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Abstract

The large variability in mRNA and protein levels found from both static and dynamic measurements in single cells has been
largely attributed to random periods of transcription, often occurring in bursts. The cell cycle has a pronounced global role
in affecting transcriptional and translational output, but how this influences transcriptional statistics from noisy promoters is
unknown and generally ignored by current stochastic models. Here we show that variable transcription from the synthetic
tetO promoter in S. cerevisiae is dominated by its dependence on the cell cycle. Real-time measurements of fluorescent
protein at high expression levels indicate tetO promoters increase transcription rate ,2-fold in S/G2/M similar to
constitutive genes. At low expression levels, where tetO promoters are thought to generate infrequent bursts of
transcription, we observe random pulses of expression restricted to S/G2/M, which are correlated between homologous
promoters present in the same cell. The analysis of static, single-cell mRNA measurements at different points along the cell
cycle corroborates these findings. Our results demonstrate that highly variable mRNA distributions in yeast are not solely
the result of randomly switching between periods of active and inactive gene expression, but instead largely driven by
differences in transcriptional activity between G1 and S/G2/M.
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Introduction

At the single-cell level, mRNA and protein levels of regulable

genes are often found to be highly variable [1–5]. The resulting

long-tailed mRNA and protein distributions are well-described by

stochastic models [1,5–7] of transcriptional bursting, where a

promoter undergoes random and intermittent periods of highly

active transcription. Real-time observations of transcription in

multiple organisms appear consistent with this behavior [5,8–14].

Thus, both static and dynamic views attribute much of the

observed mRNA variability to the stochastic nature of reactions

intrinsic to transcription. Consequently, the standard stochastic

model of gene expression has been widely used to infer steady-state

dynamics [1,2,15–17].

However, earlier studies examining the origin of variability in

protein expression found such variability is not solely due to

stochasticity in reactions intrinsic to gene expression, but also

extrinsic factors. This was done by looking for correlations in

expression between identical copies of one promoter [18–20] and/

or between that promoter and a global or pathway-specific gene

[21,22]. Not only is the importance of extrinsic factors clear,

without time-series measurements the intrinsic noise measured by

these techniques may not completely be ascribed to stochastic

reactions in gene expression [23,24]. While global extrinsic factors

have been suggested to largely impact translation [1], their

influence on transcription and transcriptional bursting is unclear.

The cell cycle has global effects on total protein and RNA

synthesis that should play a role in transcription [12,20,25]. With

few exceptions [20], most deterministic and stochastic models of

gene regulation do not account for cell cycle variability. Using both

dynamic real-time protein and static single molecule mRNA

measurements in single cells, we show that much of the variability

in a synthetic tetO promoter typical of noisy genes in yeast is driven

by differences in transcription rate between G1 and S/G2/M.

Results

We examined cell-cycle dependent effects by microscopically

monitoring fluorescent protein expression every 5 minutes in

growing monolayers of yeast within a microfluidic chamber. We

used a ‘‘3-color’’ diploid yeast strain with homologous 7xtetO

promoters (P7xtetO) driving either Cerulean (CFP) or Venus (YFP)

and a constitutive PGK1 promoter (PPGK1) driving tdTomato (RFP)

(Fig. 1A). Correlations in transcriptional activity between different

promoters allowed distinction between different sources of

fluctuations [20,22]. We developed a method to infer the

instantaneous transcription and protein production rates in single

cells from the microscopy movies. We segment cells (Fig. 1B),

define budding times, track cell lineages and generate time series

for volume and protein concentration (measured by average

fluorescence, Fig. 1C&D), similar to [26,27]. Two new features of

our analysis enabled us to identify transitions in transcriptional

state from these time series: precise assignment of cytokinesis (Fig.

S1) and using splines to stably estimate first and second time

derivatives (Text S1). The product of volume and protein

concentration time series gives total protein, P(t) (Fig. 1E), from

which we infer the protein production rate (proportional to

mRNA per cell, M(t)) (Fig. 1F), and transcription rate, A(t) (Fig. 1G)
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using a system of two differential equations describing transcrip-

tion and translation (Methods). The single-cell, instantaneous

transcription rate estimated (Fig. 1G) represents a rate smoothed

over a 15–20 minute window (due to measurement and spline

fitting errors) and delayed 10–15 minutes due to fluorophore

maturation (Text S1).

To examine the effects of cell-cycle phase on expression, we

aligned growth and expression data with respect to cell-cycle

progression. We subdivided single-cell time series data between

division events, synchronized the data by bud formation time, and

rescaled time such that the pre- and post-bud phases mapped to the

population average time in those phases. Thus, division occurs at 0

and 1, and all traces bud at the same cell-cycle progression (Fig. S2).

While reporter concentration is nearly flat across the cycle (Fig. 2A),

cells exhibit a slow growth phase up to bud formation corresponding

to G1 and very early S, followed by faster growth in S/G2/M

(Fig. 2B), consistent with [27,28]. The instantaneous protein

production rate similarly has two modes, but lags the instantaneous

growth rate (Fig. 2C). In contrast, the instantaneous transcription

and growth rate correlate, approximately doubling in S/G2 relative

to G1 (Fig. 2D). This does not invalidate observations that total

protein production rates correlate with average growth rate [29]

(Fig. S3). The gradual rise in transcription rate over ,30 min may

mask a sharper change because of smoothing and reporter

maturation (Fig. S4). These findings are robust to changes in cells’

average growth rate (Fig. 2E and Fig. S5) and remain present even

without rescaling time (Fig. S2).

We next added 50 ng/mL dox to reduce P7xtetO expression in

the 3-color diploid to levels where transcription is thought to occur

in infrequent, independent bursts at each locus that are

presumably resolvable by the real-time analysis. Single-cell traces

of transcription rate show occasional ‘‘on’’ periods (Fig. S6) that

are restricted to S/G2, generally begin within 20 minutes of bud

formation, and last until division (Fig. 3A). If both P7xtetO copies

turn on, .70% of the time they do so within 15 minutes of each

other (Fig. 3B). The ‘‘on’’ periods are not independent (p,1025,

x2 test; r= 0.42) at each locus (Fig. 3C). These results are in

striking contrast to the view of transcriptional bursting as

intrinsically driven with exponential interarrival times [1,4,8,30].

We sought further support for these real-time observations by

using single-molecule mRNA fluorescence in situ hybridization

(FISH) to probe how mRNA numbers in single cells varied with

cell-cycle phase, classified based on the presence and size of a bud

(Methods). Fig. 4A&B describes mRNA distributions from cells

with P1xtetO and P7xtetO, but no activator present (basal

expression). The G1 distributions are zero-peaked with a long-

tail that disappears by early S, suggesting transcription does not

occur in G1, consistent with Fig. 3A. Progression through S/G2/

M leads to a unimodal non-zero-peaked distribution in G2/M

consistent with real-time observations (Fig. 3B) indicating the time

when an inactive promoter turns ON in S/G2 is variable. With

intermediate expression, there is also increased activity in S/G2/

M, but the G1 distribution is qualitatively different: a non-zero

peak indicates transcription now occurs in G1 (Fig. 4C&D).

However, low transcription activity does not imply G1 inactivity.

The weak but constitutive DOA1 promoter (PDOA1) [31] has a non-

zero G1 peak even with low mRNA levels (Fig. 4E).

While the overall mRNA distributions exhibit excellent fits to a

negative binomial predicted by the standard model [1,32] (Fig. 4),

partitioning the data by cell-cycle phase reveals it is incorrect. We

sought to understand to what extent the overall variability could

be explained by a model with a constant transcription rate that

increased by f-fold between G1 and S/G2/M (Text S1). When

f = 2 as expected based on S-phase replication, the model

qualitatively describes the progression of the observed distributions

for PDOA1 (Fig. 4E&F, Table S3, Fig. S7). However, f.2 better

describes tetO promoter measurements, with f.100 for basal

expression, consistent with no G1 transcription (Fig. 4A–D, Fig.

S7). Still, noisy tetO promoters have more variable transcription

than this model can generate. The real-time protein data (Fig. S6)

also indicate variability in the amount of mRNA produced in S/

G2/M. Incorporating this variability by randomizing the timing of

the transcription rate transition in the model gives predictions that

agree well with P1/7xtetO but not PDOA1 (Fig. S8, Text S1). The

mRNA FISH images for tetO promoters tend to have bright spots

thought to represent nascent mRNA transcription that are more

likely in S/G2/M (Fig. S9) and may indicate ‘‘bursty’’ expression

as another source of variability.

Finally, we asked if cell-cycle phase affected the kinetics of gene

activation by measuring the time to activate P1xtetO and P7xtetO in

response to a step change in transcription factor (TF) input.

Because TF-regulating pathways in single cells may respond to

chemical inducers like dox slowly and at variable times [33], we

developed a ‘‘kinetic’’ strain where TF activation was observable

in its nuclear localization. The TF Pho4p localizes to the nucleus

in response to low phosphate [34]. Reengineering the phosphate

pathway (Text S1) allows rapid, reversible control of a Pho4-tetR-

YFP fusion capable of activating P1/7xtetO-CFP by toggling

phosphate concentration (Fig. 5A), with minimal effects on cell

growth (Fig. S10).

In response to a step change in phosphate concentration, both

TF localization and subsequent gene activation from P1xtetO or

P7xtetO driving CFP expression are identical (Fig. 5B&C). The

difference between localization and transcription activation timing

in single cells (Fig. 5D&E, Text S1) yields a response delay time

distribution (Fig. 5F) with a median 17 min delay likely dominated

by fluorophore maturation (,10 min delay, Fig. S12). Therefore,

on average both promoters respond quickly to the TF. However,

when we separate cells by the cell-cycle phase when TF

localization occurs, the post-budding response delay distribution

is significantly different from the pre-budding delay distribution

(Fig. 5G, 2-sample K-S test: p = 0.05, P1xtetO; p,0.001, P7xtetO),

with median response times in post-budded cells 7 (P1xtetO) or 10

Author Summary

There is an astonishing amount of variation in the number
of mRNA and protein molecules generated from particular
genes between genetically identical single cells grown in
the same environment. Particularly for mRNA, the large
variation seen from these ‘‘noisy’’ genes is consistent with
the idea of transcriptional bursting where transcription
occurs in random, intermittent periods of high activity.
There is considerable experimental support for transcrip-
tional bursting, and it is a primary feature of stochastic
models of gene expression that account for variation. Still,
it has long been recognized that variation, especially in
protein levels, can occur because of global differences
between genetically identical cells. We show that in
budding yeast, mRNA variation is driven to a large extent
by differences in the transcriptional activity of a noisy gene
between different phases of the cell cycle. These differ-
ences are not because of specific cell-cycle regulation, and
in some cases transcription appears restricted to certain
phases, leading to pulses of mRNA production. These
results raise new questions about the origins of transcrip-
tional bursting and how the statistics of gene expression
are regulated in a global way by the cell cycle.

Cell-Cycle Dominates Noisy Transcription
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(P7xtetO) minutes earlier. We repeated the P7xtetO step test in 2%

raffinose to extend G1 and better sample G1 cells. Both the

median 20 min response delay and the 10 min gap between pre-

and post-bud cells’ delay (K-S test: p = 0.005) are similar to results

in glucose, with prolonged delays in activation restricted to G1

(Fig. 5H, Fig. S13).

Discussion

Transcriptional bursting, whereby a promoter occasionally

transitions from a long-lived inactive to a short-lived active state

that produces a burst of mRNA, is commonly invoked to explain

the observed single-cell variability in mRNA numbers [1] of noisy

genes. In contrast, we demonstrate that large differences in

transcriptional activity between G1 and S/G2 that go beyond

gene dosage effects drive much of the observed single-cell

variability in mRNA numbers. Genome-wide studies in yeast

[3,35] have identified noisy promoters as those associated with

strong TATA boxes and highly regulated by chromatin remod-

eling factors. The tetO promoters, whose core region is derived

from the native CYC1 promoter [36], have similar characteristics.

Likewise, constitutive, housekeeping promoters and highly ex-

pressed tetO promoters previously associated with low expression

variability [2,3,31] exhibit only ,2-fold changes in transcription

throughout the cell cycle consistent with gene dosage effects. None

of these promoters are classified as cell-cycle regulated [37]. While

the cell cycle has been appreciated to be an important source of

extrinsic noise, our findings suggest there may be a specific role

beyond gene dosage for noisy genes that have not been associated

with cell-cycle regulation. Transcriptional bursting may still occur,

but it is not needed to explain most of the variability in mRNA

levels given the variability in timing of the G1 to S transition

[38,39]. The heretofore unexplored connection between noisy

gene expression and large differences in G1 and S/G2 transcrip-

tional activity raises fundamental questions concerning its origin

and prevalence amongst noisy genes in various organisms and its

implications in stable gene network regulation.

Studies monitoring transcripts in synchronized yeast cells with

tiling microarrays identify ,10% of genes that exhibit cell-cycle-

dependent expression [37]. The mechanistic basis of their cycling,

through regulation by cyclin-dependent transcription factors, is

well-understood. The CYC1 gene, whose core promoter is present

in the tetO promoters, is not part of this class. Because we

observed cycle-dependent basal expression for tetO promoters in

the absence of any tTA, the CYC1 gene might be expected to

behave similarly. If we surmise that this cycle-dependent

expression occurs at a majority of the ,20% of genes whose

expression has been identified in genome-wide studies as noisy

[35], why has not previous work, which monitors expression in

populations of synchronized cells, identified these genes? First,

Figure 1. An instantaneous transcription rate is calculated from
single-cell fluorescence time series. (A) In the 3-color diploid strain,

tet-Trans-Activator (tTA) expressed from PMYO2 activates P7xtetO and is
repressed by doxycycline. Homologous copies of P7xtetO drive
expression of either CFP or YFP while PPGK1 drives RFP expression
constitutively. (B) Monitoring growth of single cells in microfluidic
culture. The segmented mother cell, daughter, and contiguous whole
cell regions are outlined in blue, green, and red, respectively. For the
mother and its daughters, (C) raw volume and (D) CFP concentration
time series were smoothed to remove measurement noise; (E)
integrated CFP fluorescence was calculated as their product (corre-
sponding regions shown in B). The sum of bud and mother values until
division constitutes a whole cell trace, which when extended past
division, yields a running total trace that is fit to a differentiable
smoothing spline. (F) Calculated relative mRNA levels and (G)
instantaneous transcription rate.
doi:10.1371/journal.pcbi.1003161.g001

Cell-Cycle Dominates Noisy Transcription
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normalized microarray data represent a mole fraction of mRNA

species in the population. As such, they will never identify, say,

two-fold changes in mRNA abundance due to replication when

normalized to the concurrent rise in total mRNA [40]. Second, we

see large differences in transcription rate between G1 and S/G2 but

because of the finite mRNA lifetime, differences in mRNA

abundance are smaller. The discrepancies are much more

pronounced with slower growth conditions (as the mRNA reaches

the new steady-state in each growth phase), but the microarray

studies were done in fast growth conditions. Third, under

conditions with the largest cell-cycle phase-dependent differences

in transcription, S/G2 transcription is a probabilistic event.

Microarray experiments measure the population average mRNA

mole fraction in each phase, and hence the relative difference

between S/G2 and G1 will be quite low on average. Therefore,

monitoring expression in single living cells through multiple cell

cycles is crucial to observing cell-cycle-dependent transcription.

Single-cell studies do not suffer from the averaging effects of

microarray analysis. Still, our data alters the interpretation of static

single-cell studies where mRNA/protein distributions are fit to

stochastic models of gene expression to infer steady-state dynamics

[1,2,15,17]. This difficulty of using static data to pinpoint origins

of variability has been anticipated [5,23] although here we have

shown that even static mRNA FISH data can reveal additional

dynamic information by disaggregating mRNA distributions by

cell-cycle phase. Consistent with our observations, control

measurements made in a study examining cycle-dependent

mRNA degradation kinetics using mRNA FISH show an

approximately 2-fold increase in mRNA levels as cells progress

through S/G2/M for the ADH1 and DOA1 promoters [25]. Our

results suggest that burst sizes and burst frequencies obtained from

fitting static mRNA distributions to a negative binomial distribu-

tion may be of limited use beyond the fact that they describe the

first two moments of the distribution (and hence its noise). If we

titrate tTA levels and infer burst statistics from the aggregate

distribution, it appears that burst size increases at low expression

levels, then burst frequency increases at high expression levels.

This transition roughly corresponds to moving from little or no

transcription in G1 (with a burst frequency corresponding to one

cell cycle) to robust G1 expression (Quinn, Maheshri, unpublished

results). Because of the ease of grossly classifying cell-cycle phase in

yeast, an exciting and straightforward exercise would be to

reanalyze existing mRNA FISH datasets published from multiple

labs to determine the prevalence of cycle-dependent expression.

Morphological measurements might also be combined with two-

color FISH measurements using a second transcript with known

cell-cycle regulation [41]. Such an approach with high abundance

transcripts has already revealed independent cell and metabolic

cycles [42].

Recent real-time single-cell measurements of transcription may

not have seen the cycle-dependent transcription we report for

various reasons. In the one yeast study, mRNA expression of a

housekeeping gene was measured in real-time with no accounting

Figure 2. Instantaneous transcription rate in single yeast cells
correlates with growth across the cell cycle. Single-cell data was
binned by cell-cycle progression and averaged. (A) Because of the small

(,10%) decrease in CFP concentration across the cell cycle, (B) total CFP
rises rapidly with volume post-bud formation, similar to [27], but at
slightly different rates. (C) Mean instantaneous growth and protein
production rates are lower in G1 and peak in S/G2/M. Instantaneous
transcription rate of P7xtetO and PPGK1 correlates with instantaneous
growth rate for growth in (D) 2% glucose (N = 171 cell cycles/bin) and in
(E) 2% raffinose (N = 246 cell cycles/bin). YFP and RFP transcription
averages were normalized to that of CFP in glucose (D). Error bars
represent the bin SEM from bootstrapping. Dotted lines indicate the bin
s.d.
doi:10.1371/journal.pcbi.1003161.g002
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Figure 3. Transcriptional bursts from homologous loci are cell-cycle dependent and partially correlated. The 3-color diploid strain was
grown in microfluidics with 50 ng/mL dox, reducing expression from P7xtetO. (A) The probability that each P7xtetO’s transcription rate is above
background (Text S1), computed by averaging binarized individual cell responses (ON = 1, or OFF = 0) in each cell-cycle progression bin, increases
after G1. (B) A 2D histogram of activation time for each promoter when both activate (t = 0 at budding). Most activation occurs near budding and is
correlated. (C) Classifying all single-cell S/G2/M periods (from (A) plus those following an unobserved G1) by whether each P7xtetO activates reveals
correlations in sporadic expression. Error bars represent SEM from bootstrapping.
doi:10.1371/journal.pcbi.1003161.g003

Figure 4. Large differences in transcriptional activity between S/G2/M and G1 depend on promoter. (A) YFP mRNA distributions in a
haploid yeast with integrated P1xtetO-YFP and no tTA are shown in a column as a function of cell-cycle phase. Horizontal lines above each distribution
are the experimental (gray) and predicted mean/standard deviation for different models, with colors shown in the legend at the bottom, calculated
by assuming each bud phase represents 1/3 of S/G2/M. (B) As in (A) but with P7xtetO. (C&D) As in (A&B) but with tTA and 100 or 500 ng/mL dox added
for P1xtetO and P7xtetO, respectively. (E) Integrated PDOA1-YFP with native DOA1 expressed from a plasmid. Mid log-phase cells were analyzed. (F) As in
(E) but late log-phase cells.
doi:10.1371/journal.pcbi.1003161.g004
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for cell-cycle phase [12]. In mammalian cells [14], transcriptional

bursts with a refractory period were inferred from real-time

measurements of luciferase protein levels expressed by multiple

promoters, but again there was no accounting for cell-cycle phase.

The bursts occurred on time scales much shorter than cell-cycle

transitions, but revisiting the data still may reveal a cell-cycle phase

dependence. Interestingly, real-time measurements of mRNA

expression from two housekeeping promoters in undifferentiated

single Dictyostelium cells do show a weak cell-cycle dependence, with

the frequency of transcriptional burst or pulses dropping 2–3 fold

from the beginning to the end of the cell cycle [43]. However,

Dictyostelium lack a G1 period and have an extended G2 [44,45];

the reduction in expression later in the cell cycle might be due to

mitotic repression of transcription, which is a well-established

phenomenon in mammalian cells [46]. It remains unclear how

widespread cycle-dependent transcription is in other organisms

and awaits further study.

What might be the mechanistic basis for the large differences in

G1 and S/G2 transcriptional activity? At low expression tetO

promoters exhibit transcriptional pulses that originate around the

G1 to S transition when DNA replication occurs. S phase

progression has been suggested to affect transcription [47] and

has been established as important to (de)silence gene loci in a

manner that either requires replication fork progression [48,49]

or not [50,51]. Replication-dependent transcriptional activation

of viral genes has been reported in transient transfection assays,

and depends on trans activators that bind to either the proximal

promoter or and enhancer region [52,53]. In these cases, there

does not appear to be cycle-dependent changes in the activity of

the trans activators. Furthermore, in an in vitro system replication

potentiates Gal4-VP16 transcriptional activation during S phase

[54]. In our case, cycle-dependent activity of tTA can be ruled

out because we observe the phenomenon even in the absence of

tTA (Fig. 4A&B). In S phase, activity of the Cdc28 kinase leads to

upregulation of the basal transcriptional machinery which has

been shown to lead to similarly timed pulses of transcription in

,200 yeast genes not classified as cycle-dependent, but these are

enriched in housekeeping genes and CYC1 did not exhibit this

behavior [55]. Therefore, we favor the hypothesis that temporary

disruption of a repressed promoter’s chromatin architecture

during DNA replication could explain the pulse timing (Fig. 3B)

and the increased tendency of tetO promoters to not activate

until the G1 to S transition even when Pho4-tetR enters the

nucleus in G1 (Fig. 5H). (We observe a similar cycle-dependence

at the native PHO5 promoter where gene activation tends to

occur in early S/G2 – Zopf, Maheshri, unpublished results.)

Because nucleosomes that are deposited following passage of the

replication fork consist of an equivalent mixture of maternal and

newly synthesized histones [56], as this chromatin matures there

may exist a period permissive for transcription. Even if this

permissive period is short-lived, once activated, transcription-

mediated deposition of histone marks could maintain an active

transcription state [57].

The return to inactive state in G1 might be brought about

during mitosis. Repressive modifications in general transcriptional

machinery, changes in histone marks, and chromatin condensa-

tion all contribute to mitotic repression of RNA transcription in

higher eukaryotes [58]. In budding yeast, transcription was

originally proposed to occur throughout mitosis as total RNA

synthesis appeared to increase at and after nuclear migration [59],

but recent work shows Cdc14 inhibiting RNA Pol I transcription

during anaphase [60]. Still, mitotic repression of RNA Pol II

transcription remains unclear, and we did observe an increased

number of nascent spots of transcription in cells with large buds

indicative of late G2 or M phase (Fig. S9). Exploring genetic and

chemical perturbations in the activity of factors involved in

chromatin maturation during DNA replication and mitosis for

their effect on the cycle-dependent transcription pattern should aid

in elucidating precise mechanisms.

Our results should spur the development of new models that

incorporate cell-cycle linked pulses of transcription and analyze its

effects on the dynamics and function of genetic regulatory

networks. Global extrinsic factors influence the behavior [22]

and previous work identifies two important roles of cell division: in

the stochastic partitioning of cellular contents [24] and in setting

the timescale at which extrinsic fluctuations decay [61]. The latter

especially has been incorporated in models of global extrinsic

fluctuations [62]. Revised models in light of our results may be

particularly exciting to develop in networks containing positive

feedback loops, where switching from an OFF to ON state relies

heavily on the statistics of transcription at low expression. Because

here transcription appears prohibited in G1, this would introduce

a sizeable refractory period to switching. Finally, since poorer

nutrient conditions increase cell division time by extending G1 in

yeast, prohibited G1 transcription may alter the dynamics of

regulatory networks in cells in different growth conditions in

unexpected ways.

Methods

Strain and plasmid construction
All S. cerevisiae strains were constructed in a W303 background

[63] using standard methods of yeast molecular biology [64].

Details of strain and plasmid construction are listed in Tables S1

and S2. The strain referred to as the ‘‘3-color’’ diploid yeast strain

contains homologous 7xtetO promoters (P7xtetO) driving either

Cerulean (CFP) [65] or Venus (YFP) [66] and a constitutive PGK1

promoter (PPGK1) driving tdTomato (RFP) [67] (Fig. 1A). Con-

struction of the ‘‘kinetic’’ strain (Fig. 5A) used to measure the rate

of gene activation is described in detail in the Text S1.

Microfluidic culture and time-lapse microscopy
Yeast nitrogen base without phosphate (MP Biomedicals, Santa

Ana, CA; #4027-812) was mixed with monobasic potassium

phosphate solution (Sigma-Aldrich P8709) to set phosphate levels,

and the pH was lowered to 4. Synthetic complete (SC) media

Figure 5. Gene activation depends on cycle phase. P1xtetO and P7xtetO were activated in the kinetic strain background (A) by a step change in
phosphate concentration. (B) The time to localization of chimeric Pho4-tetR-YFP and (C) the subsequent kinetic transcription activation are identical
for both promoters, when grown in 2% glucose and transcription rate traces are normalized by the average first peak height. Distributions of all
single-cell (D) localization and (E) transcription activation delay times were calculated from the time of the phosphate switch to the time to cross an
effective threshold (Fig. S11). (F) Each cell’s delay to respond is calculated as the difference between the cell’s transcription and localization times. (G)
Separating the response delay time distributions by cell-cycle phase at the time of localization reveals faster activation post-budding. (H) Long
response delays occur only when Pho4-tetR-YFP localizes in G1. Each cell is plotted as a stem where the distance along the abscissa corresponds to
the cell-cycle progression at the time of TF localization; the height of the stem endpoint along the ordinate corresponds to the cell-cycle progression
at the time of transcription activation; and the length of the stem from the green diagonal to the endpoint represents the response delay. Colors
depict phases of localization and activation as in the inset legend. Data shown are for P7xtetO in raffinose.
doi:10.1371/journal.pcbi.1003161.g005

Cell-Cycle Dominates Noisy Transcription

PLOS Computational Biology | www.ploscompbiol.org 7 July 2013 | Volume 9 | Issue 7 | e1003161



contained all amino acids, 2% glucose as the carbon source, and

5000 mM phosphate unless otherwise indicated. For each time

series experiment, cells were picked from a single colony freshly

grown on a minimal synthetic solid media (no amino acids) with

2% glucose agar, inoculated into SC media, grown overnight on a

roller drum at 30uC to OD600 nm,0.1, diluted in fresh media, and

grown again for 6–8 hrs to OD600 nm,0.1. These cells were

loaded into a pre-washed and Y04C microfluidic plate (CellAsic,

Hayward, CA) primed with SC with appropriate carbon source

and/or phosphate level, according to the manufacturer’s instruc-

tions. Cells were perfused with SC at 6 psi throughout the

experiment. Flow was controlled using the programmable ONIX

system (CellAsic) to rapidly switch between various media

conditions discussed in the text. Cell growth and expression was

observed using a Zeiss Axio Observer.Z1 inverted microscope at

636 magnification (Zeiss Plan-Apochromat 636/1.40 Oil DIC).

Bright field (BF), BF out of focus (BFOOF, for segmentation) and

fluorescence images were acquired every 5 min with a Cascade II

EMCCD camera (Photometrics, Tuscon, AZ) using MetaMorph

software (Molecular Devices, Sunnyvale, CA), a Lumen 200 metal-

halide arc lamp (PRIOR Scientific, Rockland, MA) for fluores-

cence excitation, appropriate filters for CFP, YFP, and RFP

(Chroma Technology Corp, Bellows Falls, VT; set 89006), and

acquisition settings optimized for rapid time points. (Detailed

protocol available online at http://openwetware.org/wiki/

Maheshri:Internal.)

Time series analysis
We used custom-written, GUI-based software in MATLAB

(Mathworks, Natick, MA) for semi-automated analysis of the

fluorescence microscopy movies to extract single-cell volume and

fluorescence data series [68]. Briefly, the cell regions were first

segmented using a focused and an unfocused bright field image,

tracked through time, and assigned mother-bud lineages, all of

which were manually curated. Each bud’s data were incorporated

into its mother’s time series until the automatically-assigned

cytokinesis time. Next, in order to obtain stable time derivatives for

each data series, we implemented a smoothing algorithm based on

spline fitting. Finally, the total protein (fluorescence) spline P(t) for

each cell was used to calculate the protein production rate

(proportional to mRNA per cell, M(t)), and the transcription rate,

A(t), using a simple continuous-time model of transcription and

translation:

dP

dt
~ktM(t) or M(t)~

1

kt

dP

dt
ð1Þ

dM

dt
~A(t){cMM(t) or A(t)~

1

kt

d2P

dt2
zcM

dP

dt

� �
ð2Þ

where cM is the mRNA degradation rate and kt is the translation

rate of mRNA to protein. We argue translation rate is nearly

constant across the cell-cycle (Text S1). Further details of the

analytical methods are available in the Text S1.

Fluorescence in situ hybridization (FISH) to count mRNA
in single cells

Single-stranded DNA probes to vYFP were coupled to

tetramethylrhodamine (TMR) or indodicarbocyanine (Cy5) fluor-

ophores and probes to tdTomato were coupled to TMR

fluorophores, as in [2]. Yeast were grown to mid log-phase

(OD600 nm = 0.5–1) then fixed, spheroplasted, hybridized and

washed similarly to [69] with modifications as described in [2].

DNA probes at ,5 mM were diluted 50-fold into hybridization

solution containing 10% formamide. Cells were imaged on a Zeiss

AxioObserver inverted microscope equipped with a PRIOR

Lumen200 mercury arc lamp, a 1006/1.40 objective (Zeiss) and

a rhodamine- and Cy5-specific filter set (Chroma Technology Cat.

No. 31000v2 and 41024 respectively). For each sample, eight Z-

stack images 0.3 microns apart were obtained and analyzed using

custom software written in MATLAB based on that used in [2].

The algorithm used to identify spots corresponding to single

mRNA applies region-based thresholding and identifies local

maxima as spots. Three parameters used by the algorithm can

change due to day-to-day variation in staining: (1) the minimum

intensity for a pixel to be considered as part of a spot, manually set

by examining several z-stacks, picking a threshold that identifies

spots and not background, and verified by insuring a false positive

rate of ,5% in negative control samples; (2) the average intensity

of a single mRNA spot, chosen using the mode of spot intensities

for lower expressing samples (Fig. S14A), to allow counting of

multiple overlapping mRNA; and (3) the threshold intensity at

which a spot is classified as a site of nascent transcription, chosen

as the transition between the peaked and flat sections of a

histogram of spot intensities (,5–10 fold higher than the intensity

of a single spot – Fig. S14A). Mean protein levels in different

samples were used as an internal control, and we always verified

the ratio of mean protein level to mean mRNA count was

consistent across samples and expression levels. Fig. S14B&C are

examples of processed images showing mRNA spots.

Classification of cell-cycle phase in fixed cells
In order to investigate cell-cycle dependence of transcription, we

manually classified cells in FISH images in either S/G2/M or G1

based on the presence of a bud. Imaging at low cell density assisted

in distinguishing buds from adjacent cells. Cells in S/G2/M were

further sub-divided into three equal-sized bins, based on ranked

bud size, which approximates progression through the cell cycle (as

in Fig. 4).

Supporting Information

Figure S1 Division time assignments correlate with
nuclear division and cytokinesis time. At the top, bright

field snapshots centered on a single cell are overlaid with RFP

fluorescence marking the nucleus. Growth occurs in a microfluidic

chamber, and the whole cell volume trace plotted corresponds to

the contiguous volume of the central cell in the first image over

time. The whole cell volume was obtained as described in the main

text and Fig. 1C with automatically assigned budding and division

times (beginning and end of gray shaded period, respectively). The

cell begins in G1 and grows slowly until bud formation

(characteristic of early S phase) at t = 50 min. The nucleus

migrates to the bud neck in G2 at t = 95 min, and divides between

mother and daughter during anaphase (A) at t = 110 min. The

automatically determined division time is t = 135 min, at which

point the nuclei have separated and the bud neck is narrowed in

telophase (T). The subsequent G1 phase begins after the

intersection of mother and daughter darkens (indicated by arrow)

at the next time point, and by 150 min the dividing cell wall is

distinct.

(TIF)

Figure S2 In silico synchronization of single-cell time
series reveals cell-cycle dependent trends. Single-cell time

series are shown for the 3-color diploid grown in 2% glucose

(corresponding to Fig. 2B–D). The first column contains the time
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series of each cell growing at steady-state. In the second column,

each cell-cycle is plotted between division events and synchronized

so that budding occurs at t = 0 (vertical dashed lines). In the third

column, the cell-cycle progression for each cell has been

normalized to the average cycle, extending from 0 to 1 with the

bud appearing at the average budding point of 0.27. The

synchronized single-cell traces demonstrate the average cell-cycle

trends depicted in Fig. 2 of the main text are representative of

single-cell behavior.

(TIF)

Figure S3 Instantaneous growth rate and protein pro-
duction rate vary with doubling time, while volume and
protein level depend on nutrient limitation. (A–C) Data

from Fig. 2 in the main text and Figure S5 was averaged over the

cell cycle and plotted against the population growth rate (based on

average doubling time) in each growth condition. Average

instantaneous growth rate correlates fairly well with growth rate

as required for balanced growth (A), but average volume depends

on the nutrient conditions (B). The average CFP production rate

also correlates well with doubling rate but is slightly higher than

expected in raffinose (C). This is consistent with observations of

total protein production rates correlating with average growth rate

[24] since .50% of proteins are diluted through growth [25].

Dividing the average CFP production rate (AU/cell/min) by

growth (i.e., dilution) rate yields a prediction for the average total

protein per cell at steady state (D).

(TIF)

Figure S4 Less smoothing results in sharper transi-
tions in average instantaneous growth and transcrip-
tion rates across cell cycle phases, but general trends
are robust to choice of smoothing parameter. The same

raw data in Fig. 2 of the main text and Figure S5 are processed

using a more conservative smoothing parameter b= 3 (see Text

S1: Determining the smoothing spline parameter) that does not

smooth noisy features. After synchronizing and averaging single-

cell traces as in Fig. 2, the general trends of the transcription and

growth rates are similar for growth in (A) 2% glucose, (B) 2%

galactose, (C) 2% raffinose, and (D) low phosphate. Notably, less

smoothing leads to sharper transitions at budding and division

with roughly constant rates within each cycle phase. Gray areas

again show the average S/G2/M phase, and white areas show

the average G1 phase.

(TIF)

Figure S5 Instantaneous transcription rate and growth
rate are correlated across the cell cycle in various
growth conditions. Plots were constructed similar to those in

Figure 2D&E of the main text for the 3-color strain grown in SC

media with 2% galactose as the carbon source (A) or SC with 2%

glucose and 100 mM phosphate (B). Error bars represent the bin

SEM from bootstrapping. Dotted lines indicate the bin s.d.

(TIF)

Figure S6 Sporadic transcriptional activation in real-
time at two copies of P7xtetO. The 3-color diploid strain was

grown with 50 ng/mL doxycycline. Transcription rate time series

(solid lines) for four representative cells, one cell in each panel,

showing transcription rates from P7xtetO driving either CFP or

YFP (blue and green, respectively, top of each panel). Both

promoters are off in G1, may or may not turn ON in S/G2 (with a

transcription rate that exceeds the dotted black line denoting the

detection limit). In contrast, a constitutively expressed RFP (red)

from PPGK1 (bottom of each panel) is always ON and exhibits the

usual cell-cycle dependent fluctuations. Colored, dashed lines show

the corresponding relative mRNA level resulting from transcrip-

tional activity. Vertical dashed lines demarcate cell divisions.

(TIF)

Figure S7 Summary of each model’s fit to S/G2/M-
specific mRNA distributions. (A–F) Strains as in Fig. 4, but

comprising a specific comparison of the aggregate S/G2/M

distribution and its mean and standard deviation based on the

models presented in Fig. 4 and Figure S8. Gray bars and

horizontal lines represent the experimental S/G2/M distribution

and its mean and standard deviation.

(TIF)

Figure S8 mRNA distributions from P1/7xetO are better
fit by introducing variable timing in the transition from
G1 to increased S/G2/M transcription rates. (A–F) As in

Fig. 4, but with the model modified to incorporate a random,

uniformly distributed transition from G1 to S/G2/M transition

rates occurring during a 40 min window after budding.

(TIF)

Figure S9 Frequency of bright nascent mRNA spots
increase in S/G2/M for tetO promoters. The fraction of

cells with a nascent spot in G1 and through S/G2/M is shown for

expression from P1xtetO and P7xtetO at (A&B) basal and (C&D)

intermediate expression levels. Strains are identical to those in

Fig. 4A–D. (E&F) Fraction of both RFP and YFP nascent spots in

a 2-color P1xtetO diploid, where red, green and yellow correspond

to the percentage of cells with RFP spots only, YFP spots only, and

both spots. While the fraction of cells with nascent spots is larger in

(E), their average intensity is less than half the intensity of those in

(F), consistent with the lower expression observed in (E). The

correlation in the presence of nascent spots from each promoter

suggests some degree of coordinated expression. No nascent spots

were observed in expression from the constitutive PDOA1.

(TIF)

Figure S10 Growth rate decreases gradually after
phosphate removal in kinetic experiments. During step

tests on the kinetic strain, the average instantaneous growth rate

decreases below normal rates ,100 minutes after the switch to

low external phosphate. Measurements of the activation delay

distribution are restricted to this period. The initial rise is due to

most cells in the observed population beginning bud growth quasi-

synchronously.

(TIF)

Figure S11 Determining transcription activation and
effective TF nuclear localization times in single cells
during step tests. After the switch to low phosphate at t = 0

(gray shaded area), a sample cell begins to express CFP (A, cyan) in

response to the TF localizing to the nucleus (C, green). The

inferred CFP transcription rate (B, blue) rises after the TF localizes

to an effective level. Transcription and localization transition times

for each cell are then found in 5 calculation steps (corresponding to

the red numbers on plots). (1) The transcription threshold

(horizontal black dashed line, B) is set at 50% of the steady-state

transcription rate in the population, determined at a time well

after the step as discussed in Methods. This threshold point

corresponds well to the beginning of a rise in observable protein

(A). (2) Because of the 10–15 min lag in observing transcription

(tobs) due to protein maturation, the TF localization level 15 min

prior to the observed time of transcription activation is noted. (3)

Steps 1 and 2 were repeated for all cell traces creating a

distribution of localization values (inset in C). (4) The effective TF

localization threshold is set at the 5th localization percentile

(vertical, dashed line in inset). This corresponds to a TF level

Cell-Cycle Dominates Noisy Transcription
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where many cells do activate transcription suggesting that nuclear

TF levels are no longer limiting. Any resulting delays in transcription

activation are interpreted as due to the transcription process and not

due to a lack of nuclear TF. (5) Each cell’s localization time is then

determined when nuclear TF levels cross the effective TF

localization threshold (horizontal red dashed line, C).

(TIF)

Figure S12 Measurement of maturation rate for each
fluorescent protein. The 3-color strain was grown in micro-

fluidics in synthetic media. After three hours, the chamber was

perfused with the same media now containing 30 mg/mL

cycloheximide to inhibit translation. The average intensity in

each cell continued to increase for each fluorescent reporter,

representing fluorophore maturation from the immature protein

pool. (A) Single-cell, raw concentration time series were fit (black

line) to Eqn. (S3) (cP fixed at 0 for RFP) and (B) the histograms of

the measured maturation half-lives ln(2)/km are shown. The

medians are 10 min, 32 min, and 150 min for CFP (top panel),

YFP (middle), and RFP, respectively.

(TIF)

Figure S13 Transcription response to a step change in
TF is slower in G1. Single-cell TF localization and CFP

transcription rate time series are shown for the kinetic step tests in

Fig. 4 of the main text. Despite nearly identical localization profiles

at the single cell level and on average, the transcription response is

slower for cells in which localization occurred in G1 compared to

those in which localization occurred after budding (number of cells

in G1 (nG1) or S/G2/M (nS/G2/M) for each experiment: P1xtetO,

nG1 = 20, nS/G2/M = 76; P7xtetO, nG1 = 23, nS/G2/M = 49; P7xtetO in

raffinose, nG1 = 53, nS/G2/M = 17).

(TIF)

Figure S14 mRNA FISH image analysis. (A) Histogram of

the mean pixel intensity of spots detected as mRNA in a

population of cells with green, blue and red lines showing the

parameters selected to analyze the spots. The threshold (green line)

is the minimum pixel intensity for a pixel to be considered as a

spot, selected to keep false positives ,4% in a negative control

sample without the fluorescent reporter and be consistent with

manual visual inspection of a subset of images. Multiple mRNAs

that overlap in the z-projection appear as a brighter spots. The

mode of the histogram (blue line) is selected as the intensity of a

single mRNA and spots that are . = 2-fold brighter are counted as

multiple spots by normalizing with the mode threshold. Very

bright spots (.4-fold brighter than a single mRNA spot in the flat

region of the histogram – red line) are thought to be formed by

sites of nascent transcription if they align with the nucleus and are

automatically identified as those with intensities in the flat region

of the histogram (red line). (B) Images of cells with mRNA counts

measured by mRNA FISH. (top) Bright-field overlaid with blue

DAPI-stained nucleus and (middle) the maximum projection of

eight images fluorescent rhodamine staining within a Z-stack.

(bottom) mRNA and nascent transcription sites identified by the

spot-counting algorithm are marked with a red or magenta dot

respectively. Nascent spots align with the blue DAPI-stained

nucleus. (C) Micrographs of cells from three of the samples in (B)

with (top) classification of cell-cycle stage as G1 (yellow), early-S/

G2 (orange) or later S/G2/M (red) and (bottom) the maximum

projection of eight images fluorescent rhodamine staining within a

Z-stack.

(TIF)

Figure S15 Simulation of realistic total protein time
series to determine optimal smoothing parameter for

spline fit. Using the method described in Text S1, noise

characteristics of experimental integrated fluorescence data before

splining (A, representative single cell traces from the P1xtetO and

P7xtetO step tests) were used to simulate baseline protein time series

(B). (C–E) A(t) was simulated for a step up at t = 0 from zero to an

oscillating steady state with the period of a typical cell cycle (E,

tcyc = 100 min, P:T = 2:1). A simulated mRNA (D, m = 10) and total

protein trace (C) were calculated from A(t) using Eqns. (S5–8), with

noise added to the protein time series j(t) similar to the high-

frequency, measurement noise observed in data (s2 = 2.4e4). A

smoothing spline was fit to the simulated protein time series and

the corresponding mRNA and transcription rate time series were

inferred using Eqns. (1–2) in the Methods. (F) The simulation was

repeated for all combinations of parameters described in the text

that span observed characteristics of protein time series across all

experiments. For each parameter set (panels), 100 noisy,

asynchronous traces were generated and the residual error

between the simulated and the inferred transcription was found

across a range of smoothing parameters b (colored lines). The

chosen b= 300 (vertical, dashed line) minimizes the residual error

across all parameter sets and was used for all data sets. (G) Sample

comparisons of simulated and inferred transcription rate mA(t)

(using b= 300) for each parameter set with tcyc = 100 min. Black

dotted line represents the half the steady state average for t.0 (the

threshold for determining activation in a step test).

(TIF)

Figure S16 mRNA levels fall exponentially with the
expected degradation rate after periods of strong
transcription. For the single cell in the bottom panel of Figure

S6, the CFP transcription rate (blue) and mRNA level (purple)

show sporadic transcription at low expression levels. At the end of

a strong ‘‘on’’ period (vertical, dashed line), where transcription

rate drops below the threshold (horizontal, dotted line), the

inferred mRNA level drop is consistent with the expected first-

order degradation process M(t)~M0e{ct (red line), where c is the

mRNA degradation rate and M0 is a constant.

(TIF)

Figure S17 Translational capacity is not cell-cycle
dependent. The average protein to mRNA ratio of cells grouped

by cell-cycle phase (based on bud size) is shown for P1/7xtetO and

PDOA1. This ratio exhibits no clear cell-cycle dependent trend,

indicating that cell-cycle dependent changes in translation rate are

not a dominant source of changes in protein level across the cell-

cycle. Error bars are s.d. obtained by bootstrapping.

(TIF)

Figure S18 Simulations to estimate the time accuracy of
the transcription rate transition time assignments. (A)

Transcription rate time series (thin colored lines) are inferred for

noisy protein data simulated from the square pulse transcription

rate generator function (thick, blue line) as in Figure S15

(n = 1000). Here a protein maturation step is included in

simulating the protein data, but not in the transcription rate

inference. (B) Activation and (D) deactivation times ‘‘observed’’ for

each inferred transcription trace in A are delayed 10–15 min

relative to the true times (blue histogram compared to vertical, red

line) with a mean absolute deviation of ,2 min. (C) Allowing the

mRNA degradation rate cM in Eqn. (S6) to vary during

simulation, but inferring transcription rate using the single,

average cM value, results in greater dispersion in the sample

traces. The ‘‘observed’’ activation times did not vary much more,

but deactivation time mean absolute deviation increased to

,8.4 min (black histograms in B and D).

(TIF)
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