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Abstract

Group VI Ca2+-independent phospholipase A2 (iPLA2) is a water-soluble enzyme that is active when associated with
phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently
available for the iPLA2 or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG)
and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA2 in association with a
phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for
an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures,
to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium
exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA2 at the
membrane surface. The models show that an anchoring region (residues 710–724) forms an amphipathic helix that is
stabilized by the membrane. In future studies, the proposed iPLA2 models should provide a structural basis for
understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed
here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the
activity of iPLA2 and related enzymes.
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Introduction

Many membrane proteins remain unexplored at the molecular-

level despite their clear pharmaceutical relevance [1,2]. It is

therefore crucial to develop computational methods for the

structure prediction of membrane proteins. Homology modeling

is a common technique to build an initial model when an

appropriate template can be identified. Subsequently, all-atom

(AA) molecular dynamics (MD) simulations have been used in the

refinement of homology models with some success [3,4]. However,

for protein-membrane systems the construction of structural

models is complicated by the need to equilibrate all the possible

orientations of the protein in the membrane. Because the current

time-scale accessed by AA-MD (hundreds of nanoseconds) is

typically too short to simulate the complete insertion process

directly, an effective approach to study membrane proteins is to

start with a low-resolution model and subsequently go to higher

resolution. Coarse-grained (CG) models for proteins [5] such as

the MARTINI force field [6,7] have been used to extend the time-

scale of MD simulations by ,3–4 orders of magnitude, allowing

the direct simulation of membrane insertion processes. The force

field performs roughly a 4 to 1 mapping between atoms and

particles, which has been shown to be sufficiently accurate to study

membrane insertion processes [8,9], including for surface enzymes

[10,11]. However, like other resolution exchange methods [12,13],

this approach remains relatively new and untested and structural

models should be validated experimentally whenever possible.

Phospholipase A2 (PLA2) [1] is one of the largest protein

superfamilies identified to date, with 16 groups and many

subgroups resulting in more than 35 forms, and represents a

promising target for computer-aided drug design (CADD) [14]. All

PLA2s stabilize at the membrane surface where they can catalyze

the hydrolysis of phospholipids to yield fatty acids, involved in

signaling, inflammation and in membrane maintenance [15]. The

four predominant well-studied types of PLA2s found in human

tissues are the cytosolic (also known as cPLA2), the secreted

(sPLA2), the calcium-independent (iPLA2), and the lipoprotein-

associated (Lp-PLA2) enzymes. The structures of PLA2s–bilayer

complexes have been previously approached with deuterium

exchange mass spectrometry (DXMS) [16]. These experiments

provide information about the solvent accessible surface of the

proteins by measuring the rate and number of backbone amide N-

H groups that can exchange hydrogen with deuterium when in

D2O. In this technique, the protein is first enzymatically digested
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into fragments of several residues in length and mass spectrometry

is used to weight the fragments. The experiment is then repeated

after the protein is inserted into a membrane to quantify the

difference in the number of hydrogen atoms exchanged. These

studies have helped define the location of the binding interface

with the phospholipid membrane, and have shown that sPLA2,

cPLA2, iPLA2 and Lp-PLA2 not only have different structures, but

also very different membrane association mechanisms. For

example, for sPLA2, a positively charged protein surface facilitates

interactions with the anionic headgroups of the lipid surface [17].

For cPLA2, an additional domain (C2) directs the binding [18]. In

the case of Lp-PLA2, two membrane association helices assist the

membrane binding [19]. Finally, for iPLA2, an anchor region is

directly inserted into the phospholipid membrane [20]. These

studies also indicated that the catalytic residues stabilize at a

location that is remote from the sn-2 position of phospholipids

localized in bilayer membranes. This implies that the phospho-

lipids must be extracted from the membrane to be enzymatically

hydrolyzed [20].

In this paper, we focus on the modeling of the iPLA2 enzyme

at the membrane surface. The iPLA2 is of particular interest for

structure-based drug design, as it is believed to be implicated in a

large number of diseases, including Alzheimer disease [21],

hypertensive heart failure [22], neurological disorders [23],

multiple sclerosis [24], and cancer [25]. There is currently no X-

ray or NMR information about the iPLA2 structure, or its

membrane-associated complex. The chemical properties of the

active site of iPLA2 are very similar to other PLA2s (in particular

to cPLA2), which can cause inhibitors to display a lack of

selectivity [26], leading to unwanted side-effects and toxicity.

Thus, a current challenge for inhibitor design targeting iPLA2

lies in optimizing the potency and selectivity of promising new

compounds, which can be aided by modeling based on DXMS

and molecular dynamics [27,28]. To assist the development of

new therapeutic approaches, it is also crucial to understand the

detailed interactions of PLA2 enzymes with phospholipid

bilayers. Previously [20], a structural model for the iPLA2–

membrane complex was built by homology modeling in

combination with DXMS to guide the position of the enzyme

model at the membrane surface (Figure 1). However, several

approximations limit the accuracy of this approach for drug

design applications. First, the DXMS data is subject to

interpretation. For instance, the H/D exchange signal is typically

averaged over many possible orientations and conformations of

the protein, and it is measured only for the amide N-H bond

with a resolution of several residues. Second, the use of a rigid

protein model does not allow the protein to relax upon binding

to the phospholipid bilayer. To overcome these limitations, in

this paper we conduct CG-MD simulations to provide equili-

brated models of the iPLA2–membrane complex. The structures

were further refined with AA-MD simulations, and can be used

to better understand the mechanisms of the iPLA2 membrane

insertion and activation.

Materials and Methods

CG-MD simulations
Different subtypes and splice variants of iPLA2 exist in humans

[1]; therefore, we have chosen to focus on the catalytic domain

which is conserved throughout. Before conversion into a CG

representation, an AA structure was first built by homology with

the crystal structure of patatin. Patatin has ,40% sequence

similarity with iPLA2 and was solved at a resolution of 2.2 Å

(Protein Data Bank code 1OXW) [29]. Prime [30] was used to

build the 332 residue homology model. The ionizable side chains

of the enzyme were chosen in their default charge states for pH 7

and histidine residues were kept uncharged. Because there is

Figure 1. Multi-resolution approach for building 3D models of
the iPLA2 catalytic domain at the membrane surface. The
positioning of homology models at the membrane surface can be
guided by DXMS experiments [20], (ARB1); however, this approach is
subject to several approximations (see main text). Therefore, in this
work, we follow a multi-scale simulation approach where a homology
model is first transformed into a CG representation, and used to
simulate the membrane insertion (ARB2). AA representations are then
reverse-mapped from CG structures of the membrane complex, and
equilibrated with extensive all-atom simulations, (C). The reproducibility
of the resulting structures for the iPLA2–membrane complex is
demonstrated, as well as the excellent agreement with DXMS
experiments, (D). The protein residues are colored according to their
polarity (green = polar; gray = hydrophobic; blue = positively charged;
red = negatively charged). Orange spheres correspond to the position
of phospholipid phosphate groups.
doi:10.1371/journal.pcbi.1003156.g001

Author Summary

The Ca2+-independent phospholipase A2 (iPLA2) enzyme is
a potential target for the development of medicinal agents
against heart and neurological diseases, multiple sclerosis,
arthritis, and cancer. However, no structural information is
currently available for the iPLA2. The binding of the
enzyme to human membranes is driven by favorable
electrostatic and non-polar interactions, but the detailed
influence of these factors is not well understood. In this
paper, we have combined coarse-grained and all-atom
simulations of a homology model of the iPLA2. The coarse-
grained description allows highly efficient simulations of
the protein insertion into a lipid bilayer, while the all-atom
simulations are used to refine the structures of the
protein–membrane complexes. Finally, the resulting struc-
tures are validated experimentally with deuterium ex-
change experiments. In future works, this approach could
be used to build models of other PLA2s. The iPLA2 models
presented here open the door to the computational
design of new inhibitors with improved potency and
selectivity.

Insertion of iPLA2 into a Phospholipid Membrane
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currently no NMR or X-ray information about the iPLA2

structure, the stability of the homology model was previously

tested with MD simulations [28]. The ranking and scoring of

docked compounds, as well as deuterium exchange experiments,

in the presence, and in the absence of an inhibitor, also suggested

that the active-site residues are well described in our model [28].

The most populated structural cluster in the AA simulations was

used as the starting structure for generating the CG structural

model. The same AA structure was also used for fitting atomic

coordinates into equilibrated CG coordinates of the membrane

complex, as described in the next subsection. All CG-MD

simulations were conducted with GROMACS 4.5.4 [31]. The

MARTINI 2.1 force field was used for the protein [7], together

with non-polarizable CG water particles [6]. To maintain the

protein secondary and tertiary structure an elastic network was

applied composed of harmonic restraints (with a force constant of

10 kJ mol21 Å22) between all backbone particles within 7 Å of

each other [32]. Palmitoyl oleoyl-phosphatidylcholine (POPC)

molecules were used for the lipid membrane simulations, because

the iPLA2 is known to be active on this type of membrane [33].

The final simulation system was neutral and contained the protein,

390 randomly positioned POPC molecules, and 11871 CG water

particles. The chosen CG water model does not bear charges, and

it is blind to electrostatic fields and polarization effects. To

compensate for the neglect of explicit polarization, screening of

electrostatic interactions is done implicitly, assuming a uniform

relative dielectric constant of 15 that is smoothly shifted to zero

between 0 and 12 Å [6]. The initial box dimensions were

14061406140 Å3. Prior to the production runs, energy minimi-

zation was carried out for 5000 steps using a steepest-descent

algorithm. The integration timestep in CG-MD simulations was

25 fs. Temperature was kept constant at 323 K using the velocity

rescaling thermostat of Bussi et al [34]. A Berendsen barostat [35]

was used to apply anisotropic pressure coupling, using a coupling

constant of 10.0 ps, a compressibility value of 361025 bar21, and

a reference pressure of 1 bar. Van der Waals interactions were also

smoothly shifted to zero between 9 and 12 Å [6]. For simplicity,

the time-scale of CG simulations is reported here without a scaling

factor; it is however possible to use a scaling factor of ,4 to

account for the speed-up in the diffusive dynamics of the CG water

model with respect to real water [7]. During the CG-MD

simulations, the bilayer was found to self-assemble in the presence

of the protein within ,50 ns, leading to a local energy minimum.

A total simulation time of ,30 ms was accumulated to obtain

ample statistics about the enzyme–membrane association process.

AA-MD simulations
The AA models were built in VMD [36] by aligning our best

equilibrated AA structure onto the CG structures for the

membrane complex, using a least squares fitting of alpha carbons

on CG particles. Following this, an equilibrated POPC membrane

patch of area 1036103 Å2 was aligned on the CG membrane

phosphate groups. Lipids within 0.6 Å of the protein were

removed, and the system was solvated with TIP3P water. 42

Na+ and Cl2 ions were added to create a solution with a

physiological ion concentration of ,0.1 mol/L. The AA simula-

tions were conducted in NAMD 2.9 [37] with the CHARMM36

force field [38,39], using a time step of 2 fs in combination with

the SHAKE algorithm [40]. Long-range electrostatic interactions

were calculated using the particle mesh Ewald method, and van

der Waals interactions utilized a cutoff of 10 Å. The temperature

was regulated with a Langevin thermostat [41], using a damping

coefficient of 5 ps21. Energy-minimization was carried out for

10,000 steps, followed by an equilibration simulation in the NPT

ensemble of 10 ns. Positional restraints (force constant

10 kJ mol21 Å22) were applied to the protein during equilibra-

tion, while the system was slowly heated-up, from 0 to 310 K, by

1 K every 4 ps. Water was prevented from entering the empty

space between the protein and the membrane using a repulsive

potential implemented in NAMD as an external Tcl script. At the

end of the equilibration phase, the protein structure was released.

Six AA-MD simulations were initiated from CG structures

generated by extensive CG-MD sampling and separated by at

least 1 ms. The six simulations were conducted in the NPT

ensemble with isotropic pressure scaling, and lasted for 60 ns. The

coordinates of an equilibrated AA system are included as

supporting information (Text S1). To analyze the structure of

the iPLA2–membrane complex, both the insertion depth and the

insertion angle were monitored. We define the insertion angle as

the angle between the long helix (residues 724 to 750) and its

projection on the membrane surface. The depth of penetration is

measured as the distances between the center-of-mass (c.o.m.) of

the alpha carbons of anchor residues, and the c.o.m. of the bilayer

along the bilayer normal (z axis). Finally, two additional AA-MD

simulations in solution were conducted for 100 ns, in order to

compare the properties of the iPLA2 catalytic domain in solution

and in the membrane.

Results

Our results are discussed in the following order: First, CG-MD

simulations are reported for the protein insertion process. Second,

we discuss the refinement of AA models generated from the CG

structures for the membrane complex. Third, we describe residues

in contact with the membrane and compare our results with H/D

exchange experiments. Finally, we make some concluding

comments about the mechanism of lipid extraction.

CG-MD simulations of the protein insertion process
Two different approaches were employed to study the insertion

of iPLA2 into a phospholipid bilayer with CG-MD (Figure 2). In

the first approach (Figure 2A), ten CG-MD simulations of

,500 ns were conducted starting from a random configuration

of the lipids around the protein. The membrane was found to self-

assemble within ,50 ns into a fully formed phospholipid bilayer.

In seven out of these ten simulations, the bilayer formed around

the protein and the enzyme–membrane complex equilibrated with

the enzyme adopting an interfacial location. In the other three

simulations, the bilayer formed and the enzyme remained in the

aqueous environment for the entire simulation. In the second

approach (Figure 2B), the membrane was already formed and the

protein was in solution, and three long CG-MD simulations were

conducted. The time before the onset of anchoring was much

longer in this case: ,2.5 ms, 3.2 ms, and 4.1 ms. Inspection of the

trajectories reveals that multiple collisions between the enzyme

and the membrane occurred before the formation of the enzyme–

membrane complex. More specifically, insertion occurred only

when the enzyme collided with its anchoring region (residues 710

to 724) pointing toward the membrane, and therefore, ,90% of

the collisions between the protein and the membrane were

unproductive. After adopting an interfacial location, iPLA2

remained at the interface for the remainder of each simulation,

consistent with a stable configuration. In Figure 2C, an alignment

of the resulting iPLA2–membrane structures with both approaches

is shown. A limitation of the first approach is that the membrane

can form too rapidly around the protein, and kinetically trap a less

stable conformation that corresponds only to a local minimum.

This occurred in two of the seven simulations, leading to a

Insertion of iPLA2 into a Phospholipid Membrane
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conformation with a lower insertion angle of ,10 deg. The second

CG-MD approach did not appear to suffer from this limitation,

but it required hundred times longer simulations to observe

successful insertion events.

AA-MD refinement of the enzyme–membrane models
An important methodological question concerns the ability of

multi-scale simulations to generate a unique atomistic structure for

the iPLA2–membrane complex that corresponds to the global

energy minimum. To bring back an all-atoms level of details, six

AA-MD simulations were seeded from distinct CG structures of

the catalytic domain at the membrane surface. AA-MD simula-

tions were conducted for 60 ns to allow the relaxation of the

protein structure that was previously restricted by the use of an

elastic network. Detailed interactions such as hydrogen bonding

are not represented in the chosen CG model, but were probed

with AA-MD. We found that in all six AA-MD simulations, the

equilibration of side-chains lead to additional hydrogen bonds with

the phospholipids headgroups that equilibrated within ,20 ns

(Figure 3C). Importantly, no significant drift occurred in AA

trajectories initiated from the CG structures, and for all six

simulations the protein structures could be aligned with a root-

mean-square deviation (RMSD) for backbone atoms below 4 Å. In

addition, the residues in contact with the lipid headgroups/tails,

and the insertion angle (6768 deg), were in agreement between all

simulations within the naturally occurring fluctuations

(Figure 3C,D).

The stability of the AA models was further examined by MD

relaxation from high-energy structures. Four new models were

generated in two tense orientations on the membrane: two

models were positioned perpendicularly 3 Å, and 6 Å, deeper

into the membrane than the equilibrium model; the other two

were tilted by +15 degree (deg), and 215 deg angles. After

equilibration of the membrane for 10 ns, the protein was allowed

to relax and the changes in the orientation and depth of the

protein were monitored for over 40 ns. These simulations were

conducted at 340 K to accelerate the protein relaxation. In all

four simulations, the average displacement with respect to the

initial structure was .6 Å and indicated that the protein has not

yet reached a stable position after 40 ns. The simulations also

showed a significant displacement of the enzyme out of the lipid

bilayer when the insertion was too deep. Similarly, the tilted

enzyme models rotate toward the original binding model as

expected. Thus, in both relaxation experiments, the enzyme

transits from a tense mode to a relaxed mode and slowly

converges toward our best guess for the protein position,

suggesting that it corresponds to a favorable conformation at

the membrane surface. Therefore, we conclude that our multi-

scale simulation approach is robust for determining the lowest

energy structure for the iPLA2–membrane complex.

Figure 3A shows a representative snapshot of an equilibrated

AA-MD simulation, and highlights the membrane surface, the

anchoring region, and the contours of a protein cavity at the

membrane surface. In all six equilibrated structures, the same

surface of the protein was found to bind to the membrane. In

particular, three regions are in direct contact with the membrane

(regions 552–555, 643–646, and 710–724). The main contact

region (710–724, shown in Figure 3B) folds into an amphipathic

alpha helical structure that is inserted into the membrane. One

side of the helix consists of a cluster of hydrophobic residues

(Pro711, Pro714, Trp715, Leu717, Val721, and Phe722) that have

their side-chains pointing toward the lipid tails and act as

hydrophobic anchors. The other side of the helix consists of basic

(Arg710, and Lys719) and polar residues (Ser712, Asn713,

Glu716, Thr720, and Gly723) that mainly interact with the lipid

headgroups. In addition, a second region (643–646) contains

Try643 and Arg645 that can also interact with the membrane

surface. Tyrosine and arginine residues are known to bind near the

lipid tail/headgroups interface, as they can create both favorable

hydrogen bonds and hydrophobic interactions. Finally, a third

contact region (552–555) helps to stabilize the angle between the

protein and the membrane. It is formed by Arg553 that can

interact with the lipid headgroups, Pro554 that can interact with

the lipid tails, as well as Ser552 and Tyr555 that can form

hydrogen bonds with the headgroups. In the CG-MD simulations,

the insertion angle was about ,45 deg when Arg553 was unable

to form a hydrogen bond with the lipid headgroups, but it

equilibrated to .65 deg when this interaction was formed.

The depth of penetration of iPLA2 into the lipid bilayer was

assessed by measuring the distances between the center-of-mass

(c.o.m.) of the alpha carbons relative to the c.o.m. of the bilayer,

Figure 2. Snapshots from the CG-MD simulations showing the
stabilization of the iPLA2 catalytic domain at the membrane
surface. In (A), the membrane self-assembly was simulated starting
from a random distribution of the phospholipids around the protein;
and in (B), the membrane was formed at the beginning of the
simulations with the protein in solution. The protein is colored in blue
for residues that are inside the membrane according to DXMS results
(see next subsections), and in green and light blue for residues that
display only a weak decrement in H/D exchange consistent with a
position above the membrane surface. Phospholipid phosphate
particles are shown in orange. (C) The resulting structures for the
iPLA2–membrane complex obtained with methods A and B are shown
superimposed (backbone atoms only).
doi:10.1371/journal.pcbi.1003156.g002

Insertion of iPLA2 into a Phospholipid Membrane
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along the bilayer normal (z axis). In both CG-MD and AA-MD

simulations, a similar distribution of residues was observed with

respect to the components of the bilayer system (Figure 4A).

Among the different surface residues, the positions of basic

(Arg710, and Lys719) and polar residues (Ser712, Asn713,

Glu716, Thr720, and Gly723) were found to coincide roughly

with the phosphate peak, at ,18.9 (61.6) Å from the bilayers

center (Table 1). The cluster of hydrophobic residues (Pro711,

Pro714, Trp715, Leu717, Val721, and Phe722) was found to be

inserted ,3 Å deeper into the membrane in a region occupied by

the lipid tails. The perturbation induced by the anchor residues on

the vertical packing of the lipids was found to be small. In all six

simulations, the location of the catalytic site residue Ser519 was at

least 10 Å away from the lipid headgroups, and at an average

distance of ,36 Å from the membrane center. This strongly

suggests that the phospholipid substrate molecule must be

extracted from the membrane at the beginning of the catalytic

reaction.

Figure 3. Atomistic MD simulation of the catalytic domain of iPLA2 in a lipid bilayer. (A) Cutaway view of the catalytic domain inserted
into the lipid bilayers from a representative snapshot of the simulations. The protein is represented as gray ribbons. The lipid phosphate headgroups
are shown as a pale brown surface. A blue section of the protein indicates the anchor region (residues 708–730), which shows significantly reduced
H/D exchange when the enzyme is in the membrane. The active site Ser519 is shown in CPK representation. A yellow volume indicates a cavity at the
entrance of the active-site, which may be employed for the lipid extraction. The inserted side chains of three anchoring residues, Pro714, Trp715, and
Leu717, are shown in CPK representations in brown, gray, and pink. (B) Close-up caption of the cluster of hydrophobic residues (Pro711, Pro714,
Trp715, Leu717, Val721, Phe722) that are interacting with the lipid membrane. A horizontal line was drawn to indicate the approximate position of
phosphate groups. The protein side chains are colored according to their charges (green = polar; gray = hydrophobic; blue = positively charged;
red = negatively charged). (C) Equilibration of hydrogen bond interactions between the protein and the lipid headgroups during a 60 ns AA-MD
simulation. (D) Time series of the insertion angle in three 60 ns AA-MD simulations.
doi:10.1371/journal.pcbi.1003156.g003

Insertion of iPLA2 into a Phospholipid Membrane
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Comparison between equilibrated structures and DXMS
experiments

DXMS experiments were carried out on the Group VIA-2

iPLA2 enzyme, which is composed of seven consecutive N-

terminal ankyrin repeats, a linker region, and a C-terminal

phospholipase catalytic domain. Deuterium exchange on iPLA2

was carried out in the presence of the phospholipid substrate,

palmitoyl-arachidonyl-phosphatidylcholine (PAPC), and a methyl

arachidonyl fluorophosphonate (MAFP) inhibitor to prevent the

digestion of the membrane. It identified four regions with

significant changes in deuterium exchange upon membrane

binding, all located in the catalytic domain (Figure 4B). The

region 708–730 showed the largest deuteration levels (.90%) in

solution, showing that it is solvent-exposed in the absence of

phospholipid vesicles. However, in the presence of phospholipid

vesicles, the same region did not become highly deuterated,

suggesting that it is involved in the membrane anchoring and

therefore no longer solvent accessible. When the incubation time

in D2O was 10 s, mass spectrometry shows a difference of 13.2 in

the average number of deuterium exchanges for this region.

Similarly, in the case of a 5 min incubation time, a ,70%

decrease in deuteration levels was measured in the presence of the

membrane. The computational models are consistent with this

result, as they show that hydrophobic residues Val708, Phe709,

Trp715, Leu717, Val721, Phe722, and Leu727, are no longer

solvent-accessible in the protein-membrane complex. Interestingly,

the negatively charged region 773–778 and the regions 631–655

and 658–664 also showed a decrease of deuteration that is

Figure 4. (A) Distribution of residues with respect to the components of the bilayer system (lipid headgroups and tails; red and
green, respectively). The protein (black) was magnified 63 times for better visualization. Also shown is the distribution of hydrophobic anchors
(blue) and surface residues (ice-blue) that only showed a small decrement in H/D exchange when in contact with the membrane. (B) DXMS results are
color-mapped on the protein model: gray residues did not show a decrement in H/D exchange when the protein was in the membrane, blue residues
showed a .70% decrement after 5 min of incubation time, while ice-blue corresponds to a smaller ,40% effect after 5 min. The approximate
position of the phosphate peak is shown as a horizontal line. The active site Ser591 is drawn in a CPK representation.
doi:10.1371/journal.pcbi.1003156.g004

Insertion of iPLA2 into a Phospholipid Membrane
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however less pronounced than for the anchor residues (,40%

decrease in deuteration levels after 5 min of incubation). In the

computational models, these residues belong to a hydrophobic

cavity at the membrane surface that leads to the active-site serine.

A likely explanation for the weak observed DMXS effect is that a

single phospholipid can transiently occupy the cavity, and prevent

the solvent from accessing these residues. We are currently

exploring this hypothesis in more details and will publish these

results separately.

AA-MD simulations of iPLA2 in solution
In order to detect properties of the enzyme that change upon

binding to the membrane, we compared two simulations of iPLA2,

in solution, and in a membrane. In both these simulations, the

RMSD for the protein backbone atoms was found to stabilize

below 3 Å, which is indicative of a stable protein model

(Figure 5A). Moreover, both simulations showed that the anchor

region of iPLA2 (710–724) is very dynamic in nature (Figure 5B).

However, in solution the amphipathic helix was observed to

unfold, indicating that it is stabilized by the interaction with the

membrane [42]. In addition, residues of the anchor region were

found to move in solution by as much as ,7 Å, and in some

structures to block the entrance of the active-site cavity (Figure 5C).

In particular, the bulky Tyr643 residue was found to act as a

gatekeeper that can prevent the entrance of incoming ligands. To

show this, the free energy profile was calculated for a methane

probe entering the active-site with the implicit ligand sampling

(ILS) method [43]. The ILS method allows the rapid post-

processing an entire MD trajectory to collect qualitative informa-

tion about the interaction free energy of a small probe. The

calculation showed that a favorable free energy pathway exists

connecting the membrane to the catalytic Ser519, which is

accessible only in the membrane-activated (open) state of the

protein (Figure 5D). This uncovers a new mechanism by which the

flexible anchor region of iPLA2 may provide a form of active-site

regulation similar to the lid structure in cPLA2.

Discussion

The present study on iPLA2 complements two previous CG

simulation studies [10,44] that also demonstrated the utility of a

multi-resolution simulation approach for predicting the surface

location of PLA2 enzymes. These two previously published CG

studies focused on the smaller sPLA2 (,14–19 kDa), which has a

known structure, and bears no sequence similarity with the much

larger iPLA2 (,84–90 kDa). In one study [10], it was found that

the sPLA2 protein equilibrated further away from the membrane

than suggested by experiments. However, the authors concluded

that these differences were most likely due to difficulties in

interpreting tryptophan fluorescence experiments, as no drift was

observed in their AA-MD simulations originated from the CG

models. In support for this explanation, no drift was observed here

in the AA-MD simulations originated from the CG models, and

the agreement between computer simulations and DXMS

experiments was excellent for the prediction of membrane-bound

residues.

Our results show that the catalytic domain of iPLA2 adopts a

well-defined orientation at the membrane surface that is aimed to

facilitate the vertical extraction of phospholipids from the

membrane. Both the insertion depth and the orientation of iPLA2

on the lipid surface are therefore finely tuned to facilitate rapid

turnover by coupling hydrolysis and product release with the

binding of the next substrate [19,20]. In addition, the enzyme was

observed to diffuse laterally at the membrane surface without any

disruption of the membrane complex, with the lipids dynamically

repacking around the enzyme. This lateral motion is in agreement

with the so-called scooting mechanism, which has been proposed

to be important to facilitate the detection of lipid protrusion at the

membrane surface [45]. The scooting mechanism contrasts with

the hopping mechanism, in which the enzyme dissociates and re-

associates with the membrane to explore the lipid surface. The

hopping mechanism is believed to be favored by sPLA2 in the

presence of zwitterionic membranes [44].

The Group VIA-2 splice variant of the iPLA2 contains in

addition to the catalytic domain, seven ankyrin repeats, and a

linker region (,700 residues). The ankyrin repeats are believed to

directly or indirectly assist membrane association because the

catalytic domain by itself does not have activity [46]. Our efforts

to simulate the full GVIA-2 iPLA2 structure did not uncover an

alternative mechanism for the membrane insertion in the

presence of ankyrin repeats. In particular, two CG-MD

simulations of the full GVIA-2 iPLA2 structure were conducted

for 500 ns starting from a random configuration of the lipids.

After insertion into the membrane, no significant differences were

observed in the catalytic domain region, suggesting that the

catalytic domain alone is able to successfully complete the

insertion process. However, it cannot be excluded that the

additional structural elements increase the probability of mem-

brane insertion, either by providing a second interaction point

with the membrane, or by stabilizing the correct orientation of

the catalytic domain. Moreover, the rotation of the catalytic

domain around an axis perpendicular to the membrane plane

was hindered in the full protein structure, which may be

indicative of a more stable protein–membrane complex. Group

VIA iPLA2 has also been shown to be active as an oligomer

through radiation inactivation studies [47]; thus, the ankyrin

repeats may be crucial for stabilizing the complex by taking part

in the assembly of an oligomeric structure.

Table 1. Location of surface side-chains relative to the bilayer
center.

Residue type Residue AA-MD

hydrophobic Pro711 16.861.9

Pro714 16.462.0

Trp715 15.061.7

Leu717 19.062.2

Val721 15.261.6

Phe722 13.761.6

16.0±1.8

basic Arg710 19.062.2

Lys719 18.361.6

18.6±1.9

polar Ser712 19.461.8

Asn713 20.662.0

Glu716 20.761.7

Thr720 17.262.0

Gly723 18.961.6

19.3±1.8

Average 6 standard deviation (Å) of the distance between the center of mass of
the residue and the center of mass of the bilayer. Averages were taken over the
last 20 ns of six AA-MD simulations.
doi:10.1371/journal.pcbi.1003156.t001
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Figure 5. MD simulation of the iPLA2 catalytic domain in solution and in the membrane. (A) Root-mean-square-deviations (RMSD) of
backbone atoms for the protein (in the membrane, and in solution, full, and empty circles, respectively), and for anchoring residues 708–730 (in the
membrane, and in solution, solid blue line, and dotted line, respectively). (B) Root-mean-square-fluctuations (RMSF) of different residues when the
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For a successful hydrolysis of phospholipids, one substrate

molecule must be extracted from the lipid aggregate into the

active-site of iPLA2. Because natural fluctuations in the fluid

membrane mostly cause lateral motions in the lipid molecules, an

exquisite mechanism must exist to allow the lipid molecule to

escape the lipid surface. The structure of the iPLA2–membrane

complex shows the existence of a hydrophobic cavity near the

membrane surface that is likely to assist the lipid extraction by

competing with hydrophobic interactions between the substrate

and the lipid aggregates. The deuterium exchange experiments

also support a scenario in which the cavity is often transiently

occupied by a lipid substrate extracted from the membrane.

However, the lipid extraction could not be directly observed in our

simulations, presumably because the lipid-binding cavity remained

closed in the CG simulations due to the use of an elastic network

model to stabilize the protein structure. In the AA simulations the

time-scale (nanoseconds) was too short to observe the opening of

the cavity and the extraction of a lipid from the membrane.

Ongoing work in our labs will address this problem by conducting

longer time-scale (microsecond) AA simulations, as well as steered

MD simulations [48], and provide a more complete picture of the

lipid extraction.

The high degree of conformational flexibility of iPLA2 during

simulations leads us to believe that the flexible loops that form the

entrance of the cavity regulate the active-site accessibility. For

instance, the hydrophobic residues in the anchor region (710 to

724) fold into an amphipathic helix in the membrane, but adopt

an extended conformation when they are in solution, leading to

the partial closure of the active-site cavity. We [27] have recently

hypothesized that each type of PLA2 contains a distinct

‘‘membrane interaction site(s)’’ that should be considered as a

typical allosteric site. When the PLA2 is associated with a ligand (in

this case, the membrane), the enzyme exists in a different

conformational state than in solution (R to T transition) in accord

with the basic ideas of allostery [49] as recently reviewed by

Changeux [50]. Although further work will be needed to

confidently map the conformational landscape of iPLA2, the

results reported herein are consistent with the novel notion of

considering the membrane as a ligand, which causes a conforma-

tional change in certain water-soluble proteins (such as various

PLA2s) when they productively associate with a membrane [27].

In addition, the present study identified an amphipathic helix as

the anchor region of iPLA2. Amphipathic helices have been

recently proposed as interesting motifs that help recognize

hydrophobic defects in the membrane, such as those created

when bending the bilayer [42,51,52]. It is possible that the helix in

iPLA2 confers the enzyme with the ability to detect membrane

defects, which is believed to be a key property of PLA2s [45].

In future studies, a deeper understanding should be gained of

the roles of different protein conformations accessed during the

catalytic cycle of iPLA2. This will be crucial for inhibitor design, as

interrupting a single catalytic step could be sufficient to inhibit the

entire reaction. MD simulations could be utilized to explore the

role of the enzyme flexibility during the different phases of the

catalytic process, including the extraction, binding, and hydrolysis

of the substrate and the release of the products in the bilayer.

These models will open the door to virtual screening techniques

aimed at finding new inhibitors of iPLA2 with improved potency

and selectivity. Finally, we feel that the multi-scale approach

discussed here should prove helpful in designing initial computa-

tional models of various PLA2 enzymes at the membrane surface,

and will lead to further studies on the impact of lipid diversity and

sequence mutations on the activity of iPLA2 and related enzymes.
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