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Abstract

Flow cytometry is the prototypical assay for multi-parameter single cell analysis, and is essential in vaccine and biomarker
research for the enumeration of antigen-specific lymphocytes that are often found in extremely low frequencies (0.1% or
less). Standard analysis of flow cytometry data relies on visual identification of cell subsets by experts, a process that is
subjective and often difficult to reproduce. An alternative and more objective approach is the use of statistical models to
identify cell subsets of interest in an automated fashion. Two specific challenges for automated analysis are to detect
extremely low frequency event subsets without biasing the estimate by pre-processing enrichment, and the ability to align
cell subsets across multiple data samples for comparative analysis. In this manuscript, we develop hierarchical modeling
extensions to the Dirichlet Process Gaussian Mixture Model (DPGMM) approach we have previously described for cell subset
identification, and show that the hierarchical DPGMM (HDPGMM) naturally generates an aligned data model that captures
both commonalities and variations across multiple samples. HDPGMM also increases the sensitivity to extremely low
frequency events by sharing information across multiple samples analyzed simultaneously. We validate the accuracy and
reproducibility of HDPGMM estimates of antigen-specific T cells on clinically relevant reference peripheral blood
mononuclear cell (PBMC) samples with known frequencies of antigen-specific T cells. These cell samples take advantage of
retrovirally TCR-transduced T cells spiked into autologous PBMC samples to give a defined number of antigen-specific T cells
detectable by HLA-peptide multimer binding. We provide open source software that can take advantage of both multiple
processors and GPU-acceleration to perform the numerically-demanding computations. We show that hierarchical modeling
is a useful probabilistic approach that can provide a consistent labeling of cell subsets and increase the sensitivity of rare
event detection in the context of quantifying antigen-specific immune responses.
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Introduction

Model-based analysis for cell subset identification in flow
cytometry

Flow cytometry is the prototypical assay for multi-parameter

single cell analysis, and is essential in vaccine development,

monitoring of T cell-based immune therapies and the search for

immune biomarkers. In many clinical research applications, the

cell subsets of interest are antigen specific T lymphocytes that are

often found in extremely low frequencies (0.1% or less). These

antigen-specific T cells can be detected using HLA-peptide

multimers or by their expression of effector proteins upon specific

antigen stimulation in intracellular staining (ICS) assays. Current

methods of flow cytometry analysis rely on visual gating of cell

events to identify and quantify cell subsets of interest. However,

the choice of sequence for the dot plots (gating strategy) and where

to draw the gating boundaries is highly dependent on assay

protocols and operator experience and may not be easily

harmonized, as illustrated in recent international proficiency

panels [1,2].

There has therefore been increasing interest in the use of

objective, automated methods for cell subset identification [3].

One approach that we and others have promoted is the use of

statistical models to estimate the data distribution [4–6], followed

by a mapping of summaries of the statistical distribution to cell

subsets of biological interest. This model-based approach tends to

be more numerically intensive than other ad hoc approaches to data

clustering, but as we have previously demonstrated, this can be

overcome by exploiting the cheap massively parallel capabilities of

modern graphical processing units (GPUs). Importantly, the

model-based approach has the advantage of using a declarative

probabilistic framework that can be extended using well-
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established and understood mechanisms to improve discriminative

power. In particular, hierarchical models that incorporate

information from both the individual and group levels when fitted

to flow cytometry data samples can increase both interpretability

and sensitivity. These hierarchical models increase interpretability

by aligning clusters in a way that enables direct comparison of cell

subsets across data samples, and increase sensitivity for detecting

very low frequency cell subsets by sharing information across

multiple samples. Hierarchical models thus improve the ability of

model-based approaches to detect low frequency event subsets,

and enable the comparative analysis that is essential to any

downstream analysis of multiple data samples.

We briefly describe three alternative software packages for

automated analysis to contrast the approach of HDPGMM.

FLOCK 2.0 (FLOw cytometry Clustering without K) [7] is widely

used because it is a resource provided by IMMPORT (Immunol-

ogy Database and Analysis Portal), a repository of data generated

by investigators funded through the NIAID/DAIT. Similar to

DPGMM and HDPGMM, FLOCK is able to estimate the

optimal number of data partitions from the data. However,

FLOCK uses an adaptive multi-dimensional mesh to estimate

local density followed by hierarchical merging of adjacent regions

based on density differentials rather than a mixture model, and

does not appear to either provide a statistical model (e.g. for

goodness-of-fit calculations) or methods for alignment of cell

subsets across different samples. In contrast, flowClust [6] and

FLAME (FLow analysis with Automated Multivariate Estimation)

[5] both use a statistical mixture model approach for density

estimation and clustering. Both packages are likely to be widely

used, since flowClust is provided as a library in R/BioConductor,

and FLAME is part of GenePattern. Apart from the choice of base

distribution (T distribution for flowClust and skewed distributions

for FLAME), the main differences with DPGMM are the use of

optimization (Expectation-Maximization) rather than simulation

(MCMC) to estimate the density, the need for the user to specify

the number of partitions and differences in the type of transform

applied in data pre-processing. FlowClust does not provide any

method to align cell subsets across samples, while FLAME

provides a heuristic algorithm to do so as described in their

original publication [5]. Unlike HDPGMM, none of the three

algorithms use a hierarchical approach to model group and

individual specific effects.

With this in mind, the developments reported here concern the

implementation of a hierarchical Gaussian mixture model based

on a Dirichlet process prior, and extensions of the basic model to

identify and quantify rare cell subsets in flow cytometry data.

Simulated data is first used to demonstrate the advantages of

hierarchical models over conventional clustering approaches. This

is followed by validation of the model on experimental samples,

using retrovirally TCR-transduced T cells that are spiked into

autologous peripheral blood mononuclear cell (PBMC) samples to

give a defined number of antigen-specific T cells [8]. Finally, the

reproducibility and accuracy of this approach for rare cell

quantification is compared to that of standard DPGMM and

manual analysis performed by a group of ten flow cytometry users,

and compared with the results from FLOCK, FLAME and

flowClust.

Statistical mixture models
The basic concept in model-based approaches is to consider

events in a flow cytometry data set as being random samples

drawn from a multi-dimensional probability distribution. The

objective of analysis is then to define the probability distribution

model and evaluate inferences over the model parameters based

on fit to the specific data set. Statistical mixture models are a

standard approach for the construction of the underlying

distribution, using the sum of many simpler probability distribu-

tions (e.g. multivariate Gaussian, Student-t or skewed distributions)

to approximate arbitrary multi-dimensional distributions. For

biological interpretation, fitted models are then used for clustering,

i.e. using statistical properties of individual events to assign them to

biological cell subsets. For example, with statistical mixture

models, this can be done by grouping events with the highest

probability of coming from a specific mixture component together,

or merging of multiple components using specified criteria such as

having a common mode in the estimated distribution over markers

[9,10].

Of course, the number of distinguishable cell subsets and

Gaussian components necessary to fit the model satisfactorily

is not known in advance. To avoid having to specify the

number of mixture components needed in the model, we use a

Dirichlet process prior in which the number of components

necessary is directly estimated from the data [11]. Compu-

tationally, the use of Dirichlet process priors is more efficient

than fitting multiple models with different numbers of

components and testing with some penalized likelihood (e.g.

Akaike or Bayesian information criteria) to choose the best

model, as only a single model fit is performed. Since we use

multivariate Gaussian distributions as components, the

overall approach is described as a Dirichlet process Gaussian

mixture model (DPGMM). DPGMM are extremely flexible

models that can fit flow data from flow cytometry experiments

using different antibody-fluorochrome labels (e.g. 4-color

HLA-peptide multimer and 11-color intracellular staining

(ICS) panels), and a natural evolution of the fixed k Gaussian

mixture models we originally proposed [4]. Finally, while the

model uses Gaussian components, cell subsets are identified

with merged components using the consensus modal clustering

strategy described in Methods. As a result, cell subsets can

have arbitrarily complex distributions and are not restricted

to symmetric Gaussian clusters.

Author Summary

The use of flow cytometry to count antigen-specific T cells
is essential for vaccine development, monitoring of
immune-based therapies and immune biomarker discov-
ery. Analysis of such data is challenging because antigen-
specific cells are often present in frequencies of less than 1
in 1,000 peripheral blood mononuclear cells (PBMC).
Standard analysis of flow cytometry data relies on visual
identification of cell subsets by experts, a process that is
subjective and often difficult to reproduce. Consequently,
there is intense interest in automated approaches for cell
subset identification. One popular class of such automated
approaches is the use of statistical mixture models. We
propose a hierarchical extension of statistical mixture
models that has two advantages over standard mixture
models. First, it increases the ability to detect extremely
rare event clusters that are present in multiple samples.
Second, it enables direct comparison of cell subsets by
aligning clusters across multiple samples in a natural way
arising from the hierarchical formulation. We demonstrate
the algorithm on clinically relevant reference PBMC
samples with known frequencies of CD8 T cells engineered
to express T cell receptors specific for the cancer-testis
antigen (NY-ESO-1) and compare its performance with
other popular automated analysis approaches.

Hierarchical Modeling for Flow Cytometry Analysis
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Limitations of clustering approaches
Clustering methods applied to data samples independently face

two major limitations. The first is that cluster labels are not aligned

across data samples, posing a problem for comparing subsets

across multiple samples which is usually the purpose of the original

experiment. The second is that there are limits to the ability of

clustering models to identify very rare event clusters due to masking

by abundant event clusters [12]. In particular, this makes it

difficult to identify clusters matching antigen-specific HLA-peptide

multimer labeled or polyfunctional T cells in ICS assays that may

be biologically meaningful at frequencies of 0.1% or lower. We

show in this paper that both issues are successfully addressed by

the use of hierarchical Dirichlet process Gaussian mixture models

(HDPGMM).

Hierarchical Dirichlet process for information sharing
Hierarchical, or multi-level models, represent individual events

in flow cytometry data as being organized into successively higher

units. For example, individual events belong to a sample, and a

sample may belong to a collection of similar samples. The critical

idea is that cell subset phenotypes that are common across data

samples can be used to inform and hence better characterize

events in individual samples. For example, one hierarchical

Dirichlet process model formulation partitions components into

those common across data samples and those unique to a specific

sample [13,14] – this provides a different notion of sharing that is

useful for identifying fixed and variable components across

heterogeneous data samples but lacks a straightforward alignment

of all clusters necessary for multi-sample comparison.

Instead, we model information sharing by placing all data

samples under a common prior, such that the mean and

covariance in any of the individual sample Gaussian components

are shared across all samples, but the weight (proportion) of the

component in each sample is unique. As described by Teh et al

(2006) [15], this can be achieved by using a set of random

measures Gj , one for each data sample, where Gj is distributed

according to a sample-specific Dirichlet process DP(a0j ,G0j). The

sample-specific DPs are then linked by a common discrete prior

defined by another DP(c,H). This hierarchical model leaves the

cluster locations and shapes constant across datasets, and hence

aligns the clusters in that the location of the normal components is

common to all data samples.

As depicted in the summary schematic of the HDPGMM model

shown in Figure 1, there are basically 6 parameters that control

the sensitivity. The parameter c controls the spread of the

(standardized) cluster means and n controls how informative our

prior is about the shape of the covariances. The default for these

parameters is vague and it is our opinion that c and n should not

be tuned since it is unlikely that a user is knowledgeable about

these constraints. The next set of parameters e and f are hyper-

parameters for the Gamma distribution on a which controls the

overall number of clusters. Small values of a will encourage fewer

clusters and large values of a will encourage more clusters. The

mean and variance of the Gamma distribution are ef and ef 2

respectively, and the default is set such that both mean and

variance are 1. As an example of how we can tune this, if we set

e~1=f 2, the variance will be fixed, and the mean will vary as 1=f
– in that case we can encourage larger values of a and more

clusters by choosing small values of f . The final set of parameters

e0 and f0 are hyper-parameters for the Gamma distribution on a0

which specifies how similar the weights for each sample are to the

other samples’ distribution – when a0 is small, the amount of

information shared is small (weights for each batch can be very

different from the overall distribution); when a0 is large, the

weights for each batch are likely to be similar to the base

distribution. Tuning of a0 via e0 and f0 is analogous to tuning a via

e and f .

In the context of flow cytometry, a data sample typically consists

of an n by p data matrix from a single FCS file, where there are n

events and p features reporting scatter and fluorescent intensities.

The HDPGMM is a model that fits a collection of such data

samples, and makes the assumption that the same cell subsets are

present in every sample with frequencies that vary from sample to

sample. The model does not make any further assumptions about

whether the samples in a collection come from the same or

different subjects, experimental conditions, treatment groups etc.

Different flow cytometry technologies generate data sets that

mainly vary in the maximum number of features that can be

observed rather than in the standardized locations of cell subsets or

their covariances, and hence c and n do not need tuning. With

more features, it is likely that more cell subsets can be

distinguished, and it would be reasonable to tune e and f to

encourage larger values of a. The values of e0 and f0 do not

depend on the flow cytometry technology, but rather on how

similar or different samples are from each other, and can be tuned

accordingly. The number of mixture components that are needed

for a good model fit is also likely to increase, and we present a

diagnostic for model goodness-of-fit that can be used to guide

choice of the lower bound for the number of components used in

the results and discussion.

The hierarchical DP mixture model allows information sharing

over data sets. In the hierarchical model, each flow cytometry data

sample can be thought of as a representative of the collection of

data samples being simultaneously analyzed. The individual data

samples then provide information on the properties of the

collection, and this information, in turn, provides information on

any particular data sample. In this way, an HDPGMM fitted to a

single data sample ‘‘borrows strength’’ from all other samples in

Figure 1. Schematic summary illustrating the HDP model
framework. A graphical model provides a declarative representation
of the HDPGMM. The figure shows a compact plate representation of
the graphical model, in which plates (rounded rectangles) are used to
group variables in a subgraph. Each subgraph in a plate is replicated a
number of times as indicated by the label within the plate. The nth

event in the jth sample is represented by xjn, and the kth component for

the jth sample is a multivariate Gaussian with proportion pjk , mean mk

and covariance matrix Sk .s. Hyper-parameters that can be set are e, f ,
e0 , f0 , c and n as described in Methods. Given the declarative graphical
model, standard and GPU-accelerated MCMC sampling algorithms can
be used to implement the model as previously described [16].
doi:10.1371/journal.pcbi.1003130.g001

Hierarchical Modeling for Flow Cytometry Analysis
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the collection being analyzed. In other words, if a rare cell subtype

is found in more than one of the samples, we share this

information across the samples in the collection to detect the

subtype even though the frequency in a particular data sample

may be vanishingly small. HDPGMM thus increases sensitivity for

clustering cell subsets that are of extremely low frequency in one

sample but common to many samples or present in high frequency

in one or more samples. In principle, there is no lower limit to the

size of a cluster that can be detected in a particular sample. In

practice, vanishingly small clusters (e.g. 3–5 events out of 100,000)

require expert interpretation to distinguish background from

signal, but it is not uncommon for biologically significant antigen-

specific cells to be present at such frequencies.

Results

Simulation study
We illustrate the ability of hierarchical modeling to simulta-

neously overcome the problem of masking of rare event clusters

and provide an alignment of cell subsets over multiple data

samples. Four simulated data sets were created, each with up to 4

bivariate normal clusters in 4 quadrants. Clusters in each quadrant

may have different means or covariance matrices, or be absent

entirely; see Figure 2. We compared four different approaches to

clustering the data – independent fitting of DPGMM to each data

sample, using a reference data set, using pooled data, and using

hierarchical modeling.

Independent fitting of DPGMM to simulated data. In

Figure 2 row 1, DPGMM were independently fitted to each of the

data samples and modal clustering performed on the posterior

distribution averaged over post burn-in iterations. Events were

assigned to the modal clusters for which the posterior probability

was highest and color coded by the identity of the modal cluster.

The first obvious issue with this approach is that modal cluster

labels are not coherent over data samples, as shown in the top row

of Figure 2, and also by the different assignments of similar cell

subsets in different samples in the middle panel of Figure 3.

Consequently, it is not possible to directly compare modal cluster

frequencies across data sets without further post-processing. The

second more subtle issue is that the small (5 event) cluster in data

sample 3 (circled in red) has been masked by the large green

cluster even though it matches the distinct blue cluster in data

sample 1 and the red cluster in data sample 2 and should be

interpreted as a separate cell subset.

Using a reference data set. In row 2, we fitted a DPGMM

to sample 3 (reference data set), then used the posterior

distribution found to classify events in all the other samples. While

this ensures that all clusters are aligned across the data sets, it has

several limitations. The first issue is the need to choose a specific

reference data sample, which introduces an element of subjectivity.

A more worrying issue is that differences in distribution across data

samples are simply ignored, and this can result in artifacts as

shown with data sample 1 and data sample 2, where there is

mixing of the red/green clusters because the mean or covariance

matrices of those clusters deviated from that of the reference data

sample 3. Also, because the small cluster (circled in red) is masked

in data sample 3, it is also missed in all the other samples. While

another data sample could have been chosen as the reference, it is

clear from inspection of the variation across the simulated data

samples that no single reference can give a satisfactory result.

Using pooled data. In row 3, we fitted a DPGMM to pooled

data from all four data samples. Pooled data is problematic

Figure 2. HDPGMM results in more accurate classification of events in simulated data than other statistical mixture model
approaches. (Left) Row 1 shows independent fitting of DPGMMs to each data set; row 2 shows the use of reference posterior distribution from data
set 3 to classify events in other data set; row 3 shows a DPGMM fitted to pooled data from all data sets; and row 4 shows fitting of an HDPGMM to all
4 data sets. Results are described in the text. Within each row, if two events are assigned to the same cluster, they are given the same color - it can be
seen that clusters are aligned in Rows 2–4, but not in Row 1. All models used a truncated DPGMM base with 16 components, a burn-in of 10,000
iterations, and sampling of 100 post burn-in iterations for the calculation of the posterior distribution. (Right) Contour plots of the log posterior
distribution. The HDPGMM distributions (Row 4) are most similar to the independently fitted distributions (Row 1), with the advantage that the small
cluster in data set 3 masked by its larger neighboring cluster on top has a distinct mode. In contrast, the reference and pooled distribution strategies
have the exact same distribution for all data sets and lack the flexibility to model sample-specific features.
doi:10.1371/journal.pcbi.1003130.g002
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because the resulting distribution is for an ‘‘averaged’’ data

sample, and may result in the loss of information specific to a

particular sample. We observe artifacts from clusters present in the

pooled distribution but not in the specific sample in data sample 2

(green events in blue cluster) and data sample 4 (red events in blue

cluster). A subtle issue is the over-counting of red cluster events in

data sample 3 (9 events circled in red) due to the excessive

influence of the red clusters in data samples 1 and 2.

Hierarchical modeling. Finally, in row 4, we fitted a

HDPGMM to all four data sets simultaneously with the consensus

modal clustering approach to identify cell subsets as described in

Methods. Clusters are aligned across data sets, there is no spurious

mixing of clusters, and the rare event cluster in data sample 3 is

correctly classified as having 5 events (circled in red).

Experimental study
To evaluate the utility of HDPGMM for identifying rare event

clusters in real data, we used reference cell samples containing a

predefined number of T cells with known TCR specificity for the

NY-ESO-1 cancer-testis antigen. TCR-transduced cells were

added to autologous PBMC samples at final concentrations of

0%, 0.013125%, 0.02625%, 0.0525%, 0.105% and 0.21% [8].

There is also a small background contribution by antigen-specific

T cells that are already present in the unspiked sample, which is

estimated to be 0.0154% using the mean frequency from manual

gating by 10 flow practitioners. A total of 50,000 events was then

collected from each sample for analysis. At the highest spike

frequency, we would therefore expect to detect a maximum of

0.2254%, or 113 antigen-specific T cell events out of 50,000 total

events. This is a challenging clustering problem as the frequency of

expected multimer-positive events is extremely low, but ideal for

validation since the expected number of T cells that bind with

high-affinity to the HLA-peptide multimer is known.

DPGMM and HDPGMM models were separately fitted to

these six data samples using the FSC, SSC, CD45, CD3 and HLA-

multimer channels (5 dimensional), using a truncated Dirichlet

Figure 3. Comparison of manual, DPGMM and HDPGMM detection of rare antigen-specific events. The panels show the estimated
frequencies of antigen-specific cells (large red dots) expressed as a percentage of all events (yellow boxes). These percentages were estimated using
manual gating by a representative user (left), DPGMM (middle) and HDPGMM (right). Text in red in the first column shows the spiked-in frequency of
retrovirally transduced T cells for the data sample in that row. The red polygons in the left panel are gates used for identifying antigen-specific cells
by manual gating; the exact shape, sequence and location of these gates is determined by the operator and may vary between different operators
depending on their training, experience and expertise. With the DPGMM approach, cell subsets across the samples from top to bottom are not
directly comparable as indicated by the event colors, posing a problem for quantification of the same cell subset in different samples. In contrast,
with the HDPGMM approach, cell subsets are aligned and directly comparable across all samples. HDPGMM is more sensitive at detecting antigen-
specific cells when the frequency is extremely low (first 3 rows). HDPGMM is also more consistent in labeling events across different samples, while
DPGMM is prone to detect likely false positive antigen-specific cells that are CD3-low or negative (arrows in rows 1 and 4 of middle panel). HDPGMM
improves on the accuracy and consistency because the model incorporates both sample-specific and group-specific information, in contrast to
DPGMM which only has access to sample-specific information. For both DPGMM and HDPGMM, model fitting was done with an MCMC sampler
running 20,000 burn-in and 2,000 averaged iterations.
doi:10.1371/journal.pcbi.1003130.g003

Hierarchical Modeling for Flow Cytometry Analysis

PLOS Computational Biology | www.ploscompbiol.org 5 July 2013 | Volume 9 | Issue 7 | e1003130



process with 128 mixture components, 20,000 burn-in steps and

2,000 identified iterations to calculate the posterior distribution as

described in Methods. The trace plots of log-likelihood shown in

Figure 4 provides evidence for model convergence, and the

distribution of mixture component proportions in Figure 5

provides evidence for model goodness of fit. After consensus

modal clustering, the multimer positive clusters were defined using

the gating scheme shown in the left panel of Figure 3, but applied

to event clusters found by HDPGMM rather than individual

events. Since the clustering is done in the full set of markers rather

than in two-dimensional slices, events that look close together in a

particular projection but are further apart when all dimensions are

considered will not belong to the same cluster. The frequency of

multimer-positive events as a percentage of all 50,000 events was

then calculated. We also ran trials of HDPGMM to evaluate the

lower bound needed to find the antigen specific clusters in all

samples; 3 out of 4 runs were successful with 32 components, and

all runs were successful when 40 or more components were used.

A side-by-side comparison of manually gated, DPGMM and

HDPGMM classifications is shown in Figure 3. All 3 approaches

are comparable in terms of being able to identify and quantify the

antigen-specific cluster of events. Across all runs, DPGMM

consistently finds occasional outlier events that are likely to be

false positives (e.g. the CD3 negative to low events in the DPGMM

fits shown in rows 1 and 4). HDPGMM does not appear to suffer

from the same false positive detection, and is also more sensitive

for the samples with the lower spiked-in frequencies than

DPGMM. However, the most striking advantage of HDPGMM

over DPGMM is the interpretability of the hierarchical modeling –

cell subsets are consistently labeled across data samples, allowing

direct comparison of any cell subset of interest, not just of the

multimer positive events.

Figure 6 shows the results from the application of FLOCK,

FLAME and flowClust on the same data set. FLOCK only detects

the antigen-specific cell subset at the highest spiked-in concentra-

tion with a moderate number of probable false positive events that

are CD3-negative. As indicated by the color coding of events,

FLOCK does not provide any alignment of cell subsets across

samples. Using the default settings, FLAME failed to identify any

antigen-specific cell subsets. Cell subsets found were aligned but

there were alignment artifacts when the event partitioning was

different across samples (arrowed example). Using a 64 component

mixture, flowClust only detects antigen-specific clusters at the

highest spiked-in concentration, and does not provide any

alignment of cell subsets. Unlike FLOCK and Dirichlet process

based models, the number of components for FLAME and

flowClust is not estimated from the data. Hence, in practice, one

would have to fit a variety of models with different numbers of

Figure 4. Trace plots of log likelihood for the final 2,000 MCMC iterations of the HDP model sampled every 10th iterations showing
mixing and convergence. The MCMC was run for 22,000 iterations, and samples obtained from the final 2,000 iterations were used to calculate
and plot the log likelihood at each iteration. The log likelihood appears to vary stochastically about an equilibrium distribution indicating
convergence, and the chain traverses its distribution indicating mixing, but the steps tend to be small indicating some degree of autocorrelation. Text
in yellow boxes indicates the frequencies of the spiked antigen-specific T cells in the sample being fitted.
doi:10.1371/journal.pcbi.1003130.g004

Hierarchical Modeling for Flow Cytometry Analysis
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components and subsequently perform model selection when using

FLAME or flowClust.

In Figure S1, we compare HDPGMM, FLAME and flowClust

models with 48 components fitted to the same data set.

HDPGMM completed in 3 hours and 30 minutes (20,000 burn-

in and 2,000 identified iterations), FLAME took 4 days 12 hours

and 28 min, and flowClust completed in 25 minutes (1,000

iterations). With 48 components, HDPGMM found antigen-

specific clusters in all samples. FLAME found the clusters when

the spiked in concentration was greater or equal to 0.02625%, but

cluster alignment failed with the error ‘‘missing value where

TRUE/FALSE needed’’. In contrast, flowClust did not detect any

antigen-specific clusters. Both HDPGMM and FLAME clusters

included a fair number of CD3-negative events, in agreement with

the goodness-of-fit analysis shown in Figure 5 that 48 components

is inadequate for modeling rare event clusters in this data set. We

tried to run FLAME with 128 components but this was not

practical since the program did not terminate after more than 10

days. It took 26 hours for flowClust to run 1,000 iterations with

128 components, and 4 out of 6 samples gave ‘‘NA’’ indicating

missing data for all cluster centroids. The wide variation in run-

times seen with flowClust (25 minutes to 26 hours) probably

reflects early termination with fewer than 1,000 iterations due to

tolerance thresholds being met in the 48 component case. We

suspect that the missing data might be caused by the Expectation-

Maximization algorithm failing when there are zero-event

components, but cannot confirm this since the program terminat-

ed with no error messages.

Finally, to evaluate the robustness of the DPGMM and

HDPGMM frequency estimates, the fitting was repeated 10 times

for each algorithm using different random number seeds, and

compared to manual gating results from 10 users. Manual gating

was performed by operators who were instructed to gate using the

same sequence of 2D plots (common gating strategy), but were free

to set gate boundaries within any given plot. The results are shown

in Figure 7. With respect to linear regression, all three methods

perform comparably well with respect to correlation coefficient,

but manual gating has slightly less deviation from a straight line fit

Figure 5. Log of the proportion or weight of each of the 128 components in the model. Each panel shows a scatter plot of the log
component proportions ordered by size for the HDP model fitted to each flow cytometry data sample. The largest component has a log probability of
approximately -1, indicating that this single component can account for about 10% of the total events in the data sample. In contrast, the smallest
component has a log probability of between -5 and -6, indicating that the smallest component only accounts for 0.001–0.0001% of the total events in
the data sample. Since each sample has 50,000 events, components with log probabilities of -5 and below are likely to be empty of events. Hence, the
dip at the right of each plot is an indication of cutting back by the Dirichlet process model, and provides evidence that the number of components is
adequate for a good model fit. If there is no dip in the size of smallest component proportions, there is a need to increase the maximal number of
components if rare event clusters are to be adequately modeled. Text in yellow boxes indicates the frequencies of the spiked antigen-specific T cells
in the sample being fitted.
doi:10.1371/journal.pcbi.1003130.g005

Hierarchical Modeling for Flow Cytometry Analysis

PLOS Computational Biology | www.ploscompbiol.org 7 July 2013 | Volume 9 | Issue 7 | e1003130



than HDPGMM which in turn is better than DPGMM. From the

figure, it can also be seen that HDPGMM is more accurate than

manual gating in that the absolute deviation of the median of the

estimates from the ‘‘true’’ concentration is lower than that for

manual gating at every concentration. Since the ‘‘true’’ value is

taken to be background estimated from 10 manual estimates in the

autologous PBMC only sample added to the known spiked-in

frequency, accuracy is not evaluated for autologous sample alone.

In Figure 8, we show that the algorithm is robust to changes in the

hyper-parameters across a 9-fold range.

Discussion

We have shown that HDPGMM improves on fitting individual

samples with DPGMM in two ways - 1) it aligns clusters, making

direct comparison of cluster counts across samples possible, and 2)

by sharing information across samples, it can identify biologically

relevant cell subsets present at frequencies in the 0.01–0.1% range,

since ‘‘real’’ cell subsets would naturally be expected to be present

in multiple data samples. The hierarchical model is also preferable

to using a reference data sample or pooling the data from all

samples, since individual sample characteristics are lost with these

alternative strategies.

Unlike HDPGMM, other approaches for automated flow

cytometry analysis treat data in the same way as DPGMM, that

is, fitting a model to independent samples separately, then using a

heuristic or algorithm to match up clusters in one data set with

another. However, since the model fitting is performed indepen-

dently, the way that events are partitioned in individual data sets

into clusters may be different even across samples that are

otherwise very similar, resulting in poor alignment as seen in the

FLAME analysis. We are not aware of any other automated flow

cytometry analysis software that directly models contributions

from individual and grouped samples to align cell subsets, and

believe that the HDPGMM approach fills a useful niche in multi-

sample comparisons, especially for the quantification of rare event

clusters.

One limitation of the HDPGMM model is that all the data to be

fitted need to be simultaneously available. This is not an issue for

most studies, but may be limiting for longitudinal studies that

Figure 6. Comparison of FLOCK, FLAME and flowClust for detection of rare antigen-specific events. The panels show the estimated
frequencies of antigen-specific cells (large red dots) expressed as a percentage of all events (yellow boxes). (Left panel) FLOCK detects the antigen-
specific cluster at the highest spiked-in frequency but not in the other samples. There are several CD3-negative events included in the detected
cluster that are most likely false positive events. As indicated by the color coding of events, FLOCK does not provide any alignment of cell subsets
across samples. (Middle panel) Using the default settings, FLAME failed to identify any antigen-specific cell subsets. Cell subsets found were aligned
but there were alignment artifacts when the event partitioning was different across samples (arrowed example). (Right panel) Using 64 components
and 1000 iterations, flowClust only identified antigen-specific clusters at the highest spiked-in levels and did not provide any methods to align
clusters across samples.
doi:10.1371/journal.pcbi.1003130.g006
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collect samples serially over an extended period where interim

analyses need to be performed. Even in these cases, it may be

useful to batch process cell samples in stages using a hierarchical

model, then perform post-processing to align cell subsets over

different stages. Because of information sharing, cell subsets that

are consistent across data samples will be extremely robust features

in the posterior distribution. Hence, it is likely that features across

batches will be more consistent and easier to align for HDPGMM-

fitted batch samples than if every sample was independently fitted.

As described in the text, HDPGMM achieves alignment by

assuming that the cluster locations and shapes are constant across

datasets, and only their proportions vary from sample to sample.

This is similar to the standard practice of using a gating template

common to all samples for manual analysis. However, the

HDPGMM approach has several advantages over the use of a

common gating template. Because the locations and shapes of the

clusters are inferred from the data and not imposed top-down by

an expert, there is less risk of a subjective bias and failure to detect

novel cell subsets. Since classification of events is done by

assignment to the maximum probability cluster, cell subsets are

not demarcated by arbitrary (typically polygonal) boundaries. In

addition, it is simple to tune for higher sensitivity or specificity

depending on experimental context by setting the probability

necessary for an event to be included in a cluster; events that fall

below this threshold are considered to be indeterminate. However,

clusters that are doubly rare in the sense of being found in only a

small proportion of the samples, and which also constitute a tiny

fraction of the total events in any given sample, risk being masked

by other more common and high abundance clusters. In many

cases, this limitation can be addressed by the inclusion of

appropriate positive controls in the samples. Where such positive

controls are not available, a post-processing step to scan for

‘‘anomalous’’ events that are found in extremely low probability

regions of the posterior distribution at higher frequencies than

predicted, may be effective for identifying these doubly rare events.

Technically, our implementation of the HDPGMM integrates

several innovations necessary to make such hierarchical models a

practical tool for flow cytometry analysis, including the use of a

Metropolis-within-Gibbs step for sampling, an identification

strategy to maintain consistent component labels across iterations

that allows us to calculate the posterior distribution from multiple

MCMC iterations, and a consensus modal map to merge

components in such a way that non-Gaussian cell subsets are

aligned across multiple data sets. To ensure scalability, we have

implemented Message Passing Interface (MPI) and Compute

Unified Device Architecture (CUDA) optimized code that can take

advantage of multiple CPUs and GPUs from a cluster of machines

to fit a single HDPGMM model to multiple data sets.

We provide software for HDPGMM fitting to flow cytometry

data sets, together with pre-specified robust default parameters

and hyper-parameters that make practical usage simple. In our

experience, we have never needed to adjust these parameters for

data sets ranging from 3-color to 11-color flow cytometry data sets.

The only parameters we individually set are the number of burn-

ins, the number of iterations to collect for the posterior

distribution, and the maximal number of components for the

truncated DP algorithm. These parameters are tuned mainly for

computational efficiency since conservative defaults that would be

expected to be effective in all common use cases can be given, with

the trade-off being longer run times. In addition, the use of prior

information to set the starting values for component means and

covariances (e.g. from fits to previously collected similar data)

would reduce the number of iterations necessary to achieve

convergence.

The fitting of HDPGMM is computationally demanding but

can be accelerated with cheap commodity graphics cards as

Figure 7. Comparison of accuracy, reproducibility and linearity of manual gating, DPGMM and HDPGMM. For gating estimates,
frequency estimates from 10 flow cytometry operators were collected. For both DPGMM and HDPGMM, 10 MCMC runs with unique random number
seeds were performed to evaluate the reproducibility of antigen-specific cell frequency estimates. Estimates of the antigen-specific frequencies from
manual, DPGMM and HDPGMM approaches are shown as open blue circles, with the blue bar representing the mean of all 10 estimates at each spike
frequency. The red crosses represent the ‘‘true’’ frequency of antigen-specific cells combining the known spiked-in frequencies and the average
background from 10 manual evaluations. As shown in the figure, HDPGMM (right panel) estimates have equal or less variability at every spike dilution
when compared with DPGMM (middle panel). A linear regression fit (red line) shows that the standard errors and correlation coefficient of all 3
approaches are comparable. The number in red text above each set of estimates is the absolute value of (median of estimates – ‘‘true value’’), a
measure of accuracy. This shows that HDPGMM is more accurate than manual gating at every spiked-in concentration. The number in blue text below
each set of estimates is the coefficient of variation (CV), which is lower for HDPGMM than manual gating for all concentrations except autologous
sample only. For both DPGMM and HDPGMM, model fitting was done with an MCMC sampler running 20,000 burn-in and 2,000 averaged iterations.
doi:10.1371/journal.pcbi.1003130.g007
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previously described [16]. For example, running an MCMC

sampler for 20,000 burn-in and 2,000 identified iterations to fit

a 128-component HDPGMM to the six multimer data sets

shown in Figure 3 took less than 6 hours on a Linux

workstation using a single NVidia GTX 580 card costing

under USD 500. The algorithm has runtime complexity of

O(nk(d2z1)), and benchmark experiments shown in Figure 9

confirm that the performance is linear in the number of events

and samples and quadratic in the number of markers. Open

source code for fitting DPGMM and HDPGMM models to

flow cytometry data is available from http://code.google.
com/p/py-fcm/. The code is written in the Python

programming language, and will run on regular CPUs, but is

optimized for massively parallel computing using the CUDA

interface (a suitable Nvidia GPU is required for CUDA). Flow

cytometry data samples, source code and a sample script to fit

a HDPGMM model to the data are provided in Supplemen-

tary Materials.

Figure 8. Sensitivity analysis for the 4 configurable hyper-parameters e, f , e0 and f0. To evaluate the robustness of the algorithm to
changes in the configurable hyper-parameters, we repeated the analysis of the spiked in data sample multiple times with different parameters, using
10 independent MCMC runs to obtain statistics for each set of hyper-parameter configurations. Each mini-panel has the same axes as Figure 7 with
estimated frequency of multimer-positive events on the vertical axis and spiked-in frequency on the horizontal axis. A boxplot is used to display the
results for each model configuration. Configurable parameters were set to be either the default value (1.0), 3-fold lower (0.3) or 3-fold higher (3.0),
giving 81 hyper-parameter configurations. Three replicate runs with 10,000 burn-in and 1,000 MCMC iterations were performed for each
configuration. The default configuration is in the center panel with red text.
doi:10.1371/journal.pcbi.1003130.g008
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In summary, we describe and provide code for a hierarchical

modeling extension to statistical mixture models that improves on

the robustness, sensitivity and interpretability of model-based

approaches for automated flow cytometry analysis. We demon-

strate the consistency of frequency of HDPGMM estimates on

reference data samples spiked with extremely low frequencies of

antigen-specific cells, a scenario directly relevant to many clinical

research studies in vaccine development, immune monitoring and

immune biomarker discovery where the frequency of rare antigen-

specific T cells is of interest.

Methods

Hierarchical modeling
Dirichlet process mixture of Gaussians. Assume we

observe flow cytometry measurements x~fx1, . . . ,xng where

each xi is a p dimensional vector. Let the probability density

function for x be

f (xDH)~
XK

k~1

pkN(xDmk,Sk) ð1Þ

where H is the complete set of parameters in the model, K is the

number of possible clusters, and N(xi Dmk,Sk) is the p dimensional

multivariate normal density evaluated at xi with mean mk and

covariance matrix Sk. The mixture weights pk, are all positive and

sum to one. The pk are modeled as random probabilities from a

so-called ‘‘stick-breaking’’ prior process. Specifically,

~ppk*Beta(1,a) and pk~~ppk P
k{1

l~1
(1{~ppl) for k~2, . . . ,K{1, ð2Þ

where Beta denotes a beta distribution [17]. Note that p1~~pp1 and

pK~1{
PK{1

l~1 pl . A key advantage of the (truncated) Dirichlet

process specification is that it results in automated inference on the

number of clusters based on a pre-specified large value K . That is,

with such an encompassing K , many of the pk will be inferred as

very close to zero, leaving a reduced set of effective clusters. A

complete Bayesian model specification is completed by putting

priors on a, m, and S.

An alternative and equivalent representation of (1) is to assume

that for each observation xi we have an unknown label zi. If we

assume P(zi~k)~pk and xi Dzi~k*N(mk,Sk), marginalizing the

zi yields (1). This parametrization makes posterior computation

more tractable, and inference about zi is equivalent to inferring the

cluster assignment for xi.

Hierarchical Dirichlet process mixture of

Gaussians. We now generalize DPGMM to simultaneously

classify T cells across multiple datasets. Assume we observe J
different sets of FCM measurements xj~fxj1, . . . ,xjnj

g. Each

dataset then has its own probability density function given by

fj(xDH)~
XK

k~1

pjkN(xDmk,Sk): ð3Þ

Note the primary difference between DPGMM and HDPGMM is

pjk. The sets of cluster locations and shapes, m and S, are assumed

to be the same across datasets while the prevalence of the clusters

p is allowed to vary across datasets. A similar two level

parametrization holds here as in DPGMM. The approach now

introduces the inherent, latent component indicators zji such that,

for each observation i and component j, P(zji~k)~pjk; this leads

to conditional distributions xji Dzji~k*N(mk,Sk) and opens the

path to routine computational methods.

Our interest is in extensions of this basic framework to

hierarchical models on the pjk that effectively picks the number

of clusters in the model, but shares information across datasets to

facilitate rare subtype discovery. Teh et al (2006) [15] give multiple

representations for a hierarchical Dirichlet process for clustering

across multiple datasets. We take their stick breaking approach:

~bbk*Beta(1,a) and bk~~bbk P
k{1

l~1
(1{~bbl ) for k~2, . . . ,K{1:

~ppjk*Beta a0bk ,a0 1{
Pk
l~1

bk

� �� �
and pjk~~ppjk P

k{1

l~1
(1{~ppjl ) for k~2, . . . ,K{1:

ð4Þ

As before, b1~
~bb1, bK~1{

PK{1
l~1 bl , pj1~~ppj1, and pjK~1{PK{1

l~1 pjl . Teh et al (2006) [15] show that this construction is

equivalent to letting each dataset have its own Dirichlet process

where the base measures also arise from a common base measure.

We complete the prior specification by placing multivariate

Figure 9. Performance of HDPGMM with different numbers of events, samples and markers. Left panel shows time taken to fit HDPGMM
to 10 samples with 50,000 to 500,000 events and 10 markers. Middle panel shows time taken to fit HDPGMM to 3 to 30 samples each with 100,000
events and 10 markers. Right panel shows time taken to fit 10 samples each with 100,000 events with the number of markers varying from 5 to 15. In
each case, the model was run for 1,000 MCMC steps with an upper limit of 128 mixture components on a NVidia GTX 580 GPU, and the times from
three replicate runs are shown.
doi:10.1371/journal.pcbi.1003130.g009
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normal and inverse Wishart priors on each mj and Sj respectively.

We also use gamma priors on a and a0 [11].

In summary, within each sample every cell is assumed to come

from some unknown cluster where the number of clusters is

learned from the data and the shape of each cluster is unknown.

Note that we can assume this to be true because we group many

parametric Gaussian clusters into flexibly shaped groups. See the

consensus modal clustering below. Since the model is hierarchical

in the sense that cluster shapes are shared between samples while

their prevalence variance between samples, information is shared

when cells from multiple samples are assigned to the same cluster

giving us more information about the cluster’s shape. This is

especially prevalent when the number of cells in a particular

cluster is small for a given sample.

Posterior computation. We perform posterior inference by

sampling via a Markov chain Monte Carlo (MCMC) algorithm

using the latent classification variable z. However, several

challenges arise. First, the usual Gibbs sampling approach does

not work because the conditional distributions of the ~bbk are

difficult to work with. Crepet et al (2011) [18] use a similar model,

but do not give details for sampling these key parameters.

Secondly, the naming, or labeling, of the clusters is not well

defined, so we need to deal with relabeling issues. Finally, the

computation within each sampling iteration is very expensive.

Metropolis within Gibbs. Since the conditional distribu-

tions for b and a are not conjugate, we propose a Metropolis

within Gibbs approach. For each MCMC iteration, all other

parameters are sampled via their full conditional distributions

given in the HDPGMM implementation section below. We then

propose a new a’ from a normal distribution centered at a where

we reflect negative values onto the positive half line and accept or

reject the move according to the Metropolis Hastings (MH) ratio.

We take the same approach for each ~bbk except that we reflect onto

the unit interval. The variability in the random walks is tuned

during the burn-in period to target a 50% acceptance rate

supported by Gelman et al [19].

Identification. To address the label switching issue, we use

the method of Cron and West [20] that maintains a coherent

classification of the data across the MCMC iterates. This is

enabled by defining a ‘‘reference’’ classification taken from the last

iteration of the burn-in phase of the MCMC; this is simply the

most likely cluster assignment for each event in all the datasets at

that iterate. This labeling is chosen as a reference since it is

assumed to be a representative labeling of the cells. Then, at every

further iteration the clusters are relabeled to minimize the

misclassification rate when compared to the reference. In essence,

we pick a representative clustering then we choose the cluster

labelings at every iterate that labels the data most like the

reference. This method is used because of its computational

efficiency and good performance in other settings. Critically, this

allows us to estimate the true posterior by component-wise

averaging over multiple iterations after the burn-in phase, instead

of using a point estimate as is typically done. Complete details are

given by Cron and West [20] including a flow cytometry example.

GPU computation. In each iteration of the MCMC, the

multivariate normal distribution must be evaluated at every event

(in every dataset) for each of the K clusters to get assignment

probabilities. Without parallel computing, this takes the majority

of the computation time. Therefore, we adapted the GPU

computing ideas by Suchard et al [16,21] used in the ‘‘gpustats’’

python library to accelerate the computation. We also employed

MPI techniques that use multiple GPUs across potentially multiple

machines simultaneously to optimize performance.

Consensus modal clustering for cell subset identification

and alignment. As cell subsets may have non-Gaussian

distributions, it is often necessary to merge several mixture

components to represent a single cell subtype. An intuitively

appealing concept is to cluster components together when the

components share a common mode, since the mode is an

objective feature of the posterior distribution that links

multiple components - here we adapt the procedure to find

a coherent modal assignment across data sets. We first create a

reference distribution whose whose components have the same

means and covariance matrices as the fitted HDPGMM

model, but whose component weights are averaged over all

data sets. We first create a consensus Gaussian mixture model

distribution whose components have the same means and

covariance matrices as the fitted HDPGMM model, but whose

component weights are averaged over all data sets. Starting

from the location of each component mean, we use a

numerically efficient iterative procedure to identify the mode

associated with that location as previously described [10].

Components in the consensus GMM that approach the same

mode to within a small tolerance are then merged to create a

mapping of Gaussian components to modal clusters. The

mapping is then used for all the fitted data sets, resulting in

cell subset (modal cluster) alignment across multiple data sets.

Note that only the mapping of component to modal cluster is

shared by all data sets, the component weights for each data

set remain unique.

HDPGMM implementation
We give posterior computational details only for HDPGMM

since details for our implementation of DPGMM have been

previously published [16]. First, let mk DSk*N(0,cSk) and

Sk*IW (nzpz1,nW) so that E(Sk)~W. Furthermore, let

a*Ga(e,f ) and a0*Ga(e0,f0). These along with equations (3)

and (4) give a complete specification of the model. Metropolis

within Gibbs is performed by updating each parameter with a

draw from its conditional distribution in turn and when the

conditional distribution is intractable, use a Metropolise Hastings

update instead. We give the specifics of the sampling in the

remainder of this section.

Sampling classification indicators. For each observation

calculate

pj
k(xji)~

pjkN(xji Dmk,Sk)PK
l~1 pjlN(xji Dml ,Sl)

then sample each zji with pmf

p(zji~kDx,{)~p
j
k(xji):

Note that we use the shorthand ‘‘{’’ to denote all other

parameters in the model. This calculation occupies most of the

computational effort for large datasets. However, this is completely

parallelizable across observations and datasets. To achieve very

large performance gains, we place one or more datasets xj on each

GPU available and use ‘‘gpustats’’ to perform the computations

similar to [16].

Sampling cluster parameters. Given the cluster assign-

ments, sampling each mk and Sk is simply a matter of drawing

from their conjugate normal and inverse Wishart distributions

respectively. Let, xk be all observations such that zji~k and nk be

the number of said observations. Sample
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mkDx,z,{*N

P
i xk

i

1=cznk

,
1

1=cznk

Sk

� �

and

Sk Dx,z,{*IW (nzpznkz2,nWzSk)

where Sk~mkm’k=cz
P

i (xk
i {mk)(xk

i {mk):’
Updating the cluster weights, pjk, is slightly less routine but still

conjugate. Define,

ajk~a0bkznjk

bjk~a0 1{
Xk

l~1

bl

 !
z

XK

r~kz1

njr

where njk is the number of points in dataset j assigned to cluster k.

Sample ~ppjk Dx,z,{*Beta(ajk,bjk).

Furthermore, a can be updated simply by

aD{*Ga(ezK{1,f {
XK{1

k~1

log(1{~bbk)):

Metropolis Hasting sampling. The conditional distribu-

tions for ~bb and a0 are not tractable for sampling directly.

Therefore, we use Metropolis Hastings samples with reflected

normal proposals for each ~bb and a0 in turn. The algorithm is

essentially the same in both cases, so we give a general description

of the approach for sampling the parameter of interest, h,

constrained between a and b. Note that a or b can be {? or ?
respectively.

First, sample v*N(h,s2
h) and set h’~R(v,a,b) where R(:,a,b)

recursively reflects v over the bounaries. While the pdf for this

proposal distribution q(h’Dh,s2
h) is tedious to write analytically, it

can be shown that q(h’Dh,s2
h)~q(hDh’,s2

h). Finally, set h~h’ with

probability

min 1,
p(hD{)p(h)

p(h’D{)p(h’)

� �

and leave h unchanged otherwise. Note that the proposal

distribution does not enter the probability because it is symmetric.

To choose the appropriate s2
h, we track the acceptance rate during

the burn in period. On a fixed interval, we check if the acceptance

rate is above 50% or below 40% and reduce or increase s2
h

respectively. When sampling ~bbk,

p(~bbkj{)p(~bbk)~P
r~k

K

P
j~1

J

Beta ~ppjr a0br,a0 1{
Xr

l~1

br

 !�����
( )" #

Beta(~bbkj1,a)

and ~bbk[(0,1). For a0,

p(a0j{)p(a0)~P
k~1

K

P
j~1

J

Beta ~ppjr a0br,a0 1{
Xr

l~1

br

 !�����
( )" #

Ga(a0je0,f0):

Generation of experimental data and data preprocessing
The generation of the standard samples with a defined

number of antigen-specific CD8 T cells spiked into autologous

PBMC for use in HLA-peptide multimer has been described

[8]. Briefly, Phytohemagglutinin (PHA; 0:5 mg=ml) and IL-2

(20 U/ml) stimulated HLA-A*0201 positive PBMC were

retrovirally transduced with an HLA-A*0201 restricted

NY{ESO157{165 specific TCR construct after the CD4 T

cells were depleted using Dynabeads (Invitrogen). After 5 days,

the transduced cells were harvested and purified using APC-

conjugated NY-ESO-1 specific HLA multimer and magnetic

cell sorting. Purified cells were clonally expanded, harvested

and spiked at the desired percentage of NY-ESO-1 specific

TCR expressing CD8 T cells into autologous PBMC. These

samples were stained with monoclonal antibodies specific for

CD45 (pan leukocyte) CD3 (T-lymphocytes) and HLA-A*0201

NY-ESO-1 157–165 multimers to identify spiked T cells. For

details, please refer to reference [8]).

Sample preparation conditions were set so that results (i.e.

generated FCS files) would be as comparable as possible: Cell

staining was performed simultaneously by the same operator,

using the same batches of staining reagents, and data

acquisition was subsequently done in a single experiment using

the same cytometer settings (voltages, compensations) for all

samples. The data were generated using a FACSCalibur and

CellQuest Pro 6.0, with values ranging from 0 to 1023. No

further transformations were performed on the data but

standardization to have zero mean and unit standard deviation

was performed before fitting the mixture model so all markers

would have equal contributions. The standardization was

reversed before plotting - i.e. all plots are based on the original

0 to 1023 scale. For gating estimates, frequency estimates from

10 flow cytometry operators using the same gating strategy

were collected.

Supporting Information

Figure S1 Comparison of HDPGMM, FLAME and
flowClust with same number of mixture components.
The panels show the estimated frequencies of antigen-specific cells

(large red dots) expressed as a percentage of all events (yellow

boxes). (Left panel) HDPGMM detects the antigen-specific cluster

at all spiked-in frequencies with cell subset alignment as indicated

by the color coding of events. (Middle panel), FLAME identified

antigen-specific cell subsets at spiked-in frequencies of 0.02625%

of greater, but the alignment stage failed with an error message

and hence clusters are not aligned. (Right panel) FlowClust failed

to identify any antigen-specific clusters and cell subsets are not

aligned. Note that both HDPGMM and FLAME detect a

moderate number of CD3-negative false positive events, suggest-

ing that 48 components are insufficient to adequately model rare

event subsets in this data set.

(TIF)
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Text S1 Text S1 contains instructions on how to install the

software and run the examples provided.

(ZIP)

Software S1 Software S1 contains a Makefile, source code and

scripts to generate the figures shown in the manuscript.

(ZIP)
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