possible to test how

sensitive the algorithms are to this kind of imperfect information

resulting from various cognitive or spatial constraints. Aspects of

this question have been addressed in previous work, as discussed in

Section Sensitivity of the algorithms to source biases. However,

many questions remain open for future work.

Broader implications for the study of social structure
If node function in many different systems is collectively

encoded in interaction networks and this information is decodable

by quantifying the agreement in network connectivity patterns,

this would suggest that consensus formation is at the core of

sociality. Consider the primate society used as a model system in

this paper.

Power in our primate study group is a critical social variable.

However power is not a simple variable. The distribution of power

does not map directly onto a distribution of body sizes or even a

distribution of fighting abilities. Rather it consolidates as multiple

interacting individuals learn about fighting abilities and signal

about this to reduce social uncertainty [14,19,21,22,63]. When the

statistics used to operationalize an aggregate social property, like

power structure, are more than simple counts over strategies, and

when the inputs are not simply individual traits but network data,

we need to worry explicitly about the mappings between

behavioral strategies and decision-making at the microscopic level

and social organization [65]–whether we are working with the

social organization of primates or of cells forming a tissue. A

central question becomes, How do strategies get collectively

combined by multiple components to produce macroscopic social

properties? How much degeneracy characterizes this mapping?

Once we can describe the developmental dynamics giving rise to

an aggregate social property, we will be in a position to study how

the social processes producing power and other kinds of social

structure have evolved in a wide range of systems.

Methods

Primate communication network
The data set, collected by J.C. Flack, is from a large, captive,

breeding group of pigtailed macaques that was housed at the

Yerkes National Primate Research Center in Lawrenceville,

Georgia.

Ethics statement. All data on the macaque group were

collected in compliance with the ethical standards set by the

Emory University animal care and welfare committee and IACUC

approval (proposal 216-97) was obtained to conduct the study. As

this was an observational study, the only change to the daily

routine of the animals that was required to collect the data was

that the animals had to be confined to their outdoor housing

during each observation period. Water, monkey chow (remaining

from morning feeding), enrichment (e.g. toys, climbing structures,

etc.) and substantial space were available continuously throughout

all observation periods. On very hot or rainy days, observations

were terminated and the monkeys were given access to their

indoor housing. As part of standard Yerkes management protocol,

the animals were routinely subject to medical examination and

care.

Study system. Macaque societies are characterized by social

learning at the individual level, social structures that arise from

nonlinear processes and feedback to influence individual behavior,

frequent non-kin interactions and multiplayer conflict interactions,

the cost and benefits of which can be quantified at the individual

level (e.g. [14,17,19,23,24,66,67]). These properties make the

macaque genus and its representative species excellent choices for

drawing inferences about critical processes in social evolution as

well as for developing new modeling approaches that are intended

to apply more broadly.

The study group had a demographic structure approximating

wild populations. Subadult males were regularly removed by the

Yerkes animal care staff to mimic emigration occurring in wild

populations (no subadults were removed during the study). The

group contained 84 individuals, including 4 adult males, 25 adult

females, and 19 subadults (totaling 48 socially-mature individuals

used in the analyses). All individuals, except 8 (4 males, 4 females),

were either natal to the group or had been in the group since

formation. The group was housed in an indoor-outdoor facility,

the outdoor compound of which was 125665 ft.

Pigtailed macaques are indigenous to southeast Asia and live in

multi-male, multi-female societies characterized by female ma-

trilines and male group transfer upon onset of puberty [66].

Pigtailed macaques breed all year. Females develop swellings when

in oestrus.

Data collection protocol. During observations all individu-

als were confined to the outdoor portion of the compound and

were visible to the observer. The approximately 156 hours of

observations occurred for up to eight hours daily between 11AM

and 830PM over a twenty-week period from June until October

1998 and were evenly distributed over these hours. Provisioning

occurred before observations, and once during observations. The

data were collected over a four-month period during which the

group was stable (defined as no reversals in status signaling

interactions resulting in a change to an individual’s power score).

Conflict and power (subordination signal) data were collected

using an all-occurrence sampling procedure in which the

compound was repeatedly scanned from left to right for onset of

conflict or the occurrence of silent-bared teeth displays (used to

measure power, see below). When a conflict erupted, the entire

conflict event was followed, and data were collected on start time,

end time, and the identity of individuals involved and their

behavior (see below for operational definitions). Although conflicts

in this study group can involve many individuals, participation is

typically serial, making it possible to follow the sequence of

interactions. A nearly complete time-series of conflict events is

available for each observation period.

Operational definitions. Conflict/Fight: includes any inter-

action in which one individual threatens or aggresses a second

individual. A conflict was considered terminated if no aggression

or withdrawal responses (fleeing, crouching, screaming, running or

backing away, submission signals) occurred for two minutes from

the last such event. A conflict can involve multiple pairs if pair-wise

conflicts result in aggressive interventions by third parties or

redirections by at least one conflict participant. In addition to

aggressors, a conflict can include individuals who show no

aggression (e.g. recipients or third-parties who either only approach

the conflict or show affiliative/submissive behavior upon ap-

proaching). Because conflicts can involve more than two

individuals, two or more individuals can participate in the same

conflict but not interact directly.

Agonistic Dyad: includes interaction between pairs within a

conflict. At least one individual in the pair must direct aggression

towards the other. Individual i is said to be the winner if its
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opponent, individual j exhibits withdrawal-related behavior in

response to the behavior of i and this withdrawal-related behavior

is not superseded by aggressive behavior towards i at any point

during the conflict. Individual i is said to be the loser if it is the one

to show withdrawal-related behavior. The interaction is said to

result in a draw if both i and j direct aggression towards each other

and this aggression is not superseded by withdrawal-related

behavior, or if one individual directs aggression towards the other

and the other shows no response.

Subordination Signal: the subordination signal in the pigtailed

macaque communication repertoire is the peacefully-emitted

variant of the silent bared-teeth display. Bared-teeth (BT) displays

are marked by a retraction of the lips and mouth corners such that

the teeth are partially bared. In pigtailed macaques, the SBT

occurs in two contexts: peaceful and agonistic [19]. Signals in both

contexts are highly unidirectional. The agonistic SBT encodes

submission. The peaceful variant signals agreement to a primitive

social contract in which the signaler accepts the subordinate role

[19].

Dependent variables used to test empirical validity of algorithms

are described in detail in [14]. Briefly, they include frequency of

requests for support received by an individual from fight

participants (should be positively correlated with power), inter-

vention cost incurred by an individual operationalized as the

intensity of aggression received by an intervener in response to its

interventions into fights among group members (should be

negatively correlated), and intensity of aggression used by an

intervener during its intervention (should be negatively correlated).

These dependent variables are corrected for underlying variation

in tendency to fight by calculating an expected score based on the

group average (for a given variable) and subtracting this from the

observed score. Details are in [14].

Physics collaboration network
The physicist collaboration network was collected by Mark

Newman, as described in [38], and is available at http://www-

personal.umich.edu/ ~mejn/netdata/. The data were initially

collected from the Los Alamos e-Print Archive, now the arXiv

at http://arxiv.org. Since initial publication in 2001, the network

has been updated with collaborations from the arXiv through

2005. 40,421 scientists are represented in the network and the

collaborations occurred between January, 1995 and March, 2005.

The National Science Foundation makes the data about

awarded grants publicly available at http://www.nsf.gov/

awards/about.jsp. For each scientist in the collaboration network,

we searched this database for any grant concerning condensed

matter physics on which the scientist was one of the investigators.

If the scientist was awarded more than one grant, we summed the

total amount of grants awarded him or her. Grant data was

available for 248 of the 40,421 scientists in the collaboration

network. The grants were awarded between September, 2008 and

September, 2012, with one grant starting in September, 2004.

Functional gene linkage network
The functional linkage network was constructed by Lee et al., as

described in [56] and [51], and is available at http://www.

yeastnet.org/. Functional linkages between genes are associations

that ‘‘represent functional constraints satisfied by the cell during

the course of the experiments’’ [56]. Evidence of a functional

linkage between two genes was provided by mRNA coexpression

levels, the results of protein interaction experiments, phylogenetic

profiles, and the co-occurrence of the two genes in a scientific

paper [51,56]. Lee et al. combined these data to calculate the log-

likelihood that two genes are involved in a similar function. In our

analyses, we say an edge is present if its log-likelihood score is

greater than 0 and is absent otherwise. The resulting network has

5,483 nodes.

The Saccharomyces Genome Database maintains information

about the phenotypic effects of genes in the yeast genome at www.

yeastgenome.org. Two phenotypic effects reflect a gene’s overall

importance. One measure is the viability of organisms with a

mutant version of the gene and a second measure is the

competitive fitness of organisms with a mutant version of the

gene. The viability measure is binary: a mutation to a gene can

lead to either a viable or an inviable organism. An inviable

organism is one that is unable to grow under standard growth

conditions for S. cerevisiae, defined as glucose-containing rich

medium (YPD) at 300C. A gene’s competitive fitness is given by the

relative growth rate of an organism with a mutated version of the

gene compared to one with the normal genotype. Greater

competitive fitness is indicated by a relative growth rate of greater

than 1. These experiments can be performed in various media: we

only used those performed in minimal medium to standardize our

comparisons. More information is available at http://www.

yeastgenome.org/help/function-help/phenotypes. These pheno-

type data are available for 4,378 of the 5,483 genes in the linkage

network.

Supporting Information

Figure S1 Flow chart for the calculation of the various
algorithms. The color indicates our intuitions about the

complexity of each algorithm, with darker grays corresponding

to more complex calculations.

(PDF)

Figure S2 The distribution of the scores resulting from
each algorithm as applied to the subordination signaling
network.

(PDF)

Figure S3 The distribution of the logarithms of the
scores resulting from each algorithm as applied to the
physicist collaboration network.

(PDF)

Figure S4 The distribution of the scores resulting from
each algorithm as applied to the yeast functional linkage
network.

(PDF)

Figure S5 This figure shows for the physicist collabo-
ration network the fit of each algorithm to the functional
data. The x-axis indicates which subset of nodes are being

considered– 1 is the top quartile, 2 is the top half, 3 is the top three

quartiles, 4 is all nodes, 5 is the bottom three quartiles, 6 is the

bottom half, and 7 is the bottom quartile– where the quartiles may

vary from algorithm to algorithm (see Section Prediction

heterogeneity). The number in the each plot indicates the rank

of each algorithm with respect to its performance predicting the

functional data.

(PDF)

Figure S6 This figure shows for the functional linkage
network of genes the fit of each algorithm to the
functional data. The x-axis indicates which subset of nodes

are being considered– 1 is the top quartile, 2 is the top half, 3 is the

top three quartiles, 4 is all nodes, 5 is the bottom three quartiles, 6

is the bottom half, and 7 is the bottom quartile– where the

quartiles may vary from algorithm to algorithm (see Section

Prediction heterogeneity). The number in the each plot indicates
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the rank of each algorithm with respect to its performance

predicting the functional data.

(PDF)

Figure S7 The worst case error of the naive entropy
estimator as a function of the naive estimator. Each data

point represents the naive entropy estimate and worst case error of

one individual’s receiving distribution. Figure was created by

Simon DeDeo, 2011.

(PDF)

Figure S8 This figure shows how predictive value of
eigenvector centrality changes as a function of the

redistribution parameter. A. shows how the r2 value from a

multivariate regression of eigenvector centrality on the subordination

signaling network against the external data depends on the

redistribution probability. B. shows how the r2 value from a

regression of eigenvector centrality on the physicist collaboration

network against the external data depends on the redistribution

probability. C. shows how the r2 value from a regression of

eigenvector centrality on the functional linkage network against

competitive fitness depends on the redistribution probability. In the

subordination signaling network and the physicist collaboration

network, eigenvector centrality is most predictive when the

redistribution probability is about :95. In the gene interaction

network, eigenvector centrality is most predictive when the

redistribution probability is about 0:05.

(EPS)

Figure S9 This figure shows how predictive value and
skewness of eigenvector centrality scores are related. A.

shows how the r2 value from a multivariate regression of

eigenvector centrality on the primate communication network

against the external data depends on the skewness of the scores. B.

shows how the r2 value from a regression of eigenvector centrality

on the physicist collaboration network against the external data

depends on the skewness of the scores. C. shows how the r2 value

from a regression of eigenvector centrality on the functional

linkage network against competitive fitness depends on the

skewness of the scores. In the primate communication network,

the redistribution weight that minimizes skewness is :95. In the

collaboration network, the weight that minimizes skewness is :6. In

the gene interaction network, the redistribution weight that

minimizes skewness :05. These points are filled in.

(PDF)

Figure S10 This figure shows the effects of varying the
length of the random walk, n, on the power scores
computed using David’s Score. The y axis shows David’s

score for each individual, normalized so that the highest score is 1
and the lowest score is {1. Each line corresponds to the

generalization of David’s score for different n, as specified in the

Figure legend. The plot shows that at about n~15 the rank orders

begin to converge.

(PDF)

Figure S11 This figure shows show the sensitivity of
each algorithm to source bias in a shuffled primate
communication matrix. For each algorithm, we report the

drop in rank induced when a node receives all of its edges from

one of its neighbors. The point shows the mean correlation and the

bars show plus or minus one standard deviation. The algorithms

are ordered from left to right by their predictive power for the

primate communication network. A. Primate communication

network. B. We remove the transitivity in the primate commu-

nication network by constructing a random network where each

node has the same in-degree and out-degree as in the primate

communication network. On this network, eigenvector centrality is

no longer significantly less sensitive than the other algorithms.

(PDF)

Figure S12 Each plot shows the (normalized) entropy
scores and (normalized) algorithm scores for the four
algorithms that do not correlate well with entropy on
four artificial data sets constructed to show this lack of
correlation. The solid lines are the entropy scores and the

dashed lines are the algorithms.

(PDF)

Text S1 The Supporting Information contains the
following sections: 1. Sample entropy issues 2. Empir-
ical evaluation of redistribution weights for Eigenvector
Centrality 3. Extension of David’s Score 4. Comparison
of David’s Score and Eigenvector Centrality 5. Sensitiv-
ity to source bias on transitive networks 6. Mathemat-
ical intuition for insensitivity to source biases 7.
Computational complexity.

(PDF)
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