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Abstract

A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently
proposed such a device, termed a ‘‘molecular ticker tape’’, in which an engineered DNA polymerase (DNAP) writes time-
varying signals into DNA in the form of nucleotide misincorporation patterns. Here, we define a theoretical framework
quantifying the expected capabilities of molecular ticker tapes as a function of experimental parameters. We present a
decoding algorithm for estimating time-dependent input signals, and DNAP kinetic parameters, directly from
misincorporation rates as determined by sequencing. We explore the requirements for accurate signal decoding,
particularly the constraints on (1) the polymerase biochemical parameters, and (2) the amplitude, temporal resolution, and
duration of the time-varying input signals. Our results suggest that molecular recording devices with kinetic properties
similar to natural polymerases could be used to perform experiments in which neural activity is compared across several
experimental conditions, and that devices engineered by combining favorable biochemical properties from multiple known
polymerases could potentially measure faster phenomena such as slow synchronization of neuronal oscillations.
Sophisticated engineering of DNAPs is likely required to achieve molecular recording of neuronal activity with single-spike
temporal resolution over experimentally relevant timescales.
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Introduction

When the monomers added to a growing polymer chain depend

on signals in the environment, such as the ion fluxes during an

action potential, the polymer sequence stores a record of the

environmental signal’s variation over time, much like a ticker tape

[1,2]. DNA polymerases (DNAPs), enzymes that catalyze replica-

tion of DNA, possess nucleotide misincorporation probabilities that

can be modulated by local ion concentrations [3,4], making them

candidates for ion-sensitive molecular ticker tapes that encode

signals into DNA strands in the form of base misincorporation

patterns. For example, neural firing could be recorded by linking

intracellular calcium concentration to polymerase misincorporation

rates. In DNAP misincorporation-based recording, information is

stored in the form of a string of copied nucleotides, which can be

sequenced and compared to the known template sequence to

identify the sites of misincorporations. Consequently, one can

estimate the state of the environment – e.g. ion concentration – as a

function of time, based on the observed misincorporation pattern.

A key problem for such biochemical ticker tape machines is that

they may not have a high-fidelity clock. DNAPs do not add

nucleotides at a constant rate [5,6]: binding, catalysis, pausing, and

dissociation from the template strand are thermally-activated,

stochastic processes [7]. It is therefore necessary to address

imperfect measurements of time in molecular ticker tapes.

To assess the feasibility of extracting information from

molecular ticker tapes, we analyze a system in which multiple

ion-sensitive DNAPs simultaneously replicate identical DNA

template strands in the presence of a time-varying ion concentra-

tion signal (Fig. 1A). In this scenario, DNAPs add each successive

copied nucleotide with an ion concentration-dependent misincor-

poration probability. Due to thermal fluctuations, the time at
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which the addition of a particular nucleotide occurs must be

treated as a random variable (Fig. 1B). In the limit of a large

ensemble of simultaneously replicated templates, a misincorpora-

tion probability distribution can be measured as a function of the

index of the nucleotide (Fig. 1C). Here we study the problem of

estimating the ion concentration signal as a function of time, based

on observed misincorporation frequencies as a function of the

nucleotide index.

Our method for solving this inverse problem relies only on

counting the total number of misincorporations as a function of

position within the template. Therefore, it is directly compatible

with current-generation short-read deep sequencing technologies,

in conjunction with in silico sequence alignment algorithms (e.g.

Smith-Waterman [8]), which would be used to localize the short

reads inside a long, high-complexity DNA template sequence.

Note that assembly of the short reads into contiguous strands,

representing the output of a single polymerase molecule, is not

required. This is fortunate because distinct error-prone copies of

templates with identical sequences will share a high degree of

homology and therefore may be difficult to assemble.

What are the biochemical properties that a DNAP must possess

in order to function as a molecular ticker tape recorder? To allow

for faithful decoding of realistic input signals, a DNAP may require

a favorable combination of parameters such as speed, pause

probability, distribution of pause durations, and ion-dependent

misincorporation rate. Likewise, it is unclear how many simulta-

neously replicated template strands are required for accurate

decoding.

Here we address these statistical constraints on molecular ticker

tapes by presenting (1) an intuitive theoretical framework, based

on Fisher information theory, which quantifies the theoretical

optimal precision for estimating the time-varying input signal from

sequencing data as a function of relevant biochemical and

experimental parameters, and (2) decoding algorithms to perform

estimation of the time-varying input signal from sequencing data.

The decoding algorithms rely on knowledge of the DNAP’s kinetic

parameters. When these parameters are unknown, we provide an

algorithm to calibrate them from sequence data generated in the

presence of known input signals. Simulations of the decoding

algorithm are used to determine the effects of relevant experi-

mental parameters on the actual decoding performance of the

algorithms (as opposed to their effects on the theoretical optima).

With a view towards potential neuroscience applications, we

identify polymerase parameter sets and input signal characteristics

for which molecular recording may be feasible, thereby providing

guidelines for the experimental design and validation of molecular

recording technologies.

Results

Overview
The statistical feasibility of molecular recording depends on

several experimental and biochemical parameters. We focus on (1)

the kinetic parameters of polymerization by DNAP: the average

single-base elongation time (tC ), average pause time (tP), and

pause probability (P); (2) the number of simultaneously replicated

DNA template strands; and (3) the concentration to misincorpora-

tion link function (CMLF), which relates the per-base misincor-

poration probability to the local ion concentration. All these

parameters can be determined experimentally prior to their use in

molecular ticker tapes, either by traditional biochemical or single-

molecule methods, or by those discussed below.

Using these parameters, we created a multi-parameter forward

model (Eqs. 2–5; see Methods) for the probability of nucleotide

misincorporation at any template base position, given a time-

varying ion concentration signal. Based on this forward model, we

derived an expression that analytically relates the optimal

precision of ion concentration estimation to the model parameters

in the setting of a single ion concentration pulse (Eqs. 1&7; see

Methods).

For the case of realistic time-dependent ion concentrations,

rather than single pulses, we have developed two algorithms (see

Methods) to decode the time-varying ion concentration signal from

the observed DNA sequences. The first algorithm estimates a

continuous concentration trace by minimizing a cost function,

while the second estimates a binary concentration trace using

maximum likelihood estimation. A third algorithm determines

unknown DNAP kinetic parameters from sequencing data, given

known time-dependent ion concentration signals as inputs.

We first apply Fisher information theory to quantify optimal

estimation precision for a single-pulse input, which results in a

concise formula that provides intuition for the dependence of

decoding fidelity on relevant experimental parameters. We next

apply our decoding algorithms to simulated data. This allows us to

quantify the achievable temporal resolution and recording

duration of molecular ticker tapes in the context of realistic neural

recording experiments. For several experimental paradigms, we

determine the necessary DNAP kinetic parameters, CMLFs, and

number of DNA templates. We also study the effects of DNAP

dissociation from the template and of variation in polymerase

start-times.

Analytically relating estimation precision to experimental
parameters

To provide some insight into the feasibility of ticker tape

decoding under different experimental parameters, and to provide

an analytical tool for testing the performance of our algorithms, we

start by deriving the Fisher information associated with estimating

the characteristics of a single concentration pulse from the

Author Summary

Recording of physiological signals from inaccessible
microenvironments is often hampered by the macroscopic
sizes of current recording devices. A signal-recording
device constructed on a molecular scale could advance
biology by enabling the simultaneous recording from
millions or billions of cells. We recently proposed a
molecular device for recording time-varying ion concen-
tration signals: DNA polymerases (DNAPs) copy known
template DNA strands with an error rate dependent on the
local ion concentration. The resulting DNA polymers could
then be sequenced, and with the help of statistical
techniques, used to estimate the time-varying ion
concentration signal experienced by the polymerase. We
develop a statistical framework to treat this inverse
problem and describe a technique to decode the ion
concentration signals from DNA sequencing data. We also
provide a novel method for estimating properties of DNAP
dynamics, such as polymerization rate and pause frequen-
cy, directly from sequencing data. We use this framework
to explore potential application scenarios for molecular
recording devices, achievable via molecular engineering
within the biochemical parameter ranges of known
polymerases. We find that accurate recording of neural
firing rate responses across several experimental condi-
tions would likely be feasible using molecular recording
devices with kinetic properties similar to those of known
polymerases.
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observed misincorporation rate (see Methods). Here, the Fisher

information I(C) measures the degree to which the observed

nucleotides are informative about the peak ion concentration C of

an input pulse. A greater value for I(C) implies that C can be

estimated more precisely: 1=I(C) is the theoretical minimum

variance of an unbiased estimator of C [9].

In the limit of small misincorporation rates, the Fisher

information can be approximated as:

I(C)N templates&N
X

i

m:Ci(T0,d; h1)ð Þ2

E0zm:Ci(T0,d; h1):Cð Þ ð1Þ

(see Methods), where N is the number of DNA templates;

Ci(T0,d; h1) is the probability that nucleotide i was added during

a concentration spike with start-time T0 and duration d, and

DNAP parameters h1; C is the ion concentration; E0 is the baseline

error rate per base; and m is the slope of the CMLF, where we

approximate the CMLF as linear [4], i.e., as E0zm:C.

Eq. 1 confirms several natural intuitions about molecular

recording: the theoretical optimal precision of ion concentration

estimation can be increased by increasing N (the number of DNA

templates; Fig. S1A), decreasing E0 (the baseline misincorporation

rate; Fig. S1B), increasing m (sensitivity of misincorporation rate to

ion concentration changes; Fig. S1C), and increasing Ci(T0,d; h1)

(probability that the ith nucleotide was incorporated during the

concentration spike). Ci(T0,d; h1) can be increased in multiple

ways. Decreasing the pause duration or frequency increases

Ci(T0,d; h1) because polymerases will be less widely dispersed

during the pulse when their nucleotide addition kinetics are less

stochastic (Fig. S1D). Decreasing T0 increases Ci(T0,d; h1) because

the ensemble of polymerases de-phases over time (explained in

more detail in Methods). Lastly, increasing d, the duration of the

concentration pulse, increases Ci(T0,d; h1). Note that, while Eq. 1

applies in the limit of small error rates, the full expression for the

Fisher information (Eq. 7) indicates that these general trends are

still valid when considering moderate or large error rates; we use

the full expression for the Fisher information in our simulations.

For further simplifications of Eq. 1 in the limits of low and high

baseline misincorporation rates and concentrations, see Text S1:

Further Simplifications. We also studied how Fisher information

governs the estimation of other properties of the concentration

pulse in addition to its peak concentration: see Text S1: Additional

Pulse Properties.

In the case of multiple concentration pulses, a Fisher

information matrix can be constructed; however, this does not

give rise to a simple analytic expression. Thus, to determine the

performance of decoding multi-pulse input concentration traces,

we implemented our decoding algorithms on simulated data in

what follows.

Testing the performance of decoding algorithms
Our continuous decoding algorithm, which minimizes predic-

tion error by using a cost function, obtains ion concentration

Figure 1. Encoding and decoding of signals with a molecular ticker tape. A) Example time-varying ion concentration signal. In a neuron,
peaks in calcium concentration occur during neural firing. B) Example products from the simultaneous replication of multiple template strands,
showing correct (C) and incorrect (I) nucleotide additions, with the time of incorporation shown on the horizontal axis. Misincorporations are more
likely in the presence of higher ion concentration. C) The misincorporation counts from each template copy are summed to calculate the
misincorporation probability at every nucleotide position in the template. In this example, approximately 100 nucleotides are replicated per second
on average.
doi:10.1371/journal.pcbi.1003145.g001
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estimation variances similar to the Fisher information optimum

when decoding a single concentration pulse (Fig. S1). When

decoding more complex multi-pulse concentrations traces, the

performance of this algorithm should be viewed as a lower bound

on what could be achievable. Our binary decoding algorithm,

which exhaustively computes the maximum likelihood concentra-

tion given the sequencing data, also obtains decoding accuracies

similar to the Fisher information optimum when decoding a single

concentration pulse, although its performance degrades relative to

the theoretical optimum in the limits of small numbers of

templates or high baseline misincorporation rates (Fig. S2).

Theoretically, Fisher information naturally arises from maximum

likelihood estimation [10]. Therefore, when determination of the

maximum-likelihood concentration trace is possible, this simple

decoding approach should be near optimal, even when decoding

complex multi-pulse concentration pulses. Below we will use both

ion concentration estimation algorithms to test the parameter

requirements of molecular recording devices for neuroscience

applications.

Continuous concentration decoding
Many neuroscience experiments focus on measuring the firing

rates of neurons. Understanding the factors that influence firing

rates can inform researchers about what a neuron encodes. In

order to test the ability of molecular ticker tapes to accurately

record neural firing rates, we performed simulations using our

continuous decoder, as increased firing rates will increase calcium

ion concentration levels in a continuous manner [11] (further

details about the conversion from calcium concentrations to firing

rates can be found in the Discussion). We aimed to determine which

biochemical parameters of a molecular ticker tape system are

required to allow molecular recording of firing rates at the

temporal resolutions characteristic of typical neuroscience exper-

iments.

Recording firing rates across several conditions. Perhaps

the simplest neuroscience experiments compare neural firing rates

across several externally imposed conditions; for instance, to

determine how neural firing rates differ in the presence vs. absence

of a drug. There is a large class of such ‘‘multi-condition

experiments’’: examples include determining neural activity in

response to varying behaviors, varying sensory stimuli (tuning

curves), or systematic pharmacological, electrical, or optogenetic

perturbations.

To test the feasibility of accurate molecular recording of a

generalized multi-condition experiment, we considered a scenario

in which multiple externally imposed conditions are presented in

series over a period of time, while a molecular ticker tape records

the time-varying ion concentrations resulting from the firing rates

generated in response to each condition. We set the number of

externally imposed conditions to eight, and the total experimental

duration to 20 minutes, so that each condition lasts 150 seconds.

Thus, in this scenario, a generalized multi-condition experiment

corresponds to recording continuous ion concentration levels with

a temporal resolution of 150 seconds for a duration of 20 minutes.

We used approximate DNAP kinetic parameters from Q29
DNAP (tC&17 ms, tP&3000 ms, P&0:025) [12]. Note that these

biochemical parameters change across experimental preparations,

and the in vivo parameters in neurons are unknown, so this

parameter choice may not always be accurate for Q29 DNAP. We

used a CMLF of E0~0:005 and m~0:025, similar to that

measured for Dpo4 in buffers of varying manganese concentra-

tions [4], one of the few CMLFs experimentally measured at

present. Note that while m generally has units of inverse

concentration (e.g. M21 or mM21), here the concentrations in

all simulations are scaled to range from 0 to 1 (arbitrary units), so

that m also contains arbitrary units, and the misincorporation rate

at high concentration is Eh~E0zm (here Eh~0:03). In our

Figure 2. Decoding continuous concentration signals. Continu-
ous decoding to estimate sequences of eight concentrations over
20 minutes of recording using varying numbers of templates. The 95%
confidence interval of the estimated concentrations (light red) that
result from the decoding algorithm presented here on an ion
concentration input sequence representing the word ‘‘RECORDER’’
(dark red). Concentrations are mapped to letters via A = 0/25, B = 1/
25,,…,Z = 25/25, so that the concentration sequence representing the
word RECORDER is 17/25, 4/25…). The numbers of templates used
were, from top to bottom, 1000, 100, 10, and 1. For all panels, kinetic
parameters are those of Q29 DNAP (tC&17 ms, tP&3000 ms,
P&0:025), E0~0:005, and m~0:025 (Eh~0:03).
doi:10.1371/journal.pcbi.1003145.g002
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simulations, m can be viewed as the differential misincorporation

rate, i.e., the difference between the misincorporation rates at high

and low concentrations.

We first tested the effect of varying the number of DNA

templates on the accuracy of continuous concentration decoding

at 150 second temporal resolution. An example is shown in Fig. 2,

for a sequence of ion concentrations representing the word

‘‘RECORDER’’ (where the concentration of A = 0/25,…,

Z = 25/25). In this example, with 1000 templates, concentration

estimation is nearly perfect (1.8% median estimation error; Fig. 2).

Using randomly generated concentration sequences, we varied

the number of templates (Fig. 3A), the CMLF (Fig. 3B), and the

DNAP parameters (Figs. 3C&D). We found that multi-condition

experiments could be performed using feasible numbers of

templates and CMLFs, and DNAP parameters within the range

of documented DNAPs. We also studied the effects of dissociation

(Fig. S3), DNAP start-time variation, and concentration fluctuations

(Fig. S4), and found these effects to be minimal in this context.

Lastly, we studied the effect of varying the number of externally

imposed conditions within the 20 minutes of recording (i.e., varying

the temporal resolution), and found that approximately 10

conditions could be accurately recorded using Q29 DNAP kinetic

parameters, and more conditions with less stochastic parameters

(Fig. S5). For a more in-depth explanation of our parameter sweep

results, see Text S2. In general, we find that high accuracy molecular

recording of multi-condition experiments is feasible using DNAPs

with kinetic parameters similar to those of known polymerases.

Recording firing rates at 1000 ms and 100 ms temporal

resolutions. Going beyond such generalized multi-condition

experiments, which occur on a timescale of minutes, it is often of

interest to study the dynamics of the firing rate at higher temporal

resolutions, since many neuronal computations occur on time-

scales of 1000 ms (e.g. [13]) or less. What temporal resolutions are

possible for continuous decoding using feasible biochemical

Figure 3. Varying numbers of templates, CMLFs, and DNAP parameters. Performance of continuous decoding to estimate randomly
determined sequences of eight concentrations over 20 minutes of recording, as a function of experimental parameters. Solid lines are median
estimation errors, and dashed lines are 95% confidence intervals. A) Varying numbers of templates, with the CMLF fixed at E0~0:005 and m~0:025,
and using Q29 DNAP kinetic parameters. B) Varying CMLFs, with the number of templates fixed at 1000, and using Q29 DNAP kinetic parameters. C,
D) Varying DNAP pausing parameters, with a fixed elongation time of 20 ms, a fixed CMLF of E0~0:005 and m~0:025, and 1000 and 100 templates,
respectively.
doi:10.1371/journal.pcbi.1003145.g003
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parameters? Even with many templates (N = 10000), and the

maximal differential misincorporation rate of Eh~1 vs. E0~0,

recording with 1 second temporal resolution yields over 50%

median estimation error after only 5 seconds of recording when

using Q29 DNAP kinetic parameters. However, using optimal

polymerase parameters consisting of a 1 ms elongation time (c.f.,

E. coli pol III [14]) and no significant pausing (e.g., T7 RNA

polymerase [15,16]), 1 second temporal resolution is possible for

10 minutes (6000 seconds) with ,5% median estimation error

(N = 1000, Eh~0:03, E0~0:005; Fig. 4A). We further tested

whether variation in polymerase start-times affected these conclu-

sions. When polymerase start-times were allowed to vary from 0–

2 seconds, median estimation error remained at ,6% at

10 minutes of recording, but when start-times varied from 0–

10 seconds, estimation rose to nearly 60% (Fig. 4B). As start-time

variation can be large (e.g. shown to vary between 0.3 and

10 seconds in vivo in Xenopus laevis [17]), techniques such as

optogenetics, which control molecular activities with ,1 second

temporal precision, will likely be required to decrease start-time

variation. Thus, a DNAP constructed using a combination of the

best parameters from within the range of documented DNAPs

could likely be used to record continuous concentration traces at

1 second resolution, as long as polymerases are initially roughly

synchronized.

Could such a DNAP record continuous concentrations at

100 ms resolution? Using a DNAP with a 1 ms elongation time

and no pausing, 10000 templates, and a high differential

misincorporation rate of Eh~0:1 vs. E0~0:005, continuous

concentrations can be accurately recorded (,5% median error)

at 100 ms resolution for only about 8 seconds (Fig. 4C). Using

Eh~0:7 (polymerase Iota’s misincorporation rate on template T

[18]), accurate 100 ms resolution recording is still only possible for

about 11 seconds. Non-synchronized start-times also have an even

more deleterious effect at this higher temporal resolution: for

example, when polymerase start-times vary from 0–1 seconds, the

median estimation error is never below 30% (using Eh~0:1).

Start-time variation must be very small to have limited effect on

recording accuracy: for instance, start-times that vary from 0–

200 ms will allow ,5% error until 7 seconds as opposed to

8 seconds. To record continuous concentration traces at 100 ms

resolution for experimentally significant durations, sophisticated

DNA engineering, to both lengthen the feasible recording duration

and ensure extremely coordinated polymerase start-times, will

likely be necessary.

Binary concentration decoding
Some experiments seek only to determine whether or not a

neuron has fired within a given time window, rather than to

determine an analog firing rate. This binary, rather than

continuous, decoding scenario could lead to different constraints

on the biochemical parameters of molecular recording devices. We

studied binary decoding in the context of two experimental

paradigms: detecting synchronized firing and recording spike

trains at single-spike temporal resolution.

Slow neuronal synchronization. Oscillations during slow-

wave sleep are associated with frequencies of 0.1 to 0.5 Hz [19],

while delta brain waves are associated with frequencies of 0.5 to

4 Hz [20]. A binary decoder with 100 ms temporal resolution

could map such synchronization by determining whether any pair

of neurons consistently fired together during 100 ms intervals.

We investigated the CMLFs required for this application, using

optimal DNAP kinetic parameters from within naturally known

ranges (1000 nt/sec elongation rate, no pausing, no dissociation)

and 10000 DNA templates. For E0~0:005 and Eh~0:03, binary

decoding at 100 ms temporal resolution could be achieved for a

recoding duration of 325 seconds at 95% accuracy (Table 1). A

10% misincorporation rate at high ion concentration could

provide the same level of resolution and accuracy for over

700 seconds of recording (Table 1). We again find that for a

constant ratio of misincorporation rates at high and low ion

concentrations (diagonal of Table 1), increasing misincorporation

rates increases the feasible duration of recording. Additionally,

decreasing the speed of the polymerase has a strong effect: an

elongation time of 10 ms (as opposed to 1 ms), decreases the

feasible recording time from 300 seconds to 10 seconds (at

Eh~0:03).

We next tested the effect of varying start-times on 100 ms

resolution binary decoding. As was the case for continuous

decoding, we found that start-time variation has a large impact on

the feasible recording duration at this resolution. Start-times

varying between 0 and 1 seconds still allow 95% decoding

Figure 4. Continuous concentration decoding at high resolu-
tions. A) Estimation error of continuous concentration decoding at
1 second resolution as a function of the time of recording. Parameters
are tC~1 ms, P = 0, N = 1000, E0~0:005, and Eh~0:03. B) Estimation
error at 6000 seconds (10 minutes) of recording for polymerases that
do not start recording simultaneously. Polymerase start-time distribu-
tions are drawn from gamma distributions that have almost all values
between 0 and twice the average delay time. C) Estimation error of
continuous concentration decoding at 100 ms resolution as a function
of the time of recording. Parameters are tC~1 ms, P = 0, N = 10000,
E0~0:005, and varying Eh . In all panels, solid lines are median
estimation errors, and dashed lines are 95% confidence intervals.
doi:10.1371/journal.pcbi.1003145.g004
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accuracy until 300 seconds of recording (Eh~0:03). However, for

start-times varying between 0 and 3 seconds, 95% decoding

accuracy is never achievable. Techniques that decrease start-time

variation would thus be necessary in order to use molecular ticker

tapes to record slow synchronization of neuronal oscillations.

Although these experiments would be limited to hundreds of

seconds, the large number of individual neurons that could

potentially be recorded could provide fundamentally new insights

into mechanisms of neural synchronization. We thus find that

coarse measurement of neuronal oscillations could be feasible at

the limits of documented polymerase parameters, assuming an

ample number of simultaneously replicated templates per cell and

a mechanism to control the polymerase start-times.

Single-spike resolution. A desirable application for molec-

ular ticker tapes would be the recording of neuronal spike trains at

single-spike resolution (approximately 10 ms), e.g. for the study of

spike timing dependent neural coding and plasticity [21]. A binary

decoder would be sufficient to determine whether or not a neuron

has spiked within a 10 ms time bin.

Would a DNAP constructed from optimal kinetic parameters

found within natural polymerases (1000 nt/s speed, no pausing) be

able to record at 10 ms resolution? We find that only one second

of recording with 95% accuracy is possible when Eh~0:03,

E0~0:005, and there are 10000 templates. If the misincorporation

rate at high ion concentration is increased to 10%, then

,2.5 seconds of recording at 10 ms temporal resolution could

be achieved. In order to achieve 1 minute of accurate recording, a

polymerase with a speed of 8000 nt/s (tC~0:125 ms) would be

required given a 10% high misincorporation rate. Even in the

limiting case of a 100% high misincorporation rate and a 0% low

misincorporation rate, with no pausing and 10000 templates, a

speed of 3500 nt/s would still be needed to achieve 1 minute of

recording at 10 ms temporal resolution. These speeds are outside

the range of polymerase speeds known from nature.

Therefore, even in the absence of pausing, and with arbitrarily

high signal-to-noise ratio in the ion-dependent misincorporation

rate, temporal stochasticity constrains the achievable temporal

resolution for molecular recording. This results from the fact that

there is no deterministic one-to-one mapping between time and

nucleotide position; the time between base additions in the

elongating state is not a constant but is rather governed by a

probability distribution over dwell times. Our results suggest that

recording spike trains at 10 ms resolution with a DNAP

misincorporation-based molecular ticker tape and short-read

sequencing, for more than a few seconds, would require

sophisticated protein engineering to go beyond naturally occurring

polymerase parameters.

Calibrating unknown DNAP parameters via sequencing
Decoding unknown input signals requires a detailed model of

the polymerase dynamics (see Text S3, Fig. S6); however, such

information may not always be available a priori. To determine if it

is possible to calibrate the polymerase parameters from sequencing

data generated with a known input signal, we tested the accuracy

of estimating the three kinetic parameters of Q29 DNAP with

varying numbers of template copies for a fixed input concentration

sequence of 10010001, with each segment lasting 150 seconds (the

timeframe we use when analyzing multi-condition experiments).

The percent error of the estimated parameters relative to the true

parameters decreased as the number of template copies increased,

with an especially sharp drop from 10 to 100 templates (Fig. 5A).

Table 1. Binary decoding at 100 ms resolution.

Baseline Misincorporation Probability (E0)

Misincorporation Probability at High
Concentration (Eh = E0+m) 0.5% 1.5% 5% 15%

1% 75 sec

3% 325 sec 125 sec

10% 700 sec 475 sec 250 sec

30% 1275 sec 1000 sec 750 sec 425 sec

The maximum recording duration at which decoding at 100 ms temporal resolution is possible with 95% decoding accuracy. An optimal DNAP with an elongation time
of 1 ms and no pausing is used, along with 10000 DNA templates. The search for maximal achievable recording durations was performed at 25 second intervals.
doi:10.1371/journal.pcbi.1003145.t001

Figure 5. Estimating DNAP parameter values from sequencing
data. A) The percent error of the estimated parameters compared to
the true parameters (those of Q29 DNAP) as a function of the number of
template copies. B) The ion concentration estimation error based on
polymerase parameters estimated from data using varying numbers of
templates. Ion concentration estimation used N = 1000, E0~0:005 and
m~0:025. In both panels, solid lines are median estimation errors, and
dashed lines are 95% confidence intervals.
doi:10.1371/journal.pcbi.1003145.g005
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Thus, it should be possible to calibrate polymerases with high

accuracy, in vivo, where their dynamic properties may not be

known.

To confirm that polymerase parameters calibrated as above

could be used to decode novel signals, we tested concentration

decoding by using the estimated parameters on new (i.e. unknown)

input signals. Specifically, we performed continuous ion concen-

tration estimation in the multi-condition experiment framework as

before, using 1000 DNA templates, and a CMLF of E0~0:005
and m~0:025, but this time using estimated Q29 DNAP

parameters as opposed to those used while producing the forward

model. When we used at least 1000 templates to calibrate the

DNAP parameters, we were able to estimate the initial time-

varying ion concentration with ,1.5% median error (Fig. 5B), a

minimal change compared to the error obtained using known

parameters. Our results indicate that data driven calibration is an

effective method that will allow decoding of concentration traces

generated using previously un-characterized polymerases (i.e.,

those that have not been subjected to single-molecule biophysics

experiments to determine their detailed properties in physiolog-

ically relevant contexts).

Discussion

This work presents analytical and algorithmic approaches to the

statistical problems associated with signal reconstruction in

molecular ticker tapes. We develop a procedure to estimate the

time-dependent state of the environment from the observed strings

of symbols in the replicated polymers and analyze its dependence

on several experimentally relevant parameters. In addition, we

present an analytical approach that illustrates intuitively how the

precision of ion concentration estimation depends on these

parameters. We show that high-accuracy estimation is possible

under certain conditions even for DNAPs that dissociate from the

DNA template and those with asynchronous start-times.

Comparisons with existing neural recording technologies
A proposed application for molecular ticker tapes is to record

simultaneously from large numbers of neurons. In the scheme

treated here, polymerase misincorporation rates would be made to

depend on ions, such as calcium, for which the intracellular

concentration varies in response to neuronal activity. More

generally, physical variables such as membrane voltage could be

used in a molecularly engineered system to modulate nucleotide

incorporation probabilities either through direct physical action on

the polymerase, or indirectly by controlling the availability of small

molecules such as nucleotides or ions. It should thus be possible to

use DNAPs to measure many microscopic variables of interest in

neuroscience.

It is important to compare the spatial resolution of molecular

ticker tapes to existing techniques. One highly scalable technique

with high spatial resolution is 2-deoxy-D-glucose (2-DG) imaging

[22], which utilizes the fact that active neurons consume more

glucose, and allows estimation of neural activity during one or two

[23] conditions. Molecular ticker tapes promise to achieve similar

spatial scale and resolution to 2-DG, while also allowing

multiplexing across many conditions during the same experiment.

In particular, our results suggest that molecular ticker tapes could

be used to determine the firing rate responses of neurons under a

sequence of ,10 conditions, using a DNAP with kinetic

parameters similar to those of Q29 DNAP. A popular technique

with lower spatial resolution (,1 mm) is fMRI, which is often used

to compare voxel-scale hemodynamic responses across a number

of conditions. Molecular ticker tapes, in contrast, promise much

greater spatial resolution while also allowing multiple conditions

per experiment.

It is also important to compare the temporal resolution of

molecular ticker tapes to existing techniques. We found that, while

determining binary neural responses could be feasible at resolu-

tions of .10 Hz through combining favorable biochemical

parameters from multiple existing DNAPs into a single engineered

system, temporal resolutions approaching 100 Hz may be hard to

reach, for recording durations of longer than a few seconds,

without sophisticated protein engineering to go beyond individual

parameters known from nature. However, molecular ticker tapes

do have the potential to rival the temporal resolution of fMRI and

surpass that of 2-DG imaging. Many other techniques, including

EEG, local field potentials, calcium imaging, and single cell

recordings, allow very high temporal resolution but are currently

limited to small numbers of simultaneously recorded cells; greatly

improved engineered DNAPs would be necessary for molecular

ticker tapes to reach comparable temporal resolutions. Molecular

ticker tapes thus present an opportunity to combine effectively

unlimited spatial resolution with temporal resolution sufficient for

complex functional studies, but this approach will face challenges

in capturing the single-spike timescale (see Table 2).

Estimating DNAP kinetic parameters using molecular
recording

There is considerable uncertainty about the parameters

characterizing the dynamics of most DNAPs. Databases available

online [24] do not fully specify the dynamics. More importantly,

there may be significant variation in polymerase dynamics

between different in vivo settings. Our study suggests that DNAP

kinetic parameters can be characterized using data solely derived

from deep sequencing. We could fit average speed, processivity,

misincorporation rates (insertion or deletion), pause density and

duration, and any other such parameters. These parameters could

even be determined in a high throughput manner from sequencing

data as a function of many variables such as divalent cation

concentration [4], substrate composition/concentration, or the

effects of inhibitors/mutagens. The amenability of this sequencing-

based characterization method to high-throughput experimental

procedures stands in contrast to more traditional single-molecule

methods. Additionally, this approach could allow determination of

in vivo DNAP dynamics, which is usually not accessible to single-

molecule methods. The method we present, based on fitting a

generative model using sequence data, may therefore augment

methods based on direct single-molecule biophysical observations

of the dynamics of polymer-generating molecular machines

[12,25–28].

Here we have focused on a DNAP-based molecular ticker tape.

However, our methodology could be applicable to any molecular

recording device based on modulating a polymerization process.

Any system in which an enzyme catalyzes the formation of

polymers with sequence features dependent on an environmental

signal will fit into our basic theoretical framework and could be

used to record time-varying signals. Thus, our methodology could

also be used to characterize kinetic parameters of enzymes besides

DNAP.

Algorithmic limitations and future directions
While neural spike times and firing rates are the variables

critical to neuroscience, our continuous decoding algorithm

estimates time-dependent concentrations. Sometimes, calcium

concentration increases linearly with firing rates. For example,

sustained firing in the proximal apical dendrite of cortical layer 5

pyramidal neurons results in a calcium concentration that scales

Statistical Analysis of Molecular Signal Recording

PLOS Computational Biology | www.ploscompbiol.org 8 July 2013 | Volume 9 | Issue 7 | e1003145



approximately linearly with firing rate (its equilibrium time

constant is 200 ms) [11]. However, the conversion from intracel-

lular free Ca2+ concentrations to spike rates is generally nonlinear

and dependent on cell type (e.g. on the number and distribution of

voltage gated calcium channels). Nonetheless, the problem of

inferring spike rates from Ca2+ signals has been studied extensively

and effective algorithms have been developed [29–31]. Intracel-

lular free Ca2+ has been successfully used as an indicator of neural

activity in many high-resolution techniques [32,33]. If ion-

dependent DNAP misincorporation is used as a sensing mecha-

nism in molecular ticker tapes, then future work will need to

combine our methodology with these techniques to infer neural

firing rates from ion concentration traces. However, it may also be

possible to directly couple DNAP misincorporation to trans-

membrane voltage through the use of protein engineering.

The conclusions from our binary decoder regarding what is

feasible are based on the assumption that the maximum likelihood

solution can be found. While we performed an exhaustive search

of the binary parameter space to find the maximum likelihood

solution, to use this algorithm for long bit strings, more efficient

binary optimization routines will be necessary.

The algorithms used here make important assumptions about

DNA replication. They assume that misincorporation probabilities

at neighboring template bases are statistically independent, an

assumption that significantly simplifies all calculations and that is

consistent with previous measurements in the presence of fixed

concentrations of manganese [4]. This assumption could be

violated if the misincorporation rate at a base depends on the

presence or absence of a mismatch across the double helix at the

previous base. Such effects would need to be incorporated into the

forward model of polymerase misincorporations as well as the

decoding algorithms.

Another conflating effect could also occur under time-varying

(but not static) ion concentrations, if the elongation time at a base

depends on the presence or absence of a misincorporation (and

hence a mismatch across the double helix) in the previous

position(s). Further studies are needed to address the effect of

nearby mismatches on the nucleotide addition time and the

interaction of this effect with time-varying ion concentrations.

Furthermore, the algorithms used here assume that the DNAP

dynamics (e.g., elongation rate, pause rate and pause duration) are

unaffected by the surrounding ion concentrations (except via the

misincorporation probability itself that is deliberately a function of

ion concentration), which is in general not true [15,18,34]. In a

plausible alternative scenario, the elongation time may depend

directly on the instantaneous local ion concentration. While this

would not directly couple misincorporations at adjacent nucleo-

tides via the forward model (i.e., the DNAP’s misincorporation

probability at a given time still depends only on the instantaneous

ion concentration, and not on its history of previous misincorpora-

tions), it would lead to changes in polymerase dynamics over time,

causing increased variation in the incorporation times for the ith

nucleotide. It would also lead to a more difficult inverse problem,

as the misincorporation rate at a given nucleotide position would

depend on the entire history of the unknown input ion

concentration trace that is to be estimated. In future work, this

feature could be added, motivating an EM-type algorithm [35]

which iteratively adjusts both the forward model parameters (as a

function of ion concentration) and the inferred ion concentration

trace itself.

Our methods also assume a given temperature and fixed

concentrations of DNA template, DNAP and nucleotide sub-

strates, and do not account for local template structure or for the

identity of the nucleotide to be copied, all of which are important

[4,26,36]. However, these features could be readily accounted for

by adding more parameters to the model. Despite these

assumptions, the decoding algorithms are simple and applicable

to the problems defined by current experimental techniques, e.g.,

in the context of preliminary experimental testing of molecular

recording paradigms.

Real polymerase kinetics are more complex than our simple

forward model, in which the sum of two exponentials governs the

time distribution between nucleotide additions. In principle, any

model of DNAP dynamics [12,37] could be fit to the same data. It

may also be possible to generalize this work based on general

statistical descriptions of enzymatic dynamics [38–40]. This

approximation approach would decrease our algorithm’s run-time

and the amount of data required. In the future, the methods

presented here can thus be extended to treat more realistic enzyme

kinetics.

Lastly, the inverse problem that we are solving here has deep

connections with deconvolution, and one could argue that

misincorporation rates result from a time-dependent convolution

of a time-dependent source signal. There is a rich literature on

such deconvolution techniques (e.g. [29,30,41,42]) and more

generally on latent variable models, which have been prominently

used in neuroscience (e.g. [43–45]). Combining our approaches

with existing computational methodologies promises to enable

improved algorithms.

Towards single-spike resolution
Could molecular signal recording at high temporal resolutions

be possible? Increasing the polymerase speed and decreasing the

stochastic pausing of an engineered DNAP might be the most

feasible pathways. At a more fundamental level, one could

engineer a DNAP to exhibit less stochasticity in its elongation

rate (i.e., compared to the assumption of a single-exponential

distribution of dwell times in the elongating state which was

studied here) even after pausing has been eliminated. In general,

multi-step kinetic processes can be remarkably regular in time, as

long as the rates of each of the kinetic sub-steps (e.g., nucleotide

entry, binding, pyrophosphate cleavage, pyrophosphate release,

Table 2. Technology comparison.

Spatial Resolution Temporal Resolution

fMRI (current setups) ,1 mm ,1 sec

2-DG ,100 mm .30 min

Ticker Tape (DNAP kinetics at limits of known polymerases, 10k DNA
templates)

1 neuron (,10 mm) ,100 ms binary decoding
,1 sec continuous decoding

Approximate spatial and temporal resolutions for a subset of technologies theoretically capable of recording from entire mammalian brains.
doi:10.1371/journal.pcbi.1003145.t002
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and physical motion of the enzyme forward) are comparable [7].

For example, the packaging motor of the bacteriophage Q29
moves along DNA with little stochasticity under certain adenosine

triphosphate concentrations because as many as six separate

kinetic events are equally rate limiting in its catalytic cycle [46,47].

Similarly, one could imagine engineering clock-like polymerases

by first removing pause states and then by balancing the rates of

the multiple catalytic sub-steps within each nucleotide addition.

Thus, there are polymerase engineering directions that could

significantly improve temporal resolution.

While we assumed here a single-exponential dwell time

distribution in the elongating state, to our knowledge this

distribution has not been experimentally measured. Thus, it is

possible that real polymerases are less stochastic at the level of

pause-free nucleotide additions than we have assumed. If true, this

could make the problem of engineering a molecular recorder with

single-spike resolution more tractable.

Combining the methodology discussed here with additional

experimental and computational machinery may also significantly

enhance the achievable temporal resolution. For instance, an

external signal could be used as a clock pulse. Neurons could be

optogenetically activated at known times, altering the misincor-

poration rates of nucleotides incorporated at those times,

effectively embedding synchronization signals into the DNA

sequences. Computational techniques could be developed to

estimate the nucleotides’ incorporation times given this additional

timing information. As our methodology is currently limited by the

stochasticity of nucleotide incorporation times, such an approach

would have the potential to increase the feasible duration of

recording at high temporal resolutions.

Conclusion
The ability to record cellular signals is a cornerstone of

neuroscience. Current macroscopic recording devices can

simultaneously sample only a tiny number (currently hundreds

to thousands) of neurons in mammals [48,49] (but see [13]). Due

to the scalability of molecular technology, the molecular signal-

recording devices discussed here could potentially enable the

simultaneous recording from millions or billions of neurons. This

approach is particularly attractive because the price-perfor-

mance of DNA sequencing has been improving faster than

Moore’s law [50]. Statistical techniques to allow precise readout,

despite the imperfect clocks of molecular ticker tapes, will be

important for the development of molecular recording technol-

ogies. In demonstrating these computational techniques, we have

illustrated an analytical framework as well as practical decoding

methods that provide insight into the capabilities and limitations

of molecular ticker tapes as a function of relevant experimental

parameters.

Methods

Derivation of the forward model: Modeling DNAP
dynamics and dwell time distributions

We use a simplified model of DNAP dynamics based on recent

single-molecule measurements [37]. We model the time distribu-

tion between successive nucleotide additions, or ‘‘dwell time,’’ as

the sum of two exponentials (Fig. 6A&B), which correspond to the

processes of (i) continuing directly from one nucleotide to the next,

and (ii) pausing in an off-pathway state between nucleotide

additions. A decaying exponential has been recently shown to fit

pause lifetime data [6,51]. The normalized probability distribution

over times between successive nucleotide additions is then:

y(t; h1)~P:
e{t=tP

tP

z 1{Pð Þ: e
{t=tC

tC

, ð2Þ

where tC and tP are the average times for the continuous

(elongation) and pausing paths respectively, P is the DNAP pause

probability per nucleotide (i.e. the pause density), and

h1~ftC ,tP,Pg is the parameter set for a particular DNAP.

For a full discussion of polymerase model simplifications, see

Text S4. Importantly, while we have here chosen to approximate

dwell time as the sum of two exponentials, any normalized dwell

time distribution is compatible with our methodology, as any two

probability distributions can be convolved (see below).

Derivation of the forward model: Time distributions of
nucleotide incorporations

The probability distribution over dwell times that we discuss

above induces a probability distribution for the time of the ith

nucleotide addition, ci(t; h1). Basically, the time nucleotide i is

written is the sum of the time nucleotide i{1 was written plus the

dwell time drawn from the distribution y(t; h1) (Eq. 2). We

calculate the probability distribution of the sum of two indepen-

dent random variables (we assume in this model that the dwell

time distributions for subsequent steps are independent) via the

convolution of their distributions [52]:

ci(t; h1)~

ðt
0

ci{1(t’; h1):y(t{t’; h1)dt’ ð3Þ

(Fig. 6C). Note that unless otherwise stated, polymerases are

assumed to start at the first nucleotide at time 0, so that

c1(0; h1)~1.

For large i, ci(t; h1) can be approximated as a Gaussian (as is

done in the enzymatic dynamics literature [38–40]):

ci(t; h1)*N (mi,si
2). This can be expressed for every nucleotide

i, in terms of the DNAP kinetic parameters:

mi~i: P:tPz(1{P):tCð Þ, ð4aÞ

si
2~i: (2P{P2):tP

2z(1{P2):tC
2{2P:(1{P):tP

:tC

� �
, ð4bÞ

where mi and si are respectively the mean and standard deviation

of a Gaussian distribution governing the time at which nucleotide i

is incorporated. For all simulations we will work with a discrete-

time form of ci(t; h1), and use this Gaussian approximation for

large i (see Text S5 for details). The time t when each nucleotide is

written is a latent variable here, which we integrate out (see Eq. 5).

Derivation of the forward model: Quantifying
misincorporation probabilities

A concentration to misincorporation link function (CMLF), f,

quantifies the misincorporation rate when a nucleotide is

replicated in the presence of a constant concentration. We assume

this function to be known based on previous experiments. In

molecular recording, a nucleotide will be copied as concentrations

are fluctuating. Thus, in this simplest of models, a nucleotide’s

probability of misincorporation is dependent on the ion concen-

tration at the time at which it is incorporated, and on the CMLF.

To calculate the probability of misincorporation on the ith

nucleotide, we weight the probability of misincorporation resulting
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from the ion concentration at a given time t, f C(t); h2ð Þ, by the

probability ci(t; h1) that the ith nucleotide is copied at time t, and

sum this product over all values of the time variable (marginal-

ization):

P(ei; C ,h1,h2)~
X

t

ci(t; h1):f C(t); h2ð Þ, ð5aÞ

where ei is a misincorporation on nucleotide i, C(t) is the ion

concentration at time t, and C (bolded) is the vector with elements

C(t) over all times t.

We assume f is linear (Fig. 6D&E) [4], i.e.

f (C(t); h2)~E0zm:C(t), ð5bÞ

where E0 is the baseline error rate, m is the slope of the CMLF,

and h2~fE0,mg. In this case,

P(ei; C ,h1,h2)~E0zm:
X

t

ci(t; h1):C(t) ð5cÞ

(Fig. 6F). Note that the linear form of the CMLF generally is

approximately accurate for small concentration perturbations, as

E0zm:C(t) is the first-order Taylor expansion of a general,

smooth CMLF.

Analytical relation between estimation precision and
experimental parameters

Fisher information measures the degree to which samples from

a probability distribution are informative about the parameters

characterizing that distribution. In the simplified case that there is

a single ion concentration square pulse during a time interval

starting at time T0 with duration d (the ion concentration assumed

zero elsewhere), we analytically quantify the Fisher information,

I(C), that N copied DNA templates contain about the concen-

tration, C, during time T0 to T0zd.

Applying the previously derived forward model (Eq. 5c), we set

the probability of misincorporation at the ith nucleotide as

E0zm:Ci(T0,d; h1):C, where Ci(T0,d; h1) is the probability that

nucleotide i is replicated during the time interval at which the

concentration burst is present:Ci(T0,d; h1)~
ÐT0zd

T0

ci(t; h1)dt. From

now on, we will refer to Ci(T0,d; h1) as Ci for brevity. We let Xi~1

Figure 6. Minimal forward model of misincorporation by a
DNAP. A) DNAP can copy one nucleotide directly after another (top
path) or pause between additions (bottom path). B) Dwell-time
distributions between nucleotide additions. Distributions for the
continuous route and for the pausing route are mixed based on their
relative frequencies to create the full dwell time distribution, y(t; h1).
For this panel, the parameters are set as tC~15 ms, tP~40 ms, and
P = 0.3, to best illustrate the concept of distribution mixing. C) Time
distributions, ci(t; h1), resulting from repeated convolutions of the dwell
time distribution, are shown for nucleotides 50, 200, 400, and 600.
Iterated convolutions cause the distribution to widen for later times. For
this panel and below, parameters are tC~10 ms, tP~50 ms, P~0:09.
D) An example time-varying concentration. E) The probability of
misincorporation for a polymerase subjected to the input concentration
trace from panel B. The misincorporation probability is related to the
concentration through a CMLF: here, f (C; h2)~0:005z0:025:C F) The

misincorporation probability of the ith nucleotide, P(ei ; C,h1,h2). The
more the ith nucleotide’s incorporation-time distribution overlaps with
the concentration peaks in the time-varying input signal, the larger the
misincorporation probability at the ith nucleotide.
doi:10.1371/journal.pcbi.1003145.g006
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signify a correct incorporation at nucleotide i and Xi~0 signify a

misincorporation at nucleotide i, so that the probability of Xi is

g Xi; C,T0,d,h1,h2ð Þ

~ E0zm:Ci
:Cð Þ: 1{Xið Þz 1{E0{m:Ci

:Cð Þ: Xið Þ
ð6Þ

From now on, g will be written only as a function of parameters that

are explicitly changing (in this case C).

The Fisher information in this distribution is:

I(C)Nucleotide i~E
L

LC
log g Xi; Cð Þð Þ

� �2
" #

~
m:Cið Þ2

E0zm:Ci
:Cð Þ: 1{E0{m:Ci

:Cð Þ

ð7aÞ

At constant ion concentrations, misincorporation probabilities at

successive template bases are approximately independent [4].

Because Fisher information is additive across independent events,

I(C)Template&
X

i

I(C)Nucleotide i

~
X

i

m:Cið Þ2

E0zm:Ci
:Cð Þ: 1{E0{m:Ci

:Cð Þ

ð7bÞ

Additionally, we assume that individual templates are copied

independently, so that:

I(C)N templates&N
X

i

I(C)Nucleotide i

~N
X

i

m:Cið Þ2

E0zm:Ci
:Cð Þ: 1{E0{m:Ci

:Cð Þ

ð7cÞ

We use Eq. 7c as a basis for our analysis.

In the limit that Eh~E0zm:Ci
:Cvv1, the Fisher information

can be approximated as:

I(C)N templates&N
X

i

m:Cið Þ2

E0zm:Ci
:Cð Þ,

as is given in Eq. 1.

For a method to determine optimal decoding accuracy of a

single concentration pulse using Fisher information, expressions of

how Fisher information relates to pulse properties besides

concentration, and full derivations, see Text S1.

Estimation of continuous time-varying concentrations
In order to move beyond the assumption that there is a single

concentration pulse, we estimate the concentration trace by

minimizing a convex, differentiable, cost function with constraints:

minimize
XL

i~1

XtF

t~1

Ni{N:ci(t; h1):f (C(t); h2)ð Þ
2

subject to C(t)[½0,1�,

ð8Þ

where Ni is the total number of misincorporations at nucleotide

position i summed across all templates, L is the length of the

template in bases, and tF is the final time of recording. Our

cost function penalizes the difference between the actual

number of misincorporations on a nucleotide and the expected

number of misincorporations (at the concentration being

queried). When the concentration trace is expected to be

sparse and/or smooth, additional terms, for example DDC(t)DD1

and/or
PT{1

t~1

C(tz1){C(t)ð Þ2 respectively, can be included in

the cost function. We optimize this cost function using a

constrained gradient-based solver based on line-search meth-

ods, ‘‘minConf,’’ [53].

Estimation of binary time-varying concentrations
To estimate an original binary time-varying ion concentration,

we run the forward model with many different binary time-

varying ion concentrations and determine which is the most likely

to produce the observed sequences. Assuming independent

binary (Bernoulli) events, the likelihood that a concentration will

result in the observed sequences is given by the binomial

distribution [52]:

P(N1 � � �NL; C ,h1,h2,N,L)

~ P
L

i~1

N

Ni

 !
:P(ei; C ,h1,h2)Ni :(1{P(ei; C ,h1,h2))N{Ni

ð9Þ

Limiting the acceptable input concentrations to ‘‘high’’ and

‘‘low’’ values (1 and 0) turns the concentration vector into a bit

sequence. Thus, to estimate the sequence of k concentration

pulses, or bits, we have to search in a binary space of

dimensionality k. In our simulations, we limit the number of bits

to 10, as accuracy does not significantly degrade beyond this

number of bits for many relevant parameter values, and this allows

a full exploration of the binary space.

DNAP parameter estimation
To estimate the DNAP parameters from sequencing data, we

look for the parameters that are most likely to result in the

observed sequences, using Eq. 9. We search for the DNAP

parameters tC , tP, and P (m and E0 are assumed to be known

from previous experiments) that give the highest likelihood using

the Nelder-Mead SIMPLEX algorithm [54]. The fixed, time-

varying ion concentration signal that we use to estimate the DNAP

parameter values affects the estimation accuracy, and we therefore

initially test parameter estimation at several time-varying concen-

trations. The concentration trace that allows the most accurate

parameter estimation (during testing with known parameters) is

then used for all parameter estimations in this study.

Testing estimation accuracy
We used simulated molecular recording experiments to test the

accuracy of ion concentration estimation using recording time

resolutions and durations relevant to neural recording experi-

ments. We determined the DNAP kinetic parameters, CMLF, and

number of DNA templates required for various neural applica-

tions, and how they are affected by DNAP dissociation from the

template, start-time variation, and initially unknown DNAP

kinetic parameters. DNAP dissociation was considered by adding

in an additional exponential to the dwell time distribution (Eq. 2),

and start-time variation was considered by convolving a Gamma

distribution representing varying start-times with the time

distribution of nucleotide incorporations (like in Eq. 3). Details of

our simulation methods can be found in Text S5.
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Supporting Information

Figure S1 Optimality of continuous ion concentration
estimation. For a single ion concentration pulse, the variance of

ion concentration estimation using our Fisher information

framework (red) is compared to estimation accuracy computed

using our unconstrained (green) and constrained (blue) continuous

decoding algorithms on simulated data. As the variance derived

from the Fisher information framework (Cramer-Rao bound:

s2(ĈC)§1=I(C)) assumes unbiased estimation, the red and green

curves are comparable. Estimation constraints provide additional

information that can be used to further reduce the variance (of the

blue curve). These plots use a concentration of 0.5, and similar

plots exist for other concentrations. Experimental parameters are

set as: 20 minutes of recording, 150 second concentration pulse,

N~10, tC~17 ms, tP~3000 ms, P~0:025, E0~0:005, and

m~0:025 (Eh~0:03). Error bars are standard errors of the mean

accuracy, produced by bootstrapping. In each panel, one

parameter is allowed to vary: A) the number of DNA templates,

N, B) the baseline misincorporation rate, E0 , C) the slope of the

CMLF, m, D) the pause frequency, P, E) the duration of

concentration pulses, and F) the end time of the pulse.

(TIF)

Figure S2 Optimality of binary ion concentration esti-
mation. For a single ion concentration pulse, the approximate

decoding accuracy derived from our information-theoretic frame-

work (red) is compared to decoding accuracy computed using

simulations of our binary decoding algorithm (blue). Experimental

parameters are set as: 20 minutes of recording, 15 second

concentration pulse, N~10, tC~17 ms, tP~3000 ms,

P~0:025, E0~0:005, and m~0:025 (Eh~0:03). Error bars are

standard errors of the mean accuracy produced by bootstrapping.

In all panels (A–F), one parameter is allowed to vary as is described

in the legend of Fig. S1.

(TIF)

Figure S3 DNAP dissociation from the template. The

error of ion concentration estimation is shown for varying re-

association times for DNAPs with processivities of 1000 (blue) and

100 (red) in a multi-condition experiment. Solid lines are median

estimation errors, and dashed lines are 95% confidence intervals.

Used parameters are: N~1000, tc~20 ms, tp~2000 ms,

P = 0.05, E0~0:005 , and m~0:025 (Eh~0:03).

(TIF)

Figure S4 Concentration fluctuations. Estimation error for

concentrations that are fixed (blue) and allowed to fluctuate (red)

during each condition in a multi-condition experiment, as a

function of number of templates. When estimating fixed

concentrations, the concentrations at each condition are

confined to be 0.2 to 0.8 (estimated values can still be between

0 and 1). When estimating fluctuating concentrations, the

‘‘baseline’’ concentration at each condition is also confined

between 0.2 and 0.8, but the concentration value at every ms is

chosen randomly from the interval [baseline-0.2 baseline+0.2].

For the fluctuation condition, we are attempting to estimate the

mean concentration for each condition. Solid lines are median

estimation errors, and dashed lines are 95% confidence

intervals.

(TIF)

Figure S5 Varying numbers of presented conditions. A)

Ion concentration estimation accuracy as a function of the number

of different conditions tested within a 20 minute experiment. Solid

lines are median estimation errors, and dashed lines are 95%

confidence intervals. Q29 DNAP kinetic parameters, N = 1000,

E0~0:005, and m~0:025 are used. B) For an experiment with 32

conditions, the median ion concentration estimation error with

varying DNAP pausing parameters, a set elongation time of 5 ms,

and the same additional parameters as panel A. Note that the scale

differs from that of Fig. 3.

(TIF)

Figure S6 Effects of polymerase parameters on mis-
incorporation probabilities. A) Different combinations of the

three DNAP kinetic parameters. B) The time distribution for the

addition of the 50th nucleotide, c50(t; h1) for each set of parameter

values. C) An example time-varying concentration, used to

calculate the misincorporation probabilities shown in panel D.

The CMLF is set as f (C; h2)~0:005z0:095:C. D) The

misincorporation probability for the 50th nucleotide, for the three

simulations with different parameter combinations.

(TIF)

Text S1 Fisher information. Further simplifications of the

Fisher information equations in several limits, discussion of

optimal concentration estimation given the derived Cramer Rao

Bound, Fisher information with respect to additional pulse

properties, and full derivations.

(PDF)

Text S2 Multi-condition experiments. Further details

about the results of multi-condition experiments when varying

the number of templates, CMLFs, DNAP kinetic parameters, and

number of conditions, and considering the effects of dissociation

and asynchronous start-times.

(PDF)

Text S3 Importance of DNAP parameters. Discussion

regarding how DNAP parameters affect the distribution of times at

which nucleotides are written, and how this alters the resulting

misincorporation probabilities.

(PDF)

Text S4 DNAP model. A general discussion about DNAP

dwell time distributions and the assumptions made to produce our

simplified model.

(PDF)

Text S5 Methods for testing simulations. Details are given

regarding how all simulations are run.

(PDF)
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