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Abstract

The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes
visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent
studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent
conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather
than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual
objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has
been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual
objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a
few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their
members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and
reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our
work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the
contribution of shape similarity to the representation of object categories, can substantially advance our understanding of
neuronal coding of visual objects in cortex.
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Introduction

In primates, visual object information is processed through a

hierarchy of cortico-cortical stages (the ventral visual pathway) that

culminates with the inferotemporal cortex (IT) [1–6]. Uncovering

the nature of visual object representations in IT is central to our

understanding of how visually presented objects are perceived,

identified and categorized, yet it is extremely challenging. In fact,

because of the non-linear mapping between the visual input space

and IT neuronal responses, it is virtually impossible to precisely

estimate the tuning of individual IT neurons over the image space

(but see [7,8]). As a result, it is somewhat arbitrary to assign IT the

proper rank along the continuum that goes from extraction of

simple visual features to formation of conceptual, semantic

categories – are IT neurons closer to the local edge detectors

found in primary visual areas or to the concept cells recently found

in human middle temporal lobe [9–11]?

While most literature supports the notion that IT neurons code

moderately to highly complex configurations of visual features

[2,6,12,13], recent work has argued that IT neuronal ensembles

code the semantic membership of visual objects (i.e., represent

behaviorally salient conceptual categories, such as animate and

non-animate objects, animals, body parts, etc) rather than their

visual properties [14]. A related study also compared how a set of

visual objects was represented in monkey IT and its human

homologous, finding that many semantic categories were repre-

sented equally well in both species (with a primary, sharp

distinction between animate and inanimate objects) and reporting

the inadequacy of various image-based similarity metrics to

account for the observed patterns of neuronal responses [15].
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Finally, a recent fMRI study concluded that object representations

in monkey IT are spatially segregated according to semantic

relationship [16], a finding that matches the segregation by

function/meaning (rather than by shape) found in the topography

of human high-level representations of visual objects [17–24].

Finding that abstract category information is represented in IT

is not surprising per se, since several studies have shown how IT

neurons can represent the association of arbitrary image pairs,

either through explicit [25,26] or implicit [27–29] associative

learning. However, while these mechanisms can explain why

extensively trained categories [30] or behaviorally salient catego-

ries (such as faces and body parts [31–34]) are represented in IT,

they can hardly explain why category information was found to be

represented in IT more systematically and robustly than visual

shape information [14,15]. In fact, several studies have shown that

IT neurons are robustly tuned for object-defining visual features

[7,8,35–39] and one study has shown that in IT, differently from

prefrontal cortex, semantic category information is not greater

than what expected based on the visual similarity of category

members [40]. Finally, a very recent monkey fMRI study has

found no sharp segregation between the representations of

animate and inanimate objects in IT [34].

In this study, we have applied an array of multivariate

approaches (some of which were recently developed in the domain

of statistical mechanics) to investigate how an IT neuronal

population represents pictures of natural objects. Our analysis

shows that neuronal representations in IT largely depend on

objects’ similarity at the level of shape or, more surprisingly, low-

level visual properties, with semantic membership only accounting

for the representation of a few, behaviorally salient categories of

animate objects (such as four-limbed animals and birds). Overall,

these findings show that monkey IT is primarily a conveyor of

explicit visual shape information, in which a surprisingly broad

spectrum of visual feature complexity is represented.

Results

In this study, we recorded 94 well-isolated single units from the

anterior inferotemporal cortex (IT) of two monkeys. Neurons were

sampled across a ,564 mm area of the ventral superior temporal

sulcus (STS) and ventral surface lateral to the anterior middle

temporal sulcus (AMTS), as shown in Figure 1 (see blue dots and

red-shaded areas). No attempt was done to target specific IT

patches containing cells with similar preference for faces, such as

the AF (anterior fundus), AL (anterior lateral) and AM (anterior

medial) face patches [31–33] (the range of possible locations of

these patches is also shown in Fig. 1, based on [33]), or other IT

regions that are rich of face selective neurons (summarized in

[41,42]). Finally, for a better comparison with previous findings, it

is important to notice that we recorded from a region with a

smaller anteroposterior (AP) and mediolateral (ML) extent than

the region sampled by [14], although both regions were roughly

centered at the same AP position in anterior IT (compare Fig. 1

with Fig. 1 in [14]).

All neurons were probed with a set of 213 grayscale pictures of

natural objects (see Fig. 2) presented at a rate of 5 images/s, while

the animals were engaged in a simple object detection task. To

understand how these objects were mapped into the IT neuronal

space, we used linear classifiers and a variety of clustering

algorithms, and we measured to what extent object clusters in the

IT neuronal representation could be accounted by three different

object attributes: 1) shared semantic membership; 2) shared shape

features (i.e., shape similarity); and 3) shared low-level visual

properties.

Gradient in object area explains object clustering at the
most ‘‘superordinate’’ level

The nature of visual object representations in IT can be studied

by examining what features are shared by objects that produce

similar population responses in the IT neuronal representation

space. The similarity between the neuronal representations of a

pair of visual objects (neuronal-level similarity in the following) was

computed as the Pearson correlation coefficient of the normalized

population response vectors produced by the two objects (see

Materials and Methods). To gain some intuition into possible

trends in the representation of our object set, the neuronal-level

similarity between each object pair was color-coded in the matrix

shown in Figure 3A. The order of the objects along the axes of the

similarity matrix was determined by the dendrogram shown at the

top, which was obtained by applying an agglomerative hierarchi-

cal clustering algorithm to the neural population vectors. This

allowed objects evoking similar population responses to lie nearby

in the matrix, so that clusters of objects that were similar in the

neural representation space appeared as compact dark squares

along the diagonal of the matrix.

Contrary to what was recently reported by [14,15], but in

agreement with [34], visual inspection of the similarity matrix

revealed that objects did not show a tendency to cluster into two

main, compact clusters, corresponding to the semantic categories

of animate and inanimate entities. For instance, the set of faces

(top of the ordinate matrix axis) was separated from the set of birds

and four-limbed animals (approximately in the middle of the axis)

by many inanimate objects. Other animate objects (such as insects,

crustaceans, fishes, and some four-limbed animals) were scattered

all over the matrix axis and intermixed with inanimate objects

(such as man-made tools, trees, flowers, etc). Finally, although

some animate objects, such as faces, appeared to cluster according

to the subordinate semantic category they belonged to (i.e., the

face category), such clusters were generally embedded within

Author Summary

To build meaningful representations of the external word,
the stream of sensory information that reaches our senses
is continuously processed and interpreted by the brain.
Ultimately, such a processing allows the brain to arrange
sensory (e.g., visual) inputs into a hierarchy of categories
(such as animate and inanimate objects) and sub-catego-
ries (such as faces, animals, buildings, tools, etc). Crucially,
while many objects can be assigned to the same category
based on their visual similarity (e.g., oranges and apples),
formation of most categories also requires arbitrarily
associating objects sharing similar functions/meaning,
but not similar shape (e.g., bananas and apples). A long-
standing debate exists about whether the representation
of visual objects in the higher visual centers of the brain
(such as the inferotemporal cortex; IT) purely reflects shape
similarity or also (and, perhaps, mainly) shape-unrelated
categorical knowledge. In this study, we have addressed
this issue by applying a variety of computational
approaches. Our results show that the response patterns
of a population of inferotemporal neurons are better
accounted for by shape similarity than categorical mem-
bership. This reasserts the primary function of IT as a visual
area and demonstrates how state-of-the-art computational
approaches can advance our understanding of neuronal
coding in the brain.

Structure of Visual Object Representations in IT
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larger clusters of animate and inanimate objects with similar shape

(i.e., the face cluster lay within a larger group of similarly round

shapes – a cup, a ball, a brain, an urchin, etc.). To better quantify

whether a segregation between animate and inanimate objects

could be observed at the top level of the dendrogram obtained by

hierarchical clustering, we measured the fraction of animate and

inanimate objects in the first two branches of the dendrogram (i.e.,

the cyan vs. the magenta branch in the dendrogram shown in

Fig. 3A). Animate objects amounted to ,40% of the total in both

branches and their fraction did not significantly differ in the two

branches (p.0.1, x2 test; see Fig. 3B).

While animate and inanimate objects were not sharply

segregated in the neuronal representation space, a different

property appeared to determine object clustering in the two top-

level branches of the dendrogram – a gradient in object area could

be observed along the matrix axes, with bulkier objects (e.g., faces

and other round shapes) at one end of the axes and thinner objects

(e.g., an ant, a dolphin, a guitar, etc) at the other end. To quantify

this trend, objects were divided in two equally sized subsets of

‘‘large’’ and ‘‘small’’ objects, depending on whether their area was

above or below the median of the full object set (object area is

defined in Materials and Methods). The proportion of large and

Figure 2. The stimulus set. The full set of 213 objects used in our study. The set consists of: i) 188 images of real-world objects belonging to 94
different categories (e.g., two hats, two accordions, two monkey faces, etc.); ii) 5 cars, 5 human faces, and 5 abstract silhouettes; iii) 5 patches of
texture (e.g., random dots and oriented bars); iv) a blank frame; v) 4 low contrast (10%, 3%, 2% and 1.5%) images of one of the objects (a camera).
doi:10.1371/journal.pcbi.1003167.g002

Figure 1. Recording locations. The blue dots show the projections of the recording chamber grid-point locations from the top of the skull to the
ventral bank of the superior temporal sulcus (STS) and the ventral surface lateral to the anterior middle temporal sulcus (AMTS). The projections are
shown over a sequence of MRI images (spanning a 13–17 anteroposterior range; Horsley-Clarke coordinates) that were collected, for one of the
monkeys, before the chamber implant surgery. Only the grid locations in which the electrode was inserted at least once are shown. The red-shaded
areas highlight the estimated cortical span that was likely sampled during recording, given that: 1) each electrode penetration usually spanned the
whole depth of the targeted cortical bank (either STS or AMTS); and 2) the upper bound of the variability of each recording location along the
mediolateral axis (due to bending of the electrode during insertion) can be estimated as 62 mm [80]. The figure also shows the range of possible
locations of the three anterior face patches (AL, AF and AM) according to [33], so as to highlight their potential overlap with the recording locations.
doi:10.1371/journal.pcbi.1003167.g001

Structure of Visual Object Representations in IT
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small objects was significantly different in the first two branches of

the dendrogram (p,0.001, x2 test), with large objects representing

more than 60% of the total in one branch and only about 20% in

the other (Fig. 3C).

To further investigate what properties shaped the representation

of the objects in the IT neuronal space, we performed a Principal

Component Analysis (PCA) of the recorded neuronal population

vectors. The total variance explained by the first two principal

Figure 3. Similarity matrix, hierarchical clustering and PCA of IT population responses to visual objects. (A) Each pixel in the matrix
color-codes the correlation (i.e., similarity) between the neuronal population vectors representing a pair of visual objects. The order of the objects
along the axes is defined by the dendrogram produced by hierarchical clustering of the population vectors (to avoid crowding, one every three
objects is shown; the complete object set is shown in Fig. 2). The first two branches of the dendrogram (shown at the top) are colored in cyan and
magenta. (B) The fraction of animate and inanimate objects is not significantly different in the first two branches of the dendrogram (NS, p.0.1, x2

test). (C) The proportion of large and small objects is significantly different in the first two branches of the dendrogram (**, p,0.001, x2 test), (D)
Layout of visual objects in the two-dimensional space defined by the first two principal components of the IT population responses (to avoid
crowding, only some of the objects are shown). (E) Object area and object ranking along the first principal component are linearly related (r = 20.69,
p,0.001, t-test).
doi:10.1371/journal.pcbi.1003167.g003

Structure of Visual Object Representations in IT
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components was fairly low (,15%). This is not surprising, since

our object set was highly varied in terms of visual properties and

shape features and it is unlikely that high-level visual neurons, such

as those sampled in our IT population, would represent/code only

a few of such visual properties. Therefore, the goal of this analysis

was not to find a few stimulus dimensions that could account for

most of the variability in the representation of the visual objects.

Rather, our goal was to check whether any principal component

existed that could be associated to the variation of some global

visual property across the object set. Interestingly, plotting the

objects in the 2-dimensional space defined by the first two

principal components revealed a trend that was consistent with the

dendrogram obtained by hierarchical clustering. Namely, objects

were distributed along the first principal component axis according

to a gradient in object area, with large objects at one end of the

axis and thin objects at the other end (see Fig. 3D). This trend was

confirmed by showing that object area and object raking along the

first principal component axis were highly and significantly

anticorrelated (r = 20.69, p,0.001, t-test; see Fig. 3E). Similarly,

object luminance (defined in the Materials and Methods) was

significantly anticorrelated with the third principal component

(r = 20.46, p,0.001, t-test). No significant correlation was found

between the second principal component and any other low-level

visual property considered in this study (i.e., contrast and aspect

ratio, as defined in the Materials and Methods).

Overall, the analyses shown in Figure 3 indicate that visual

objects, in the recorded IT neuronal representation space, were

loosely segregated at the coarser (i.e., more ‘‘superordinate’’) level

according to a low-level visual property – object area (not to be

confused with object size, which, in this study, was kept constant to

2u of visual angle for every object, and which is defined as the

diameter of the larger circle fully enclosing the object).

Definition of three alternative clustering hypotheses
To gain further insight into the principles underlying the

grouping of visual objects in the recorded neuronal representation,

we divided the object set in categories, according to three different

clustering hypotheses: 1) shared semantic membership; 2) shared

shape features (i.e., shape similarity); and 3) shared low-level visual

properties.

Eleven semantic categories were built – four-limbed animals,

birds, faces, fishes, insects, sea invertebrates, trees, vehicles, tools,

music instruments and buildings (see Fig. S1A). The two

superordinate semantic categories of animate and inanimate

objects (which included, respectively, the first 6 and last 5

subordinate categories listed above) were also considered. All the

semantic categories were built according to criteria established in

previous studies [14,15] (e.g., the trees were included in the

inanimate category).

Fifteen categories of objects sharing visual shape features

(named shape-based categories in the following) were defined as the

15 clusters obtained by running a k-means clustering algorithm

over the objects’ representation provided by the output layer of a

brain-inspired object recognition model [43,44] (see Materials and

Methods for details). Each of these categories/clusters contained

objects that occupied nearby positions (and were, therefore,

similar) in the representational space of the object recognition

model. Being such a similarity measured in a high-dimensional

multivariate representation, it is impossible to precisely know what

shared features brought two objects to cluster in the same

category. Therefore, the shape-based categories were simply

labeled by sequential numbers (from 1 to 15; see Fig. S1B).

However, when the shape features underlying formation of a given

category could be guessed by visual inspection, we assigned to such

a category a descriptive name (e.g., the round objects’ category or

the horizontal thin objects’ category). It should be kept in mind that

these names are only used for the sake of readability, but they

cannot possibly capture the true combinations of shape features

underlying object clustering in the model representational space.

Eight Categories of objects sharing low-level visual properties

(named low-level categories in the following) were defined on the base

of four global properties of the images of the objects – luminance,

contrast, area and aspect ratio (defined in the Materials and

Methods). Each category contained 15 images having either the

highest or the lowest values of one of such properties (see Fig.

S1C).

It should be emphasized that no rigorous (or agreed-upon)

definition exists of what should be considered low-level and high-

level in terms of visual feature complexity. For this reason, our

definitions of shape-based and low-level categories are essentially

operational. That is, they refer to the complexity of the image

processing that was performed to obtain them. In the case of the

shape-based categories, the images of the objects were processed

by banks of nonlinear filters in a multi-layered, feed-forward

neural network (see Materials and Methods). Since these filters,

collectively, extract visual features across a wide spectrum of

complexity, the resulting shape-based categories included not only

sets of moderately-to-highly complex visual patterns (such as

round, oriented or star-like shapes), but also object sets that

appeared to be defined mainly (but not exclusively) by lower-level

image properties (such as contrast, luminance or texture). In the

case of the low-level categories, the defining features were global

image properties that could simply be extracted by segmenting the

foreground image from the uniform-gray background. However,

some of these properties, such as aspect ratio, can arguably be

considered as moderately complex shape features. As a result, a

few of the shaped-based categories substantially overlapped with

the low-level categories and were assigned similar names (e.g., the

bright and the dim shape-based categories partially overlapped,

respectively, with the high-luminance and the low-contrast low-level

categories; compare Figs. S1B and C). Such an overlap should not

sound surprising, since the terms shape-based and low-level refer to

the complexity of the operations underlying the definition of the

categories, rather than to the content of the resulting categories.

More in general, it should be stressed that the assessment of shape

coding carried out in this study did not aim at precisely identifying

what visual features were critical to elicit a response in specific

neurons (or neuronal subpopulations). While methods to extract

critical visual features exist (e.g., reverse correlation, image

classification, or other fitting procedures of neuronal/behavioral

responses to image properties [7,8,45–51]), the goal of our analysis

was to assess how well various sets of visually similar objects

clustered in the neuronal representation space, no matter whether

visual similarity could be precisely defined in terms of specific

visual properties (as in the case of the low-level categories) or not

(as in the case of the shape-based categories).

Overlap between clustering hypotheses and k-means
clusters in the IT neuronal space

Having defined object categories based on three different

hypotheses, we assessed to what extent the members of each

category occupied nearby positions in the neuronal representation

space. This was achieved by applying a k-means clustering

algorithm to the neuronal population vectors, with the number

of clusters k set to 15 according to both a Bayes and an Akaike

Information Criterion [52] (hence, the choice of using such a

number also in the k-means procedure that lead to the definition of

the shape-based categories shown in Fig. S1B; see previous

Structure of Visual Object Representations in IT
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section). The resulting clusters were then compared to the

semantic and visual similarity-based categories defined in the

previous section, to check for any possible substantial overlap.

Figure 4A shows 15 object clusters that were obtained by a

typical run of the k-means algorithm over the neuronal represen-

tation space (the k-means is not deterministic, therefore each run

produces slightly different partitions of the data set; see below for

further discussion). The order of the clusters in the figure was

determined by applying an agglomerative hierarchical clustering

algorithm to their centroids. This produced the dendrogram

shown at the top of the figure, which allows appreciating the

relationship among the k-means clusters (i.e., neighboring clusters

in Fig. 4A lie nearby in the neural representation space). These

clusters (named neuronal-based clusters in the following) were

compared to the object categories of the three clustering

hypotheses defined previously, some of which are shown in

Figure 4B–D (all the categories are shown in Fig. S1). This was

achieved by defining an overlap score that measured the fraction

of objects in common between any given neuronal-based cluster

and any given category in the three hypotheses. For easier

comparison with Kiani et al., 2007, the same score defined in that

study was used (see Materials and Methods; statistical significance

of the overlap was computed through a permutation test, with

Bonferroni corrected significance level p,0.05).

Figure 4 shows what neuronal-based clusters (A), on the one

hand, and what semantic (B; yellow frames), shape-based (C; red

frames) and low-level (D; cyan frames) categories, on the other

hand, significantly overlapped (objects belonging to both a

neuronal-based cluster and its matching category are shown

within the corresponding frames; see the descriptive names on top

of each cluster/category in A-D to navigate the figure and find

matches between neuronal-based clusters and categories). Out of

the fifteen neuronal-based clusters, five significantly overlapped

with a semantic category, seven with a shape-based category, and

three with a low-level category. Interestingly, some clusters

significantly overlapped with multiple categories, each belonging

to a different clustering hypothesis. For instance, the first cluster

shown in Figure 4A overlapped both with the semantic category

of fishes (forth category in Fig. 4B) and with the shape-based

category #6 (that we named horizontal thin; see the second

category in Fig. 4C). Similarly, the twelfth cluster in Figure 4A

overlapped with both the semantic category of faces (first category

in Fig. 4B), the shape-based category #2 (that we named round;

see the fifth category in Fig. 4C), and the low-level category of

high area objects (first category in Fig. 4D). Noticeably, in all these

cases, the overlap was larger with the shape-based (or low-level)

category than with the semantic category. Moreover, the objects

overlapping with the semantic category were typically a subset of

the objects overlapping with the shape-based category (see how

the yellow frames are included within the red/cyan frames in

Fig. 4A). That is, the objects belonging to a given semantic

category were typically embedded within a larger group of

objects with similar shape but different semantic member-

ship (e.g., the fishes were embedded within a set of similarly

horizontally elongated shapes, while the faces were embedded

within a set of similarly round shapes). This implies that shape

similarity (e.g., roundness) and not semantic membership (e.g.,

being a face) was at the root of these clusters within the neuronal

representation space. On the other hand, a few neuronal-based

clusters were found that significantly overlapped only with a

semantic category. This is the case of the third and forth clusters

in Figure 4A, which overlapped, respectively, with the birds (third

category in Fig. 4B) and the four-limbed animals (second category

in Fig. 4B).

To obtain a more robust assessment of what fraction of

neuronal-based clusters significantly overlapped with categories of

the three hypotheses and, in particular, how often semantic

membership could be taken as the only explanation of the

observed clusters, 1,000 runs of the k-means algorithm were

performed (this produced 1,000 slightly different neuronal-based

clusters and shape-based categories; the semantic and low-level

categories were unchanged, since they were not obtained by a k-

means procedure). Figure 4E shows the average number of

neuronal-based clusters that, across these 1,000 k-means runs,

significantly overlapped with categories of the three hypotheses.

On average, about four, five and three clusters were found that

significantly overlapped, respectively, with semantic, shape-based

and low-level categories. Noticeably, more than half of the clusters

that significantly overlapped with a semantic category, did so also

with one of the categories defined by visual object similarity (see

the yellow, red and cyan striped portion of the first bar in Fig. 4E).

In all such cases, since the overlap was larger with the similarity-

based category than with the semantic category, semantic

membership cannot be taken as the factor at the root of object

clustering in the neuronal representation. Rather, it is visual

similarity among the members of those semantic categories that is

driving object clustering.

Finally, to further test whether animate and inanimate objects

were significantly segregated in the IT representation, 100 k-means

runs were performed with k = 2, and the average absolute

difference between the fraction of animate objects in the two

clusters produced by each k-means run was computed. Such a

difference amounted to ,7% and was not significantly larger than

expected by chance (i.e., by randomly shuffling the animate and

inanimate objects among the clusters produced by each k-means

run; p = 0.39), thus confirming the result of the analysis based on

hierarchical clustering (see Fig. 3B).

Overall, the k-means analysis strongly suggests that most object

clusters in the recorded IT neuronal representation are explain-

able by the visual similarity of their members at the level of both

shape and, more surprisingly (being IT the highest purely visual

brain area), low-level visual properties. Nevertheless, at least a

couple of semantic categories exist (i.e., the four-limbed animals and

the birds), whose significant representation in the recorded

neuronal population is not accounted by either the shape-based

or the low-level visual similarity metrics we used.

Overlap between clustering hypotheses and D-MST
clusters in the IT neuronal space

As a more refined way to infer the structure of visual object

representation in IT, we sought an unsupervised approach that

would embody the advantages of k-means-like partition algorithms

(which allow measuring the fraction of overlapping objects

between neuronal-based clusters and arbitrary object categories;

see Fig. 4) and hierarchical approaches (which allow assessing the

fine-grain relationship between objects within the representation

space; see Fig. 3A). This was achieved by applying a method that

has been recently developed in the domain of statistical physics –

the D-MST clustering algorithm [53,54]. This method interpolates

between Affinity Propagation (a recent, state-of-the art partition

algorithm that has been successfully applied in a variety of contexts

[55–59]) and hierarchical Single Linkage clustering [60,61]. The

main advantage of the D-MST method over the k-means (and

similar partition methods, such as Affinity Propagation) is to allow

non-spherical clusters, i.e., to allow loosening the implicit

assumption that all the elements of a cluster lie within some

distance to some point (i.e., the centre of the cluster). In fact, the

output of this method is not simply a partition of the elements into
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clusters, but, rather, it is a forest, i.e., a partition of the elements

into trees (see Fig. 5). As a result, the outcome of the D-MST

algorithm contains richer information about the topology/

structure of the data, as compared to the output of the k-means

(see Materials and Methods).

Figure 5 shows the five most stable clusters (see also Fig. S2 and

Text S1) extracted by the D-MST algorithm from the recorded IT

object representation (named neuronal-based clusters in the following).

The fact that the number of D-MST clusters was much lower than

the optimal number of k-means clusters (see previous section and

Fig. 4A) is not surprising – the nature of these two clustering

methods is very different, and the number of clusters they yield

cannot be directly compared. In fact, the D-MST clusters have an

inner hierarchical structure that incorporates as sub-trees what

partition methods (such as the k-means) would segregate into

separate clusters. The advantage of the D-MST approach is to

make explicit the relationship among such sub-trees, thus

providing additional topological information that, with other

methods, would be lost. This can be appreciated by inspecting, for

example, cluster #3, which is mostly made of objects with low

area, but with different sub-trees containing objects with different

features (e.g., vertically oriented edges, horizontally oriented edges,

curved boundaries, etc.); or cluster #4, which is made of two

distinct sub-trees, one containing round objects and another

containing horizontally elongated objects; or cluster #5, in which

there is a transition from star-shaped objects (on the left sub-trees)

to objects containing sharp edges (on the right sub-trees), passing

through a central region of spiky objects.

Figure 5 also shows what subsets of objects, within each cluster,

significantly overlapped with one of the object categories of the

clustering hypotheses. Critically, the significance of the overlap

was computed through a permutation test that took into account

the unrooted-tree internal structure of the D-MST clusters and the

existence of twin objects (i.e., the fact that, as in [14,15], our object

set contained at least two exemplars/twins of any given object –

two horses, two hats, two monkey faces, five human faces, etc; see

Fig. 2). This was achieved by measuring the fraction of

overlapping objects between a given category and all possible

sub-trees of contiguous objects within a cluster, with the

significance of the overlap assessed by randomly permuting sets

of twin objects across the categories of a given clustering

hypotheses (1,000,000 permutations were run; see Text S1 for

details). Twins’ sets, rather than individual objects, were permuted,

because visual inspection of Figure 5 revealed that twins had a

strong tendency to lie nearby in the IT representation space (i.e., a

strong tendency to be directly connected in the D-MST clusters).

This is not surprising, since twins are, in general, very similar at

the pixel level, and, as a result, they typically belong to the same

shape-based and low-level category, beside belonging, by defini-

tion, to the same semantic category (see Fig. S1). Therefore, the

presence of twins tends to inflate the overlap between sub-trees

within the D-MST clusters and object categories. Permuting twins’

sets, rather than individual objects, allows taking into account this

bias in the construction of the null distributions of overlap scores,

against which the measured overlaps are compared to establish

their significance. This yields a very conservative test, in which

each set of twins counts as a single object, thus removing, de facto,

any contribution of pixel-level similarity among twins to the

computation of chance overlap scores.

As expected, this approach provided a very conservative

outcome: only a few categories of the clustering hypotheses were

found that significantly overlapped with sub-trees within the D-

MST clusters (Holm-Bonferroni corrected ** p,0.01 and *

p,0.05; see third-to-last column in Tables 1–3). This number

increased if the Holm-Bonferroni correction was released, yielding

two, four and four significant overlaps with categories, respective-

ly, of the semantic, the shape-based and the low-level hypotheses

(see third-to-last column in Tables 1–3 and corresponding

yellowish, reddish and bluish frames in Fig. 5).

Noticeably, out of the two semantic categories that significantly

overlapped with a sub-tree within a D-MST cluster, only for the

four-limbed animals (in cluster #1) such an overlap was not

accountable by the similarity of their members, since the faces (in

cluster #4) were part of a larger sub-tree of round objects with high

area. Moreover, although cluster #1 contained both a large subset

of four-limbed animals and a large subset of birds, only the former was

compactly represented, while the latter was very scattered, thus

suggesting that the proximity of the birds was mostly mediated by

other objects in the cluster. Since our overlap measure took into

account the compactness of a given object category within a tree

(see above), no significant overlap between the birds category and

any sub-tree within cluster #1 was found.

The results shown in Figure 5 provide a very robust and

conservative assessment of what semantic and visual similarity-

based categories were represented in our recorded IT population.

However, in previous studies [14], the significance of the overlap

between neuronal-based clusters and object categories was

computed without compensating for the existence of multiple

(very similar) exemplars of the same objects (i.e., twins). For easier

comparison with such studies, we also computed the significance of

the overlap scores reported in Tables 1–3 by randomly shuffling

individual objects, rather than twins’ sets. This yielded an

additional set of semantic categories that significantly overlapped

with sub-trees within the D-MST clusters – birds, sea invertebrates,

fishes and music instruments (Holm-Bonferroni corrected ** p,0.01

and * p,0.05; see last column in Table 1). However, an even

larger increase of overlaps was found between sub-trees within the

D-MST clusters and shape-based and low-level object categories

(see last column in Tables 2–3). Critically, in most cases, these

overlaps with the visual similarity-based categories accounted for

the overlaps with the semantic categories (the same way roundness

accounted for the clustering of faces in cluster #4 of Fig. 5). In

fact, the sea invertebrates were part of the larger cluster of star-like

shapes in cluster #5; the fishes were part of the larger cluster of

Figure 4. Overlap between k-means clusters in the IT neuronal space and object categories of the clustering hypotheses. (A) Fifteen
object clusters obtained by a typical run of the k-means algorithm over the IT neuronal representation space. The clusters’ arrangement was
determined by applying a hierarchical clustering algorithm to their centroids (see the dendrogram on the top; the same approach was used to
arrange the shape-based categories shown in C, which resulted from the k-means object clustering in the output layer of an object recognition
model [44]). (B–D) The semantic (B), shape-based (C) and low-level (D) categories that significantly overlapped with some of the neuronal-based
clusters shown in A. Overlapping neuronal-based clusters and categories are indicated by matching names (e.g., faces) in A and B–D, with the objects
in common between a cluster and a category enclosed by either a yellow (semantic), a red (shape-based) or a cyan (low-level) frame. (E) Average
number of significant overlaps between neuronal-based clusters and semantic (first bar), shape-based (second bar) and low-level (third bar)
categories across 1,000 runs of the k-means algorithm over both the neuronal representation space and the model representation space. The yellow,
red and cyan striped portion of the first bar indicates the number of neuronal-based clusters that significantly overlapped with both a semantic
category and either a shape-based or a low-level category.
doi:10.1371/journal.pcbi.1003167.g004
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horizontal thick objects in cluster #1; and the music instruments were

part of the larger cluster of horizontal thin objects in cluster #3

(cross-compare Fig. 5 and the third-to-last and last columns of

Tables 1–2). Therefore, regardless of the level of conservativeness

of the permutation test, the D-MST clustering analysis strongly

suggests that visual similarity, rather than semantic membership,

was at the root of the structure of visual object representations in

the recorded IT population (with the noticeable exception to the

four-limbed animals and, to a lesser extent, the birds semantic

categories).

Figure 5. Overlap between D-MST clusters in the IT neuronal space and object categories of the clustering hypotheses. The five most
stable clusters resulting from applying the D-MST clustering algorithm to the IT object representation (see also Fig. S2). The colored frames indicate
the subsets of objects that, within each cluster, significantly overlapped with a semantic, a shape-based or a low-level category. The name of the
overlapping category is reported near to each frame, together with the overlap’s significance level (same overlap score and significance level symbols
as in Table 1). The width and shade of the links connecting the images reflect the robustness of the links across different runs of the D-MST algorithm:
thinner/lighter links appeared less frequently in the D-MST outcome with respect to thicker/darker links.
doi:10.1371/journal.pcbi.1003167.g005
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This conclusion was strengthened by the qualitative obser-

vation of the D-MST clusters, whose internal structure

provided a richness of information that was not always

captured by our overlap and similarity metrics. For instance,

four-legged grand-pianos and four-wheeled cars (among other

inanimate objects) belonged to the same cluster of the four-

limbed animals, thus suggesting that some shared, hard-to-

quantify visual property, rather than semantic membership,

may have underlain the grouping of objects in cluster #1.

Similarly, shared visual features likely played a relevant role in

determining the clustering of other groups of objects (see, for

instance, the objects with high spatial frequency texture/

patterns in tree #2, or the objects with curved or round

elements in tree #3).

Overall, the object clustering produced by the D-MST

algorithm suggests the existence of a rich multi-level object

representation in IT, which is largely driven by the similarity of

visual objects across a spectrum of visual properties, ranging from

low-level image attributes to complex combinations of shape

features that are often hard to model and quantify.

Table 1. Overlapping between semantic categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

Four-limb. anim. 1 0.73 0.96 0.71 0.0000 ** 0.0000 **

Faces 4 0.78 1.00 0.78 0.0023 ++ 0.0000 **

Fishes 1 0.75 1.00 0.75 0.0742 0.0007 *+

Sea invertebr. 5 0.50 0.86 0.46 0.0840 0.0004 **

Birds 1 1.00 0.48 0.48 0.1048 0.0003 **

Music instr. 3 0.50 0.75 0.43 0.1140 0.0012 *+

Vehicles 1 0.46 0.67 0.37 0.2617 0.0065 ++

Insects 3 0.58 0.47 0.35 0.3635 0.0192 +

Tools 3 0.58 0.44 0.33 0.4587 0.0365 +

Trees 5 0.30 1.00 0.30 0.6240 0.0979

Buildings 5 0.33 1.00 0.33 0.8883 0.1471

The table reports the overlap (fifth column) between each semantic category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects, according to a score defined as the ratio between the intersection of the sub-tree with the category and their union (fifth
column). Significance of the overlap was computed by permuting (1,000,000 times) either sets of twin objects (forth- and third-to-last columns) or individual objects
(second-to-last and last columns) across the categories of a given clustering hypotheses: Holm-Bonferroni corrected p,0.01 (**) and p,0.05 (* and *+); and uncorrected
p,0.01 (++ and *+) and p,0.05 (+). For comparison with [14], two other overlap metrics (Ratio 1 = the fraction of objects in the category overlapping with the cluster;
and Ratio 2 = the fraction of objects in the cluster overlapping with the category) are also reported.
doi:10.1371/journal.pcbi.1003167.t001

Table 2. Overlapping between shape-based categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

#2 (round) 4 1.00 1.00 1.00 0.0000 ** 0.0000 **

#14 (star-like) 5 0.71 0.91 0.67 0.0007 *+ 0.0000 **

#8 (dim) 2 0.78 0.78 0.64 0.0097 ++ 0.0000 **

#13 (vertical thin) 3 0.52 0.68 0.42 0.0347 + 0.0002 **

#6 (horiz. thin) 3 0.41 1.00 0.41 0.0520 0.0003 **

#1 (bright) 2 0.57 0.66 0.44 0.0748 0.0004 **

#5 (horiz. thick) 1 0.44 0.87 0.41 0.0927 0.0008 *+

#12 (diagonal) 1 0.47 0.50 0.32 0.4299 0.0392 +

#15 1 0.50 0.50 0.33 0.4878 0.0368 +

#10 3 0.45 0.50 0.31 0.5313 0.0667

#11 3 0.31 1.00 0.30 0.5347 0.0582

#4 1 0.45 0.41 0.28 0.7109 0.1694

#7 (pointy) 5 0.27 0.60 0.23 0.9279 0.4949

#9 1 0.29 0.50 0.22 0.9451 0.5630

#3 2 0.33 0.40 0.22 0.9530 0.5768

The table reports the overlap (fifth column) between each shape-based category (first column) and the D-MST neuronal-based cluster (second column) containing the
best matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.
doi:10.1371/journal.pcbi.1003167.t002
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Read-out of object category membership from the IT
population activity

Unsupervised approaches, such as the clustering methods

described in the previous sections, have the main advantage of

discovering the ‘‘natural’’ internal structure of neuronal object

representations, but do not provide a direct assessment of how

much information a neuronal population conveys about a given

object set (e.g., a semantic or a visual similarity-based category). In

addition, since they are based on average firing rates computed in

a time epoch following stimulus presentation, they do not take into

account the trial-by-trial variability of neuronal responses [62,63].

As an alternative, a useful tool to directly estimate the

representational power of a neuronal population (and take into

account trial-by-trial response variability) is provided by supervised

decoding approaches, such as discriminant-based linear classifiers

[62,64–67]. These approaches are particularly appealing when

dealing with neuronal representations, since they are based on

linear read-out schemes that are plausibly implementable by the

neuronal machinery.

We estimated the power of the recorded IT population to

support classification of the objects belonging to the categories of

the clustering hypotheses, by building binary Fisher Linear

Discriminants (FLDs) [60]. The FLDs were trained to learn the

mapping between the neuronal population response vectors and

the labels that were assigned to each object according to a given

binary classification task (e.g., faces vs. all other objects in the set).

We then measured the performance of the classifiers at

generalizing to novel population responses (i.e., at correctly

labeling left-out population vectors that were not used during

training), using standard cross-validation procedures to establish

the variability and significance of the classification performance

(see Materials and Methods). Specifically, we tested the capability

of the FLDs to correctly classify visual objects that were not used to

build (i.e., train) the classifiers. That is, all the population vectors

obtained across different presentations of a given object in a given

category (e.g., a given face in the faces category) were excluded

from the training set, and one of such left-out population vectors

was used to test the classifier performance in the cross-validation

procedure.

The average classification performance of the FLDs was

significantly higher than what expected by randomly permuting

the object labels (p,0.05; see Materials and Methods for details)

for all the semantic categories, most of the shape-based categories

(13 out of 15), and all the low-level categories (see Fig. 6A). At first,

this result may seem surprising (and at odd with our previous

analyses; see Figs. 3–5), but it can be easily understood, by

considering the existence of multiple (very similar) exemplars of

the same objects (i.e., the twins) in our stimulus set (see Fig. 2).

Indeed, the large (and significant) classification performance

obtained for virtually all the FLDs in Figure 6A is fully consistent

with the large number of significant overlaps between D-MST

clusters and object categories reported in the last column of

Tables 1–3 (i.e., when the significance of the overlap was

computed without compensating for the existence of twins).

To understand how twins can explain the high performances of

the FLDs, it should be recalled that, as shown by the D-MST

clusters (see Fig. 5), twins typically lay nearby in the neuronal

representation space. Therefore, it is not surprising that an FLD,

trained to classify a given member in pair of twins, successfully

classifies the other member of the pair (when this member is used

as the left-out test object). The problem is that, for most twins, it is

impossible to know whether it is their shared semantic member-

ship or their visual similarity that drives their clustering in the

neuronal space (and, therefore, the high performance of the

FLDs). In fact, twins belong, by construction, to the same semantic

category (see Fig. S1A), but, in most cases, they also belong to the

same shape-based or low-level category (see Figs. S1B–C), being

twins, in general, very similar, in terms of shape, orientation, pose,

contrast, luminance, etc (compare adjacent objects in Fig. 2).

The issue with twins brings up the more general issue of how to

fully disentangle the contributions of semantic membership and

shape similarity to the establishment of cortical visual object

representations, when sets of natural objects (containing many

similar members of the same semantic categories) are used to

probe such representations. To tackle this issue, and better

dissociate semantic information from visual information, we

subsampled/pruned the object categories, so as to obtain semantic

categories made only of dissimilar objects, and shape-based/low-

level categories made only of objects with different semantic

membership. This was achieved by imposing the constraints that:

1) no pair of objects in any given semantic category belonged to

the same shape-based or low-level category; 2) no pair of objects in

any given shape-based or low-level category belonged to the same

semantic category; and 3) only a single exemplar of any set of twins

(e.g., a single human face or a single hat) belonged to any given

category. Since many different ‘‘pruned’’ categories could be

obtained from any of the original object categories, the subsam-

pling procedure was repeated many times (once for each cross-

validation run; see Materials and Methods for details; examples of

pruned categories are shown Fig. 6B). We then measured the

Table 3. Overlapping between low-level categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

High area 4 0.93 1.00 0.93 0.0000 ** 0.0000 **

Low contrast 2 0.60 0.82 0.53 0.0103 + 0.0000 **

Low area 3 0.60 0.69 0.47 0.0333 + 0.0001 **

High luminance 2 0.53 0.80 0.47 0.0352 + 0.0001 **

Low aspect ratio 2 0.40 0.86 0.37 0.1910 0.0049 ++

High aspect ratio 4 0.33 0.83 0.31 0.4760 0.0454 +

Low luminance 1 0.33 0.42 0.28 0.9240 0.5116

High contrast 1 0.33 0.36 0.21 0.9761 0.7167

The table reports the overlap (fifth column) between each low-level category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.
doi:10.1371/journal.pcbi.1003167.t003
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performance of the FLDs at correctly classifying left-out objects

from such pruned categories (see Fig. 6C).

As expected, the classification performance of the FLDs was

much reduced, as compared to what obtained with the original

categories (compare Figs. 6A and C). Only three of the

subordinate semantic categories (birds, four-limbed animals, and

insects; see Fig. 6C, first panel) were classified with a performance

that was higher than what expected by chance (p,0.05,

permutation test; see Materials and Methods for details). In

addition, the animate category (as a whole) was discriminated with

higher than chance performance from the inanimate category.

Among the categories defined by visual similarity, five shape-based

categories (round, star-like, horizontal thin, pointy and vertical thin

objects), as well as six low-level categories (high and low area, high

and low luminance and high and low aspect ratio objects), were all

classified with higher than chance performance by the FLDs (see

second and third panels in Figs. 6C). Among all tested categories,

the highest classification performance (.75% correct) was

obtained for the shape-based category of round objects (this was

the only performance to remain significantly higher than chance,

after that a Bonferroni correction for multiple comparisons was

applied).

Overall, the result of the FLD analysis, applied to the pruned

categories, was in good agreement with the result of the D-MST

clustering, when significance was computed by permuting twins’

sets (see Fig. 5 and Tables 1–3, third-to-last column). Comparing

Figure 6. Fisher Linear Discriminant (FLD) analysis of IT population activity. (A) Each gray bar reports the average performance of a binary
FLD at correctly classifying members of a given object category (e.g., faces) from all other objects in the set. For each binary classification task, the
standard deviation of the performance (error bars), and the mean and standard deviation of the null distribution (gray circles and their error bars),
against which significant deviation of performance from chance was assessed (same significance level symbols as in Table 1), are also reported (see
Materials and Methods for a description of the cross-validation and permutation procedures yielding these summary statistics). (B) Examples of
‘‘pruned’’ semantic, shape-based and low-level categories that were obtained by subsampling the original object categories (shown in Fig. S1), so as
to minimize the overlap between semantic and visual information (see Materials and Methods for details). (C) Performance of the FLDs at correctly
classifying members of the pruned categories (same symbols as in A).
doi:10.1371/journal.pcbi.1003167.g006
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the outcome of the two analyses (see Tables 4–6), only a few

differences emerged. For instance, the insects (among the semantic

categories) and the pointy objects (among the shape-based

categories) were significantly represented in the neuronal space

according to the FLD analysis, but not according to the D-MST.

Similarly, the animate and inanimate categories were linearly

separable according to the FLD analysis, although animate and

inanimate objects were not sharply segregated in different D-

MST clusters (as also shown by the hierarchical clustering and k-

means analysis; see Figs. 3A-B and 4). Such discrepancies are not

surprising, since, in general, supervised and unsupervised

multivariate approaches provide complementary information

about data representations – for instance, linear separability (as

measured by FLDs’ classification performance) is not bound to

perfectly match the clustering of data in a representational space

(see further comments in the Discussion). Hence, the importance

of combing both kinds of approaches when exploring a

multivariate data set. When this was done, and the outcomes of

the D-MST and FLD analyses were taken together, a very

conservative assessment of what object categories were repre-

sented by the recorded IT population was achieved (see last

column in Tables 4–6) – one semantic category (the four-limbed

animals), three shape-based categories (round, star-like and vertical

thin objects), and three low-level categories (high area, low area and

high luminance) turned out to be significantly represented according

to both approaches. Overall, this confirmed that visual similarity

(at the level of both shape and lower-order properties) accounted

for the neuronal representation of visual objects better than

semantic membership did.

Discussion

This study investigated what visual object properties were

represented in a neuronal population that was recorded from

monkey inferotemporal cortex. To this aim, we defined three

alternative hypotheses that could underlie the clustering of a

battery of visual objects within the IT neuronal representation

space: 1) shared semantic membership; 2) shared visual shape

features (i.e., shape similarity); and 3) shared low-level visual

properties. We then applied an array of unsupervised and

supervised machine learning approaches to understand whether

the object categories defined by these hypotheses were robustly

represented in the recorded IT neuronal population. Based on

these approaches, we concluded that the coarse clustering of visual

objects in the neuronal representation space was mainly driven by

low-level visual properties, while its finer-grain structure depended

on higher-level shape features, with little role played by semantic

membership (although our analyses cannot exclude that at least

one semantic category – the four-limbed animals – was also robustly

represented in the recorded IT population).

These conclusions are mostly in disagreement with those of two

recent studies [14,15] that also investigated the nature of object

representations in monkey IT (and its human homologous). In

these studies, the authors found a sharp segregation between

animate and inanimate objects, and a finer-grain clustering within

the animate category that matched closely several subordinates

semantic categories (named ‘‘intuitive’’ or ‘‘human-conventional’’

categories by the authors), such as faces, body parts, four-limbed

animals, fishes, reptiles, butterflies, etc. Most remarkably, these

Table 4. Semantic categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

Four-limb. anim. ** + 3

Faces ++

Birds +

Insects +

The second and third columns report what semantic categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 1) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what semantic categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t004

Table 5. Shape-based categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

#2 (round) ** *+ 3

#14 (star-like) *+ ++ 3

#8 (dim) ++

#13 (vertical thin) + + 3

#6 (horiz. thin) ++

#7 (pointy) +

The second and third columns report what shape-based categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 2) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what shape-based categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t005
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studies were unable to find any visual-similarity metric that could

produce object clusters matching those found in the neuronal

representation.

The conclusions reached by our study are consistent with [14],

only as far as the representation of a few animate categories is

concerned: the four-limbed animals (see Figs. 4, 5 and 6C, and

Tables 1 and 4) and, to a lesser extent, the birds (see Figs. 4 and 6C,

and Table 4). However, we did not find any other semantic

category that was significantly represented in the recorded IT

population according to all (as in the case of four-limbed animals) or

most (as in the case of birds) the multivariate approaches we

applied. For instance, the insects were found to be linearly

discriminable by the FLDs (see Fig. 6C), but no compact clusters

of insects were found by the k-means and the D-MST clustering

algorithms. In the case of faces, their clustering in the neuronal

representation space was accounted for by their visual similarity,

rather than their shared semantic membership (as shown by the

fact that faces were part of a larger cluster of objects with round

shape and large area; see Figs. 4 and 5) – when pruned face

categories made only of dissimilar faces were built, the FLDs were

no longer able to correctly classify them (compare Fig. 6A and C).

Finally, no sharp segregation between animate and inanimate

objects was observed (but see further discussion below). On the

other hand, we found several shape features and lower-level visual

properties that successfully accounted for the clustering of some

visual objects in the IT neuronal representation. Among others,

the more prominent are: 1) object area, which determined the

gross topology of object clustering in the IT representation (see

Figs. 3C–E); 2) other low-level image properties, such as object

luminance and aspect ratio (see Figs. 4–6 and Tables 3 and 6); 3)

shape features, such as specific arrangements of edges and

boundaries that defined round, horizontally elongated, vertically

elongated and star-like objects (see Figs. 4–6 and Tables 2 and 5).

Animate and inanimate objects are not sharply
segregated in the IT representation

In our study, animate and inanimate objects were found to be

equally distributed among the first two nodes of the dendrogram

produced by hierarchical clustering (see Figs. 3A, B) and in the two

clusters obtained by running the k-means algorithm with k = 2. In

addition, most of the clusters produced by the k-means (Fig. 4) and

D-MST (Fig. 5) algorithms contained a mixture of animate and

inanimate objects. However, the FLDs were able to distinguish

animate from inanimate objects with higher than chance

performance, even after that visual similarity among members

within each category was minimized (see Fig. 6C). The latter

finding is not contradictory with the results of the cluster analyses,

since it is indicative of the compactness of some subordinate

semantic categories (such as the four-limbed animals and the faces; see

Figs. 4 and 5), rather than of the superordinate animate category

as a whole. In particular, FLDs, being supervised approaches, do

not need to follow the ‘‘natural’’ object segregation in the IT

representation (as revealed by the unsupervised clustering meth-

ods). Rather, given the high dimensionality of the representation

space, FLDs could find a hyperplane segregating the two main

animate groups (i.e., four-limbed animals and the faces) from the

inanimate objects, even if those groups belong to different

‘‘natural’’ clusters.

In conclusion, our analysis strongly suggests that animate and

inanimate objects are not sharply segregated within the IT

representation, at least as we have sampled it here. At the same

time, however, they are not randomly scattered across the IT

neuronal space. Instead, some subordinate animate categories

form compact clusters in the IT representation (although, in some

cases, simply because of the visual similarity of their members).

This conclusion, while being at odd with [14,15], is in agreement

with a recent fMRI study showing that, in the body-selective

regions of monkey inferotemporal cortex, objects do not primarily

segregate according to whether they belong to the animate or the

inanimate categories [34].

Comparison with other studies
The discrepancy between our and previous results [14,15] is not

easily explained. The stimulus presentation protocols (monkeys

viewing images presented in rapid sequence) and the region from

which the neuronal responses were recorded (anterior IT) are

comparable (although not fully overlapping; see further discussion

below). The analytical approaches are at least partially overlap-

ping, although in our study more advanced tools derived from

statistical mechanics were used.

One potentially important difference is the way in which

statistical significance of the overlap between the object categories

and the neuronal-based clusters was evaluated. We took into

account the effect of having sets of very similar exemplars of the

same objects (i.e., twin objects) on the outcome of the statistical

tests (see Fig. 5 and the third-to-last row in Tables 1–3). We also

tried to fully dissociate the representation of visual similarity and

semantic membership by building semantic categories that

contained only very dissimilar objects, and shape-based categories

that contained only objects with different semantic membership

Table 6. Low-level categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

High area ** + 3

Low contrast +

Low area + ++ 3

High luminance + ++ 3

Low aspect ratio +

High aspect ratio +

Low luminance +

The second and third columns report what low-level categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 3) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what low-level categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t006
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(see Fig. 6B–C). As far as we understand, the effect of twins on the

overlap score was not taken into account by Kiani and colleagues

[14], in spite of the many different exemplars of the same objects

contained in their object set. As shown by our results, shuffling

objects rather than twins’ sets in the statistical analysis, dramat-

ically increased the number of significant overlaps between D-

MST neuronal-based clusters and object categories (compare the

third-to-last and last columns in Tables 1–3). The impact of shape

similarity on the representation of semantic categories was shown

to be even more dramatic in the case of the FLD analysis –

minimizing shape similarity within semantic categories dramati-

cally reduced the number of categories, whose elements were

classified with higher than chance performance by FLDs (compare

the first panels in Fig. 6A and Fig. 6C).

The failure of the visual similarity metrics used by [14,15] to

account for object clustering in IT could be explained by the

different metrics used in their studies and ours. In particular,

although we used the same object recognition model [43,68] to

quantify shape similarity, our implementation of the model

included a much larger number of output units (24,451) as

compared to [14] (674). In fact, we did not try to match the

number of model output units to the number of recorded neurons

(as done by [14]), since our goal was not to model IT, but, rather,

to find a metric that was as powerful as possible in capturing the

visual shape similarity among the objects in our set.

Another substantial difference is represented by the stimulus set.

The objects used in our experiments were grayscale pictures of

natural objects, while, in the studies of [14,15], color pictures were

used. Color is obviously a very salient object feature that could

have strongly influenced the object clustering reported in those

studies. For instance, human faces, hands, body parts and, to a

lesser extent, monkey faces, as well as the fur of many animals, all

have a pink/brownish hue that could have driven their clustering

in the superordinate category of animate objects. Noticeably, in

the above-mentioned fMRI study that found no segregation

between animate and inanimate objects, grayscale pictures were

used [34]. In conclusion, the use of colorful images in [14,15]

represents a major confounding factor, since IT color tuning may

interact with IT shape tuning in ways that are hard to quantify/

model.

Yet another difference is the lower number of visual objects we

tested (213), the smaller population of IT neurons we recorded

(94), and the smaller extent of IT cortex we sampled, as compared

to Kiani and colleagues (who tested 1,084 objects and recorded the

responses of 674 IT neurons). These are three separate, but

related, issues, each deserving a specific discussion.

While, in general, recording from a wider IT neuronal sample

would lead to a more refined assessment of IT neuronal

population coding, it is unclear whether major qualitative

differences in the structure of visual object representations would

emerge as a function of the size of the recorded neuronal pool.

Previous investigations of population coding in IT have shown a

gradual increase of the amount of information conveyed by a pool

of IT neurons about object identity or category as a function of the

pool size, but they have not reported any dramatic qualitative shift

in what the neuronal pool would code depending on its size

[30,64,66]. In addition, these studies have revealed that small

pools of IT neurons can be as effective (or more effective) than

much larger populations, as long as their selectivity for object

identity or category is very strong. In this regard, it should be

noted that Kiani and colleagues recorded every neuron they could

isolate regardless of its stimulus responsiveness or selectivity, which

could potentially have resulted in a neuronal pool with many

unresponsive or non-selective cells (they report that 38% of their

neurons were category selective). By contrast, we recorded only

cells with a statistically reliable response to at least one of the

objects in our stimulus set, thus obtaining a population of neurons

with robust tuning across the tested objects (see [38]). Based on the

above-mentioned population coding studies, this suggests that

Kiani and colleagues’ larger IT sample could only be marginally

better than our smaller (but more selective) neuronal pool at

estimating IT neuronal representations of visual objects (the large

performances achieved by the FLDs in Fig. 6 confirm the

effectiveness of the sampled IT population at conveying informa-

tion about features/properties of our object set).

As far as the size of the stimulus set is concerned, it should be

noted that a larger stimulus set does not necessarily mean a better

stimulus set, when it comes to disentangling alternative clustering

hypotheses. First, as pointed out above, a large number of very

similar exemplars per category could lead to an overestimation of

the significance of the overlap between neuronal-based clusters

and, for instance, semantic categories, if not properly taken into

account in the statistical analysis. Second, although our semantic

categories typically contained less exemplars than those used by

Kiani and colleagues, the superordinate categories of animate and

animate objects used in our study contained a large number of

exemplars. Nevertheless, as pointed out above, we did not found

any sharp segregation of these two categories in the IT

representation.

Finally, one factor that could explain some of the discrepancies

between our conclusions and those of Kiani and colleagues is the

different extent of IT cortex that was sampled in the two studies.

Our recordings targeted the most medial part of the ventral bank

of STS and of the ventral surface lateral to AMTS (see blue dots

and red-shaded areas in Fig. 1) and spanned a 13–17 mm

anteroposterior range, while Kiani and colleagues sampled a

larger portion of IT, both mediolaterally (i.e., including the gyrus

between STS and AMTS), and anteroposteriorly (i.e., a 13/15–

20 mm span; see Fig. 1 in [14]). This suggests that recordings in

[14] may have sampled sub-regions in IT that are known to

contain enriched populations of face-selective cells (i.e., the

anterior face patches AL and AM [33]; see Fig. 1), while, in our

study, only a minimal overlap between recording sites and face

patch AM could, in principle, be expected (in practice, our IT

sample did not contain any cell that was sharply tuned for faces;

see Fig. S3 and further discussion in the next Section). This could

explain why in [14], differently from our study, a sharp clustering

of human, monkey, and animal faces was found in the IT

representation.

To conclude, it is hard to infer what methodological differences

may be at the root of the discrepancies between our study and

[14,15]. Above, we have listed some of the differences that could

be crucial. Ultimately, however, only a re-analysis of Kiani and

colleagues’ data with our analytical/statistical approaches, or,

better, a full new set of recordings (e.g., with grayscale versions of

the images used by Kiani and colleagues) could shed more light on

the causes of these discrepancies. Both approaches are clearly

beyond the scope of this study, but could be an interesting target of

future investigations by ours or other groups.

Validity and implications of our findings
As pointed out in a recent review [13], two main competing

ideas exist about what kind of object information is coded by the

ventral stream, and, in particular, by its highest stage – anterior

IT. On the one hand, many single-unit studies in monkeys support

the notion of structural (or shape-based) representations along the

ventral stream – i.e., combinations of object-defining visual

features of increasing complexity are coded along the ventral
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steam, with the highest complexity of configural coding reached in

anterior IT (see [2,4,6] for a review). On the other hand, another

line of evidence (mainly coming from human lesion and fMRI

studies) supports the existence of semantic categorical representa-

tions along the ventral stream – i.e., human high-level represen-

tations of visual objects segregate according to object function/

meaning rather than shape [17–24]. The findings reported by

[14,15] have added evidence based on monkey single-unit

recordings to support the latter notion.

Our study, on the contrary, strongly supports the notion that

inferotemporal neuronal ensembles, in the monkey brain, mainly

represent visual, rather than semantic, information. In particular,

our analyses show that IT response patterns code not only

structural/configural shape information of various complexity, but

also a whole array of low-level image properties (such a overall

luminance, area, aspect ratio, etc.). On the one hand, this is

surprising, since this kind of low-level information contained in the

visual input is typically though to be extracted by lower-level visual

areas and not to be preserved and coded in IT. On the other hand,

previous computational and empirical studies have shown that

object identity is represented along with other low-level properties

in IT, namely position and size. In particular, it has been shown

that IT neuronal ensembles can code not only object identity

regardless of position/size [64–66] (thus conveying a position/size

invariant object representation), but they can also code object

position/size regardless of object identity [64], and can jointly

code object position and identity [65] (i.e., report the identity of a

specific object at a specific visual field location). Our findings not

only confirm these previous conclusions (extending them to a

larger set of low-level properties), but also show how, topologically,

some low-level properties (e.g., area of the visual field subtended

by each visual object) and higher-order shape features are co-

represented in IT (with the former determining the gross topology

of object representations and the latter determining their finer-

grain structure).

As far as semantic categories are concerned, only for the four-

limbed animals we observed a significant and robust representa-

tion of semantic membership that could not be accounted by their

visual similarity (see Table 4). This could either be the result of an

extremely transformation-invariant population code of animal-like

objects (and, therefore, still shape-based, although not captured by

our visual similarity metrics), or could reflect learned associations

between objects with dissimilar shape but similar meaning/

function. The latter hypothesis would be consistent with the

finding that neurons in higher-order areas of both the ventral and

the dorsal streams can learn to encode general categorical

associations between arbitrary visual patterns [25–27,69–71],

and would support the notion that semantic (or categorical)

representations do exist in monkey IT [30], at least for a few

selected, behaviorally relevant categories.

This raises the issue of what object categories, in our stimulus

set, can be considered as behaviorally relevant (or meaningful) for

the monkeys. This is obviously an important issue, when

considering the generality of our conclusions, since the failure to

observe a significant representation for most semantic categories

could be due to their lack of ‘‘meaning’’ for the monkeys. While

some animate categories (such as the four-limbed animals and the

faces) are likely meaningful for the monkeys (either because

innately such, or because meaning may have been acquired

through repeated exposure to members of these categories, e.g.,

other monkeys and humans), other categories (especially among

the inanimate set) are likely arbitrary collections of objects for the

monkeys. Regardless of their likely meaningfulness for the

monkeys, there are three reasons why it was important for us to

ask how well all these categories were represented in IT. First, our

semantic categories were defined so as to match as close as possible

those defined by Kiani and colleagues [14], who found a

significant representation in IT not only for four-limbed animals

and faces, but also for most other animate categories (i.e., birds,

reptiles, butterflies, fishes, etc.). Moreover, although in [14] only

one of the inanimate subordinate categories (cars) was found to be

significantly represented in IT, the inanimate category, as a whole,

was sharply segregated from the animate category. Since one of

the goals of our study was to provide a comparison with the

findings of Kiani and colleagues, it was essential to test how well

the animate and inanimate categories, as well as all their possible

subordinate categories were represented in IT. Second, our

monkeys had a daily, prolonged exposure not only to other

monkeys and humans, but also to a variety of inanimate objects,

such as toys, fruits, vegetables, furniture, tools and equipment used

in the animal facility and in the lab (some of which are similar to

the inanimate objects contained of our stimulus set). Therefore, if

the representation of visual objects in monkey IT is organized, at

its most superordinate level, according to an animate/inanimate

distinction (as concluded in [14,15]), there is no reason to believe

that the development of such an animate/inanimate segregation

was precluded to our monkeys. Hence, the relevance of testing the

existence of such a segregation and provide a comparison with

[14]. Third, testing the representation of inanimate (but also

animate) categories without any obvious meaning for the monkeys

(e.g., music instruments or sea invertebrates; see Fig. S1) served as

a demonstration that shape similarity among members of the same

semantic category, if not properly taken into account in the

statistical analysis, can easily lead to an overestimation of how well

semantic membership is represented in visual cortex. This is

shown by the many semantic categories that were found to have a

significant representation in IT according to the D-MST and FLD

analyses, unless shape similarity (e.g., the presence of twins) was

properly accounted for (compare the significance levels in the

third-to-last and last columns of Table 1, and compare Figs. 6A

and C). In summary, testing the many animate and inanimate

categories used in our study provides a valuable comparison with

previous reports [14,15] (e.g., about the animate/inanimate

segregation), and cautions against giving semantic interpretations

of cortical activity patterns that may actually reflect visual shape

similarity. Finally, it is worth pointing out that, as a way to better

understand to what extent behaviorally relevant categories are

represented in monkey IT, future studies should first try to

establish what objects are naturally perceived/judged by monkeys

as belonging to the same categories (e.g., by relying on priming or

adaptation aftereffect paradigms that allow measuring what

objects are spontaneously judged as similar by a subject [72–78]).

To conclude, it should be stressed that the validity and

generality of our conclusions are intrinsically limited by the

limited extent of cortex that was explored through single-unit

recordings here, as compared to the large cortical areas that are

imaged in fMRI studies. In particular, single-unit recordings,

unless paired with fMRI, cannot precisely target cortical regions

that are known to represent specific object categories in monkey

IT. For instance, our recordings did not specifically target any of

the so-called monkey face patches [16,31–33] or other IT regions

that are rich of face selective neurons (summarized in [41,42]) and,

therefore, it is not surprising that no clusters entirely made of faces

were found in our study (instead, the face cluster was part of larger

clusters of objects with round shape and large area; e.g., see cluster

# 4 in Fig. 5). In particular, given the across-monkey variability in

the precise locations of face patches (Fig. 1 shows the range of

possible locations for the three anterior face patches, based on
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[33]), the fact that we did not record from the dorsal bank of STS

(thus excluding an overlap between our recording sites and face

patch AF; see Fig. 1), and the fact that our recordings targeted the

most medial part of IT (thus excluding any overlap between our

recording sites and face patch AL; see Fig. 1), it is very unlikely

that our IT sample contained a large fraction of face cells.

Although an overlap between our recording sites and face patch

AM is, in principle, possible (see Fig. 1), we verified that our

sampled IT population did not contain any cell that was sharply

tuned for faces, by computing, for each neuron, the Face

Selectivity Index (FSI) proposed by [32]. Differently from what

reported for face cells (e.g., see Fig. 2 in [32]), none of the neurons

recorded in our study had a FSI exceeding 0.5 (see Fig. S3A).

Moreover, those few cells with FSI,0.5 typically did not show a

sharp segregation between responses to faces and non-faces, and

often had, as preferred stimuli, non-face objects (see Fig. S3B).

Because of such a lack of sharp tuning for faces at the single cell

level, it is not surprising that neither the k-means (see Fig. 4) nor

the D-MST clustering algorithms (see Fig. 5) returned any pure

cluster of faces. Very likely, if our recordings had targeted a wider

extent of IT cortex (as in [14]) or had focused on sub-regions,

within IT, that are rich of face-selective neurons [31–33,41,42],

pure face clusters would have been observed. On the other hand,

having found compact clusters of four-limbed animals and (to a

lesser extent) birds suggests that at least a fraction of the neurons

sampled in our study may have belonged to body selective IT

regions (whose existence is also well-established in monkey IT

[16,31,34]). In other words, our data, while showing that visual

shape similarity is the main factor determining IT object

representations, do not contradict the findings of earlier fMRI

studies about the existence of face and body patches in IT.

In summary, the quantitative characterization of the IT

response patterns performed in this study, while leaving open

the possibility that a few, behaviorally salient semantic categories

may be represented in monkey inferotemporal cortex, strongly

reasserts the primary function of IT as a visual area, in which, in

addition to moderately to highly complex shape information, a

surprisingly large number of low-level visual properties is also

represented.

Materials and Methods

The data analyzed in this study were obtained from the same

experiments described in [38]. We point the reader to this former

study for a full description of surgical, behavioral, and recording

procedures. Here we only provide those details that are essential to

the understanding of the present study. All animal procedures

were performed in accord with National Institute of Health

guidelines and the Massachusetts Institute of Technology Com-

mittee on Animal Care.

Visual stimuli and behavioral task
All recorded neurons were probed with a fixed set of 213

grayscale pictures of isolated objects that included: 1) 188 images

of real-world objects belonging to 94 different categories (e.g., two

hats, two accordions, two monkey faces, etc.) of the Caltech 101

database [79]; 2) five cars, five human faces, and five abstract

silhouettes; 3) five patches of texture; 4) four low-contrast images of

one of the objects; and 5) a blank frame. The full set is shown in

Figure 2.

All objects subtended 2u of visual angle. During recordings, both

monkeys were engaged in a simple recognition task that required

the detection of a fixed target shape (a red triangle) that was

presented at the end of a temporal sequence of object conditions

drawn from our stimulus set (see [38]). The total number of

stimulus conditions presented on each behavioral trial ranged from

3 to 20. The target was always the last in the sequence, and each

monkey was rewarded for maintaining fixation (1.5u fixation

window) until the appearance of the target and then making a

saccade to a fixed visual field location (7u eccentricity) within

800 ms after the appearance of the target. Visual stimuli were

presented at a rate of 5 per second; i.e., each stimulus condition

was shown for 100 ms, followed by 100 ms of a gray screen (no

stimulus), followed by another stimulus condition for 100 ms, etc.

This task was meant to obtain a large amount of data, while still

engaging the animal in a recognition task

Neuronal recordings
During each recording session, a single extracellular metal

electrode was advanced into IT through a stainless still guide tube

that was inserted into a plastic cylindrical recording chamber

(Crist Instruments). The chamber was placed over a craniotomy

targeting the temporal lobe in the left hemisphere from the top of

the skull. Over ,6 months of daily recording sessions in the two

monkeys, we sampled neurons over an ,564 mm area of the

ventral superior temporal sulcus and ventral surface lateral to the

anterior middle temporal sulcus (Horsley-Clarke anteroposterior

coordinates: 13–17 mm), corresponding to several 1 mm-spaced

grid locations of the recording chamber (see Fig. 1). We recorded a

total of 94 well-isolated single units. Each isolated neuron was

initially tested for responsiveness across the set of 213 objects,

presented at the center of gaze, using the following criterion: a

neuron was considered responsive if its mean firing rate was

significantly higher than background rate for at least one of these

objects (t test, p,0.005). Responsive neurons were further screened

to identify their preferred receptive field location (RF center)

within a 2u span around the center of gaze (see [38] for details).

Following these screening procedures, complete recordings from

each neuron were obtained by presenting the full set of 213 objects

at the neuron’s RF center. Five to thirty presentation repetitions

were collected for each object condition.

Similarity metric for population responses
Neuronal responses were quantified by computing the average

number of spikes per second fired by a neuron (i.e., average firing

rate) across all repetitions of a given object, over a time window

starting 100 ms and ending 200 ms after stimulus presentation.

Similarly to what done in [14], the responses of a neuron across the

object set were normalized by first subtracting their mean value

(across the set) and then dividing by their standard deviation. This

normalization compensated for differences in baseline activity and

firing rate range across the recorded neuronal population, and

allowed weighting equally all the neurons contributing to the

population representation of a given object. Each visual object was

thus represented by a neuronal population vector having as

components the normalized responses of all the recorded neurons

to that object. As in [14], the similarity between the population

vectors representing two visual objects i and j was measured by

computing their Pearson correlation coefficient (rij). This metric was

chosen because it is sensitive to the profile of activation of the

neurons produced by a given object, rather than to the absolute

magnitude of the activation. The distance (or dissimilarity) between

the population vectors i and j was then defined as dij = 12rij (the

resulting dissimilarity matrix D is depicted in Fig. 3A).

Unsupervised multivariate approaches
Three standard unsupervised approaches were used to under-

stand the structure of visual object representations in IT: 1)
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average linkage hierarchical agglomerative clustering; 2) k-means

clustering; and 3) Principal Components Analysis (PCA). The

optimal number of k-means clusters was determined by the Bayes

Information Criterion (BIC) and the Akaike Information Criterion

(AIC) [52]. In addition to these standard approaches (whose

description can be found in various textbooks and reviews; see

[60,61]), a more advanced method, developed within the domain

of Statistical Physics, was also applied to strengthen our

multivariate analysis: the D-MST clustering algorithm. This is a

recently proposed method [53,54], which allows interpolating

between partitional clustering methods, such as k-means [60,61] and

Affinity Propagation [55], and hierarchical clustering methods

[60,61]. Its output is a so-called forest, i.e., a set of clusters, each of

which is a tree (see Fig. 5). As the k-means, the D-MST clustering

algorithm is non-deterministic, and takes two parameters as input:

1) the maximum depth of the trees dmax (i.e., the maximum

number of links between any image and the image at the center of

a tree); and 2) l, which determines the number of resulting clusters

(a bigger l results in less clusters). As a way to determine the set of

parameters that gave the most robust assessment of object

clustering in IT, we imposed that both the number of clusters

and their internal structure (i.e., the overlap between the clusters/

trees resulting from repeated executions of the algorithm) be stable

over a large range of parameters (50 executions of the algorithm

were run for each assignment of the parameters). This yielded a

single region of the parameter space fulfilling our stability criteria

(see Fig. S2), corresponding to a partition of the object set into five

trees with depth dmax = 6. From this region, five trees/clusters were

extracted by keeping the most stable links across multiple runs of

the D-MST (shown in Fig. 5). A more detailed description of the

method is provided in Text S1.

Clustering hypotheses
The neuronal-based object clusters produced by the algorithms

described above were compared to object categories obtained

according to three different clustering hypotheses: 1) shared

semantic membership; 2) shared shape features; and 3) shared low-

level visual properties.

Eleven semantic categories (shown in Fig. S1A) were built

according to the criteria established in [14]. These categories were

further grouped into the two superordinate categories of animate

and inanimate objects.

Fifteen categories of objects sharing shape features (shown in

Fig. S1B) were obtained as the result of object clustering in the

output layer of a well-known hierarchical model of object

recognition [43,44,68]. For our application, we have chosen the

version of the model described in [44] (and downloaded from

http://www.mit.edu/,jmutch/fhlib/ – version 8), which consists

of four layers of artificial neural units named S1, C1, S2, and C2.

Units S1 are a bank of Gabor filters with various orientations,

spatial frequencies, positions and scales. Units C1 implement an

OR-like operation on subsets of S1 afferent units, having the same

orientation tuning but in different positions/scales. Units S2

perform a template matching (AND-like) operation on subsets of

C1 afferent units to gain tuning for a particular combination of

visual features. In this version of the model, the templates to which

these units are tuned are random patches of images taken from the

Caltech 101 database (different S2 units are built having as a

template the same image patch, but at different positions and

scales). In the output layer of the model, C2 units perform again an

OR-like operation on subsets of S2 afferent units tuned for the

same image patch, but at different positions and scales. In our

instantiation of the models, 24,451 C2 output units were built.

These units convey the more explicit (i.e., more shape selective

and position/scale tolerant) representation of visual objects

provided by the model. They could therefore be used to assess

the similarity of our visual objects at the level of shared middle- to

high-level shape features. This was achieved by running a k-means

clustering algorithm over the representation of our object set

provided by the model’s output units, so as to obtain 15 groups of

objects with similar features. The number of groups was set to 15

to match the optimal number of k-means clusters found in the IT

neuronal representation using the BIC and AIC criteria (see

previous section).

Eight categories of objects sharing low-level visual properties

(shown in Fig. S1C) were defined on the base of four global

properties of the images of the objects – luminance, contrast, area

and aspect ratio. Each category contained 15 images having either

the highest or the lowest values of one of such properties, which

were defined as following. Luminance was defined as the average

pixel intensity of the object image, divided by the maximum of the

grayscale range (i.e., 255). Area was defined as the fraction of

pixel, in the image frame, that was occupied by the image of the

object. Note that object area, as defined here, is different from

object size, which was fixed to ,2u of visual angle for all the

objects. Contrast was defined as: (median(pixels.128)2median(-

pixels,128))/(median(pixels.128)+median(pixels,128)). Aspect-

ratio was defined as the maximum, across all the possible rotations,

of the height of an object image divided by its width.

Overlap score
For easier comparison with [14], the overlap between a k-means

neuronal-based cluster and an object category was assessed with

the same score used in that study, i.e., as the average of Ratio 1

and Ratio 2 (where Ratio 1 is the fraction of objects in the category

overlapping with the cluster and Ratio 2 is the fraction of objects

in the cluster overlapping with the category). Significance of the

overlap score was assessed by a permutation test, in which, after

reshuffling the objects among the clusters, the overlap scores were

recomputed to obtain a null distribution. In the case of the clusters

produced by the D-MST algorithm, the overlap score was defined

as the intersection between a given cluster and a given category,

divided by their union. Significance was assessed by a permutation

test, which, as explained in the Results, took into account the

presence of twin exemplars in the object set (see Text S1 for a full

description).

Fisher Linear Discriminant (FLD) analysis
The ability of the recorded IT population to code the category

membership of visual objects was estimated by building binary

Fisher Linear Discriminants/classifiers (FLDs). Each classifier was

trained to find the best hyperplane separating, in the neuronal

representation space, the objects belonging to a given category

from all other objects (FLDs achieve this by maximizing the ratio

of the between-category variance to the within-category variance

[60]). Since the neurons were not recorded simultaneously,

pseudo-population response vectors were built by assigning to

each component of any given vector the number of spikes that

each neuron fired in a randomly sampled (with replacement)

presentation of a given object. Seven of such pseudo-population

vectors were built for each object (being seven the median number

of repetitions per object and neuron obtained during recordings).

The entire set of pseudo-population vectors were built anew for

each cross-validation run of the classifier (see below).

Classifier performance was measured in cross-validation loops.

In each loop, the classifier was trained using all the available

population vectors, with the exception of all the vectors

corresponding to two left-out objects, one from the category that
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the classifier was being trained to discriminate, and one from the

complementary set. For any given classification task, performance

at correctly classifying left-out vectors was measured over a set of

30 cross-validation loops, with a different pair of left-out objects

randomly chosen in each loop. Each set of cross-validation loops

constituted a cross-validation run and 3,500 such runs were

executed for each binary classification task, so as to obtain average

performances and their standard errors (see histogram bars and

their error bars in Fig. 6). Following [67], significance of the

classification performance was assessed with a permutation test, in

which object labels were shuffled before executing each cross-

validation loop, so as to obtain null distributions of the

performance (see gray circles and their error bars in Fig. 6).

The same cross-validation scheme was used to test the

significance of the performance at classifying ‘‘pruned’’ categories,

i.e., object sets obtained by sub-sampling the original categories

and their complementary (negative) sets, so as to disentangle as

much as possible semantic from visual information. Pruned

categories were built by solving two constraint optimization

problems. The goal was to build the largest possible set of objects

belonging to a given category, such that visual features would not

interfere with semantic features and vice versa. Therefore, when

testing for discrimination of a semantic category, we imposed that

no pair of objects would belong to the same shape-based or low-

level category; when testing for discrimination of a shape-based or

low-level category, we imposed that no pair of objects would

belong to the same semantic category. For example, when testing

for discrimination of the round category, which includes, among

other objects, also many faces (see Fig. S1B), only one of the faces

was allowed to be included in the pruned category (see second

panel in Fig. 6B). We also imposed that no twins appeared

together in any pruned category. These constraints applied both to

the positive and to the negative (i.e., complementary) classes, and,

therefore, the problem had to be solved twice every time. This

problem can be easily framed as an integer linear programming

problem, and solved using standard kits (http://www.gnu.org/

software/glpk/). Since several solutions are possible, we intro-

duced a small random noise and solved the problem repeatedly in

order to sample from the set of all solutions – one pruned version

of the category to be discriminated (and the complementary object

set) was built for each of the 3,500 cross-validation runs (see

above). In a few instances (e.g., the fishes), the resulting ‘‘pruned’’

category had too few objects for the linear classifier analysis to be

performed. To assess the significance of the classification

performances we built null categories, by first shuffling the twin

indices over the whole stimulus set, and then sampling the null

positive and negative categories with the same constraints as

above. That is, we required the null ‘‘semantic’’ categories to be

made of visually dissimilar objects, and the null ‘‘visual-based/low-

level’’ categories to be made of objects with different semantic

membership. In addition, we forced the null categories to have the

same size as the corresponding pruned categories.

Supporting Information

Figure S1 Object categories of the three clustering
hypotheses. The 11 semantic categories (A), the 15 shape-based

categories (B) and the 8 low-level object categories (C). See main

text (Materials and Methods) for a definition of the categories.

(TIF)

Figure S2 Computation of the stability region in the
parameter space of the D-MST clustering algorithm.
Average number of clusters and average overlap (inset) in repeated

D-MST clustering outcomes, showing the only stable region of the

parameters (found at dmax = 6, l M [0.74,0.88]). The main panel

shows the average number of clusters at dmax = 6 as a function of

the parameter l (error bars = standard deviations across 50

repeated outcomes of D-MST clustering). The stable region is

highlighted in light red. The yellow line represents the linear fit for

that region, corresponding to a number of clusters = 4.5560.03.

The inset shows the average overlap between repeated outcomes

of the clustering at dmax = 6 as a function of l. For each point, the

average overlap is computed over all D-MST outcomes in a sliding

window of width 0.15 centered at that point. The blue dot

represents the value corresponding to the stable region (over-

lap = 0.9460.04). The span of that region is highlighted in light

green.

(TIF)

Figure S3 Face selectivity of the recorded inferotempo-
ral neurons. (A) Histogram showing the distribution of the Face

Selectivity Index (FSI) across the recorded population of IT

neurons. The index was defined, according to Tsao et al (Science,

2006), as: FSI = (mean responsefaces2mean responsenon-face objects)/

(mean responsefaces+mean responsenon-face objects). Differently from

Tsao et al, no neurons were found with a sharp tuning for faces

(i.e., with FSI larger than 0.5). (B) Rank-order tuning curves for the

four neurons with the largest FSI. Each plot shows the response

(i.e., average firing rate) of a neuron across the set of 213 objects

used in our study (shown in Fig. 2). For each neuron, objects along

the abscissa are ranked based on the response they evoked. The

responses evoked by faces (either human, monkey, or dog faces)

are marked by specific symbols (see legend in the figure). These

tuning curves show how, even for our most face selective cells,

non-face objects were often the cells’ preferred stimuli, and no

sharp segregation between responses to faces and non-face objects

was found.

(TIF)

Text S1 Supporting Materials and Methods. Description

of how the D-MST clustering algorithm was applied in the context

of this study.

(DOC)
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