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Abstract

Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely
uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also
whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene
expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment
transition confounds the experimental capture of committing cells. We develop a computational framework that simulates
stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling
approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from
experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately
before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through
machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in
multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where
the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to
experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic
data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained
from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where
single cell data is available. Within our system, we identify robust model solutions for the multipotent population within
physiologically reasonable values and explore model predictions with regard to molecular scenarios of entry into
commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics
and promoter activity, which globally influence the probability of lineage commitment.
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Introduction

Understanding how primary stem and multipotent progenitor

cells decide their fate is pivotal in studying mechanisms driving

tissue development and maintenance in multicellular organisms.

Despite considerable advances in ascribing key genes and

regulatory circuits to specific lineages, the diversity of molecular

mechanisms employed by individual cells to commit to particular

lineage fates remains largely uncharacterized. Recent technical

developments in quantitative measurements of single-cell gene

expression [1,2] have revealed stem and progenitor cell popula-

tions to be highly heterogeneous, and suggest that individual cells

can exhibit transient biases towards different lineages, even in

clonal populations [3–10]. This molecular heterogeneity may

result from stochastic fluctuations caused by noisy gene expression

[11], leading to fluctuations in individual mRNA molecule trans-

cription and degradation rates, and likewise for protein production

in individual cells [12,13]. Also, genes switch between active and

inactive states, alternating between variable-length transcriptional

bursts that can produce a large number of mRNA molecules,

and refractory periods in which transcription is significantly

reduced [14,15]. Molecular mechanisms of commitment have

been suggested to involve various degrees of gene expression

coordination, from activation of a few genes [16] to gradual

accumulation of a transcriptome-wide coordinated program [17].

Finally, the role of external cues (e.g. growth factors) in

commitment remains unresolved, with a long-standing debate on

whether they can instruct cells to commit to a particular fate, or do

merely act as survival factors of cells that have committed through

intrinsic mechanisms [18,19]. A considerable hurdle in elucidating

these questions is the elusive nature of the lineage commitment

transition, which confounds the experimental capture of cells

undergoing commitment. Recent advances in microscopy and

imaging techniques enabled the tracking of single cells in time

[20]. However, the ability of such methods to simultaneously track

expression of multiple genes at the single molecule level is still
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limited, more so for endogenous genes, which may have a role in

effecting commitment decisions [2]. Additionally, the molecular

heterogeneity of individual committed cells poses a challenge for

defining the relative contributions of single regulators, both

individually and in combination, to transitions.

In this work we follow an integrative approach aiming at

computationally modeling the stochastic dynamics of lineage

commitment of individual multipotent progenitor cells. We do so

using static gene expression profiles of individual self-renewing

(SR), erythroid-committed progenitors (CP) and erythroid-differ-

entiated (Ediff) cells, obtained from the bone marrow-derived

multipotent hematopoietic cell line EML, for a panel of genes

putatively relevant for erythroid and myeloid lineage development

(Methods) [21].

We first perform an exploratory analysis of the static gene

expression data, which provides insight into relevant features of

the multipotent and committed progenitor populations as well as

the SR-to-CP transition (Figure 1 - top panel):

N Clustering methods identify CP cells closest to the commitment

boundary.

N Pairwise gene expression correlation analysis assesses the

presence/absence of gene regulatory interactions.

N Machine learning methods identify putative commitment-

associated genes and formalize probabilistic rules of commitment.

Based upon these results, we implement a novel expansion of

the random telegraph model of transcriptional bursting [15,22]

that provides a framework for stochastic commitment as a

function of mechanistic aspects of gene expression dynamics

(Figure 1 - middle panel):

N The parameters of the generated expression time series are

fitted to static expression data of key commitment-associated

genes in SR cells, providing a mechanistic framework for the

non-Poissonian gene expression behavior observed in eukary-

otic cells.

N A logistic regression model trained with SR and CP expression

data defines the probability of commitment in time as a

function of the simulated gene expression profiles.

N Modeling of SR and CP cell culture dynamics data allows

inference of a characteristic time of commitment, providing a

link between simulated Monte Carlo and physical times.

This integrative approach is based on, and expands upon,

recently published single cell expression data from the hemato-

poietic EML cell line for populations in the vicinity of the

erythroid commitment boundary [21]. We revisit the question of

transcriptional program coordination at the outset of lineage

specification through correlation analysis and infer putative

regulators of the commitment transition. Additionally, we explore

the regimens of transcriptional regulation for these genes in the

context of a stochastic model of transcriptional bursting and

implement expression-dependent rates of commitment which

allow the capture of simulated cells at the moment of transition

and the assessment of how mechanistic parameters of gene

expression regulation impact on the frequency of commitment

(Figure 1 - bottom panel).

Results

The transition into commitment - static data analysis
The single-cell expression data in [21] is a valuable resource for

studying the regulation of commitment transitions as it captures

SR and CP cells in direct ontogenic relationship. Of note, CP cells

represent a uniquely early stage post-commitment but are also

more molecularly heterogeneous. In order to focus on molecular

programs at the commitment transition boundary, we used a

combination of hierarchical clustering and dimensionality reduc-

tion methods to identify sub-compartments amongst CP cells

(Figure S1, Methods). We isolated a minor subset of cells (CP2)

that are apparently late in their expression profiles and cluster with

Ediff cells. The remaining CP cells, denoted CP1, are distinct from

SR and Ediff and could not be further subdivided, and are thus

used as early-committed CP cells in what follows.

We compared the frequency and level of expression of all 17

individual genes (Text S1) in each of the compartments SR, CP1,

CP2 and Ediff (Figure S2). A set of genes displays monotonic

increase in frequency and/or average level of expression from SR

through Ediff (e.g. Gata1); the converse monotonic trend is observed

for a smaller set of genes (e.g. Mpo). Interestingly, other genes have

non-monotonic patterns of expression increasing at the SR to CP1

transition, to then decrease during differentiation (e.g. Gata2), or

decreasing from SR to CP2, to increase in the Ediff compartment

(e.g. Btg2). Pronounced changes between cell types can suggest

functional relevance in commitment and/or differentiation.

We then calculated pairwise Spearman correlations for all genes

within the SR and CP1 compartments to assess overall coordina-

tion of transcriptional programs at the commitment transition

(Figure S3, Tables S1, S2, S3, Methods). Despite the choice of an

inclusive correlation coefficient cutoff value, SR cells did not show

broad gene-to-gene correlation. Similarly, gene expression in the

CP1 population is essentially uncorrelated, with a low number of

weak correlations. In contrast, a highly correlated and intercon-

nected gene network could be observed for Ediff cells. Of note,

Gata1 and Epor, which are critical regulators of erythroid lineage

development, are minimally or not at all correlated in SR or CP1

compartments. Hence, this analysis shows no evidence of significant

gene regulatory interactions around or at the point of erythroid

commitment within our dataset, consistent with the findings in [21].

Author Summary

Stem cells have the capacity to both self-renew and
differentiate into specialized cell lineages, thus sustaining
tissue formation during embryonic development and
permitting tissue homeostasis throughout adult life.
Previous studies have suggested that stem cell commit-
ment to a specific lineage may constitute a discrete event
of stochastic activation of a small number of key regulator
genes. Experimental exploration of this question is
challenging, in face of the elusive nature of the commit-
ment transition and due to considerable gene expression
heterogeneity between cells. Here, we implement a
computational model that simulates gene expression
variation through time and affords the capture of in silico
commitment events. This model integrates statistical
analysis of experimental single-cell gene expression data
with dynamical modeling methods to implement a
mechanistic framework for stochastic regulation of gene
transcription and a probabilistic approach for the com-
mitment rules. Applied to blood cells, our method
identifies potential commitment-associated genes, ex-
plores how their expression patterns can define alternative
commitment regimes, and suggests how differences in
regulation of gene expression dynamics can impact the
frequency of commitment.

A Stochastic Model of Cell Fate Decisions
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Expression of Gata2 and Mpo are the best predictors of
early committed cells

We sought to identify the genes that best distinguish between

the SR and CP1 populations, which we assume may function

directly or indirectly in the commitment transition. Using the

single-cell expression data for all genes in both compartments, we

first used a random forest classifier [23] (Methods) and evaluated

the importance of each gene for the overall performance

(Figure 2A). In this analysis, Gata2 and Mpo were by far the most

important genes, with Gata1 ranking at the top of a second line of

predictors. Classifier performances are commonly measured by

the Receiver Operating Characteristics curve (ROC), which

provides performance percentages for different discrimination

thresholds. The areas under the ROC curve (AUC), which

measure the ability of each gene on its own to discriminate

between the two populations (1 being perfect and 0.5 no better

than random), are shown in Figure 2B. Again, Gata2 and Mpo

ranked highest, with Gata1 following at the top of a second line of

predictors. The random forest classifier covers both linear and

non-linear relations between the input variables (in our case gene

expressions) and the output class, where linearity represents the

weighted sum of the inputs and non-linearity encompasses more

complicated relations (e.g. combinations of products). To investi-

gate the presence of the latter we then explored an artificial neural

networks (ANN) classifier using Gata1, Gata2 and Mpo expressions

as inputs varying the number of hidden nodes (Methods). We did

not observe a difference in validation performance when

comparing non-linear and linear methods, suggesting the absence

Figure 1. Computational approach. Top panel: Static data analysis allows inference of system-specific features: clustering analysis and
multidimensional scaling (dimensionality reduction method) delineate a population of progenitors closer to commitment boundary; pairwise gene
expression correlation analysis assesses presence or absence of regulatory interactions in self-renewing progenitors; machine learning methods
identify candidate commitment-associated genes. Middle panel: The dynamical model framework is set by three fundamental components: the
random telegraph model is used as the mechanistic formalism for the non-poissonian behavior of eukaryotic gene expression dynamics; a logistic
regression model trained with single cell data defines the probability of commitment as a function of gene expression; a cell population dynamics
model allows estimation of the overall commitment rate from culture data. Bottom panels: We implement a Monte Carlo simulator of stochastic
commitment that integrates the static data analysis with the dynamical model framework. The simulator generates single-cell expression time-
courses for multiple genes simultaneously and captures in silico commitment events. Statistical exploration of the gene expression patterns
underlying these events allows the characterization of gene-specific regulatory modes and their influence in the probability and frequency of
commitment.
doi:10.1371/journal.pcbi.1003197.g001

A Stochastic Model of Cell Fate Decisions
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of more complex relations between the genes. In other words, for

the genes in our dataset, the transition from SR to CP seems to be

dominated by independent expression values adding up to a

certain threshold with gene-specific weights set by the classifier

(Methods). Furthermore, to confirm the dominance of Gata2 and

Mpo when predicting the commitment probability, we trained

ANN models with fixed complexity, using all possible combina-

tions of one up to four genes as inputs. Consistently with our

observations, all combinations with the highest cross validation

performance included Gata2 and Mpo (data not shown).

Regarding the biological relevance of the three top performing

genes, Gata2 is required for development of the blood system

[24,25], and regulates the adult stem cell compartment through

effects on cell cycle [26,27]. Mpo expression can be detected in

multipotent as well as myeloid-restricted cells [28,29]. It consti-

tutes a regulatory hub on which transcription factors such as

Runx1, Pu.1 and members of the Cebp family converge [30,31].

Gata1 is a master regulator of erythropoiesis capable of repro-

gramming to the erythroid lineage [32,33], although its require-

ment in the commitment decision remains unclear [34,35].

Stochastic modeling provides mechanistic insight into
modes of gene expression regulation in commitment-
relevant genes

In order to explore the stochastic dynamics of gene expression

for the putative key commitment-associated genes, we have used a

random telegraph stochastic model for transcriptional bursting

[15,22] (Methods), which provides a mechanistic framework for

the non-Poissonian behavior observed in eukaryotic gene expres-

sion (Figure 3A). Considering our previous results, we followed a

consensus approach and selected genes that consistently ranked

high in all classification methods: Gata2 and Mpo were the two

best predictors of the committed state and Gata1, which also

ranked consistently high, is well-described as a master regulator of

erythroid differentiation capable of myeloid and lymphoid cell

reprogramming to an erythroid fate, making it a likely candidate

driver of erythroid commitment. These three genes have distinct

gene expression profiles in SR cells, providing an opportunity to

assess how distinct modes of gene regulation can affect fate

transitions. We fitted model parameters for each of the three genes

through simulated annealing, followed by grid search optimiza-

tion, minimizing the error towards the experimentally observed

distributions (Figure 3B). The mRNA decay parameter was fixed

for each gene according to published data [36,37]. The best

parameter sets reproduce experimental distributions and provide

insight into the gene-specific stochastic dynamics of expression,

suggesting that the three genes have distinct modes of regulation

(Figure 3C, Table S4). Gata1 displays short infrequent bursts of

transcriptional activity; Gata2 expression is set by short but

frequent transcriptional bursts with high mRNA production rate;

Mpo is expressed through very long bursts of promoter activity

resulting in near-constitutive expression. We tested the robustness

of these parameter sets by exploring different combinations of

parameters in the vicinity of the optimum solutions (Figure 4,

Methods). Given its low frequency of expression, the Gata1

distribution can be reconstituted by a fairly broad range of

parameters and sensitivity is highest to parameters governing

promoter activity. In contrast, the parameter space for Gata2 is

constrained to a smaller region around optimum values, with a

Figure 2. Machine learning methods identify putative commitment-associated genes from the committed progenitor (CP1) versus
self-renewing (SR) populations. (A) A random forest classifier (1000 trees and 5 variables per node) was trained to discriminate between the SR
and CP1 populations using as input expression data for all genes simultaneously. Variable importance, as measured by the mean decrease in accuracy
(left panel) or the Gini coefficient (right panel), was computed using the out-of-bag error. Genes are shown in descending order of importance. (B)
Area under the receiving operator characteristic (ROC) curve for individual genes in the data set, measuring the performance in separating between
SR and CP1 compartments. Gata2 and Mpo are the top performing genes, measured both by non-linear and linear methods.
doi:10.1371/journal.pcbi.1003197.g002

A Stochastic Model of Cell Fate Decisions
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Figure 3. Stochastic modeling of gene expression suggests different modes of regulation for relevant genes. (A) Schematic
representation of the random telegraph model for transcriptional bursting. For a given gene, the promoter can be in two different states, active or
repressed, with the average time spent in each state being controlled by the average times for activation (tON) and repression (tOFF). When in the
active promoter state, the gene is transcribed and produces mRNA molecules after an average production time tRNA. Finally, mRNA molecules are
degraded after an average time, tD, irrespective of promoter states. (B) Best parameter sets for each gene allow for the reconstitution of the
experimentally observed distributions (top) within our model simulations (bottom). (C) The parameters suggest different modes of stochastic
expression for the different genes, with highly variable burst frequencies and duration (grey bars) as well as mRNA dynamics (colored lines).
doi:10.1371/journal.pcbi.1003197.g003

A Stochastic Model of Cell Fate Decisions
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clear positive correlation between mRNA production and

promoter inactivation times. Finally, for Mpo the most important

parameter is mRNA production time, with a very narrow region of

tolerance around the optimal value. Overall, these results suggest

that the observed gene expression distributions for the three genes

may be governed by different regulatory mechanisms: Gata1

primarily by promoter activity, Mpo primarily by mRNA dynamics

and Gata2 by both.

Expansion of the stochastic model includes expression-
dependent commitment events

We selected the best set of parameters that describe the

stochastic dynamics of expression for each of the three genes, and

expanded upon the initial model to take into account the

probability of a cell to commit as a function of gene expression.

Our stochastic model includes an expression-specific commitment

rate, proportional to the probability of commitment (Methods).

Figure 4. Robustness of the best parameter sets for the random
telegraph model. Values for the tON, tOFF and tRNA parameters in
each gene were varied from 0.5 to 1.6 times the optimum value (in 0.1
intervals); tD is a fixed parameter in the model and was not varied in
this analysis. Within this range, the summed squared error was
calculated for all possible parameter combinations in each gene (color
scale). For clarity, only solutions below a set error cutoff are
represented. Errors calculated for 15000 hours of Gillespie time.
doi:10.1371/journal.pcbi.1003197.g004

Figure 5. Expression of Gata2 defines regions of high and low
commitment probability. (A) Simulated gene expression time-
course for Gata1 (red), Gata2 (blue) and Mpo (green) and corresponding
probability of commitment (grey). Probability of commitment is very
low for most of the time-course, punctuated with high probability
peaks for specific gene expression combinations. (B) Gata1, Gata2 and
Mpo expressions of 160 simulated cells at the moment of commitment
transition (in silico CP, grey) compared to expressions in experimental
self-renewing (experimental SR, blue) and committed progenitor cells
(experimental CP1, yellow). Absence of Gata2 expression defines a
commitment-impeded region where no commitment events could be
observed either experimentally or in simulations; expression of Gata2
defines a commitment-permissive region where commitment can
happen through multiple gene expression combinations: Gata2 ON /
Gata1 ON / Mpo ON (I), Gata2 ON / Gata1 OFF / Mpo ON (II), Gata2 ON /
Gata1 OFF / Mpo OFF (III), Gata2 ON / Gata1 ON / Mpo OFF (IV).
Instances of in silico commitment events through each scenario are
presented in Figure S4. (C) Simulated gene expression profile leading
into a commitment event: the commitment-impeded region is initially
visited (Gata2 OFF), followed by different combinations within the
commitment-permissive region (sequentially II, I and IV), with
commitment ultimately taking place with Gata2 ON / Gata1 ON /
Mpo OFF.
doi:10.1371/journal.pcbi.1003197.g005

A Stochastic Model of Cell Fate Decisions
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This probability is given by an expression-dependent logistic

regression model trained with experimental data, that separates

SR from CP populations. The proportionality constant was set to

reproduce the average commitment rate inferred from culture

reconstitution assays. The logistic regression model captures all

relationships between genes, given that non-linear relationships

seem to be absent (see classifier analysis above). This simple model

for commitment focuses on the experimental data and abstracts

the underlying complexity, weighing the importance of individual

genes, as well as their combined effects. Since we could not find

significant correlations within the SR population suggesting

regulatory interactions, we assumed complete independence in

the stochastic dynamics of each gene. For most gene expression

combinations, the corresponding commitment probability is

low, consistent with the fact that commitment is a rare event

(Figure 5A). However, for a small subset of expression states, the

probability increases sharply. Due to the stochastic nature of the

system, we can still observe instances where high probabilities do

not lead to commitment, as well as others where commitment

happens despite low probabilities.

Stochastic modeling of commitment highlights
individual gene contributions and predicts the outcome
of gene expression perturbations

Our modeling approach generated a population of in silico-

committed cells, and we compared their expression of Gata1, Gata2

and Mpo at the moment of transition against experimentally

observed values in SR and CP1 cells (Figure 5B). In silico CP cells

are located at the edge of the SR population and share some

characteristics with experimental CP1. In particular, simulated CP

cells can recapitulate expression patterns specific to experimental

CP1 and absent from SR cells, such as absence of Mpo in the

presence of Gata1 and Gata2. Events of in silico commitment occur

more often with high values of Gata2 and Gata1, and indeed,

absence of Gata2 does not seem compatible with CP status.

Nevertheless, cells can commit both experimentally and in silico

with low levels of Gata2 and in the presence of Mpo, if Gata1 is also

present. Given the stochastic nature of the commitment transition,

it is possible for cells with commitment-permissive expression

profiles not to effect commitment (Figure 5C). It is also possible for

cells to commit as soon as they enter a commitment-permissive

state, and to do so with different kinetics (Figure S4). Overall, the

data are compatible with the existence of multiple transcriptional

routes into lineage commitment.

We assessed how graded changes in the parameters governing

gene expression regimens affect the frequency of transition to the

committed state (Figure 6). Strongest effects are observed upon

perturbation of mRNA processing parameters (production and

decay), particularly for Gata2, whereas similar perturbations at the

level of promoter activity state do not seem to cause major

commitment frequency changes. This suggests that for Gata2 as for

other putative regulators of lineage commitment with similar

expression profiles, mRNA dynamics may play a more important

role than the regulation of promoter status (e.g. through histone

modifications) in influencing the commitment transition.

Such subtle changes at this level of gene regulatory mechanisms

are seldom feasible in a tightly controlled manner within

experimental settings. Instead, gain- or loss-of-function experi-

ments are more often used to assess the functional relevance of a

given gene, involving much more pronounced expression increase

or decrease, respectively. In this context, we used our stochastic

model to predict the impact of pronounced Gata1 expression

changes in the frequency of commitment in the EML model

cell system. Despite Gata1’s capacity to reprogram cells to an

erythroid fate through ectopic expression under a strong

exogenous promoter [32,33], our model suggested a less promi-

nent though relevant role under its native expression regime, and

we wished to test the consequences of enforcing its expression both

in silico and in vitro. To this end, we set the tOFF parameter for

Gata1 to an infinite value, thus effectively keeping its promoter

permanently in the active state (Figure 7A). The range of

simulated values for Gata1 expression in this perturbation scenario

is comparable to wild type, but the fraction of high-expressing cells

is greatly increased (Figure 7B). The gene expression time-course

reflects the permanent activity of the Gata1 promoter resulting in

more frequent high commitment probability peaks as compared

to wild type (Figure 7C and Figure 5A). These changes result in a

2-fold predicted increase in frequency of commitment from wild

type to the Gata1 ON perturbation (Figure 7D). In order to test

these results experimentally, we transduced EML SR cells with a

GATA1-ERT fusion construct [32], activated the resulting protein

with a pulse of tamoxifen (Methods), and assessed the status of the

activated cells in clonal culture-reconstituting assays (Figure 7E).

Importantly, we were able to recapitulate the 2-fold increase in

commitment predicted by our model (Figure 7F).

Overall, the data supports the in silico predictions of our

stochastic model of commitment and attests to its utility in

exploring alternative expression regimens at the transition between

self-renewal and lineage commitment.

Discussion

Our stochastic Monte Carlo model approach is to our

knowledge novel. It integrates the random telegraph model

Figure 6. Changes in regulation of Gata2 at the mRNA level have the strongest impact in overall commitment frequency. Perturbation
of stochastic gene expression regulation parameters: values for tRNA, tD , tON and tOFF were varied from 0.2 to 3.5 times the optimum values, one
gene at a time. Frequency of commitment defined as the number of commitment events per hour of Gillespie time. Each simulation was run for
30000 hours of Gillespie time.
doi:10.1371/journal.pcbi.1003197.g006

A Stochastic Model of Cell Fate Decisions
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framework [15,22] with commitment probabilities obtained from

single cell classifiers and cell culture properties. Also, the robust

conversion of static expression data, where each data point is

considered a ‘‘snapshot’’, into time series parameters is new in this

context. In [38] cell cycle FISH data were analyzed with the same

goal using template matching. Our approach, which can be

expanded to a larger number of genes and extended to instances

where regulatory interactions are present, provides insight into the

mechanistic aspects underlying stochastic gene expression and,

more importantly, establishes a link between such mechanisms and

functional properties of individual cells, by assessing the relevance

of promoter and mRNA regulation dynamics in the frequency of

commitment.

The computational framework was designed and implemented

using single cell expression data observations from different

populations of the EML hematopoietic cell line [21]. Clustering

analyses distinguished cellular sub-compartmentalization from

molecular heterogeneity within the CP population and identified

subsets of early (CP1) and late (CP2) committed cells, with distinct

molecular profiles. Global characterization of CP1 cells revealed a

Figure 7. Perturbation of Gata1 regulatory dynamics impacts frequency of commitment in silico and in vitro. (A) Simulated Gata1
regulatory regimen corresponding to permanent activity of the locus. (B) Gata1 gene expression distribution under simulated expression regimen in
A (Gata1 ON - red); simulated Gata1 expression in normal conditions (Figure 3B) is presented for comparison purposes (wild type - grey). (C)
Simulated gene expression time-course for Gata1 (red), Gata2 (blue) and Mpo (green) when Gata1 promoter is permanently in the active state (left
panel); the right panel depicts the corresponding probability of commitment. High probability of commitment peaks are more frequent than in wild
type simulations (Figure 5A). (D) In silico predictions of changes in commitment frequency resulting from permanent activity (ON, red bar) or
permanent inactivation (OFF, blue bar) of the Gata1 promoter. Two-fold changes in the frequency of commitment were predicted. Frequency of
commitment defined as the number of commitment events per hour of Gillespie time. Each simulation run for 20000 hours of Gillespie time. (E)
Experimental design of GATA1-ERT activation in EML SR cells, mimicking Gata1 ON conditions. Functional readout is the culture-reconstituting
capacity of individual cells washed and cultured after a 16-hour pulse of tamoxifen. Culture-reconstituting cells originate large (w100 cells) clones
[21]. (F) Inspection of clonal culture-reconstitution capacity of transduced EML cells before and after treatment. The 2-fold decrease in large
reconstituting colonies between control and GATA1-ERT pulsed cells (red bars) matches the 2-fold gain in commitment predicted in D.
doi:10.1371/journal.pcbi.1003197.g007

A Stochastic Model of Cell Fate Decisions
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heterogeneous population dispersed in their individual expression

profiles, including absence of known erythroid regulators like

Gata1, Klf1 or Epor in a significant number of cells. Importantly, we

observed only few and weak pairwise correlations between genes

in CP1 cells, a pattern that was even more evident amongst SR

cells. Hence, no significant level of gene expression coordination is

discernible in the commitment transition, at least not within the

gene signature analyzed.

We proceeded to infer potential key commitment regulators

using machine learning methods to separate SR from CP1 cells

across the commitment boundary. We identified increase in

Gata2 and decrease in Mpo expression as the best predictors of

commitment, with changes in a second group of genes, including

increase in Gata1 expression, also of some relevance. Although we

cannot directly equate predictors of the commitment event with

commitment effectors, we have presumed it likely that those genes

that best separate SR from CP1 states play a role in their identity

or maintenance, and hence may directly effect or report the

decision. Also, in exploring mechanisms of commitment, we are

aware that our data is exclusively transcriptional and, consequent-

ly, mechanistic approaches cannot consider the effects of trans-

lational mechanisms and protein quantities. However, protein

half-lives for Gata1 and Gata2, for instance, are similar or even

shorter than those of their respective mRNAs [36] suggesting that

regulation is in fact dominated by transcriptional events. Indeed,

short half-lives of both mRNA and proteins seem to be a common

feature of genes involved in regulatory mechanisms [39] and

partially preclude the existence of buffering effects at the protein

level, although they cannot account for all translational regulatory

events.

A better understanding of the regimens of expression of

Gata2, Mpo and Gata1 and their consequences for the SR-to-CP

transition could illuminate specific and global mechanisms of

lineage commitment. Thus, we explored the dynamics of these

three genes by fitting the parameters of a stochastic gene

expression model to experimentally observed distributions.

These solutions, validated by a local robustness analysis, were

taken as strong indicators of the qualitative behavior of the

system. We found the genes to have different regulatory dynamics,

compatible with global experimental observations in mammalian

genes [40]. In the case of Gata1 and to some degree Gata2, the

frequency of promoter activity bursts plays a fundamental

role; Mpo, on the other hand, is most sensitive to variations in

mRNA production times. These patterns are consistent with

measurements in yeast, in which transcriptional bursts were

more important for larger variations, whereas smaller variations

were mostly attributed to transcription-initiation mechanisms

[41]. We extended the stochastic model to account for commit-

ment events by means of a logistic regression model that

maximizes the separation between SR and CP cells; stochastic

commitment events were thus the result of (i) the inherent

stochasticity resulting from the mechanistic parameters of

Gata1, Gata2 and Mpo regulation, and (ii) the rate of commitment

inferred from SR-seeded cell cultures, itself implemented as a

random event. Within this framework, the probability of com-

mitment is very low for the vast majority of the time, with

infrequent and short transient peaks at high values. This

behavior bears some resemblance to excitable systems of

differentiation [42]. The extended model allowed us to recreate

and capture in silico the moment of commitment. By analyzing

the molecular patterns of simulated cells at the transition,

we hypothesize that expression of Gata2 defines two states in SR

cells: a commitment-impeded state with low Gata2 expression in

which no commitment events were observed; and a commitment-

permissive state with high Gata2 expression where multiple

entry points into commitment can be reached. Given the lack of

correlations between the expression of Gata2 and other genes,

we could not further explore specific molecular mechanisms by

which Gata2 can drive cells into commitment. Nevertheless, we

systematically assessed how gradual changes in the stochastic

dynamics of gene expression regulation for Gata2, Mpo and

Gata1 influence the frequency of commitment. Again, changes in

Gata2 regulation had the strongest impact, in particular when

perturbing mRNA production and decay. Additionally, we tested

the impact of more drastic changes in regulatory parameters, by

simulating permanent activity of the Gata1 promoter. The

predicted 2-fold increase in frequency of commitment is in

agreement with experimental results measuring loss of culture-

reconstitution capacity in clonal assays, and is compatible with

the reported role of Gata1 in erythroid differentiation and

reprogramming experiments [32,33,35]. Taken together, these

observations bridge mechanisms of gene regulation and functional

impact on lineage commitment, and highlight the role of intrinsic

noise in cell fate decisions [43]. This integrative approach can also

be applied to other differentiating systems, generating hypotheses

on transcriptional regulation dynamics and its impact on

commitment.

Methods

Single cell expression, clonal culture-reconstitution and Gata1

perturbation data are described in Text S1.

Relating gene expression values with multiplicities
The gene expression data (see Text S1) were originally

expressed as DCti for each gene i to reference Atp5a1 and

linearly transformed to the variable

xi:ln 230{DCti
� �

ð1Þ

where 30 is the experimental detection limit. The variable xi

grows with multiplicity in contrast to DCti. To confront modeled

distributions of multiplicities mi with measured xi-distributions, we

assumed

mi~2Di{DCti , ð2Þ

where Di is a gene specific parameter. This represents an ideal

experiment, where abundances double in every amplification

cycle, and a single molecule is eventually detected after Di cycles.

The threshold Di may be gene specific, depending on properties of

the reference reporter used. Thus, we get

xi~ln(mi)z(30{Di)ln(2):ln(mi)zji, ð3Þ

where ji is a gene specific shift parameter to be fitted together with

the model rates (Table S4). We should stress that single-cell RT-

qPCR data is a relative measure of mRNA abundance for each

individual gene analyzed. Quantification is obtained by measuring

the number of amplification cycles needed to detect individual

mRNA species above an experimental threshold. This detection

threshold may represent a different number of mRNA molecules

for each gene, since the measured relative level depends on gene-

specific parameters (such as amplification efficiency from the initial

mRNA molecule number) as well as on the interrogating primers/

probe. As a consequence, comparisons of single-cell expression

levels are internally consistent and can be made between
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populations for a given gene (such as presented in Figure S2) but

do not reliably measure differences between genes in a given

population. The shift parameter, ji, takes into account gene-

specific detection thresholds and unique amplification efficiencies,

mapping the number of mRNA molecules in our Monte Carlo

simulations onto the experimentally-observed gene expression

scale.

Data mining and classifiers
Clustering analysis. Hierarchical clustering of single cells

was performed using Euclidean distance and complete linkage.

Expression values were mean-centered and divided by standard

deviation for each cell. The analysis was performed with Genesis

[44].

Dimensionality reduction analysis. Multidimensional scal-

ing (MDS) was used to visualize the relative position of single cells

in the different populations, based on their individual gene

expression profiles, reducing the 17-dimensional space (one per

gene) to two-dimension representations. For this purpose, MDS

provides similar results compared to other dimensionality reduc-

tion methods such as Principal Components Analysis. MDS

performed using the Statistical Toolbox on Matlab (MathWorks).

Correlation analysis. Spearman rank correlations were

calculated between all pairs of genes co-expressed by a minimum

of 10 cells in the population. Due to the limited amount of

available data and the relative novelty of the approach, the choice

of an optimal significance cut-off for defining pairwise correlations

using single-cell gene expressions remains experimental. Our main

goal was to broadly characterize the regulatory potential around

or at the point of commitment, so we opted for an inclusive

approach and considered as significant, correlations with coeffi-

cient values above 0.3 at a 99% significance level. This choice of

cutoff is supported by recent literature [45], and the significance

level corresponds to a 0.01 probability of having a correlation as

large or higher than the observed value, by chance, when the true

correlation is zero. Calculations were performed using the

Statistical Toolbox on Matlab (MathWorks). Interaction plots

based on significant correlations for SR, CP1 and Ediff were

produced using Cytoscape [46].

Prediction models. A random forest classifier [23] was

trained to distinguish between SR and CP populations using single

cell expression data from all genes.The random forest method

consists of a collection of fully trained decision trees. It can be

considered as an ensemble learning method for classification

problems that combines a random selection of both data (bagging

[47]) and features.Our random forest model used 5 variables at

each node and 1000 trees. Permutation variable importance and

Gini coefficients were computed using the out-of-bag error [23]

and used to rank the most important genes. All runs were made

using the random forest R package.

Logistic regression linear classifiers were used to infer best

commitment predictor genes, as well as to provide commitment

probabilities (i.e. transition from SR to CP compartment) as a

function of gene expression. The classifiers were trained to

separate SR and CP1 populations, using both single gene and

multiple gene measurements as inputs. We used the logistic

regression model to calculate the probability of commitment

according to,

p(z)~
1

1zexp({z)
ð4Þ

and

z~b0zb1x1zb2x2z:::zbnxn ð5Þ

Here xi are the expression values for each gene and bi are the

regression coefficients quantifying their relative importance, and

determined during training.Performance was measured using the

area under the receiver operator characteristic (ROC) curve. All

calculations were performed using the Statistical toolbox in Matlab

(MathWorks).

Artificial neural networks (ANN) (see e.g. [48]) classifier models

were used to investigate possible complex relations between gene

expression values when comparing the SR and CP1 populations,

Each ANN model consisted of an ensemble of multilayer

perceptrons with one hidden layer, each trained using gradient

descent on a cross entropy error function. The ensemble was

constructed using the Bagging method [47] with a fixed size of 20

networks. To assess the performance we used 5-fold cross validation,

repeated 20 times each with different splits of the data set. Possible

complex relations between input variables can be detected if ANN

models with more than one hidden node results in higher validation

performance as compared to the (linear) logistic regression model.

Time evolution - the Monte Carlo model
Time evolution is performed using the Gillespie MC algorithm

[49] on the random telegraph model for transcriptional bursting

[14,22]. A given gene i is defined by its promoter state si

si~
1 ON

0 OFF

�
ð6Þ

and multiplicity mi. Different actions a can take place:

N changing promotor state (si?1{si)

N production of a mRNA molecule (mi?miz1)

N decay of a mRNA molecule (mi?mi{1)

N commitment to the CP state.

We pick times ta,i for potential actions a for each gene i from

exponential distributions

!exp({ta,i=ta,i)dta,i: ð7Þ

where the t-parameters are tON=(1{si) for turning the promotor

on, tOFF=si for turning it off, tRNA=si and tD=mi for production

and decay of mRNA respectively.

With m representing the different components mi, we use ji

(Eq. 3) and the trained logistic regression classifier (Eqs. 4 and 5) to

calculate the state-dependent commitment rate c(m) as explained

with Eq. 16 and pick a time for potential commitment, with the t
parameter 1=c(m). Optimized parameter values are found in

Table S4.

The action with the shortest time is selected and the time

spent in the current state is recorded. Then the state is updated

and new times are selected. After completed simulation, the

fraction of time spent in a state is our resulting probability for

finding a cell in that state. The system is thermalized for each new

cell by requiring the promotor to turn ON and OFF at least once

for each gene.

Determining the commitment rate from population
dynamics

The dimensionless time scale of the Monte Carlo procedure is

related to physical time by inferring the characteristic time of

commitment events as a function of gene expression. This is

accomplished in two steps: i) the overall commitment rate is

inferred through the implementation of a compartmental model
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describing the dynamics of SR and CP cultures in time, where

parameters of cell division and death are fitted to experimental SR

and CP cell culture dynamics data ; and ii) the expression-specific

commitment rate is obtained by combining overall commitment

rate with the commitment probabilities given by the logistic

regression classifier for a finite set of genes (Eqs. 4 and 5).
Population model. Independently of other cells, each SR cell

is assumed to divide with a rate s, commit to CP with a rate c, and

die with a rate d. Similarly, CP cells divide and die with rates s9

and d9 (Figure S5A).

With R and P as the number of SR and CP cells, respectively,

the evolution equations read

_RR~(s{c{d)R:sR,

_PP~cRz(s’{d ’)P:cRzs’P: ð8Þ

Given initial contrations R0 and P0, and the parameter

a:
c

s{s’
, ð9Þ

the solutions read

R(t)~R0 exp(st),

P(t)~aR(t)z P0{aR0ð Þexp(s’t): ð10Þ

Provided sws’, the asymptotic solution is P(?)~aR(?). With

data suggesting roughly 10% CP after a long time, we get

a&
0:10

0:90
&0:11: ð11Þ

With Eq. 10 and the SR and CP initiated cell culture data (Text

S1) we then obtain parameter values in Figure S5B. For each

assay, cells were counted after 24 h and 48 h, giving two

independent measurements.

In the CP assay, we have R0~0, which gives R(t)~0 and the

simplified equation

P(t)~P0 exp(s’t), ð12Þ

which determines s’. In the SR assay, we do not identify SR and

CP cells, but only count the total number of live cells L~RzP.

The initial conditions are R0~L0 and P0~0. This implies

L(t)~(1za)L0 exp(st){aL0 exp(s’t), ð13Þ

which determines s using the s’ estimate from Eq. 12. From

Figure S5B, we note that sws’ as assumed when estimating a
above.

The 24h and 48h results are in excellent agreement for s and s’
and reasonably so for c. Since the 48h data are less vulnerable to

statistical fluctuations, we use that time point to determine c. Thus,

in our Gillespie MC simulations above, we used a commitment

rate c0~1=400 per hour.

The abstract rates s and s’, being ‘‘net self-renewing rates’’, can

be translated into division and death rates using data on dead cells.

The evolution equation for the number of dead cells, D, reads
_DD~dRzd ’P. With inital concentration D0~0, the solution reads

D(t)~
dzad ’

s

� �
R0 exp(st){1½ �z d ’

s’
(P0{aR0) exp(s’t){1½ �:

ð14Þ

The CP assay conditions R0~R(t)~0 then determines d9 and

s’~s’zd ’, after which the SR assay condition P0~0 determines d

and s~szdzc.

As interpretation of the numbers in Figure S5B, we note that the

average time until division for a SR cell, 1=s, is one day, and that

on average 5% of the SR cells commit within this time frame.
Expression-specific commitment rates. The probability

for a cell to commit is expected to depend on gene expression,

which we represented by the vector m with components mi for

each gene i defined in Eq. 2. In a deterministic model, we would

then ask for the time it takes to reach a commitment criteria from

different non-committed states m, and the probability of being in

such a state m at the beginning of observations.

However, given an expression profile with only a few genes, we

must introduce a probability of commitment, reflecting missing

information about other genes. We therefore introduce an

expression-specific commitment rate, c(m), which is high if m
implies high commitment probability, and 0 if m implies 0

commitment probability.

As a simple model, we chose

c(m)!c0
:pclass(m), ð15Þ

where pclass(m) is the classifier probability determined with the

logistic regression classifier (Eqs.4 and 5). Furthermore, we assume

that expression profiles of the measured genes have thermalized at

the beginning of measurements, so that p(mDt0)~p(mDt):p(m).
To give the correct overall commitment rate c, the expression-

specific rate must be normalized to yield, c0~
P

m p(m)c(m). This

implies that the expression-specific commitment rate (Eq. 15) is

given by

c(m)~c0
pclass(m)P

m’ p(m’)pclass(m’)
ð16Þ

Stochastic gene expression model parameter
optimization

An in-house implementation of the simulated annealing

algorithm [50] was used to optimize parameters for the stochastic

gene expression model by minimizing the sum squared error

between experimental and observed single-cell gene expression

distributions. Optimization was further refined by subsequently

performing a local grid search in the vicinity of the best parameter

sets.

Supporting Information

Figure S1 Molecular characterization of early commit-
ted progenitors. (A) Heatmap of culture-reconstituting, com-

mitted progenitor and late erythroid-differentiated cells. A subset

of putatively late CP cells clusters together with the Ediff

population (red) while the remainder of the CP population forms

a heterogeneous but distinct cluster (blue). (B) Expanded view of

the cluster in A formed by putatively late CP (yellow) and Ediff

cells (red). (C) Multidimensional scaling of all cells based on the

expression of the full set of 17 genes. Results confirm the clustering

analysis, with SR cells (blue) clearly separated from committed
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progenitors, which mostly constitute a distinct population (CP1,

pink), with the exception of a minority of cells (CP2, orange) that

are mixed with terminally differentiated erythroid cells (Ediff, red).

(D) Heatmap of committed progenitor cells. The subset of CP cells

with a more erythroid-differentiated gene expression signature

forms a coherent cluster (CP2, orange), while the remaining cells

display more heterogeneous expression profiles (CP1, pink). (E)

Multidimensional scaling plot of all committed progenitors shows

that CP1 and CP2 cells constitute two distinct populations, with

CP1 spreading through a much wider area than CP2, as a result of

larger gene expression heterogeneity. Heatmaps were generated

by complete hierarchical clustering of individual cells using

Euclidian distance; expression values are mean-centered and

divided by standard deviation

(EPS)

Figure S2 Single-cell gene expression profiles. Single

cell level (top) and frequency of expression (bottom) in SR (blue

circles), CP1 (yellow diamonds), CP2 (orange squares) and

Ediff (red triangles) populations for all genes. Different expression

patterns are observed from monotonic increase (e.g. Gata1) or

decrease (e.g. Mpo), to non-monotonic behavior (e.g Gata2,

Btg2), suggesting potential roles in different stages of lineage

specification.

(TIF)

Figure S3 Pairwise correlation analysis of gene expres-
sion data. Significant pairwise correlations between all genes in

SR, CP1 and Ediff populations. For each pairwise comparison

where at least 10 cells co-expressed both genes, Spearman

correlation was considered significant for values above 0.3 at a

99% significance level (Tables S1, S2, S3).

(EPS)

Figure S4 Commitment can stochastically be driven by
different gene expression patterns and at different
times. Gata1 (red), Mpo (green) and Gata2 (blue) expression in

four instances of commitment, simulated with our Monte Carlo

model. Each instance (I–IV) corresponds to a commitment

scenario, as described in Figure 5.

(EPS)

Figure S5 Inference of overall commitment rate from
compartmental modeling of cell culture dynamics. (A)

Schematic representation of the compartment model describing

the number of cells in the self-renewing (SR) and committed

progenitor (CP) populations in time. Division rates represented by

s (SR) and s9 (CP); death rates represented by d (SR) and d9 (CP);

commitment rate represented by c. (B) Cell numbers from

experimental clonal culture-reconstitution observations (top) were

used to analytically infer model parameters (bottom). The

parameters s and s9are defined in Eq. 8 in Methods.

(EPS)

Table S1 Correlation analysis: SR population. Significant

pairwise correlations between all genes in the SR population. For

each pairwise comparison where at least 10 cells co-expressed both

genes, Spearman correlation coefficient was considered significant

for values above 0.3 at a 99% significance level (bold).

(PDF)

Table S2 Correlation analysis: CP1 population. Signifi-

cant pairwise correlations between all genes in the CP1

population. For each pairwise comparison where at least 10 cells

co-expressed both genes, Spearman correlation coefficient was

considered significant for values above 0.3 at a 99% significance

level (bold).

(PDF)

Table S3 Correlation analysis: Ediff population. Signif-

icant pairwise correlations between all genes in the Ediff

population. For each pairwise comparison where at least 10 cells

co-expressed both genes, Spearman correlation coefficient was

considered significant for values above 0.3 at a 99% significance

level (bold).

(PDF)

Table S4 Parameter values for the random telegraph
model of transcriptional bursting (Figure 3A). Except for

tD, which was obtained from the literature (see Main Text), all

parameters were obtained from fitting to experimental SR

expression distributions for each gene.

(PDF)

Text S1 Gene expression data, cell culture data and
Gata1 perturbation experiments. The single cell gene

expression and clonal culture-reconstitution experiments from

[21] are summarized. Details from the Gata1-ERT perturbation

experiment are given.

(PDF)
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