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Abstract

The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics,
biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have
reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6
cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction,
we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of
Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts
flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked
reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP),
which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against
an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model
displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally
performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal
interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a
reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and
we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale
metabolic models for other organisms.
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Introduction

First discovered as an orange mold infestation of Paris bakeries

in 1843 [1], the filamentous fungus Neurospora crassa has become a

model organism for eukaryotic biology and the cornerstone of a

vibrant research community [2]. Work on Neurospora has led to

essential discoveries in circadian rhythms [3], epigenetics [4],

genome defense [5], mitochondrial biology [6], post-transcription-

al gene silencing [7] and DNA repair [8]. Most famously, work in

the 1940’s by Beadle and Tatum led to the Nobel Prize-winning

‘one-gene-one-enzyme’ hypothesis that established the fundamen-

tal link between genes and proteins in all organisms [9,10]. Work

on Neurospora thus paved the way for modern genetics and

molecular biology.

Of equal consequence, the work by Beadle and Tatum ushered

in a new era in the study of biochemistry and cellular metabolism.

The genetic facility of Neurospora, coupled with its ability to grow

on minimal media, simplified the isolation of mutants with

additional nutrient requirements. The first such auxotrophic

mutants established the universal link among genes, enzymes,

and the ordering of reactions in biosynthetic pathways. Work over

subsequent decades led to a compilation of hundreds of such

mutants, shedding light on most major biosynthetic pathways [11–

13]. With the sequencing and annotation of the Neurospora genome

[14,15], these genetic data could be organized on a physical

scaffold, genetic markers could be assigned to specific genes with

predicted biochemical functions, genes could be assigned to

previously orphaned biochemical reactions, and a global map of

Neurospora metabolism could begin to emerge.

Genome-scale metabolic models have been constructed for over

100 organisms spanning bacteria to mammalian cells [16]. These

network models capture information about all known metabolic

reactions and the genes that encode enzymes for these reactions in

a computationally structured manner. More than simply a catalog
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of reactions, network models capture biochemical relationships

between reactions and pathways, afford a framework for

integrating genomic measurements, and provide constraints for

computational inference. One widely used method for computa-

tional inference using metabolic network models is Flux Balance

Analysis (FBA) [17]. FBA calculates the flux of metabolites

through a network under the assumption that metabolism is at

steady state on the time-scales of interest. Using constraint-based

modeling methods like FBA [18], it is possible to predict the

growth rate of organisms under different conditions [19], the rate

of production of metabolites of interest [20], the phenotypic

consequences of gene knockouts, and the metabolic impact of

different gene expression programs [21,22]. Constraint-based

methods are also being used to guide metabolic engineering

efforts by calculating the modifications required to optimize the

production of desired metabolites [23–26].

The wealth of genetic and metabolic data available for

Neurospora, along with ongoing efforts to knock-out and pheno-

typically characterize all ,10,000 genes in the genome [27],

provides a strong foundation for the development of a genome-

scale metabolic model. A metabolic model would, in turn,

complement experimental efforts by integrating data from

experiments on single genes into a coherent genome-wide

metabolic framework, providing potential mechanistic insight

into experimental phenotypic observations, and enabling the

comprehensive modeling of perturbations that could not be

feasibly performed in the lab. A genome-scale model is also a

requirement for the rational and efficient use of Neurospora as a

potential biofuels organism [28–32].

We report here the construction and validation of a high-quality

genome-scale metabolic model for Neurospora crassa. To guide the

process of model construction, we developed a novel suite of

algorithms called Fast Automated Reconstruction of Metabolism (FARM).

We validated the model against an independent gene essentiality

test set, and achieved 93% sensitivity and specificity. We applied

the validated model to comprehensively predict nutrient rescue of

essential genes and synthetic lethal interactions. With these

predictions, we provide potential mechanistic insight into known

mutant phenotypes, and testable hypotheses for novel mutant

phenotypes. More generally, the model provides a framework for

integrating and interpreting ongoing experimental efforts that

continue extend the rich history of biochemical research on

Neurospora.

Results

Modeling process
We reconstructed, validated and performed computational

predictions with the Neurospora metabolic network model in a

process consisting of four stages, as shown in Figure 1. Below we

summarize the steps of the process, then we describe the

optimization-based algorithms we developed to guide the process.

Stage 1: Pathway-directed curation. We integrated the

Neurospora genome and literature to generate an initial draft of the

metabolic network. This process was initiated by computing the

probability that each enzyme activity is encoded in the genome

sequence [14] using the EFICAz enzyme function predictor [33].

These predicted enzyme activities were then automatically

assembled into experimentally elucidated pathways taken from

MetaCyc [34] using the Pathologic pathway prediction algorithm

[35]. Complementing this automated approach, we manually

curated Neurospora-specific literature to identify experimentally

determined enzymes, assign Gene Ontology terms to proteins,

distinguish isozymes from enzyme complexes, catalog growth

observations, and estimate the biomass composition [15,27,36].

Each assertion in the database was labeled with an evidence code

to specify the type of experiment or computation performed to

support its inclusion in the metabolic network [37].

Stage 2: Phenotype-directed curation. We iteratively

improved the initial metabolic model with a manually curated

training set of experimentally observed viability phenotypes on

minimal and supplemented media. We used FARM on this set to

suggest reaction additions/removals that would improve predic-

tion accuracy. These changes were manually reviewed and

accepted only if consistent with published experimental evidence.

Stage 3: Independent validation of model predictions. To

confirm that the final model was not over-fit to a single training set

and to ensure that the predictions of the model could generalize to

new phenotypes, we validated the model using an independent test

set of experimentally observed viability phenotypes.

Stage 4: Comprehensive viability phenotype prediction. We

applied the final model to generate three sets of predictions. Firstly,

we predicted the essentiality of all genes in our model. Secondly, we

predicted which nutrient supplements would rescue a manually

curated set of inviable mutants, and provided mechanistic

explanations for each rescue. Thirdly, we systematically performed

in silico double knockout experiments to predict synthetic lethal

interactions. In all three cases, published observations were

available that validated the accuracy of the predictions. The

metabolic model extends these published observations in a manner

that would be difficult experimentally by assaying a comprehensive

set of conditions, providing novel testable hypotheses, and providing

potential mechanistic insight into these predictions.

FARM
A number of significant challenges remain in the reconstruction

of high-quality genome-scale metabolic models [38]. Although

bioinformatic methods exist that can automate the generation of

draft metabolic models [39], extensive manual adjustment and

Author Summary

Few organisms have been as foundational to the devel-
opment of modern genetics and cellular metabolism as
Neurospora crassa. Given the wealth of knowledge
available for this filamentous fungus, the effort required
to manually curate a high-quality genome-scale metabolic
reconstruction would be daunting. To aid the reconstruc-
tion process, we developed three optimization-based
algorithms. The first algorithm predicts flux while linearly
accounting for metabolite dilution; the second algorithm
removes blocked reactions with one compact linear
program; and the third algorithm reconciles differences
between in silico predictions and experimental observa-
tions of mutant viability. We have used these algorithms to
develop the first genome-scale metabolic model for
Neurospora. We have validated the accuracy of our model
against an independent test set of more than 300 growth/
no-growth phenotypes, and our model displays 93%
sensitivity and specificity. Simulating the biochemical
genetics experiments originally performed on Neurospora,
we comprehensively predicted essential genes, nutrient
rescues of auxotroph mutants and synthetic lethal
interactions. With these predictions, we provide potential
mechanistic insight into known mutant phenotypes, and
testable hypotheses for novel mutant phenotypes. The
model, the algorithms and the testable hypotheses
provide a computational foundation for the study of
Neurospora crassa metabolism.

Neurospora crassa Metabolic Model Using FARM
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literature curation remains essential for generating high-quality

models. The assessment of model accuracy through independent

empirical validation is also critical if the predictions of the model

are to be trusted. Although a number of methods have been

developed to aid in this task [40–51], substantial manual effort is

also still required.

To facilitate the automation of metabolic network reconstruc-

tion, we developed three optimization-based algorithms, which

together comprise Fast Automated Reconstruction of Metabolism

(FARM). These algorithms are: LInear MEtabolite Dilution Flux

Balance Analysis (limed-FBA), which predicts flux while linearly

accounting for metabolite dilution; Consistent Reproduction Of growth/

no-growth Phenotype (CROP), which reconciles differences between in

silico and experimental gene essentiality faster than previous

approaches; and One-step functional Pruning (OnePrune), which

removes blocked reactions with a single compact linear program.

LInear MEtabolite Dilution Flux Balance Analysis (limed-

FBA). Flux balance analysis is a widely used method for

predicting metabolic capabilities using genome-scale metabolic

network models [17]. FBA represents a metabolic network by

capturing the stoichiometries of constituent reactions in a

stoichiometric matrix, S. The matrix S and the set of reaction

constraints lb and ub define the set of all possible flux

configurations v at steady state. By defining a metabolic objective

function cTv that represents all the essential biomass components

necessary for growth, linear programming can be used to predict

whether the model supports growth under a given nutrient

condition. The linear programming problem is:

Figure 1. Modeling process. The process used for the reconstruction and validation of the metabolic model is described in four stages. In the first
stage, pathway-directed curation, the genome sequence annotation [14,15] , metabolic pathways derived from MetaCyc [34,111] and experimental
evidence from the Neurospora bibliome [37] were used to construct the first draft of the NeurosporaCyc Pathway/Genome database [112]. For the
second stage, iterative phenotype-directed curation, we utilized FARM to suggest changes to the metabolic network based on a training set of
experimentally observed growth phenotypes. These suggestions were reviewed manually, and accepted into the final model only if they were
consistent with published experimental evidence. In the third stage, we independently validated the model based on a test set of experimentally
observed viability phenotypes that were not utilized during model construction. In the fourth stage, we comprehensively predicted the phenotypes of
all essential genes, nutrient rescues, and synthetic lethal interactions.
doi:10.1371/journal.pcbi.1003126.g001

Neurospora crassa Metabolic Model Using FARM
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FBA can be used to predict gene essentiality by blocking reactions

that correspond to the gene knockout and checking if the model

can still support growth [18,52](see Methods).

A known shortcoming of FBA is that it does not account for

dilution of metabolites involved in active reactions [53]. These

metabolites are referred to as active metabolites. Consequently, FBA

can fail to require the biosynthesis of known essential compounds.

For example, the Saccharomyces cerevisiae model [54] suffers its

highest error rate in predicting growth of mutants deficient in

quinone biosynthesis. The reason for this error is that FBA allows

quinones to be recycled in silico, whereas biologically quinones

must be replenished by S. cerevisiae to overcome their growth-

associated dilution. To account for growth-associated dilution of

active metabolites, we developed limed-FBA.

The limed-FBA method works by forcing active metabolites to

dilute through an additional small dilution flux (see Methods). We

illustrate the difference between limed-FBA and FBA in Figure 2.

As shown, FBA does not account for metabolite dilution; it allows

metabolic cycles that lack an input flux (Figure 2A). In contrast,

limed-FBA forces dilution of active metabolites. This dilution

necessitates a counteracting input flux, so limed-FBA disallows

metabolic cycles that lack an input flux, as shown in Figure 2B. A

specific example for Neurospora is shown in Figure 2C, which

focuses on the gene arg-14 that encodes acetylglutamate synthase.

This enzyme acts as an input flux to arginine biosynthesis and is

required for growth [55]. FBA uses the arginine biosynthesis

pathway without input flux from acetylglutamate synthase, and

thus incorrectly predicts arg-14 is not essential. In contrast, limed-

FBA forces dilution of the metabolites in the acetyl cycle, thus

preventing these compounds from being produced without an

input flux. As a consequence, limed-FBA correctly predicts that

arg-14 is essential.

A heuristic that is used in FBA to account for metabolite

dilution is to add a small ‘‘drain’’ of diluted metabolites to the

biomass composition. The issue with this heuristic is that it

requires knowing a priori which metabolites are diluted, whereas

limed-FBA determines which metabolites are diluted based on the

flux. For example if this heuristic was used to add a metabolite in

the cycle of Figure 2, such as N-acetyl-L-glutamate, to biomass,

then FBA would correctly predict the essentiality of arg-14.

However, then FBA would also predict that the arg-14 knockout

cannot be rescued by arginine. In fact, arginine does rescue Darg-

14 experimentally, as correctly predicted by limed-FBA.

Importantly, we designed limed-FBA as a linear program.

Linear programs can be solved robustly and quickly, making

limed-FBA a practical solution to account for metabolite dilution.

An alternative method that has been developed is Metabolite Dilution

FBA (MD-FBA) [53]. MD-FBA accounts for metabolite dilution by

forcing a preset level of dilution for active metabolites. MD-FBA

was shown to predict mutant growth more accurately than FBA

[53], but it has two major drawbacks. (1) MD-FBA places a lower

bound but no upper bound on dilution, so it effectively allows

unlimited export of all metabolites, which is not biologically

plausible; and (2) MD-FBA requires a computationally expensive

mixed integer linear program (MILP), which severely limits its

practicality [53].

Consistent Reproduction Of growth/no-growth Phenotype

(CROP). During stage 2 of our process, we iteratively improved

the ability of the metabolic network model to predict gene knockout

phenotypes. A number of computational algorithms have been

described to maximize consistency between predicted and exper-

imental growth/no-growth phenotypes [39–42,44,49]. These algo-

rithms are typically designed to optimize a MILP, because they

include binary variables to represent whether each reaction should

or should not be included in the metabolic model. One such MILP-

based algorithm is the Model SEED [39,40], which is a fully-

automated model reconstruction process for prokaryotes only.

Another is GrowMatch [41,42], which was designed to make small

changes to models, such as adding or removing up to three

reactions. One limitation of these approaches is that they do not

account for the diverse evidence for reactions available for

Neurospora, including enzyme function predictions, thermodynamic

estimates, literature references, and pathway information, in a

disciplined manner.

To quickly and accurately reconcile inconsistencies between

predicted and experimental growth/no-growth phenotypes, we

developed Consistent Reproduction Of growth/no-growth Phenotype

(CROP). CROP solved inconsistencies while accounting for diverse

evidence. This evidence included (1) whether we had manually

Figure 2. limed-FBA vs FBA. (A) FBA does not require an input flux for cycles because it does not account for dilution of metabolites that
participate in active reactions. (B) limed-FBA requires an input flux for cycles to compensate for dilution of metabolites that participate in active
reactions. (C) FBA fails to correctly predict arg-14 gene essentiality because without an input flux, metabolite dilution prevents the isolated acetyl
cycle compounds from being produced (side compounds not shown).
doi:10.1371/journal.pcbi.1003126.g002

Neurospora crassa Metabolic Model Using FARM
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curated a reaction with experimental evidence from the literature,

(2) what pathways a reaction was part of, and whether these

pathways were predicted to be in Neurospora [35], (3) thermodynamic

estimates of Gibbs free energy, and (4) probabilistic estimates of

enzyme function. This evidence was mathematically integrated on a

probabilistic scale to assign each reaction a weight. Our approach to

derive weights in a disciplined manner was motivated by the

statistical maximum a posteriori estimator. Thus, the weights have a

direct probabilistic interpretation: they depend on the product of the

probabilities that the reaction is biochemically and thermodynam-

ically plausible. These weights guided CROP’s growth reconcilia-

tion toward metabolic network changes that were most consistent

with available evidence. To achieve consistency when the model

incorrectly predicts growth, CROP suggests reactions from the

model to remove. To do this, CROP applies MILP. To achieve

consistency when the model incorrectly predicts no-growth, CROP

suggests reactions to add from a database of metabolic reactions,

such as MetaCyc. A detailed comparison of CROP with previous

methods is available in Text S3.

One-step functional pruning (OnePrune). After iteratively

applying CROP to improve the model, reactions can be present

that cannot carry flux under any nutrient condition. These

reactions are referred to as blocked reactions. The removal of blocked

reactions is a process known as functional pruning [56]. Blocked

reactions are often identified according to Flux Variability Analysis

[57,58], however this requires optimizing each reaction separately.

An alternative approach [51] identifies blocked reactions by

successive linear programs, although it is unknown in general how

many LPs are necessary. We developed an algorithm to perform

functional pruning with a single compact linear program,

OnePrune. Conceptually, OnePrune is based on the optimization

approach called goal programming [59]. We include a detailed

account of OnePrune in Methods and in Discussion.

Overview of Neurospora metabolic network model
Here we describe the results of our genome-scale metabolic

reconstruction and its application as a predictive steady-state

model. Following the accepted nomenclature [60] for naming

metabolic models, we call the model N. crassa iJDZ836. N. crassa

iJDZ836 is available in the Systems Biology Markup Language

(SBML) in Dataset S1.

The model contains 836 genes that encode 1027 unique

enzymatic activities. Of these enzyme-catalyzed reactions, 694 are

supported by experimental evidence from 491 publications

addressing Neurospora-specific enzymes. This level of evidence

compares favorably with other highly curated models [61–63] as

shown in Table 1. In addition, 16 spontaneous reactions and 331

orphan reactions were included based on the literature [64–66].

Our model contains 737 chemically unique metabolites. Of these

metabolites, 673 have a defined structure that permits estimates of

Gibbs free energy [67,68]. Using these Gibbs free energy

estimates, 1046 biochemical reactions were thermodynamically

constrained to be irreversible, while the remaining 328 were

assumed to be reversible. Of the 294 biochemical reactions that

were associated with multiple proteins, 47 were manually curated

as being catalyzed by an enzyme complex; we assumed the rest

were catalyzed by isozymes. There are 257 metabolic pathways in

the model. Of these, 134 are biosynthesis pathways, 96 are

degradation/utilization/assimilation pathways, and 27 are path-

ways involved in the generation of precursor metabolites and

energy. An overview of the pathways is displayed in Figure 3 and a

zoomable metabolic map of the pathways is shown in Figure S3.

Cellular compartments in the model include the cytosol, the

extracellular space, and 4 organelles: the glyoxysome, the vacuole,

the nucleus, and the mitochondrion. The 299 transport reactions

of the model enabled not only uptake and export of 137

metabolites, but also the exchange of metabolites between the

cytosol and each organelle.

The model’s growth objective was based on a modular biomass

composition [69,70]. Biomass modules were separately defined for

DNA, RNA, amino acids, cell wall, lipids, sterols, essential

cofactors, and secondary metabolites. This modular decomposi-

tion allowed for different goals in different applications of the

model. For example, wild-type biomass contains substantial

amounts of secondary metabolites, such as sphingolipids, ergos-

terol and carotenoids (which give Neurospora its characteristic

orange color), so we included the secondary metabolites module in

the biomass composition when predicting wild-type fluxes. On the

other hand, secondary metabolites are not strictly required for

viability, so we removed this module from the biomass compo-

sition when predicting viability.

The model quantitatively captures the growth rate of Neuros-

pora. To illustrate this, we have plotted a range of glucose uptake

rates against the model’s predicted doubling times, and several

data points extracted from the experimental literature [71–73]

(Figure S4). The figure shows that our predictions closely match

the experimental data.

Model validation using gene essentiality
To validate the accuracy of the N. crassa iJDZ836 model, we

manually curated a collection of mutant viability phenotypes from

the literature. We split this collection into a training set, which we

used with FARM to construct the model; and an independent test

set, which we used to validate the final model. Both of these

collections are available in Table S1. To simulate gene knockout

experiments, we removed reactions from the model that depend

on the gene, applied limed-FBA, and predicted whether or not the

perturbed model could grow. We then compared experimental

observations to the model’s in silico predictions. Accuracy was

measured as two quantities: sensitivity and specificity. Sensitivity

was defined as the proportion of experimentally viable mutants

that were predicted to be viable in silico. Specificity was defined as

the proportion of experimentally inviable mutants that were

predicted to be inviable in silico.

The final model’s predictive accuracy using limed-FBA is shown

in Figure 4A. On the training set, we correctly predicted growth in

Table 1. Comparison of curation level among selected metabolic models.

N.crassa iJDZ836 Aspergillus niger iMA871 Yeast 5.0 E.coli iJO1366

Number of organism-specific citations 491 371 385 447

Coverage 47% 47% 37% 46%

Coverage is the percentage of enzyme-catalyzed reactions that are supported by organism-specific experimental evidence.
doi:10.1371/journal.pcbi.1003126.t001

Neurospora crassa Metabolic Model Using FARM
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107 of 108 experimentally viable gene knockouts (sensitivi-

ty = 99.1%), and we correctly predicted no-growth in 44 of 47

experimentally lethal mutants (specificity = 93.6%). On the test set,

we correctly predicted 270 of 289 experimentally viable gene

knockouts (sensitivity = 93.4%), and we correctly predicted 13 of

14 experimentally lethal mutants (specificity = 92.9%).

The final model’s predictive accuracy on the test and training

sets using FBA and MD-FBA is shown in Figure 4B. Both of these

methods are generally outperformed by limed-FBA.

The differences between FBA and limed-FBA can reveal subtle

issues with existing experimental data. For example, because FBA

allows recycling of coenzyme A and the biosynthesis of coenzyme

A requires pan-2 [74], the essentiality of pan-2 is missed by FBA. In

contrast, limed-FBA correctly predicts essentiality of pan-2.

Similarly, three other genes involved in coenzyme A biosynthesis

(NCU08925 and pan-3) and mitochondrial transport (mic-30) were

predicted to be essential by limed-FBA, but not by FBA.

Surprisingly, these three genes were in our test set of non-essentials.

A potential explanation for these inconsistencies is that the

function of these genes can be performed by an isozyme that was

not captured in our model. In addition to these three genes, there

is one more gene from our test set of non-essentials where limed-

FBA predicted essentiality, but FBA predicted non-essentiality.

This gene is pab-1. Like arg-14 (Figure 2C), pab-1 serves as input to

a metabolic cycle, so pab-1 is not required by FBA. However,

consistent with limed-FBA’s prediction, the pab-1 gene was

reported to be essential by Beadle and Tatum’s original

publication [9,10].

In the left panel of Figure 4C, we compared the N. crassa

iJDZ836 gene essentiality accuracy statistics on the training set to

the reported accuracies Escherichia coli and S. cerevisiae models that

were optimized using experimental observations of gene essenti-

ality [41,42]. In the right panel of Figure 4C, we compared the N.

crassa iJDZ836 gene essentiality accuracy statistics on the test set to

the accuracy statistics reported in the most recently published

models of E. coli [63] and S. cerevisiae [62]. In all cases, the N. crassa

iJDZ836 model prediction accuracies compare favorably,

outperforming the specificities of the extensively trained models

for E. coli and S. cerevisiae.

The prediction of gene essentiality for all genes in the model is

available in Table S2.

Experimentally observed inviable mutants that were

predicted viable. There were four inconsistencies where the

model predicted viability and experimental data indicated

lethality; these were thi-4, ace-7, and ace-8 in the training set, and

arg-4 in the test set. The gene thi-4 is required for its role in the

thiamin diphosphate (TPP) biosynthesis pathway. However, this

pathway includes the eukaryotic thiazole synthase, and to the best

of our knowledge its reaction has not been characterized. Thus,

this pathway was not included in the model. The incorrect

prediction of the ace-7 and ace-8 mutants from the training set is

likely due to regulatory effects, which our model does not capture.

ace-7 encodes a subunit of glucose-6-phosphate dehydrogenase,

and it has been experimentally shown that glucose-6-phosphate

dehydrogenase tightly controls NADPH regeneration [29,75–78].

But since the model predicts that NADPH can be regenerated by

many enzymes, we were unable to capture the essentiality of ace-7.

The gene ace-8 encodes pyruvate kinase, which is known to

partially control glycolysis [79]. Thus, loss of ace-8 could inhibit

glycolysis in vivo, which would be lethal. But since the model

predicts that pyruvate kinase’s function can be circumvented by

other enzyme activities, the model was unable to capture the

essentiality of ace-8.

The only inconsistency in the test set where the model predicted

viability was arg-4, which encodes acetylornithine-glutamate

transacetylase. Upon closer examination, it turned out this mutant

was experimentally observed to have some growth, albeit very little

[80]. The model mechanistically explains viability by predicting

that loss of acetylornithine-glutamate transacetylase activity can be

compensated by acetylornithine deacetylase activity encoded by

arg-11. Furthermore we do predict that the double knockout Darg-

4Darg-11 is synthetically lethal (see Figure S1).

Experimentally observed viable mutants that were

predicted inviable. There was only one inconsistency in the

Figure 3. Metabolic overview of Neurospora crassa. The 257 metabolic pathways of Neurospora are divided into the 35 color-coded pathway
classes. Biosynthetic pathways are displayed on the left, energy metabolism in the center, and degradation pathways are on the right. In addition to
the cytosol and extracellular space, the model also contains 4 organelles: these are the vacuole, the nucleus, and the mitochondrion. The 299
transport reactions enable uptake and excretion of 137 metabolites and also exchange between the cytosol and each organelle.
doi:10.1371/journal.pcbi.1003126.g003

Neurospora crassa Metabolic Model Using FARM
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training set where the model predicted lethality and the

experimental data indicated viability, and this prediction revealed

an error in the underlying experimental data. The experimental

phenotyping for the Derg-14 knockout indicated growth, and hence

we included this gene in the non-essential training set. In contrast,

the model predicted that the Derg-14 knockout was blocked in the

production of mevalonate, which is a necessary precursor for the

sterol component of biomass. Moreover, previous attempts to

phenotype temperature-sensitive mutants of erg-14 revealed severe

morphological defects that were expected to be lethal in the full

knockout [81]. Driven by these inconsistencies, a re-examination

of the Derg-14 knockout strain revealed this mutant used was in

fact a heterokaryon that retained a copy of the erg-14 gene rather

than a homokaryon that contained no erg-14 gene, as originally

thought. Thus the predictions of the model were sufficient to

correct an error in metadata associated with a publically available

knockout strain.

We identified 19 inconsistencies in the test set where the model

predicted inviability and experimental data [82] indicated

viability. We describe these in Text S1.

Prediction of nutrient rescue
To validate the ability of the N. crassa iJDZ836 model to predict

nutrient supplements that would rescue auxotroph mutants, we

manually curated a collection of nutrient rescue conditions from

the literature. We split this collection into a training set, which we

used with FARM to construct the model; and an independent test

set, which we used to validate the final model. Both of these

collections are available in Table S1. The predictions of nutrient

rescues are available in Table S2. To simulate nutrient rescue

experiments, we took a mutant that was predicted to be inviable

on minimal media, supplemented the media with different

nutrients, and applied limed-FBA to predict whether or not the

mutant could grow in the supplemented media. We then

Figure 4. Minimal media gene essentiality predictions. We curated a collection of mutant viability observations on minimal media and
separated the collection into a training set, where knowledge of the viability phenotype was used to improve the model; and a test set, where the
viability phenotype was hidden from the model. (A) Training and test set mutant viability observations were used to measure the sensitivity and
specificity of the limed-FBA gene knockout viability predictions. While some inconsistencies were due to model error, several were resolved in the
model’s favor, as discussed in the text. (B) Using the same model, training and test sets, limed-FBA outperforms FBA and MD-FBA. (C) For comparison,
we display the mutant viability prediction accuracies of previously published FBA models for S. cerevisiae and E. coli. Prediction accuracies of
experimentally observed viability phenotypes that were used to optimize the model are displayed on the left panel [41,42]. Prediction accuracies of
viability phenotypes that were not explicitly used to construct the model are displayed on the right panel [62,63].
doi:10.1371/journal.pcbi.1003126.g004
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compared experimental observations to the model’s in silico

predictions.

Of the 77 experimentally observed nutrient rescue conditions

that we used as a training set, the model correctly predicted 74

(sensitivity = 96.1%)(Figure 5A; left panel). On the independent

test set of 19 nutrient rescue conditions, the model correctly

predicted 17 (sensitivity = 89.5%)(Figure 5A; right panel).

Experimentally observed nutrient rescues that were not

predicted. In the training set, the only auxotrophs we were

unable to correctly rescue were due to condition-specific

regulation that our model does not capture. According to

experimental observation, mutants in ace-2, ace-3 and ace-4 can

grow in acetate minimal media, because the enzymes in the

glyoxysome are induced when extracellular acetate is present in

the medium [83]. Conversely, ace-2, ace-3 and ace-4 mutants

cannot grow in sucrose minimal media, even though sucrose can

be converted to acetate intracellularly, because the glyoxysomal

enzymes are not expressed in this condition [1]. Because the

acetate-dependent regulation of the glyoxysome is not included in

our model, we could not successfully predict both their inviability

in sucrose minimal media and their rescue by acetate supplemen-

tation.

In the test set, we were unable to correctly rescue ad-5 by

hypoxanthine or adenine due to large amounts of experimentally

observed accumulation of AICAR [84], which neither FBA nor

limed-FBA allow. When we relaxed the in silico constraint on

Figure 5. Prediction of nutrient rescue. We curated a collection of conditions in which an auxotroph was rescued when minimal media was
supplemented with a nutrient. We separated the collection into a training set, where knowledge of the rescue phenotype was used to improve the
model, and a test set, where the rescue phenotype was hidden from the model. Because we only collected data on which nutrients rescued the
auxotrophs, we could only measure sensitivity, not specificity. (A) Tables showing the sensitivity of limed-FBA predictions on nutrient rescue training
and test sets. (B) Heatmap showing the growth phenotype of each mutant when minimal media is supplemented with each nutrient used in the
training and test sets. Only mutants whose minimal media gene essentiality was correctly predicted are included. The minimal media used was
Vogel’s with sucrose as the carbon source except in the following cases: acu-3,5,6 genes are essential when acetate is the sole carbon source; oxD is
essential when D-methionine is the sole sulfur source; nit-3 is essential when nitrate is the sole nitrogen source. Green squares indicate that the
model’s predictions were consistent with experiment; red squares indicate that the model failed to correctly predict growth; blue squares indicate
potentially novel rescues; white squares indicate predictions of non-rescue. Striped squares show that the multi-substrate case does not contain
additional information beyond the single-substrate case, e.g. methionine is predicted to rescue the cys-4 mutant, so methionine+threonine is also
predicted to rescue cys-4.
doi:10.1371/journal.pcbi.1003126.g005
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intracellular accumulation of AICAR, the hypoxanthine and

adenine rescues of ad-5 were correctly predicted.

Mechanistic insight of nutrient rescue. Simulating the

biochemical genetics experiments originally performed on Neuros-

pora, we predicted 175 nutrient rescues of 58 auxotroph mutants.

These predictions are shown in Figure 5B. In addition to

predicting the nutrient conditions that rescue selected mutants,

the model also provides a potential mechanistic explanation for the

rescue.

Most of the predictions can be explained by the general

principle that supplementing a metabolic pathway downstream of

a knockout will often rescue the mutant, while supplementing the

pathway upstream of the knockout typically does not [9]. This is

illustrated in Figure 6, where the model correctly predicts that cys-

5, cys-9, and cys-11 mutants can be rescued when the downstream

nutrients sulfite and thiosulfate are provided in the media [85].

Similarly, the model correctly predicts that met-2, met-5, met-6, met-

7 and met-8 mutants are rescued by L-methionine; met-2, met-5 and

met-7 mutants are rescued by L-homocysteine; and met-5 and met-7

mutants are rescued by L-cystathione [86,87].

This principle provides a testable hypothesis for the novel

predictions that hom-1 and all cys mutants can be rescued by the

downstream supplements L-cystathione, L-homocysteine and L-

methionine (see Figure 6). Conversely, we also predict that the cys-

4 mutant is not rescued by either upstream supplements sulfite or

thiosulfate.

Using this principle, Figure 7 shows how the nutrient rescue of

acu mutants can be explained by examining the connection

between the glyoxylate cycle and gluconeogenesis. acu-3, acu-5 and

acu-6 mutants are known to be lethal when acetate is the sole

carbon source, because the glyoxylate cycle is blocked [88]. We

correctly predict these mutants can be rescued by sucrose [89],

and we additionally predict they can be rescued when supple-

mented with fructofuranose and glucose, because the enzymes

encoded by acu-3, acu-5, and acu-6 are upstream of these sugars in

the gluconeogenesis pathway.

Some novel nutrient rescue predictions can be explained by the

existence of an alternate pathway from the nutrient to an essential

metabolite that could not otherwise be produced. For example,

Figure 8 shows that the ace-2, ace-3, and ace-4 gene products are all

components of the pyruvate dehydrogenase complex, which

synthesizes acetyl-CoA from pyruvate, and that this activity leads

to the production of the essential metabolite 2-oxoglutarate

(a-ketoglutarate) via the TCA cycle. The model also predicts that

ace-2,3,4 mutants can be rescued by L-citrulline, L-arginine, L-

ornithine, and L-glutamine, because each of these nutrients can

produce 2-oxoglutarate via amino acid degradation pathways.

Prediction of synthetic lethal interactions
Pairwise synthetic lethality arises when two mutants with single

gene knockouts are viable, but the double knockout mutant is

inviable. Synthetic lethality can reveal cross-pathway dependen-

cies that provide valuable insights into metabolism at the genome

scale, but an experimental approach to comprehensively perform

double knockouts to identify synthetic lethals is currently infeasible

for Neurospora. Computational models provide a mechanism to

rapidly and comprehensively test all interactions as a way to

prioritize subsequent experimental verification. To predict syn-

thetic lethality using the model, we simulated all pairs of knockouts

of non-essential genes and predicted viability on minimal media.

Of the roughly 700,000 double knockouts in the metabolic

model, the model predicted 230 to be synthetically lethal on

minimal media. The mechanisms underlying these predicted

synthetic lethal interactions fall into three classes: those that

encode isozymes of a common reaction, those that encode

enzymes of a common pathway, and those that encode enzymes

of interacting pathways. This list contains 22 isozyme pairs, 4 gene

pairs in the same pathway, and 204 gene pairs in interacting

pathways. All of these pairs are tabulated in Table S2. The non-

isozyme gene pairs and a previously known isozyme pair are

displayed in a symmetric interaction map in Figure 9. This

interaction map classifies each synthetic lethal pair by whether or

not the two genes are in a common pathway or interacting

pathways.

Mechanistic insight of synthetic lethal interactions. To

validate the ability of the model to predict synthetic lethality, we

manually curated a small number of experimentally observed

synthetic lethal interactions. Some of these interactions involved

the arg-2 mutant, which is known to be ‘‘leaky’’ [55]. We used the

remaining synthetic lethal interactions to validate our results. Of

these 5 experimentally observed synthetic lethal interactions, the

model correctly predicts 4.

The single known interaction not predicted by the model is for

the double mutant pho-4:pho-5 [90]. Both of these genes are high-

affinity phosphate transporters, but the model also includes a

known low-affinity phosphate transporter. The model treats each

of these transporters equally, because it lacks kinetics, so it predicts

the pho-4:pho-5 mutant is viable.

Figure 10 shows three known synthetic lethal interactions that

we correctly predict. Figure 10A provides an example of synthetic

lethality arising from mutations in a common pathway. The

nitrogen assimilation pathway fixes the nutrient nitrate into the

essential metabolite glutamine. Both the am and en(am)-2 mutants

are viable, because they represent the two alternate routes to

synthesize glutamine. However, the double mutant am:en(am)-2 is

blocked in both routes, so it is inviable, unless the nutrient media is

supplemented with glutamate.

Figure 10B provides an example of synthetic lethality arising

from mutations in two interacting pathways. The pathways for

proline biosynthesis and arginine degradation both synthesize

glutamate-semialdehyde, which is a precursor to the essential

metabolite L-proline. Both the pro-3 (glutamate-5-semialdehyde

dehydrogenase) mutant in proline biosynthesis, and the ota

(acetylornithine transaminase) mutant in arginine degradation

are viable, because they represent the two alternate routes to

synthesize L-proline. However, the double mutant pro-3:ota is

blocked in both routes, so it is inviable, unless the nutrient media is

supplemented with L-proline.

Figure 10C provides another example of synthetic lethality

arising from two interacting pathways. On uracil-containing

media, the uridine-59-phosphate synthesis pathway and the path

from uracil to uridine-59-phosphate (UMP) both synthesize the

essential UMP. So on uracil-containing media, both pyr-1

(dihydroorotate dehydrogenase) in uridine-59-phosphate synthesis

and uc-5 (uracil permease) are viable, because they represent the

two alternate routes to synthesize UMP. Consequently, the double

mutant pyr-1:uc-5 on uracil-containing media is blocked in both

routes, so it is inviable. Further, the pyr-1:uc-5 mutant can be

rescued by uridine, since uridine can be phosphorylated to UMP.

The novel predictions of synthetic lethality provide testable

hypotheses for further experimentation. For example, the model

predicts synthetic lethality between NCU02726 (ethanolamine

kinase) and gsl-3 (3-dehydrosphinganine reductase). The products

of these two genes catalyze reactions in two different pathways that

lead to the production of the essential metabolite phosphoryl-

ethanolamine. Ethanolamine kinase converts ethanolamine to

phosphoryl-ethanolamine in a single reaction. Without ethanol-

amine kinase, the model predicts that phosphoryl-ethanolamine
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must be produced from the sphingolipid metabolism pathway.

This requires the activity of gsl-3, which is an upstream member of

this pathway.

Figure S2 illustrates the potential mechanism underlying the

predicted synthetic lethality between the suc gene (pyruvate

carboxylase) and subunits of mitochondrial complex I (NADH:

Figure 6. Mechanistic insight into the nutrient rescue of cysteine and methionine metabolism. The model correctly predicts that cys-5,
cys-9, and cys-11 mutants can be rescued when the downstream nutrients sulfite and thiosulfate are provided in the media. Similarly, the model
correctly predicts that met-2, met-5, met-6, met7 and met-8 mutants are rescued by L-methionine; met-2, met-5 and met-7 mutants are rescued by
L-homocysteine; and met-5 and met-7 mutants are rescued by L-cystathione. The model makes the potentially novel predictions that hom-1 and all
cys mutants can be rescued by the downstream supplements L-cystathione, L-homocysteine and L-methionine. The model also makes the potentially
novel prediction that cys-4 is not rescued by either upstream nutrient supplements sulfite or thiosulfate.
doi:10.1371/journal.pcbi.1003126.g006
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Figure 7. Connection between glyoxylate cycle and gluconeogenesis reveals mechanistic insight into the nutrient rescue of acu
mutants. acu-3, acu-5 and acu-6 mutants are known to be lethal when acetate is the sole carbon source, because the glyoxylate cycle is blocked [88].
We correctly predict these mutants can be rescued by sucrose, and we additionally predict they can be rescued when supplemented with
fructofuranose and glucose, because the enzymes encoded by acu-3, acu-5, and acu-6 are upstream of these sugars in the gluconeogenesis pathway.
doi:10.1371/journal.pcbi.1003126.g007
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ubiquinone oxidoreductase). Under normal circumstances,

NADH produced in the mitochondrial TCA cycle is oxidized to

NAD in the electron transport chain via NADH:ubiquinone

oxidoreductase. Yet, the loss of complex I is known to be non-

lethal in Neurospora [91]. This places a metabolic burden on the rest

of mitochondrial metabolism to oxidize the NADH. The model

predicts that in the absence of complex I, NADH is oxidized by

malate dehydrogenase in the reverse direction of the normal TCA

cycle flux. To maintain this flux, the mitochondrion requires a

steady source of oxaloacetate, which can only be supplied from

pyruvate carboxylase, encoded by suc. This synthetic interaction is

particularly noteworthy, because S. cerevisiae lacks complex I,

making Neurospora a prime model for studying its interactions.

Discussion

Building on its long history as a genetic model organism for

biochemical genetics and cellular metabolism, we report here the

first genome-scale metabolic network model for Neurospora crassa.

We assessed the Neurospora metabolic model’s ability to predict the

impact of gene deletions, nutrient supplements that would rescue

essential gene deletions, and synthetic lethal interactions. In each

case, computational predictions were validated against a curated

dataset of experimentally observed mutant viability phenotypes.

Importantly, to ensure that our model was not over-fit, we

separated the experimental data into a training and test set.

Whereas training data was used in the development of the model,

the test set was reserved to assess the accuracy of the final model.

The final accuracy assessment was thus independent of any data

used during model training.

The prediction of the growth phenotype of gene deletions is a

canonical test of metabolic model accuracy and a useful benchmark

for assessing the quality of different models [92]. The accuracy of

our model compares favorably to extensively curated models such as

S. cerevisiae and E. coli. Moreover, at 93% sensitivity and specificity

on a test set of 303 phenotyped gene knockouts, the Neurospora model

displays high absolute accuracy that lends confidence to the ability

of the model to make accurate novel predictions.

The N. crassa iJDZ836 model also demonstrates high accuracy

in predicting the ability of different nutrients to rescue essential

gene knockouts and in predicting synthetic lethal interactions. In

the former case, the model displays nearly 90% accuracy on an

independent test set of nutrient rescue experiments. In the latter

case, we were only able to curate a handful of experimentally

verified synthetic lethal interactions. Nonetheless, although no

synthetic lethal data was used during model training, the model

was able to correctly identify four out of five known synthetic lethal

interactions.

Genome-scale metabolic models complement experimental

investigations, and one role of metabolic modeling is to rapidly

Figure 8. Supplementing with nutrients in alternate pathways can rescue some mutants. The model makes the novel prediction that ace-
2, ace-3, and ace-4 mutants (purple) in the TCA cycle can be rescued by supplementing minimal media with L-citrulline, L-arginine, L-ornithine, or L-
glutamine (light blue) because each of these nutrients provide an alternate route via amino acid pathways to the essential metabolite 2-oxoglutarate
(red).
doi:10.1371/journal.pcbi.1003126.g008
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generate and prioritize testable predictions that can be used to

guide subsequent experimentation. As important as the predictions

themselves, metabolic models also provide potential mechanistic

explanations for the results. The explanations provide an

important check on the overlying predictions. During the

validation of models, these explanations ensure that not only are

correct answers given, they are given for valid underlying reasons.

For novel predictions, mechanistic explanations can provide

potential insight into the results as well as tangible avenues to

experimental validation. To illustrate the last point, in Text S4 and

Figure S5 we simulate the observed physiological effect of oxygen

limitation on ethanol production when grown on xylose.

Therefore, our model can be used to simulate perturbations that

optimize ethanol yield, which can then be verified experimentally.

As with all previous modeling efforts, errors in predicting known

experimental results highlight limitations in either the model itself

or the modeling framework. In terms of the model, the quality will

only be as good as the information that was used to develop it. In

the case of Neurospora, the extraordinarily rich literature for this

well-studied model organism was the foundation that enabled a

model to be generated that performed with high accuracy.

Nonetheless, certain areas of the model remain less well developed,

and one value of model construction is the objective measure it can

provide on the relative information available for different aspects

of metabolism. This can be used to target areas that are less well

understood. For example, the substrates of certain reactions in the

thiamin diphosphate and neurosporaxanthin biosynthesis path-

ways and the fate of the end-product in the histidine degradation

pathway cannot be included with confidence in any metabolic

model, because they are open biochemical questions [93].

More generally, the constraint-based modeling framework we

used here is known to suffer from certain limitations. As with

similar models, this accounts for a significant portion of the

prediction errors in the Neurospora model. In particular, our model

does not account for regulation of either enzyme expression or

activity. These factors sometimes acted in combination. An

illustrative example is gln-1 and gln-2, which code for the alpha

and beta subunit, respectively, of glutamine synthetase [94]. Our

model requires both subunits for enzyme catalysis. However, it

was experimentally shown that concentration of extracellular

ammonium regulates this enzyme’s subunit composition, which

can include both subunits, only alpha subunits, or only beta

Figure 9. Synthetic lethality interaction map. This gene-by-gene interaction map shows synthetic lethal predictions on Vogel’s minimal media,
except the double mutant pyr-1:uc-5 is on Vogel’s+uracil. Shown are non-isozyme pairs, except the previously known isozyme pair cys-13:cys-14. If
both synthetic lethal genes of a pair are in a common pathway, the square is cyan; if they are in interacting pathways, then it is colored orange.
Validated synthetic lethal predictions have a black border.
doi:10.1371/journal.pcbi.1003126.g009
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subunits [95]. This metabolic complexity highlights the need for

the future incorporation of kinetics and regulation.

In one instance, however, a prediction initially thought to be an

error provided the means to identify an issue with an experimen-

tally observed knockout. The viability phenotype experiment for

Derg-14 was performed on a knockout strain originally designated

as a homokaryon. Experimental observations of this strain

revealed a normal growth phenotype. In contrast, the model

predicted that the Derg-14 mutant was blocked in the production of

mevalonate, which is a necessary precursor for the sterol

component of biomass. Moreover, previous efforts to phenotype

temperature-sensitive mutants of erg-14 revealed severe morpho-

logical defects that were expected to be lethal in the full knockout

[81]. Driven by these inconsistencies, a re-examination of the Derg-

14 knockout revealed that the mutant used was in fact a

heterokaryon. This prediction, in effect, served as a blind control

that highlighted the predictive value of the model.

The construction of genome-scale metabolic models remains a

daunting task. Even aided by sophisticated tools for the

management and visualization of pathway knowledge, a metabolic

reconstruction still requires substantial manual review of the

corresponding literature [38]. Moreover, it is desirable that the

model construction process be guided by objective and quantita-

tive measures of predictive accuracy. Incorporating this require-

ment into the model generation process increases the complexity

of the task by requiring iterative cycles of data curation, model

improvement, and accuracy assessment. To facilitate the process

of model improvement, a number of tools have been developed

[39–47,49,51]. We contribute to this set of tools with the

development of a set of optimization-based algorithms, which

together comprise Fast Automated Reconstruction of Metabolism

(FARM).

Two of the three FARM algorithms specifically facilitate the

process of model construction. Consistent Reproduction Of growth/no-

growth Phenotype (CROP) assists in automating the process of adding

and subtracting reactions from a model to improve predictive

accuracy. CROP integrates diverse evidence for pathways into a

probabilistic framework that assigns a weight to each reaction

Figure 10. Mechanistic insight into three experimentally validated synthetic lethal auxotrophs and their nutrient rescue. (A) The
nitrogen assimilation pathway contains two alternate routes that convert a-ketoglutarate into the essential metabolite L-glutamine (red). (A1) The
en(am)-2 mutant is viable, because a-ketoglutarate can be aminated to L-glutamate via am. (A2) The am mutant is viable, because a-ketoglutarate
and L-glutamine can be converted to 2 L-glutamate via en(am)-2. (A3) The double mutant am:en(am)-2 is lethal when ammonium is the nitrogen
source because both routes to L-glutamine are blocked, but (A4) can be rescued when the media is supplemented with L-glutamate (A4). (B) The only
two routes for the synthesis of the essential metabolite L-proline are through arginine degradation and proline biosynthesis. (B1) The pro-3 mutant is
blocked in proline biosynthesis, but can obtain L-proline through arginine degradation. (B2) The ota mutant is blocked in arginine degradation, but
can obtain L-proline through proline biosynthesis. (B3) The double mutant pro-3:ota is blocked in both routes, but can be rescued when the nutrient
media is supplemented with L-proline (B4). (C) There are only two biosynthetic routes to the essential metabolite uridine-59-phosphate. (C1) The pyr-1
mutant can still obtain uridine-59-phosphate from extracellular uracil, and the uc-5 mutant can obtain uridine-59-phosphate from (S)-dihydroorotate
(C2), but the pyr-1:uc-5 double mutant is blocked in both routes (C3). However, it can be rescued when the nutrient media is supplemented with
uridine through its conversion to uridine-59-phosphate in the pyrimidine salvage pathways (C4). Side compounds not shown.
doi:10.1371/journal.pcbi.1003126.g010
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associated with the likelihood that the reaction is present in the

network. These weights are then used to guide the selection of

reactions to add or remove. Previous methods to achieve in silico

growth used mixed integer linear programming (MILP), and thus

required substantial compute time [39,42,44]. For CROP, we

utilize LP relaxation, which is faster by orders-of-magnitude.

Additional details for this algorithm along with comparisons to

GrowMatch [41,42] and Model SEED [39,40] are available in

Text S3.

OnePrune was developed to efficiently solve the problem of

removing reactions that are blocked. OnePrune utilizes the goal

programming optimization framework to achieve multiple com-

peting objectives. The advantage of this framework is that once an

individual objective is achieved, the optimization can pursue other

objectives. OnePrune’s goals are to send flux through as many

reactions as possible, so once a reaction has achieved a nonzero

flux, OnePrune is free to pursue flux through other reactions.

Thus, OnePrune identified which reactions could carry flux with a

single compact linear program.

The third FARM algorithm, limed-FBA, is an enhancement to

the FBA method that improves predictive accuracy. limed-FBA

accounts for the dilution of active metabolites that is ignored by

FBA (Figure 2B), so limed-FBA is able to correctly identify the

essentiality of reactions that are typically missed by standard FBA.

For example, FBA predicted that pab-1 was not essential, because

pab-1 serves as input to a metabolic cycle; however, limed-FBA

predicted that pab-1 was essential. In fact, essentiality of pab-1 was

shown by the original experiment of Beadle and Tatum on

Neurospora crassa [9,10].

Methods

Metabolic reconstruction protocol
The metabolic reconstruction of Neurospora crassa was performed

in accordance with previously described protocols [96,97], and is

detailed in Text S2.

Creation and curation of NeurosporaCyc
From the Neurospora crassa genome assembly NC10, gene

boundaries were predicted using the Calhoun annotation system

[14]. For all enzymes, we obtained the probability that the enzyme

catalyzes a particular biochemical reaction, characterized by its

Enzyme Commission (EC) number, from the enzyme function

prediction software EFICAz [33].

We used the Pathway Tools software suite [93] to create the

NeurosporaCyc Pathway/Genome Database (PGDB) and to

manage curated data. We added functional gene annotations

with associated Gene Ontology (GO) terms [36] and literature

citations that were manually curated by the Community Anno-

tation Project [27]. EC numbers, GO terms, and functional

annotations were used as input to Pathologic [35] to automatically

infer pathways from MetaCyc. These pathways comprised the

initial NeurosporaCyc PGDB. Reaction directions were based on

the Gibbs free energy predictions using the group contribution

method [67]. Enzyme complexes were manually curated using the

Pathway Tools protein complex editor and evidence from the

Neurospora literature [93]. Transporters were automatically pre-

dicted from the genome sequence by the Transporter Automatic

Annotation Pipeline (TransAAP) from TransportDB [98], and

from the genome annotation using the Transport Identification

Parser (TIP) [99]. Cellular compartment information was described

using the Cellular Component Ontology (CCO), available at

http://bioinformatics.ai.sri.com/CCO/. Neurospora-specific enzyme

kinetics, allosteric regulation, biomass composition, and growth

media were added during manual curation of the experimental

evidence in the literature.

Before the NeurosporaCyc PGDB could be used to generate a

working model, a number of data-cleaning steps were performed.

Reactions were mass balanced, and the individual metabolites

were protonated to the intracellular pH of 7.2 [100]. For reactions

containing compound classes (e.g. ‘‘an alcohol’’), the compound

class was replaced by its instances (e.g. ‘‘ethanol’’) that render the

equation mass-balanced. Polymerization pathways such as fatty

acid beta oxidation were either lumped into a summary reaction,

or instantiated into a chain of individual polymerization steps. For

polymerization reactions, we specified an arbitrary maximum

polymer size n and created a lumped reaction that was

stoichiometrically equivalent to n steps of the polymerization.

The NeurosporaCyc Pathway/Genome Database can be down-

loaded from the PGDB registry at http://biocyc.org/registry.html

and is available online at http://neurosporacyc.broadinstitute.org.

Curation of growth rate data
To curate our growth rate data, we identified several

manuscripts that included glucose concentrations for Neurospora

grown on glucose minimal medium where doubling times could be

inferred from growth curves [71] or were given [72,73]. The

glucose concentrations were converted to glucose uptake rates

using data for the derepressed system in Figure 1 of Schneider and

Wiley [101].

Curation of viability phenotype data
To curate our viability phenotype data, we primarily relied on

two resources. The first was The Neurospora crassa e-Compendium,

curated by Alan Radford. The e-Compendium contains .2,400

citations and .3,000 gene entries. Numerous gene entries have

associated mutant phenotypes extracted from the literature. In

some cases, these phenotypes also include supplements that rescue

no-growth mutants. Because this resource primarily lists pheno-

types from mutants that are not knockouts, viability of a mutant

could be due to non-essentiality of a mutated gene or to partial

efficacy of a mutated enzyme. Thus, this resource did not clearly

identify non-essential genes. The second resource was knockouts

from the Neurospora Genome Project [27]. Knockouts that did not

germinate and grow in a short time were not further evaluated to

determine whether they showed low growth or no growth, so this

project did not clearly identify essential genes.

To collect the essential gene sets, we first identified inviable

mutants in the e-Compendium, and only retained genes for which

we could manually verify their essentiality in the literature. To split

the essential genes into a training set and a test set we intersected

the list of inviable mutants in the e-Compendium with the list of

heterokaryon knockouts from the Neurospora Genome Project

(http://www.dartmouth.edu/,neurosporagenome/knockouts_

completed.html). Genes that were in the intersection became

the test set, and the rest remained in the training set.

To collect the non-essential gene sets, we used the homokaryon

knockouts from the Neurospora Genome Project [82], all of which

were experimentally observed to be viable in Vogel’s minimal

media [102]. A subset of these homokaryons were extensively

phenotyped, and these were available at the Neurospora crassa

Database at the Broad Institute (http://www.broadinstitute.org/

annotation/genome/neurospora/Phenotypes.html). This subset

became our non-essential training set, while the rest of the

homokaryon knockouts became our non-essential test set.

Homokaryon knockouts that were in the essential gene set were

discarded.
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Both the supplemental nutrient rescue training and test sets

were initially identified from the e-Compendium and from the

book Neurospora: Contributions of a Model Organism [1]. They were

then confirmed through manual curation of the associated

citations. We also used this protocol to identify and confirm

known synthetic lethal mutations.

Comparison of experimental to predicted phenotype
data

We simulated Vogel’s minimal media (http://www.fgsc.net/

methods/vogels.html) [13] with sucrose by including exchange

reactions for each metabolite in the media, and limiting sucrose

uptake to 1.5 mmol/(gram Dry Weight * hour). Alternative media

were formulated in silico by adding/removing exchange reactions.

Supplemental nutrients were limited to a flux of 3 mmol/(gram

Dry Weight * hour).

We simulated gene knockouts by removing reactions that require

knocked-out genes. Biomass flux was predicted using limed-FBA,

except where stated otherwise. In silico growth phenotypes were

regarded as viable if the biomass flux exceeded 0.02, and inviable

otherwise. FBA was run using the optimizeCbModel function from the

COBRA Toolbox 2.0.5 [103] using Gurobi 5.0 in Matlab (Math-

Works, Natick, MA). MD-FBA was run using Matlab code

downloaded from Tomer Shlomi’s Research Group’s website

(http://www.cs.technion.ac.il/,tomersh/methods.html) with Tom-

lab v7.9 and CPLEX 12.2. This code was modified for our model: all

MD-FBA constraints could be satisfied by wild-type on Vogel’s

minimal media, so we did not need to apply their addNewExReactions

function. This code allowed 400 seconds per optimization.

FARM
Availability. FARM was originally written in the R language

and environment (www.r-project.org). Optimizations utilized the

Rcplex package in R to call IBM ILOG CPLEX Optimization

Studio 12.2 (IBM, Armonk, New York). However, code to

reproduce all of our predictions has been made available in

MATLAB (MathWorks, Natick, MA). This code is integrated with

the COBRA Toolbox 2.0.5 [103]. The MATLAB code is freely

available at https://code.google.com/p/fast-automated-recon-

metabolism/.

limed-FBA. limed-FBA is a linear method which requires a

metabolite’s concentration to dilute slightly if and only if it is used

in active reactions. We model this dilution implicitly by forcing

metabolites to compensate for their dilution through accumulation.

This accumulation can be modeled mathematically using the

formalism of FBA, as follows.

Let S be a stoichiometric matrix of irreversible reactions (where

reversible reactions are represented as two irreversible reactions in

opposite directions), v be a vector of (non-negative) steady-state

metabolic fluxes, and b represent a vector of the associated

metabolite concentrations changes. Then

Sv~b:

To linearly account for metabolite accumulation, we would like to

construct b as a linear function of v so that bi is positive but small

when metabolite i participates in active reactions, and bi is zero

otherwise.

To construct such a b, we first introduce the binary

stoichiometric matrix, Sbinary [92], whose element at row i and

column j is 1 if and only if the corresponding element of S?0. Now

consider Sbinaryv for a particular metabolite i (this is row i of Sbinary

multiplied by v). Because Sbinary and v are both non-negative,

element i of Sbinaryv represents the sum of the absolute values of the

fluxes that produce and consume metabolite i. This quantity is

twice the turnover of metabolite i. Thus, if metabolite i does not

participate in active reactions, then element i of Sbinaryv is zero.

Otherwise, if metabolite i does participate in active reactions, then

element i of Sbinaryv is positive.

To ensure that the dilution is small when metabolite i

participates in active reactions, we multiply Sbinaryv by e, where

e is a diagonal matrix whose number of rows and columns is the

number of metabolites, and its elements, eii, are small non-negative

constants that correspond to each metabolite i.

Thus, we set

b~eSbinaryv:

We then implement limed-FBA according to

Sv~eSbinaryv:

Note that this equation does not hold for all v; rather, it only holds

for those v that are feasible in limed-FBA. This equation can be

simplified to

(S{eSbinary)v~Slimedv~0:

We assign e so that no metabolite’s dilution rate can exceed a pre-

chosen constant. Here, we set dilution to never exceed 0.1; this

choice gives dilution rates on par with those theoretically

prescribed by MD-FBA. In general, we assign eii to be

eii~
0:1

vmax

P
j

s
binary
ij

:

where vmax is the overall upper bound on the fluxes. We used

vmax = 1000.

Metabolites in biomass already dilute according to FBA. So that

we do not double-dilute biomass metabolites, metabolites whose

growth-associated dilution is already captured in the pre-defined

biomass (e.g. DNA, RNA, protein) are assigned eii = 0.

The use of small numbers such as eii can create numerical

difficulties for optimization solvers, such as IBM ILOG CPLEX.

We found that these errors were rare, only occurred when growth

was impossible, and disappeared when trying an alternate linear

programming solution method (e.g. the simplex method instead of

a barrier method). An alternative that we didn’t try is to use an

exact solver or one with more precision [104].

As a consequence of limed-FBA’s linearity, limed-FBA allows

more dilution for metabolites with more flux. This is associated

with a potential pitfall. Consider a metabolite that is produced as a

by-product of growth, but is not connected to an exporter. To

maximize growth, this metabolite would need to be depleted. To

deplete this metabolite, limed-FBA could potentially ‘‘cheat’’: it

could create a high-flux loop that includes the metabolite, so that

the metabolite is allowed to dilute more. If a reaction includes

multiple metabolites, then including it in a loop is more likely to

have system-wide effects; conversely, reactions with fewer metab-

olites are less likely to have system-wide effects. In accord with this,

we found that limed-FBA used simple transport reactions (e.g. L-

glutamine[cytosol]«L-glutamine[nucleus]) to ‘‘cheat.’’ To address

this, we disallow simple transport reactions from contributing

towards dilution. We define these simple transport reactions as

those that transport metabolites, but involve no chemical change.
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This disallowance is implemented mathematically by assigning

columns in Sbinary that correspond to these simple transport

reactions to be all zeroes.
CROP. This algorithm is extensively detailed and compared

to similar approaches in Text S3.
OnePrune. OnePrune’s goal is to send flux through as many

reactions as possible given an unlimited amount of the available

nutrients. Mathematically, it’s defined as a linear goal program:

max
t

Xn

i~1

ti

Sv~0

tƒv

0ƒtƒ1

where S is a stoichiometric matrix consisting of n irreversible

reactions. This program does not contain upper bounds on the

available nutrient sources, so the only factor limiting reaction flux

is connectivity. Thus, in the optimal solution, all ti’s should be

binary: reactions with ti of one can carry flux, while the other

reactions are blocked.

OnePrune requires an irreversible stoichiometric matrix, but

any reversible stoichiometric matrix can be transformed into an

irreversible one (by splitting reversible reactions into two

irreversible reactions of opposite direction) so this method is

completely general. This requirement exists because direct

inclusion of a reversible stoichiometric matrix would force

OnePrune to deal with absolute values of reaction flux in a

manner not amenable to linear programming [105]. Moreover,

only an irreversible stoichiometric matrix allows OnePrune to

distinguish between different directions of the same reaction.

The set of blocked reactions of an irreversible stoichiometric

matrix may differ slightly from those of a reversible stoichiometric

matrix. For example, consider a reversible reaction between two

metabolites disconnected from the metabolic network: A«B. In

an irreversible stoichiometric matrix, this would be modeled as

two reactions: ARB and A r B. Thus, the reversible reaction is

blocked, whereas the two irreversible reactions could carry flux as

part of a flux cycle according to FBA. To address this, we

implemented OnePrune according to limed-FBA by using Slimed as

the stoichiometric matrix. This implementation disallows cycles

that lack an input flux, so it disallows the cycle of ARB and A r B.

However, limed-FBA does allow some cycles—namely, those not

penalized in Slimed and those that have an input flux. Thus,

reversible reactions that form such cycles (e.g. A[cytosol]«A[ex-

tracellular]) will not be pruned by OnePrune. However, these

reversible reactions can be identified a priori and addressed with Flux

Variability Analysis [57,58] or the method of Jerby et al. [51].

Furthermore, reversible reactions that form such cycles are rare,

and we found that OnePrune’s determination of blocked reactions

was identical to that of Flux Variability Analysis in practice.

To apply OnePrune to achieve our final pruned model, we

allowed all extracellular metabolites in our model to be treated as

nutrients.

Creation of COBRA-compatible SBML model
We exported the model to the COBRA-compatible subset of the

Systems Biology Markup Language (SBML) [106,107]. All SBML

identifiers were based on NeurosporaCyc Frame IDs. To avoid

using characters disallowed in SBML identifiers, we implemented

a substitution scheme. We substituted disallowed characters with

their ASCII equivalent, demarcated on both sides by two

underscores. For example, ‘‘[’’ has ASCII value 91, so it was

substituted by ‘‘__91__’’. Identifiers beginning with a number

were given a prefix of underscore; e.g. ‘‘1diacyl’’ became

‘‘_1diacyl’’. So that our SBML file can be reversed-transformed

into its original character encoding, we wrote an extension to the

COBRA toolbox in Matlab. This extension is available at http://

code.google.com/p/fast-automated-recon-metabolism. SBML Notes

fields contain COBRA-compliant gene associations, pathways,

EC numbers, Pubmed IDs, chemical formulae, charge, and

NeurosporaCyc and KEGG identifiers [107]. SBML Annotation

fields contain MIRIAM-compliant links to InChI identifiers

[108,109].

Model availability
The metabolic model (Dataset S1) has been deposited at the

BioModels Database [110] with accession MODEL1212060001,

and is available on the web at http://neurosporacyc.

broadinstitute.org.

Supporting Information

Dataset S1 iJDZ836 SBML.

(XML)

Figure S1 The mechanistic explanation for the Darg-4Darg-11

synthetic lethal prediction is that two alternate routes exist for

generating L-ornithine. (A) When arg-4 is blocked, L-ornithine can

be generated from arg-11. (B) When arg-11 is blocked, L-ornithine

can be generated via arg-4.

(EPS)

Figure S2 The mechanistic explanation for the DsucDcomplex I

synthetic lethal prediction is that two alternate routes exist in the

mitochondrion for regenerating NAD+ from NADH. (A) The first

route utilizes the ubiquinone:NADH oxidoreductase enzyme

encoded by complex I. (B) When ubiquinone:NADH oxidoreduc-

tase activity is blocked, NAD+ still can be regenerated by driving

the malate dehydrogenase reaction backwards via the pyruvate

carboxylase activity encoded by suc. When both routes are

blocked, the mitochondria unable to regenerate NAD+ from

NADH and the resulting double mutant is inviable.

(EPS)

Figure S3 Zoomable metabolic map of Neurospora crassa.

(EPS)

Figure S4 Plots glucose uptake rate (in millimoles per gram dry

weight per hour) against doubling time (in hours). The black curve

depicts the model’s predictions using FBA, where doubling time is

calculated as ln(2)/growth rate [113], and the blue diamonds

depict data points extracted from the experimental literature.

(EPS)

Figure S5 Simulating the effect of oxygen limitation on xylose

fermentation. In the first step, xylose is reduced to xylitol via a

xylose reductase that has a strong cofactor preference for for

NADPH (XR-NADPH) and a weaker preference for NADH (XR-

NADH) [114]. In the second step, xylitol is either excreted into the

medium or oxidized to xylulose via a NAD+-dependent xylitol

dehydrogenase (XDH) [115]. Xylulose is then phosphorylated and

enters the pentose phosphate pathway, followed by glycolysis to

pyruvate, and is either excreted as ethanol or enters the

mitochondria to be oxidized via the TCA cycle [29]. (A) Under

anaerobic conditions, our model predicts that XR-NADH is the

only source of NAD+ for XDH, so the excess xylitol generated by

XR-NADPH is exported, resulting in lower ethanol yields. (B)

Under fully aerobic conditions, our model predicts that XDH no
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longer acts as a bottleneck because NAD+ is regenerated by

oxygen via the glycerol phosphate shuttle. Furthermore, enough

oxygen is present to generate the NAD+ required by the TCA

cycle, which converts all the pyruvate to CO2 and water, resulting

in no ethanol production. (C) This figure shows the critical oxygen

level where just enough NAD+ is regenerated via the glycerol

phosphate shuttle to allow XDH to catalyze all the xylitol, but

there is no NAD+ left over to power the TCA cycle, resulting in

optimal ethanol yield and productivity. All three predictions of

xylitol and ethanol yields are consistent with experimental

observation [29].

(EPS)

Table S1 Describes our evidence source for our growth/no-

growth annotation of mutants, nutrient rescues, and synthetic

lethals.

(XLSX)

Table S2 Comprehensive set of our predicted essential genes,

supplemental rescues, and synthetic lethal gene pairs.

(XLS)

Text S1 Describes the 19 inconsistencies between the test set of

non-essential genes and the essential gene predictions.

(DOCX)

Text S2 Compares the steps we completed to reconstruct this

model to those in the Palsson lab’s 96 step protocol [38].

(DOCX)

Text S3 Details the CROP algorithm and compares it to

GrowMatch and the Model SEED. This has three sections: 1.

objective function, 2. resolving incorrect predictions by restoring

growth, and 3. resolving incorrect predictions by suppressing

growth.

(DOCX)

Text S4 Simulating the effect of oxygen limitation on xylose

fermentation.

(DOCX)
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45. Elloumi M, Küng J, Linial M, Murphy R, Schneider K, et al. (2008) A

computational method for reconstructing gapless metabolic networks. In

Bioinformatics Research and Development: Springer Berlin Heidelberg: Berlin.

pp. 288–302.

46. Christian N, May P, Kempa S, Handorf T, Ebenhoh O (2009) An integrative

approach towards completing genome-scale metabolic networks. Mol BioSyst

5: 1889–1903.

47. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, et al. (2012)

Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human

Cell Types and 16 Cancer Types Using INIT. PLoS Comput Biol 8: e1002518.

48. Vitkin E, Shlomi T (2012) MIRAGE: a functional genomics-based approach

for metabolic network model reconstruction and its application to cyanobac-

teria networks. Genome Biology 13: R111.

49. Latendresse M, Krummenacker M, Trupp M, Karp P (2012) Construction and

completion of flux balance models from pathway databases. Bioinformatics 28:

388–396.

50. Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, et al. (2012)

Reconstruction of Arabidopsis metabolic network models accounting for

subcellular compartmentalization and tissue-specificity. Proceedings of the

National Academy of Sciences 109: 339–344.

51. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-

specific metabolic models: application to human liver metabolism. Molecular

Systems Biology 6: 401.

52. Chang R, Ghamsari L, Manichaikul A, Hom E, Balaji S, et al. (2011)

Metabolic network reconstruction of Chlamydomonas offers insight into light-

driven algal metabolism. Molecular Systems Biology 7: 518.

53. Benyamini T, Folger O, Ruppin E, Shlomi T (2010) Flux balance analysis

accounting for metabolite dilution. Genome Biology 11: R43.

54. Duarte N, Herrgard M, Palsson B (2004) Reconstruction and Validation of

Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale

Metabolic Model. Genome Research 14: 1298–1309.

55. Davis RH (1979) Genetics of arginine biosynthesis in Neurospora crassa.

Genetics 93: 557–575.

56. Hoffmann S, Hoppe A, Holzhütter H-G (2007) Pruning genome-scale

metabolic models to consistent ad functionem networks. Genome informatics

International Conference on Genome Informatics 18: 308–319.

57. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in

constraint-based genome-scale metabolic models. Metabolic Engineering 5:

264–276.

58. Gudmundsson S, Thiele I (2010) Computationally efficient flux variability

analysis. BMC Bioinformatics 11: 489.

59. Tamiz M, Jones DF, El-Darzi E (1995) A review of Goal Programming and its

applications. Annals of Operations Research 58: 39–53.

60. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale

model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology 4: R54.

61. Andersen M, Nielsen M, Nielsen J (2008) Metabolic model integration of the

bibliome, genome, metabolome and reactome of Aspergillus niger. Molecular

Systems Biology 4: 178.

62. Heavner B, Smallbone K, Barker B, Mendes P, Walker L (2012) Yeast 5 - an
expanded reconstruction of the Saccharomyces Cerevisiae metabolic network.

BMC Systems Biology 6: 55.

63. Orth J, Conrad T, Na J, Lerman J, Nam H, et al. (2011) A comprehensive

genome-scale reconstruction of Escherichia coli metabolism—2011. Molecular
Systems Biology 7: 535.

64. Chen L, Vitkup D (2006) Predicting genes for orphan metabolic activities using

phylogenetic profiles. Genome Biology 7: R17.

65. Chen L, Vitkup D (2007) Distribution of orphan metabolic activities. Trends in

Biotechnology 25: 343–348.

66. Karp P (2004) Call for an enzyme genomics initiative. Genome Biology 5: 401.

67. Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V (2008) Group

Contribution Method for Thermodynamic Analysis of Complex Metabolic
Networks. Biophysical Journal 95: 1487–1499.

68. Noor E, Bar-Even A, Flamholz A, Lubling Y, Davidi D, et al. (2012) An

integrated open framework for thermodynamics of reactions that combines

accuracy and coverage. Bioinformatics (Oxford, England) 28: 2037–2044.

69. Feist A, Palsson B (2010) The biomass objective function. Current opinion in
microbiology 13: 344–349.

70. Beste D, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, et al. (2007)
GSMN-TB: a web-based genome-scale network model of Mycobacterium

tuberculosis metabolism. Genome Biology 8: R89.

71. Neville MM, Subkind SR, Roseman S (1971) A Derepressible Active Transport

System for Glucose in Neurospora crassa. Journal of Biological Chemistry 246:
1294–1301.

72. Schneider RP, Wiley WR (1971) Regulation of Sugar Transport in Neurospora

crassa. Journal of bacteriology 106: 487–492.

73. Courtright JB (1975) Characteristics of a glycerol utilization mutant of

Neurospora crassa. Journal of bacteriology 124: 497–502.

74. Lakin-Thomas PL, Brody S (1985) A pantothenate derivative is covalently

bound to mitochondrial proteins in Neurospora crassa. European journal of
biochemistry/FEBS 146: 141–147.

75. Scott WA, Tatum EL (1970) Glucose-6-phosphate dehydrogenase and

Neurospora morphology. Proc Natl Acad Sci U S A 66: 515–522.

76. Nishikawa K, Kuwana H (1985) Deficiency of glucose-6-phosphate dehydro-

genase in ace-7 strains of Neurospora crassa. The Japanese journal of genetics
60: 39–52.

77. Scott WA (1971) Physical properties of glucose 6-phosphate dehydrogenase
from Neurospora crassa. J Biol Chem 246: 6353–6359.

78. Brody S, Tatum EL (1966) The primary biochemical effect of a morphological

mutation in Neurospora crassa. Proceedings of the National Academy of
Sciences of the United States of America 56: 1290–1297.

79. Thompson J, Torchia DA (1984) Use of 31P nuclear magnetic resonance
spectroscopy and 14C fluorography in studies of glycolysis and regulation of

pyruvate kinase in Streptococcus lactis. Journal of bacteriology 158: 791–800.

80. Srb A, Horowitz NH (1944) The ornithine cycle in neurospora and its genetic

control. Journal of Biological Chemistry 154: 129–139.

81. Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the
filamentous fungus Neurospora crassa. Mol Biol Cell 14: 4352–4364.

82. Colot H, Park G, Turner G, Ringelberg C, Crew C, et al. (2006) A high-
throughput gene knockout procedure for Neurospora reveals functions for

multiple transcription factors. Proceedings of the National Academy of Sciences
103: 10352–10357.

83. Kuwana H, Okumura R (1979) Genetics and some characteristics of acetate-
requiring strains in neurospora crassa. The Japanese journal of genetics 54:

235–244.

84. Bernstein H (1961) Imidazole Compounds Accumulated by Purine Mutants of

Neurospora crassa. Journal of general microbiology 25: 41–46.

85. Murray NE (1965) Cysteine mutant strains of Neurospora. Genetics 52: 801–
808.

86. Murray N (1960) The distribution of methionine loci in Neurospora crassa.
Heredity 15: 199–206.

87. Horowitz NH (1947) Methionine synthesis in Neurospora. The isolation of

cystathionine 171: 255–264.

88. Beever RE, Fincham JR (1973) Acetate-nonutilizing mutants of Neurospora

crassa: acu-6, the structural gene for PEP carboxykinase and inter-allelic
complementation at the acu-6 locus. Mol Gen Genet 126: 217–226.

89. Flavell RB, Fincham JR (1968) Acetate-onutilizing mutants of Neurospora

crassa. I. Mutant isolation, complementation studies, and linkage relationships.

J Bacteriol 95: 1056–1062.

90. Versaw WK (1995) A phosphate-repressible, high-affinity phosphate permease
is encoded by the pho-5+ gene of Neurospora crassa. Gene 153: 135–139.

91. Videira A (1998) Complex I from the fungus Neurospora crassa. Biochimica et
biophysica acta 1364: 89–100.

92. Becker S, Palsson B (2008) Three factors underlying incorrect in silico

predictions of essential metabolic genes. BMC Systems Biology 2: 14.

93. Karp P, Paley S, Krummenacker M, Latendresse M, Dale J, et al. (2010)

Pathway Tools version 13.0: integrated software for pathway/genome
informatics and systems biology. Brief Bioinform 11: 40–79.

94. Davila G, Brom S, Mora Y, Palacios R, Mora J (1983) Genetic and
biochemical characterization of glutamine synthetase from Neurospora crassa

glutamine auxotrophs and their revertants. J Bacteriol 156: 993–1000.

95. Mora J (1990) Glutamine metabolism and cycling in Neurospora crassa.

Microbiological reviews 54: 293–304.

Neurospora crassa Metabolic Model Using FARM

PLOS Computational Biology | www.ploscompbiol.org 19 July 2013 | Volume 9 | Issue 7 | e1003126



96. Segre D, Zucker J, Katz J, Lin X, D’Haeseleer P, et al. (2003) From annotated

genomes to metabolic flux models and kinetic parameter fitting. OMICS 7:
301–316.

97. Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-

scale metabolic reconstruction. Nature Protocols 5: 93–121.
98. Ren Q, Chen K, Paulsen I (2007) TransportDB: a comprehensive database

resource for cytoplasmic membrane transport systems and outer membrane
channels. Nucleic Acids Research 35: D274–D279.

99. Lee T, Paulsen I, Karp P (2008) Annotation-based inference of transporter

function. Bioinformatics 24: i259–i267.
100. Legerton T, Kanamori K, Weiss R, Roberts J (1983) Measurements of

cytoplasmic and vacuolar pH in Neurospora using nitrogen-15 nuclear
magnetic resonance spectroscopy. Biochemistry 22: 899–903.

101. Schneider RP, Wiley WR (1971) Kinetic characteristics of the two glucose
transport systems in Neurospora crassa. Journal of bacteriology 106: 479–486.

102. Alberghina FAM (1973) Growth regulation in Neurospora crassa effects of

nutrients and of temperature. Archives of Microbiology 89: 83–94.
103. Becker S, Feist A, Mo M, Hannum G, Palsson B, et al. (2007) Quantitative

prediction of cellular metabolism with constraint-based models: the COBRA
Toolbox. Nature Protocols 2: 727–738.

104. Lerman J, Hyduke D, Latif H, Portnoy V, Lewis N, et al. (2012) In silico

method for modelling metabolism and gene product expression at genome
scale. Nature communications 3: 929.

105. Shanno D, Weil R (1971) Technical note—‘‘Linear’’ programming with
absolute-value functionals. Operations Research 19: 120–124.

106. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems
biology markup language (SBML): a medium for representation and exchange

of biochemical network models. Bioinformatics 19: 524–531.

107. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, et al. (2011)

Quantitative prediction of cellular metabolism with constraint-based models:

the COBRA Toolbox v2.0. Nat Protoc 6: 1290–1307.

108. Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, et al. (2005)

Minimum information requested in the annotation of biochemical models

(MIRIAM). Nat Biotechnol 23: 1509–1515.

109. Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I (2013) InChI - the

worldwide chemical structure identifier standard. J Cheminform 5: 7.

110. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, et al. (2010) BioModels

Database: An enhanced, curated and annotated resource for published

quantitative kinetic models. BMC Systems Biology 4: 92.

111. Karp P, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics

(Oxford, England) 18 Suppl 1: S225–S232.

112. Karp P, Ouzounis C, Moore-Kochlacs C, Goldovsky L, Kaipa P, et al. (2005)

Expansion of the BioCyc collection of pathway/genome databases to 160

genomes. Nucleic Acids Research 33: 6083–6089.

113. Ibarra R, Edwards J, Palsson B (2002) Escherichia coli K-12 undergoes

adaptive evolution to achieve in silico predicted optimal growth. Nature 420:

186–189.

114. Woodyer R, Simurdiak M, van der Donk WA, Zhao H (2005) Heterologous

expression, purification, and characterization of a highly active xylose reductase

from Neurospora crassa. Appl Environ Microbiol 71: 1642–1647.

115. Phadtare SU, Rawat UB, Rao MB (1997) Purification and characterisation of

xylitol dehydrogenase from Neurospora crassa NCL communication No. 6347.

FEMS Microbiology Letters 146: 79–83.

Neurospora crassa Metabolic Model Using FARM

PLOS Computational Biology | www.ploscompbiol.org 20 July 2013 | Volume 9 | Issue 7 | e1003126


