
Sensory Information and Encounter Rates of Interacting
Species
Andrew M. Hein1*, Scott A. McKinley2

1 Department of Biology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Mathematics, University of Florida, Gainesville, Florida,

United States of America

Abstract

Most motile organisms use sensory cues when searching for resources, mates, or prey. The searcher measures sensory data
and adjusts its search behavior based on those data. Yet, classical models of species encounter rates assume that searchers
move independently of their targets. This assumption leads to the familiar mass action-like encounter rate kinetics typically
used in modeling species interactions. Here we show that this common approach can mischaracterize encounter rate
kinetics if searchers use sensory information to search actively for targets. We use the example of predator-prey interactions
to illustrate that predators capable of long-distance directional sensing can encounter prey at a rate proportional to prey
density to the 1=n power (where n is the dimension of the environment) when prey density is low. Similar anomalous
encounter rate functions emerge even when predators pursue prey using only noisy, directionless signals. Thus, in both the
high-information extreme of long-distance directional sensing, and the low-information extreme of noisy non-directional
sensing, encounter rate kinetics differ qualitatively from those derived by classic theory of species interactions. Using a
standard model of predator-prey population dynamics, we show that the new encounter rate kinetics derived here can
change the outcome of species interactions. Our results demonstrate how the use of sensory information can alter the rates
and outcomes of physical interactions in biological systems.

Citation: Hein AM, McKinley SA (2013) Sensory Information and Encounter Rates of Interacting Species. PLoS Comput Biol 9(8): e1003178. doi:10.1371/
journal.pcbi.1003178

Editor: Claus O. Wilke, University of Texas at Austin, United States of America

Received February 20, 2013; Accepted July 1, 2013; Published August 15, 2013

Copyright: � 2013 Hein and McKinley. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AMH was supported by a National Science Foundation (www.nsf.gov) Graduate Research Fellowship under Grant No. DGE-0802270. SAM was
supported by a Simons Foundation (simonsfoundation.org) Collaboration Grant, project number 245653. Additionally, this research was supported by the
National Science Foundation under Grant 0801544 in the Quantitative Spatial Ecology, Evolution and Environment Program at the University of Florida. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: amhein@ufl.edu

Introduction

Classical models of species interactions assume that encounters

between individuals are governed by a process akin to mass-action;

individuals move along random linear trajectories and encounter

one another when they come within a critical distance [1,2].

Under these assumptions, a searcher such as a predator or

pollinator will encounter its targets at a rate that scales linearly

with target density [1,3]. The form of the function relating

encounter rate to target density is essential; it affects both the

dynamics and outcome of species interactions. The form of this

relationship at low target density, in particular, strongly influences

ecological and evolutionary dynamics in systems of interacting

species by determining the degree to which a searcher can deplete

limiting resources (e.g., [4]).

Recent work has extended the study of encounter rates to

consider searchers that encounter targets probabilistically, destroy

targets after encounters, search intermittently, and follow trajec-

tories that are not linear [5–7]. Under a variety of circumstances,

these models too predict linear scaling (for a list of conditions, see

[6]). Yet, a vital assumption both of older and newer models is that

the searcher moves independently of the locations of its targets. In

the context of predator-prey interactions, this implies for instance

that predators do not alter their movement behavior in response to

sensory cues emitted by their prey.

Of course, the assumption that searchers move independently of

targets is often made for mathematical convenience. The question

is whether models that rely on this assumption capture the salient

features of encounter rate kinetics in nature. Empirical studies

have shown that inhibiting particular sensory modalities such as

chemosensing or flow sensing can dramatically decrease search

performance (e.g., [8]), and that sensory cues appear to influence

both small-scale [9] and large-scale [10,11] search behavior. While

such studies more rigorously confirm the intuition that using

sensory data should improve search performance, little is known

about how sensing can influence the functional form of the

relationship between encounter rate and target density. Here, we

show that sensory response can have a dominant effect on the rate

of encounters between searchers and their targets, not only by

increasing mean encounter rate, but also by qualitatively changing

the form of the relationship between encounter rate and target

density.

Below we adopt the language and intuition associated with a

predator searching for prey. We assume that the predator samples

its environment for sensory cues passively emitted by prey, and

adjusts its movement behavior according to explicit mathematical

models presented here. This approach builds on a recently

developed framework for modeling search decision-making [12] to

model the flow of sensory information from prey to predators. We

consider three scenarios: (1) perfect sensing and response: the predator
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can ascertain the precise locations of prey from the sensory data it

receives and responds optimally, (2) imperfect sensing and response: the

predator detects noisy scent signals emitted by prey and modulates

its movement behavior in response, and (3) purely random search: the

predator does not use sensory information to guide its movement

decisions. We choose (1) and (2) in such a way that they represent

upper and lower bounds, respectively, on the acquisition and use

of information about prey positions. Our central finding is that

there is a systematic shift away from a linear encounter rate

function at both of these bounds, suggesting that the collection and

use of sensory data may fundamentally alter encounter rate

kinetics. We discuss the role of information in governing predator-

prey encounter rates, but note that our general methodology could

be applied to rates of encounters in other types of ecological

interactions (e.g., between mates, competitors, mutualists). We

propose that the linear encounter rate models that are typically

used to model interaction rates may not correctly capture

encounter rate kinetics at low target densities. If this is indeed

the case, the most commonly used models of coupled population

dynamics, food webs, competition, immune function, and many

other systems, may mischaracterize the outcome and dynamics of

species interactions.

Methods

Encounter rate and search behavior: Some definitions
Studies of biological search typically describe how the type of

movement behavior used by a searching organism affects the time

needed to encounter its first target t, or the rate of target

encounters C. For consistency with past work, we define C as the

prey encounter rate of a single predator (e.g., prey per [predator

hour], [6]). We assume that predator density is low enough that C
does not depend on the density of predators, and instead, depends

only on the density of prey r. We define two encounter rate

functions: the mean first encounter rate C(r), and the mean

encounter rate after k encounters Ck(r). The latter is often

referred to as the encounter rate associated with destructive search

[6,7], emphasizing that the activity of the searcher alters the target

landscape. In past studies, the non-destructive search rate is often

defined in terms of random variable t which represents the time

required to find the first target. The empirical first encounter rate

is then defined to be C(r)~1=�tt where �tt indicates an average over

many searches.

Framework for modeling movement decisions
To illustrate how sensory information can affect encounter

rates, we consider an idealized model of a searching predator in a

two-dimensional environment (we discuss search in three dimen-

sions in Text S1). We assume that the predator moves at a

constant speed v and that prey do not move, at least for the

duration of the predator’s search. This approximation applies to a

wide variety of realistic predator-prey interactions (e.g., large

terrestrial carnivores searching for grazing prey). Moreover,

incorporating prey movement behavior significantly complicates

analysis, for example by introducing the need for a game theoretic

formulation of the searcher-target interaction [13]. In the

following sections, we further assume that prey density is low,

and that handling time is therefore negligible relative to search

time. As in past approaches, the predator divides its search into

two phases: a scanning phase and a movement phase [12,14]. This

intermittency reflects the observed tradeoff between locomotion

and perceptual acuity (e.g., [15]), and the intermittent nature of

sampling through major sensory modalities [16]. During the

scanning phase, the predator collects sensory data h, and

encounters any prey within a radius re with probability one.

During the movement phase, the predator moves a distance ‘ at

an angle h. After moving, the predator re-enters the scanning

phase and this process is repeated. Thus, the predator’s

movements consist of a set of movements with scanning phases

in between. The process the predator uses to determine ‘ and h
constitutes its search strategy.

When prey density is low, a predator will typically detect little or

no signal and proceed with the information that the target is not

likely to be nearby. When prey density is high, an increasing

fraction of the landscape is covered by regions that are within the

encounter radius re of a prey item. In this way, our modeling

framework naturally captures a predator’s behavioral transition

between these two regimes. For example, if prey are distributed

according to a Poisson process, a simple Poisson thinning

argument shows that the probability that a given location is not

within the encounter radius of a prey item is given by exp({rpr2
e).

Thus, as prey density r increases, there is a seamless transition

from limited to perfect information about where the nearest prey is

located.

Sensory signals and search behavior. To model predator

search behavior, we generalize a recently developed framework for

modeling search decision-making [12]. The framework has two

essential features. First, the predator’s movement behavior in the

absence of any sensory data is modeled by an intrinsic movement

distribution c(‘,h). Second, the predator uses a decoding function

to extract information from the sensory data it collects and modify

its intrinsic movement behavior.

During the movement phase of the search, predator movements

are modeled by drawing from the distribution

c(‘,hDH~h)~
P H~h D‘,hf gc(‘,h)Ð 2p

0

Ð?
0

P H~h D‘,hf gc(‘,h)d‘dh
, ð1Þ

where h is the sensory data collected in the previous scanning

phase, and P H~h D‘,hf g is the likelihood of observing sensory

Author Summary

Encounters between individual organisms are an essential
part of biology; in many sexually reproducing species,
males and females must encounter one another in order to
mate, pollinators must find flowers, and predators must
locate prey before capturing and consuming them. Many
species accomplish these tasks by actively searching for
their targets using sensory information. Despite this,
classical mathematical models used to predict the rate of
encounters between searchers and their targets assume
that searchers make movement decisions without using
sensory information. Here we develop a mathematical
framework for incorporating sensory information into
searcher movement behavior to study how sensory
response changes the relationship between encounter
rate and target density. By comparing searchers that use
sensory information to those that do not, we show that
sensory response not only increases encounter rate, but
that it also changes the form of the relationship between
encounter rate and target density. By using sensory
information, predators encounter prey at a rate that is
less sensitive to changes in prey density when prey density
is low. Our results demonstrate a strong connection
between the usage of sensory information and the
encounter rates that are so critical to survival and
reproduction in nature.

Sensory Information and Encounter Rates
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signal H~h, given that the target is a distance of ‘ and angle h
from the predator’s current position. Rather than associating a

deterministic action with a particular value of the signal h, we

model movement decisions as actions drawn from a probability

distribution to capture the inherent variability in decision-making

[17]. The intrinsic movement distribution can be interpreted as an

evolved behavior that the predator uses in the absence of useful

sensory information [18]. The decoding function, on the other

hand, represents an evolved mechanism for interpreting and

moving based on sensory input [12]. While P H~h D‘,hf g is

formally a likelihood function, we refer to it as a decoding function

to emphasize that it represents a means of interpreting and using

signal data. As we show below, the three strategies we wish to

consider can be framed by specifying appropriate decoding

functions.

Perfect sensing and response. Suppose the predator

detects sensory observation h and, regardless of the value of h, is

able to perceive the precise locations of prey. Then the decoding

function in equation (1) is a point mass at the location of the

nearest prey. (Note that a ‘‘traveling salesman’’ solution to this

problem could outperform such a greedy searcher, but is

computationally intractable when the number of prey is not

small.) In this case, movements are taken from the distribution

c(‘,h DH~h)~d(‘np,hnp), where d denotes the Dirac delta function

and ‘np and hnp are the distance and angle between the predator’s

current position and the location of the nearest prey. In each

movement phase, the predator moves along a linear trajectory

from its current position to the position of the nearest prey (Fig. 1).

The form of the intrinsic movement distribution is unimportant, so

long as it satisfies certain technical mathematical requirements

such as having continuous density with non-zero value at (‘np,hnp).

When the predator moves directly from one prey to the next, it

will encounter prey at a mean rate that is inversely proportional to

the mean distance between prey, which we denote d. Assuming

prey are distributed according to a Poisson spatial process,

C&v=d , or equivalently C(r)&2v
ffiffiffi
r
p

. Formally, this calculation

requires that prey are replenished and redistributed after each

encounter and that there is no net decrease in prey density. It also

assumes that the encounter radius is zero. To compute encounter

rate when encounter radius is greater than zero – for example,

when predators have some finite visual distance or striking

distance – we observe that a predator must move an average

distance of 0:5r{1=2(1{erf(re
ffiffiffiffiffiffi
pr
p

)) in order to reach the

encounter radius of its nearest prey (see Text S1). It follows that

the encounter rate is C(r)~v½0:5r{1=2(1{erf(re
ffiffiffiffiffiffi
pr
p

))�{1

(Fig. 1B, solid cyan curve and points). When the density is such

that the mean distance between targets is similar to re, encounter

rate changes linearly with prey density (Text S1). However, as

density approaches zero, this function approaches C(r)~2v
ffiffiffi
r
p

(Fig. 1B, dashed red curve). So unlike encounter rate models that

assume predators move independently of prey, a predator with

perfect sensing and response will encounter prey at a rate that is

proportional to the square root of prey density when density is low.

More generally, when predators search in an n-dimensional

environment with low prey density, encounter rate C(r)!r1=n

(Text S1).

Purely random search. Purely random search models have

a long history, beginning with the models of Lotka [1]. Recently,

there has been a resurgence of interest in random search behavior

as the possible outcome of selection for maximal encounter rate

with targets in the absence of useful sensory information. For

example, studies of ‘‘Lévy walk’’ behavior have argued that

searching organisms can increase the rate at which they encounter

targets by moving according to random walk behavior in which

the lengths of steps are drawn from a distribution with a power law

tail [7,19]. Theoretical results claiming that such Lévy walk

behavior is an optimal search strategy and empirical results

claiming that organisms perform Lévy walk-like behavior have

been contentious (e.g., [5,20,21]). Nevertheless, many studies use

both Lévy and non-Lévy random walks to model search behavior.

We include purely random search behavior here because it is one

canonical model used to derive encounter rates, regardless of

whether searchers are assumed to have Lévy or non-Lévy

behavior.

We note that it is possible to formulate a search behavior that

does not rely on sensory data using the Bayesian framework of

Equation (1) by assuming that the decoding function

P H~h D‘,hf g~1 for all ‘ and h. Each time a predator moves,

it draws a step length and turn angle from the distribution defined

by equation (1), which is just the intrinsic movement distribution

c(‘,h) when the decoding function is uniform. In this interpreta-

tion of the purely random search scheme, predator movements

may be independent of sensory signals in the environment for any

of three reasons: (1) the predator cannot detect and/or neurally

encode the signal, (2) the predator can detect the signal but cannot

extract information from the encoded signal, or (3) the predator

has the sensory and neural machinery for encoding and decoding

signals, but does not use the information it gleans to make

movement decisions.

Imperfect sensing and response. In addition to the

predator with access to perfect information, and the predator

with access to no information, we consider a predator with access

to minimal sensory data and a minimal capacity for decision-

making. We do this to demonstrate that even minimal information

use can significantly alter the encounter rate function [12]. A case

of search with minimal sensory information occurs in organisms

that use noisy odor cues to locate resources in turbulent

environments. Species like sharks, lobsters, and crabs routinely

face such a challenge [8,22]. We assume that the predator receives

noisy scent signals that lack directional information and modulates

its behavior accordingly. We refer to this as signal-modulated search

behavior. In a given time interval t0 the predator will encounter a

number of detectable scent patches drawn from a Poisson

distribution. The predator’s mean rate of scent encounters

depends on the distance to targets in its vicinity. We assume that

all targets have the same intensity of signal emission and the rate of

arrivals at a distance ‘ is given by a function R(‘). As in past

approaches, we assume R(‘) is given by the steady state solution to

the diffusion equation describing the diffusion and dissipation of

scent without advection (see Text S1, [12,23]). In this case, the

decoding function is given by the likelihood

P H~h D‘,hf g~ e{toR(‘)½toR(‘)�h

h!
, ð2Þ

where h represents the number of detectable scent arrivals in some

fixed amount of time t0.

This model of olfactory search behavior has two salient features.

The first is that, because there is no directional information

inherent in the signal, the predator always draws turn angles from

the same distribution (Uniform on ½0,2p�), regardless of the signal

it receives. Second, the predator has no memory of past

movements or signal encounters. Such information could expedite

search [23] but we do not explore the impact of memory because

we wish to model a predator that uses signal data in a minimal

fashion.

Sensory Information and Encounter Rates
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Encounter rates in simulated searches
In addition to the analytical results described above, we used

search simulations to compare the behavior of a predator that

moves according to a purely random strategy to a predator with

imperfect sensing and response. In both cases, we assume that the

intrinsic movement behavior is described by a symmetric two-

dimensional Pareto distribution. Because of the symmetry we can

separately draw the turn angle h*Unif(0,2p) and the move

length ‘*c(‘), where c(‘) is the density of a Pareto random

variable,

c(‘)~(a{1)‘a{1
m ‘a, ð3Þ

‘m is a minimum move length, and a is a parameter that

determines whether the walk is superdiffusive (superdiffusive for

a[(1,3)). We use a Pareto distribution with a power law tail to

model intrinsic movement behavior because it has been argued

that such a distribution may have evolved as a statistical

movement strategy for locating resources when sensory data are

not useful [19]. In Text S1, we show that our qualitative results

hold when predators move according to a diffusive random walk.

As shown in past work [12], the use of sensory data to make

movement decisions dominates intrinsic movement behavior so

that the distinction between diffusive and superdiffusive intrinsic

strategies becomes relatively unimportant.

In each simulation, we placed a single predator in a prey

periodic environment (i.e., environment was a torus) and

populated the environment with a Poisson number of prey with

mean 600. The size of the environment was then scaled to achieve

the desired prey density. In each scanning phase, h was sampled

from a Poisson distribution with mean given by Equation (S2) (see

Text S1) summed over all prey. In each simulation, the searcher

was positioned at a random location and allowed to move through

the environment until it came within a distance of re of a prey item

during its scanning phase. We designated this an encounter and the

prey was destroyed. For each strategy, we performed 1,000

simulations and recorded the time until the desired number of

prey encounters was achieved. Predators were assumed to travel at

a constant speed of one body length per second, which is a realistic

speed for foraging predators.

We performed two sets of simulations. In the first, prey positions

were generated using a Poisson point process. We then recorded

the time required for the predator to encounter the first prey and

used this to compute encounter rate C(r). This is consistent with a

scenario in which predators search for and capture a single prey

item, and then cease to forage for a period of time, during which

prey redistribute themselves in the environment. When predators

encounter and destroy multiple prey in succession, they can create

local zones of prey depletion. To determine whether the scaling of

encounter rate is sensitive to such a local depletion effect, we

allowed predators to encounter and destroy 32 prey items. We

then computed Ck(r)~k=tk, where tk was the mean time

required to encounter k~32&5:3% of the prey present on the

environment. We chose k~32 as a compromise between

maximizing the number of targets encountered in a single search,

while ensuring that this local depletion did not substantially

change global target density. For reasons of computational

efficiency, we wished to limit the mean number of targets in the

environment to 600, and therefore chose k~32&5:3% of targets

as a reasonable compromise. Finally, to determine whether the

scaling of the encounter rate depends on the distribution of targets,

Figure 1. Encounter rate of a predator with perfect sensing and response. A) Predator with perfect sensing and response searching in a
two-dimensional environment. After collecting sensory data, the predator moves along a linear trajectory toward the nearest prey and encounters
the prey when it comes within a distance of re . B) Mean encounter rate from simulations (re~50 body lengths, v = 1 bl s21, points show mean of 1000
replicates at each density). Prey distribution is randomly generated from a Poisson point process in each simulation. Solid cyan curve shows
theoretical mean encounter rate (see text), which approaches C(r)~2v

ffiffiffi
r
p

for low prey density (dashed red curve). Inset shows simulation data and
theoretical curves with logarithmic axes for densities up to 100. For rw25, the typical distance between nearest prey is less than 2re and predators
begin to encounter prey frequently without having to search. In this and subsequent figures, density is expressed as prey per 106 squared predator
body lengths.
doi:10.1371/journal.pcbi.1003178.g001

Sensory Information and Encounter Rates
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we generated prey distributions according to a highly clustered

point process that we will call a preferential attachment model and

repeated simulations to compute C(r) and Ck(r) for k~32.

Briefly, N prey were generated by drawing from a Poisson

distribution with mean 600. The size of the environment was then

scaled to achieve the desired prey density. A fraction of the N prey

were chosen to act as seed points and placed uniformly at random

on the space. The remaining prey were each assigned as daughters

to one of the seed points iteratively with probability ni=
P

j nj ,

where ni is the number of daughters around the ith seed point.

Positions of daughters were assigned uniformly within a circle of

radius ri around the seed point, where ri was chosen so that all

clusters had the same local prey density.

Our primary goal was to characterize the form of the encounter

rate function in the low prey density regime. We simulated

predators exploring environments with prey densities ranging from

0.5–100 prey per 106 squared predator body lengths. All

simulations were performed using Matlab. The lower limit of

the prey density range was chosen based on realistic low prey

densities encountered by predators in nature. For example,

Serengeti lions experience densities of ungulate prey that can be

as low as 0.3–10 prey per 106 squared predator body lengths;

snow leopards experience densities of their primary prey, blue

sheep, as low as 7 prey per 106 squared predator body lengths;

and northern hawk owls capture and consume small rodents

with densities as low as 40 prey per 106 squared predator body

lengths [24–26].

Estimation of scaling regimes and exponents
As in previous investigations (e.g., [5]), we expected that C(r)

would be a linear function of r for the purely random predator.

On the other hand, as shown above, the predator with perfect

sensing and response has an encounter rate function with several

scaling regimes in the range of densities that interest us: one in

which encounter rate is proportional to
ffiffiffi
r
p

, and one in which

encounter rate is proportional to r. To accommodate these

functional forms, we assumed that locally, the encounter rate can

be described by a power function of the form C(r)~grn. This

allows for both linear and sublinear scaling. To determine whether

simulated predators had multiple scaling regimes, we fitted (i) a

single power function, (ii) a segmented function with two distinct

scaling regimes, and (iii) a segmented function with three distinct

scaling regimes. Prior to fitting, we log-transformed density and

encounter rate data from search simulations. We used a recently

developed statistical method for simultaneously estimating both

the break points between distinct scaling regimes and the scaling

exponents in each regime [27]. Briefly, this technique allows one

to fit a piecewise regression model in which the locations of the

break points in the piecewise function are fitted parameters in the

model. This technique is particularly useful when fitting functions

to data when there is no a priori knowledge of the precise

transitions between regimes. We compared the fits models with a

single regime to models with multiple regimes using DAIC. We

computed DAIC as the AIC value of the model with one scaling

regime minus the AIC value of the best fitting model with two or

three scaling regimes. Statistical analyses were conducted using the

Segmented package [28] in R [29].

Results

There is a dramatic difference between movement patterns of

predators that use sensory data and those that do not. As is evident

from Fig. 2, predators with imperfect sensing and response

concentrate scanning effort near prey (Fig. 2A), whereas purely

random predators scan roughly uniformly over the environment

(Fig. 2B). In the study of animal search, concentration of effort

near targets is known as area-restricted search (ARS). ARS is a

canonical feature of search behavior in nature [30]. It is interesting

that this seemingly complex behavior can emerge from an

extremely reduced sensing and decision making process like the

one modeled here [12].

Signal-modulated predators perform ARS because they move

short distances between scans when they receive strong sensory

signals and move long distances when they measure weak signals

[12]. This behavior improves search efficiency, but perhaps more

importantly, it leads to a qualitatively different relationship

between the encounter rate of signal-modulated predators and

their prey (Fig. 3A). As expected from past work on random search

[5,6], purely random predators encounter prey at a rate that scales

nearly linearly with r across all prey densities. The encounter rate

of signal-modulated predators, on the other hand, is strongly

nonlinear in r (compare Fig. 3A yellow points to blue triangles). In

particular, at low but realistic prey densities (Fig. 3A blue curve),

the encounter rate of signal-modulated predators changes

sublinearly with changing prey density. This anomalous scaling

makes the encounter rate of signal-modulated predators more

robust with respect to changes in prey density (see Implications for

coupled population dynamics below).

Encounter rates of purely random predators are near-
linear in prey density

Predators that used a purely random search strategy encoun-

tered prey at a rate that was nearly proportional to prey density

(Fig. 3A, yellow circles; C(R)~0:036r1:12; 95% CIn~½1:09,1:15�).
This near-linear scaling held when prey were clustered and also

when predators encountered and destroyed multiple prey per

search (n [½1:05,1:11�). The encounter rate function did not show

evidence of multiple scaling regimes (DAICƒ1:07 in both

clustered and uniform environments with k~1 and k~32). This

result mirrors that of particle collision models and other random-

walk-based models of organismal search, which all predict that

encounter rate is proportional to target density when target density

is low.

Encounter rates of signal-modulated predators change
nonlinearly with prey density

Across all densities studied, predators that use sensory data to

make movement decisions encounter prey at a higher rate than

predators that do not use sensory cues (Fig. 3A, B). Indeed, at low

and intermediate densities, signal-modulated predators encounter

prey at a rate that can be 5–14 times higher than the encounter

rate of random predators (Fig. 3B).

As prey density increases, the encounter rate of signal-

modulated predators increases nonlinearly and clearly displays

multiple scaling regimes (Fig. 3A, blue triangles; AIC single regime

minus AIC three regimes = 682). At the lowest densities, encounter

rates increased linearly or superlinearly with prey density. For the

particular parameter values explored here, there is a transition to a

second scaling regime at r&1:7; however, the exact transition

depends on the length scale of scent detection (Fig. S1). In the

second, intermediate regime, which covers low but realistic prey

densities, signal-modulated predators encounter prey at a rate

proportional to rn, where 0vnv1. The value of the scaling

exponent n~0:56, is close the square-root scaling exhibited by the

searcher with perfect sensing response. For higher densities, data

indicated a third regime, in which encounter rate increased

superlinearly with prey density (n~1:3) corresponding to condi-

Sensory Information and Encounter Rates
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tions in which prey are plentiful and predators do not need to

search. The qualitative form of the encounter rate function of

signal-modulated predators in a uniform prey environment was

preserved when prey were highly clustered, and when predators

encountered and destroyed multiple prey items in a single search.

Fig. 4 shows that the mean encounter rate after k encounters

Ck(r) exhibited near-linear regimes at relatively high and low

densities, and sublinear regimes at intermediate densities

(n [½0:44,0:54� in sublinear regime).

Sensory response allows predators to encounter nearby
targets more frequently

In addition to engaging in area-retricted search, signal-

modulated predators successfully locate nearby prey more

frequently than purely random predators (Fig. 5A, upper

diagram), which often wander away from nearby prey without

encountering them (Fig. 5A, lower diagram). To examine this

more rigorously, we isolated all occasions in which a predator

came within a distance ro of a prey and defined these as proximity

Figure 2. Scanning locations of signal-modulated and purely-random predators. Prey (red points) and locations where predator scans for
prey (blue points) for A) signal-modulated and B) purely-random predators. Scan points are semitransparent so darker color indicates locations where
predator has scanned more frequently. Data represent searches in which a predator made 1000 consecutive movements without destroying prey.
doi:10.1371/journal.pcbi.1003178.g002

Figure 3. Encounter rates of purely random and signal-modulated predators. A) Purely random (yellow circles) and signal-modulated
predators (blue triangles, k = 1) searching in uniform (Poisson) prey environment. Each point represents mean encounter rate from 1000 replicate
simulations. In simulations shown, the following parameters were used: re~‘m~50 body lengths, v~1 body length per second, ro = 500 body
lengths, a~2. Scent emission rate at prey location was set to 100 (see Text S1). B) Ratio of encounter rates shown in A (rate of signal modulated
predator divided by rate of purely random predator).
doi:10.1371/journal.pcbi.1003178.g003
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events. A proximity event ends when the predator encounters a prey

item, or moves to a location that is at least 2ro from any prey. We

computed the fraction of proximity events that resulted in

encounters and defined this as the empirical encounter probability.

We chose 2ro because at that distance, predators have a

probability of only 0.05 of measuring a non-zero scent signal in

to~1 s meaning that a predator beyond this distance is very

unlikely to receive any further scent information from prey. Fig. 5A

shows that the empirical encounter probability of signal modulated

predators (Fig. 5A blue points) is higher for all prey densities, and

approaches 1 for prey densities above 10, indicating that signal-

modulated predators do not miss nearby targets when density is

high. Purely random predators miss nearby prey even as prey

density approaches 100 (as r approaches 100, the typical distance

between adjacent prey approaches the encounter radius re~50
body lengths). At low density, encounter probabilities of both types

of predator approach constant values. For the signal-modulated

predator, this value is 0.17, similar to the value of 0.23 predicted

for a Brownian searcher with constant diffusivity (see Text S1).

Fig. 5B shows that this minimum encounter probability is roughly

three times higher for signal modulated predators than for purely

random predators.

Implications for coupled population dynamics
Our results demonstrate that the use of sensory information

alters encounter rate kinetics, both at the extreme of perfect

information and decision-making, and at the other extreme of

minimal sensing and rudimentary decision-making. In studies of

coupled population dynamics, the encounter rate function is a

central component of the functional response, the relationship that

couples prey and predator populations. Given the anomalous

scaling of encounter rate shown by predators that use sensory

information to make movement decisions, a natural question is

whether such predator search behavior might affect coupled

population dynamics. Here, we explore this question.

Predator-prey dynamics can be modeled by the following

system of equations:

_RR~rR(1{
R

K
){F(C(R))P

_PP~bF (C(R))P{mP,

ð4Þ

which is a generalized version of the Rosenzweig-MacArthur

model [31]. The variables R and P represent the prey and

predator densities (number per 106 squared predator body lengths)

respectively. The intrinsic growth rate of the prey population is

given by the parameter r, and prey growth is limited by the

carrying capacity, K , in the absence of predators. The predator

population is assumed to die at rate m and the parameter b is a

measure of predator energy conversion efficiency. All time rates

are on a per day scale.

To relate our encounter rate findings to coupled population

dynamics, we must translate the encounter rate C(R) into a long-

term functional response F (C(R)). This is necessary because

search and reproduction take place on distinct time scales (e.g.,

Figure 4. Mean encounter rate of signal-modulated predators in uniform (Poisson) and clustered (preferential attachment) prey
environments. Predators encounter and destroy k prey items per search. Each point represents mean of 1000 replicate simulations. Parameters as
in Fig. 3. Encounter rate is lower in clustered environment with k = 1 because clusters are far from one another and it can take predators a long time
to locate a cluster. When k = 32, encounter rate is higher because the predator can encounter nearby targets after it locates the cluster.
doi:10.1371/journal.pcbi.1003178.g004
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hours versus years, respectively). We consider a scenario that

reflects the general theme of the work presented here: a regime

where prey are sparse, but rare encounters are sufficient to sustain

a predator. We assume that predators undertake a succession of

hunting expeditions each day. The predator engages in S hunts

per day, each lasting a period T before the predator relents. The

hunt is assumed to end if a prey is captured. Therefore the number

of consumption events in a given day, which we denote C can be

written as the sum S*Pois(mS) of indicator functions f11, . . . ,1Sg
which take the value one or zero depending on whether the

corresponding search expedition is successful. The success

probabilities fp1, . . . ,pSg depend on the encounter rate C(R)
and the respective search durations fT1, . . . ,TSg. Adopting the

simplest assumption for the search distribution, we take each

Tj*Exp(1=mT ). Then, treating the encounter process as a Poisson

process with rate parameter C(R), it follows that, given the value

of Tj , the success probability of the jth hunt is pj~1{e{C(R)Tj .

Using Wald’s equation, a simple calculation reveals the following

form for the functional response:

F (C(R))~E C½ �~ mSmTC(R)

1zmTC(R)
:

Note that this form closely resembles the Holling type II functional

response [32]. Note also that it is increasing in prey density,

concave down, and satisfies

F (C(R))*
mSmTC(R), R near 0;

mS, R large:

�

We now proceed to study the effect of the form of C(R) on the

outcome of predator-prey dynamics. The mathematical structure

of (4) is more readily apparent if we introduce the functions f and

Q to generalize the autonomous growth function and functional

response, respectively. The function f should be zero when the

prey density R is equal to zero or K , differentiable, and concave

down everywhere. We take w(R) :~F (C(R)), and writing b :~
b

m
we have

_RR~f (R){Q(R)P

_PP~m(bQ(R){1)P
ð5Þ

We see that if b{1
v maxRfQ(R)g then _PP~0 when

R~Q{1(b{1). Moreover, if Q{1(b{1)[(0,K) there exists a

coexistence fixed point (R�,P�) with R�w0 and P�w0, where

R�~Q{1(b{1) and P�~f (Q{1(b{1))b{1: ð6Þ

Under suitable conditions, which biologically plausible forms of f
and Q will generally satisfy, this fixed point is unique. In Text S1

we analyze the stability of the coexistence fixed point for systems

with encounter rates of the form C(x)~cxn where n [(0,1�. We

show that there is a critical value Rc~Rc(c,n) such that if R�wRc

the coexistence fixed point is stable. Otherwise, it is unstable;

however, numerical studies indicate the presence of a stable limit

cycle that contains the fixed point. Notably, for values of b that

lead to very low values of R�, the coexistence fixed point is

unstable. This is true for all models considered here, including

those with a linear encounter rate function. This fundamental

instability is due to the nonlinear nature of the Holling Type II

form we use to translate the encounter rate into functional

response.

To explore how the form of the encounter rate function affects

the outcome of coupled population dynamics, we parameterize the

population model described above for the sparse prey regime

(Fig. 6). This analysis demonstrates several differences between

population dynamics involving sensory predators and more

traditional models that assume a linear encounter rate function.

First, predators that use sensory data deplete prey to lower

densities than predators that search randomly. The ability to

deplete prey to low levels is a critical trait in ecological dynamics;

for example, R* theory posits that a species’ competitive ability is

determined by its ability to deplete resources and persist when

resources are rare [4]. Fig. 6A shows the steady state density of

prey as a function of the ratio of predator conversion efficiency b
to predator mortality rate m. Both signal-modulated predators and

predators with perfect sensing and decision-making reduce prey

density to lower levels than do purely random predators (Fig. 6A,

Figure 5. Encounter probabilities of signal-modulated and
purely-random predators. A) Encounter probability as a function of
target density. Points represent the probability that a purely random
predator (yellow squares) or a signal-modulated predator (blue circles)
will wander away from a nearby target without encountering it.
Parameters as in Fig. 3. Upper diagram shows predator that encounters
prey before exiting region of radius 2ro . Lower diagram shows predator
that exits before encountering prey. B) Ratio of encounter probability of
signal-modulated predator to encounter probability of purely random
predator.
doi:10.1371/journal.pcbi.1003178.g005
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blue and cyan curves are below yellow curve). To demonstrate the

extent to which the nonlinearity in the encounter rate function of

signal-modulated predators contributes to this pattern, we added a

‘‘linearized signal-modulated encounter rate’’ (Fig. 6A orange

curve), which matches the signal-modulated predator for prey

densities above 20, but remains linear for lower densities. Signal-

modulated predators (Fig. 6A, blue curve) reduce prey density well

below that of the linearized analogue (Fig. 6A, orange curve)

illustrating the substantial effect of the nonlinearity in the

encounter rate function. We note that throughout the depicted

regime, the coexistence fixed point is unstable, but with a

containing stable limit cycle.

A second important observation is that, for a given value of the

parameter b~b=m, signal-modulated predators persist at lower

prey carrying capacity K than purely random predators, and

predator density of signal-modulated predators is less sensitive to

variation in K . Fig. 6B shows steady state density of predators

(dashed lines) and prey (solid lines) as a function of prey carrying

capacity. Steady-state prey density does not depend on carrying

capacity until K becomes so low that predators no longer persist.

Below this point, prey steady state density is equal to K . Steady

state density of purely random predators rapidly decays to zero

below K&10. Steady state density of signal-modulated predators,

on the other hand, remains insensitive to carrying capacity for K

greater than approximately 2.

Discussion

Our results demonstrate that the use of information about the

position of targets fundamentally alters the relationship between

encounter rates and target density. Not only do predators that use

sensory information encounter prey more often, but they are less

sensitive to changes in prey density. This is true even when sensory

cues contain a minimal amount of information about target

locations, and searchers do not remember past signals. This

increased robustness provides an ecological mechanism through

which sensory response may allow predators to cope with

fluctuations in prey density. Moreover, it can alter coupled

population dynamics. These findings are robust to a range of

assumptions about target distribution, capture behavior, and the

length over which searchers detect scent signals (Text S1).

Reaching a general understanding of the effect of sensory data

on species encounter rates is challenging. Searching organisms

collect a wide variety of sensory data and biologists do not know,

in general, how they use these data to make decisions [17]. Here,

we have taken the approach of studying two extreme cases of the

collection and use of sensory data. In the extreme of perfect

sensing and response, predators encounter prey at a rate

proportional to prey density to the 1=n power at low prey density

(where n is the dimension of the search environment), rather than

exhibiting the linear scaling predicted by models of purely random

search. At the opposite extreme, when we perturb purely random

search behavior by introducing a very limited capacity for sensing

and decision-making based on a noisy, directionless signal, the

encounter rate function immediately departs from the linearity

expected when predators move without using information [2,5,6].

This observation has immediate implications for classical popula-

tion models, where the encounter rate informs the functional

response. The functional responses that are most commonly used

in predator-prey models are either linear in prey density (e.g.,

Holling type I), or nonlinear and concave down at high densities to

incorporate effects of satiation and handling time when prey

density is high (e.g., Holling type II). These forms are linear when

prey density is low. By contrast, we argue that in the important

regime where prey are rare and predators must search for them,

the functional response is nonlinear and concave down. This change in

the form of the functional response makes predators less sensitive

to changes in prey density and can alter the outcome of predator-

Figure 6. Equilibrium population densities of predators with different search strategies. A) Steady state prey density as a function of the
ratio of predator conversion efficiency to predator mortality rate (b~b=m). Predators with perfect sensing and response and signal-modulated
predators reduce prey density to lower values than purely random predators. The ‘‘linearized signal-modulated’’ is identical to the signal-modulated
predator in the high density regime but has linear encounter rate in the low density regime (see text). B) Equilibrium densities of prey (solid lines, left
ordinate) and purely random (dashed line, right ordinate) and signal-modulated predators (dotted line, right ordinate) for fixed value of b (Indicated
by black vertical dashed line in panel A). Parameter ranges chosen based on reasonable rates and constants from lion-wildebeest interactions [25,36]:
r~0:01 (prey offspring per prey per day), mS~10 (searches per day), mT~0:02 (days), m~3|10{4 (predators per day), b~5|10{4 (predator
offspring per predator per day). We used encounter rate functions described by the fitted curves in Fig. 3A for purely random and signal-modulated
predators.
doi:10.1371/journal.pcbi.1003178.g006
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prey interactions by allowing predators to deplete prey to lower

levels and persist with prey over a broader range of prey carrying

capacity.

Our work suggests several ways to better integrate experiments

with models of encounter rates. For example, we suggest that

encounter rate and functional response of predators should be

nonlinear at low prey densities. Yet, most experimental studies of

encounter rates and functional response measure rates at high prey

density, where handling time and predator satiation determine the

shape of the rate function (but see [33,34], which show concave

down encounter rate functions in hunting fish and birds as we

predict). Data from carefully designed experiments are needed to

determine the most appropriate forms of encounter rate functions

and functional responses at low prey density. Distinguishing

‘‘high’’ from ‘‘low’’ prey density is not arbitrary; rather, high and

low density regimes are determined by the length scale of

predator-prey encounters (e.g., predator striking distance) and by

the length scale of the propagation of sensory signals. Future

experimental work should evaluate the scaling of encounter rate

with r when the typical distances between prey are similar to or

greater than the distance at which predators can acquire sensory

cues from prey.

Finally, we note that nonlinearity of the encounter rate function

depends on the ratio of the length scale of sensory signal

transmission to the length scale at which encounters occur.

When predators can only detect prey that are very nearby (i.e.

detection distance/encounter distance &1), sensory information

does not strongly affect search performance [12], and mass action

kinetics may provide a reasonable description of encounter rate

kinetics. For example, in predator-prey interactions at low

Reynold’s number, cruising predators may still use sensory

information to make movement decisions, yet the length scales

associated with prey detections can be very short (e.g., less than

one predator body length) relative to the distances between

adjacent prey [35].

Our results show that introducing a response to even relatively

information-poor, noisy sensory signals qualitatively alters the

relationship between predator-prey encounter rate and prey

density in many biologically plausible scenarios. Behaviors such

as area-restricted search emerge naturally from our model of

search behavior, even in the absence of signal gradients, complex

signal processing, and memory of past signal and target encounters

[12]. The framework we introduce here can be used to understand

the connection between information and the encounter rates that

are so critical to many core concepts in biology.

Supporting Information

Figure S1 Sublinear regime and olfaction radius. Break-

point between low density linear regime and sublinear regime as a

function of the predator olfaction radius ro.

(EPS)

Figure S2 Non-linear scaling of encounter rate when
intrinsic movement distribution is diffusive. Mean

encounter rate of signal-modulated predators in uniform (Poisson)

and clustered (preferential attachment) prey environments when

intrinsic movement distribution leads to diffusive behavior

(a~3:5). Predators encounter and destroy k prey items per

search. Each point represents mean of 1000 replicate simulations.

With the exception of a, all parameters as in Fig. 3 (main text).

(EPS)

Text S1 Supporting derivations, calculations, and pa-
rameter values for search and population models.
Detailed description of scent propagation model, discussion of

encounter probability and encounter rates for perfect sensing and

response model, and robustness of results to variation in

assumptions about predator behavior.

(PDF)
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