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Abstract

A central question in cognitive neuroscience regards the means by which options are compared and decisions are resolved
during value-guided choice. It is clear that several component processes are needed; these include identifying options, a
value-based comparison, and implementation of actions to execute the decision. What is less clear is the temporal
precedence and functional organisation of these component processes in the brain. Competing models of decision making
have proposed that value comparison may occur in the space of alternative actions, or in the space of abstract goods. We
hypothesized that the signals observed might in fact depend upon the framing of the decision. We recorded
magnetoencephalographic data from humans performing value-guided choices in which two closely related trial types were
interleaved. In the first trial type, each option was revealed separately, potentially causing subjects to estimate each action’s
value as it was revealed and perform comparison in action-space. In the second trial type, both options were presented
simultaneously, potentially leading to comparison in abstract goods-space prior to commitment to a specific action. Distinct
activity patterns (in distinct brain regions) on the two trial types demonstrated that the observed frame of reference used
for decision making indeed differed, despite the information presented being formally identical, between the two trial
types. This provides a potential reconciliation of conflicting accounts of value-guided choice.
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Introduction

Accounts of how the brain supports value-guided decision-

making have been characterised as lying along a continuous

spectrum [1]. At one end of the spectrum, it is argued that

decisions are a serial process, in which stimuli are first

perceived, then assigned values and fed to a subsequent decision

stage where comparison takes place [2,3]. Evidence in favour of

such a view comes from comparing the relative prevalence and

timing of pre- and post-decision variables encoded during

economic choice [4,5]. At the other end of the spectrum,

decisions are framed as a parallel process, in which valuation,

decision formation and action selection proceed simultaneously

[6,7]. Such a hypothesis is supported by the representation of

potential responses in motor regions prior to decision termina-

tion [8–11], from probing the motor system behaviourally

during the evolution of a decision [12,13], and by comparing

the relative timing of motor preparation responses in free- and

forced-choice decisions [14].

The diversity of accounts is perhaps a symptom of value

correlates being isolated in many different brain regions [15] –

such as medial prefrontal [16–21], parietal [22–24], and motoric

[25,26] structures – and also of the diverse frames of reference in

which these value correlates have been found. For example, one

prominent serial model of decision making proposes that value

comparison occurs in the frame of reference of abstract goods,

prior to the representation of choice [27]. This would most likely

occur in regions such as orbitofrontal and ventromedial prefrontal

cortex, where goods-space value correlates have been isolated

[5,18,28]. By contrast, a prominent parallel model suggests that

comparison may take place in the frame of reference of actions

needed to obtain a certain outcome [7]. This comparison may

occur in structures such as motor and premotor cortex, in which

value-related neural signals tied to specific actions can be found

[8,14,24,29].

It remains unclear whether decision processes occur serially or

in parallel, and whether decision formation is principally resolved

in action- or goods-space. It is possible that each account may be

partially true, or that decisions are reached via a consensus

between different systems [30]. One further reconciliation between

the accounts might propose that the mechanism of decision

formation might be task-dependent – that is, the frame of reference in

which value-related signals are observed might depend upon both

the framing of the decision and the way the data are analysed.
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Whilst both systems may still operate in parallel, the sensitivity to

detect signals in a particular frame of reference might be strongly

influenced by the task used – and so the differences between the

tasks used across different studies might explain why goods-space

signals are observed in some studies, and action-space signals in

others.

To test this hypothesis, we designed a task in which subjects

faced two different, interleaved types of trial. Each trial type

comprised formally identical decisions, but had information

presented in a subtly different fashion.

In the first type of trial (‘comparison’ trial, as reported in [5]),

both options were presented simultaneously and subjects were free

to respond at any time. Importantly, such a trial can be solved in

several different ways. Decision formation could be carried out in

the frame of reference of action values, tied to both left and right

options, presumably in late motoric structures. Alternatively, it

could occur in the frame of reference of abstract goods,

presumably in frontal structures such as orbitofrontal or ventro-

medial prefrontal cortex (VMPFC) before undergoing a goods-to-

action transformation. Although it is noteworthy that items are

rarely encountered exactly simultaneously in nature, it is also true

that such paradigms have been the norm in many studies of value

guided choice [4,14,16–18,28,31,32]. We hypothesised, based on

signals observed in these tasks [4,27,28], that value-related signals

might be observed in a goods frame of reference in this condition,

and also that these goods value signals might be localised in

structures such as VMPFC.

In the second type of trial (‘sequential’ trial), each option was

presented sequentially, with a delay between the presentation of

the first and second option, and a further delay before subjects

executed their response. There were thus two differences

between this trial type and the ‘comparison’ trial: first, its

sequential nature, and second, the additional delays before a

response was allowed. Again, such a trial could either be solved

in an action-space or a goods-space frame of reference.

However, both sequential presentation of options and the

imposition of a delay prior to response have previously been

used in tasks where action value signals have been recorded

[8,10,26,33]. Thus, we hypothesised that these two manipula-

tions, although subtle, might push subjects towards a strategy of

integrating information across probability and magnitude on

each action as it is presented, and contribute towards the

representation of a subjective value of making that action. This

would suggest that the decision process could take place in the

frame of reference of integrated action values [3,17,34], or that

decision formation might occur coincidentally with the planning

of the action necessary to execute the choice [7]. Either of these

possibilities would lead to value signals in an action-space frame

of reference as the decision was being made, and these signals

might be predicted to occur in later, motoric structures.

Results

Subject choice behaviour is similar across comparison
and sequential trials

18 subjects completed 324 trials of each type, pseudorandomly

interleaved, whilst undergoing magnetoencephalography (MEG).

In ‘comparison’ trials, both options were presented simultaneously,

until response. In ‘sequential’ trials, each option was presented

sequentially, with a delay before a response was allowed (figure 1A).

Subjects were not instructed to perform the task differently in each

condition, except that in the sequential trials, they had to wait until

the end of the delay period before they could respond (see

Materials and Methods).

We first compared subject choice behaviour in comparison and

sequential trials. We used logistic regression to test the influence of

each option’s reward probability and magnitude on subjects’

choices during each type of trial (figure 1B). Reward probability,

reward magnitude and their interaction each had a highly

significant influence on subject choices (one-sample T-test on

regression coefficients, all T(17).4.6, all p,0.0005), but impor-

tantly there was no significant difference in these influences

between the two types of trial (paired T-test on regression

coefficients between trial types, all |T(17)|,1.52, all p.0.14).

There was a slight bias towards choosing the second presented

option on sequential trials (T(17) = 2.90, p,0.01), but no such bias

towards choosing the left or right option on comparison trials

(T(17) = 20.17, p = 0.87).

We also fit models from Prospect theory [35,36] to describe

subject choice behaviour on both types of trial (figure 1C–E). We

fit a three-parameter model (a to describe curvature in subjective

reward magnitude weighting, c to describe non-linearities in

subjective probability weighting, and b to describe stochasticity in

choice behaviour) using maximum likelihood estimation. There

was a strong correlation across subjects between a on sequential

and comparison trials (figure 1A; R = 0.84,p,0.0001), and

similarly for b (figure 1D; R = 0.75,p,0.0005), although no such

correlation for c (figure 1C; R = 0.11,p = 0.67). (This difference is

potentially explained by the differing variances associated with the

different parameters (coefficients of variation: a, 0.51; b, 0.70; c,

0.17), which may imply that cross-subject variance in c is primarily

driven by noise in parameter fitting, rather than true variability in

the population.) Importantly, there was no significant difference

between fitted parameters on the two trial types, except for a trend

towards a being larger in comparison trials (paired T-test, a:

T(17) = 2.08, p = 0.052; b: T(17) = 1.58, p = 0.13; c: T(17) =

20.956, p = 0.35).

In summary, behavioural results indicated that, even if subjects

were to have adopted a different strategy in solving the two types

of trial, their resultant choice behaviour was very similar in

sequential and comparison trials.

Author Summary

There are several competing theories of how the primate
brain supports the ability to choose between different
opportunities to obtain rewards – such as food, shelter, or
more abstract goods (e.g. money). These theories suggest
that the comparison of different options is either funda-
mentally dependent upon regions in prefrontal cortex (in
which representations of abstract goods are often found),
or upon motoric areas such as pre-motor and motor
cortices (in which representations of specific actions are
found). Evidence has been provided in support of both
theories, derived largely from studies using different
behavioural tasks. In this study, we show that a subtle
manipulation in the behavioural task can have profound
consequences for which brain regions appear to support
value comparison. We recorded whole-brain magnetoen-
cephalography data whilst subjects performed a decision
task. Value comparison-related 13–30 Hz oscillations were
found in ‘goods space’ in ventromedial prefrontal cortex in
one trial type, but in ‘action space’ in pre-motor and
primary motor cortices in another trial type - despite
information presented being identical across trial types.
This suggests both decision mechanisms are available in
the brain, and that the brain adopts the most appropriate
mechanism depending upon the current context.

Value-Based Choice: Goods or Action Space?
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Transition from value representation to choice in motor
cortex on ‘sequential’ trials

In both trial types, subjects chose left and right options with left

and right thumbpresses respectively, allowing us to investigate

decision formation in the frame of reference of actions by

interrogating the timecourse of lateralised responses in motor

cortices. We first investigated lateralised responses in sequential

trials. We localised motor cortex by performing a contrast of right

minus left planned responses, 500–1000 ms after the presentation

of the second option (figure 2A). In the beta band (13–30 Hz),

there was a greater degree of desynchronisation in the hemisphere

contralateral to the planned movement (i.e. left hemisphere

desynchonisation was greater on trials where a rightward

movement was planned (peak T(17) = 25.59 (Montreal Neuro-

logical Institute (MNI) coordinates = 236,234,54 mm),

T(17) = 25.86 (MNI = 250, 234, 254) whole-brain family-wise

error corrected p,0.05)), and a lesser degree of desynchronisation

in the hemisphere ipsilateral to the movement (i.e. right

hemisphere desynchronisation was lesser on trials where a

rightward movement was planned (peak T(17) = 4.63

(MNI = 56,0,34 mm)). This pattern of pre-movement beta desyn-

chronisation is as would be expected from many previous studies

of response selection [37–40].

Having localised this beta desynchronisation during movement

preparation, we then investigated the temporal evolution of value

correlates in the same region. In all analyses, we included the

eventual categorical choice as a coregressor, to test whether signals

were better predicted by value or by choice. At the time of option

1 presentation, beta desynchronisation (in the hemisphere

contralateral to the side option 1 was presented on) was found

to correlate with the value of this option; the higher the value, the

more negative the beta power (figure 2B). As shown in figure 2B/

E, this signal first emerged approximately 500 ms after stimulus

Figure 1. Experimental design and behavioural results. (A) Experimental timeline. The experiment contained two types of trial in which
subjects chose between two risky prospects associated with differing reward magnitudes (bar widths) and reward probabilities (percentages). In
‘comparison’ trials, both options were presented simultaneously and subjects were free to respond as soon as they had made their decision. In
‘sequential’ trials, options were presented one after the other and subjects were free to respond once a question-mark appeared in the centre of the
screen. (B) Logistic regression weights (mean +/2 s.e.m.) of explanatory variables on choice behaviour on comparison trials (left) and sequential trials
(right). (C) Prospect theory utility function parameters on comparison trials (ordinate) and sequential trials (abscissa); each datapoint represents the fit
for an individual subject. Line shows least-squares fit to data (correlations reported in main text). (D) As (C), for softmax function parameters. (E) As (C),
for probability weighting function parameters.
doi:10.1371/journal.pcbi.1003225.g001

Value-Based Choice: Goods or Action Space?
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presentation (significant cluster delineated by black line in

figure 2B, tested via a cluster-based permutation test that corrects

for multiple comparisons across time and frequency (see Materials

and Methods)). It remained in the region throughout the delay

period (in which the option was removed and replaced with a

central word ‘OR’) (peak T(17) = 23.83, t = 1975 ms post-stimulus

presentation, 14 Hz; cluster-corrected p,0.05, permutation test).

The negative coefficient of the value correlate (shown in figures 2B

and 2E) reflects increased desynchronisation [26,37–40] in the beta

band at the time of option 1. At the time of option 2 presentation,

there was a negative correlate of the difference in value between

the option contralateral to the hemisphere and the option

ipsilateral to the hemisphere (figure 2C), with a significant cluster

centred around 400 ms post-stimulus presentation; the greater the

value difference between contralateral and ipsilateral options, the

more negative the beta power (peak T(17) = 23.91, t = 325 ms

post-stimulus, 23 Hz; cluster-corrected p,0.05). Such a signal is a

value difference signal, but importantly it is tied to the frame of

reference of a specific action (contralateral vs. ipsilateral move-

ment), rather than the frame of reference of which option will be

chosen on the current trial. (It is notable that part of this signal

may be driven by the value of option 1, which is known prior to

option 2 presentation – and so the effect of value difference may

arise much earlier than when analysed time-locked to option 1

presentation. Indeed, when split into the separate subcomponents,

option 1 influenced beta desynchronisation earlier than option 2

(see figure S1)).

Using the regressor for categorical choice, we also identified a

signal reflecting the categorical commitment to a rightward or

leftward action (figure 2D) in the same region of interest, with beta

desynchronisation being more negative when choices (button

presses) were made to the side contralateral to the hemisphere

than to the side ipsilateral to the hemisphere. Such a finding is

unsurprising, as the region of interest was selected on the basis of

differential beta desycnchronisation on left vs. right buttonpresses.

However, the critical test is the timing of this categorical decision

signal (figure 2D) relative to the action value signals (figure 2B/C).

When the first option was presented (figure 2E), beta descynchro-

nisation was explained by the value of the contralateral option

(blue line) over and above any possible variance that could be

attributed to the eventual choice that the subject would make (red

line). This was because both value and choice regressors were

included in the same multiple regression model, and whereas value

correlates were significantly different from zero, choice correlates

were not. From figure 2F, we see that in a similar multiple

regression model, the categorical decision signal emerged prior to

the time at which subjects were allowed to make their response,

but after the value difference signal (peak T(17) = 27.36,

t = 775 ms post-stimulus, 18 Hz). This suggests a transition from

initially representing action value difference, to subsequently

Figure 2. Motor cortex beta desynchronisation represents progression from value representation to choice on ‘sequential’ trials. (A)
Statistical parametric map for contrast of beta band (13–30 Hz) activity for right buttonpresses.left buttonpresses, 500 ms–1000 ms after option 2
presentation (thresholded at T(17).2.91, p,0.005 uncorrected, for display purposes). Warm colors reflect decreased beta desynchronisation in right
hemisphere (ipsilateral to movement), cool colors reflect increased beta desynchronisation in left hemisphere (contralateral to movement). (B)
Correlates of the value of option 1 at time of option 1 presentation, in hemisphere contralateral to option presentation. Color represents T-statistic;
bordered areas reflect significant clusters (cluster-corrected p,0.05; permutation test). (C) Correlates of the value difference between the options
contralateral and ipsilateral to the hemisphere, at the time of option 2 presentation. (D) Contrast of trials on which the chosen option is contralateral
vs. ipsilateral to the hemisphere, at the time of option 2 presentation. (E) Timecourse of beta band correlates of value of contralateral option (blue
and choice (red) at time of option 1 presentation. Lines represent mean +/2 95% confidence intervals across subjects. (Note that as 95% confidence
intervals are plotted, rather than standard error of the mean (s.e.m.), error bars are ,1.96 times wider than when plotting s.e.m.). (F) Timecourse of
beta band correlates of value difference (blue) and choice (red) between options contralateral vs. ipsilateral to the hemisphere at time of option 2
presentation.
doi:10.1371/journal.pcbi.1003225.g002

Value-Based Choice: Goods or Action Space?
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representing categorical choice. We formally compared the

relative timing of these two signals by comparing the time of the

peak T-statistic in each subject for the two signals (figure 3); this

confirmed that the value-related signal preceded the categorical

decision signal (paired T(17) = 2.14, p,0.05).

The relative timing of these value-related and categorical choice

signals may reflect two possibilities. It may suggest that in sequential

trials, late motoric structures directly support the comparison of

values tied to specific actions. Alternatively, it may be that an

evolving decision process taking place in other cortical structures is

continually biasing action preparation or planning in motor cortex.

In either case, it is clear that value correlates are present in motor

cortex before a categorical decision has been reached.

Categorical representation of choice, but not value, in
motor cortex on ‘comparison’ trials

We next investigated whether similar value signals could be seen

prior to the representation of choice in comparison trials. Again,

we found that 500–1000 ms after the decision was presented, there

was a differential response for right versus left buttonpresses, with

less beta band desynchronisation in the right hemisphere for

rightward than for leftward movements (figure 4A; peak

T(17) = 11.42, MNI = 28,214,54, voxelwise whole brain corrected

p,1*1025). When searching for a correlate of the value of the

options contralateral versus ipsilateral to the hemisphere, we

timelocked to the response rather than the stimulus, as in this

condition responses occurred at varying latencies rather than a

fixed delay – and so, because reaction times correlate negatively

with value difference [5], beta desynchronisation that was in fact

associated with responses made at different latencies would give

rise to spurious correlations with value.

Using this analysis, we found that there was no correlate of the

difference in value between the option contralateral and the option

ipsilateral to the hemisphere in the beta band, nor indeed in any

frequency band from 1–40 Hz (figure 4B). By contrast, consistent

with figure 4A, there was still a strong correlate of the categorical

choice, with beta desynchronisation being more negative when

choices were made to the contralateral side than to the ipsilateral

side (figure 4C), peaking near the time of the response (peak

T(17) = 25.46, t = 175 ms post-response, 26 Hz). Thus, on

comparison trials, in contrast to the sequential trials, there was a

categorical representation of choice but no lateralised representa-

tion of action value prior to the formation of the decision.

On both sequential and comparison trials, we also found a

similar set of signals emerged if we examined activity in lateral pre-

motor, rather than primary motor, cortex (figure 5).

The absence of an action-value signal in comparison trials is a

negative result, and so might be interpreted as a consequence of

insufficient statistical power. To demonstrate that this was not the

case, we used a formal interaction test (described below) and found

a significant difference in action-value signals between the two

conditions.

Representation of value difference in ventromedial
prefrontal cortex on ‘comparison’ trials

We then searched for response-locked correlates of value on

comparison trials in ventromedial prefrontal cortex (VMPFC), a

region we have previously identified as playing an important role

in value comparison on these trials [5,16]. We analysed data from

the same region of VMPFC identified in our previous study [5], in

which we found that (stimulus-locked) there was a temporal

evolution from a representation of overall value to value difference

in low frequencies (2–10 Hz). The location of this region of interest

(MNI = 6,28,26 mm) also lies within a cluster of activations

identified in a recent meta-analysis of human functional MRI

studies of value-guided choice [19]. We hypothesised, based on

signals observed in other studies of this region, that it would not

encode value in the frame of reference of actions, but of choice

[5,16,18,32] – which might be the result of a comparison

occurring in ‘goods space’ [27,28]. Based on our previous work

[5], we also hypothesised that this region might particularly

encode value on ‘harder’ trials, in which probability and magnitude

advocate opposing choices, but not on ‘nobrainer’ trials, in which

both probability and magnitude were both larger on the same side

than on the other. Critically, we note that these harder trials are

precisely those on which a comparison of attribute differences

might be necessary to resolve the decision.

On harder comparison trials, there was a positive correlate of

the difference in value between chosen and unchosen options in

the beta band approximately 750 ms prior to the response

(figure 6A; peak T(17) = 4.05; t = 975 ms pre-response;

F = 10 Hz). This value difference signal is in a different frame of

Figure 3. Relative latency of ‘action value difference’ and
‘choice’ effects (both in motor cortex beta desynchronisation)
after stimulus 2 presentation on ‘sequential’ trials. (A) Compar-
ison of the latency of the peak correlate of ‘value difference’ regressor in
motor cortex beta desynchronisation (blue) against the latency of the
peak correlate of the ‘categorical choice’ regressor in motor cortex beta
desynchronisation (red). * denotes p,0.05, paired T-test across 18
subjects. (B) Histogram of individual subjects’ latency differences
between ‘value difference’ peak latency and ‘categorical choice’ peak
latency; red line denotes median latency across subjects.
doi:10.1371/journal.pcbi.1003225.g003

Value-Based Choice: Goods or Action Space?
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reference to that isolated in primary motor cortex: it is not tied

to the frame of reference of one or other specific action, but

instead to the choice that is to be made. Importantly, when split

into its subcomponents, this ‘goods-value’ signal contained both

a positive correlate of the value of the chosen option and a

negative correlate of the value of the unchosen option

(figure 6D). Again, we formally compared the relative timing

of this value-related signal in VMPFC to that of the categorical

choice signal in motor cortex, by extracting the peak T-statistic

for each signal in each subject (figure 7); we found that the

VMPFC value related signal preceded the categorical motor

signal (paired T(17) = 2.25, p,0.05).

In contrast, on ‘nobrainer’ comparison trials, we found no

significant correlation in VMPFC with the value difference

between the chosen option minus the value of the unchosen

option, nor of the subcomponents of this signal (figure 6B/E).

However, this finding was complemented by signal in the posterior

superior parietal lobule (pSPL), a region isolated in our previous

study as showing similar dynamics to VMPFC in lower frequency

bands (2–10 Hz), but across both harder and nobrainer trials [5]. In

the beta band (13–30 Hz), pSPL showed a synchronisation that

correlated positively with chosen-unchosen value across both

harder (figure 8A/D) and nobrainer (figure 8B/E) trials, consistent

with our previous study.

Finally, both VMPFC and pSPL also showed no correlation

of chosen-unchosen value (or the separated subcomponents) on

harder sequential trials (figure 6C/F; figure 8C/F), or nobrainer

sequential trials. This finding is particularly important, as it

suggests that when values are represented in ‘action space’ as a

choice is being made (as was the case in sequential trials), there

was no longer a detectable ‘goods space’ comparison in these

regions. As before, we note that this is a negative result, and so

we test it by comparing the strength of goods-value signals in

each trial type formally below. We were also unable to detect

any action value signal or categorical choice signals (equivalent

to those observed in motoric structures above) in VMPFC or

pSPL (figures S2 and S3).

Formal contrast of effects in motor cortex and VMPFC in
comparison and sequential trials

Finally, we formally compared the effect of value in VMPFC

and motor cortex across the two trial types. In each subject, we

extracted the peak T-statistic for the effect of value difference

between the options in the ipsilateral and contralateral hemi-

spheres from motor cortex, and the effect of value difference

between chosen and unchosen options in VMPFC. We restricted

our analysis to the beta band (13–30 Hz), focussing on the period

from 2nd stimulus onset up to 1 s post-stimulus on sequential trials,

and from 1 s pre-response until response time on comparison

trials. As the same frequency range was examined in each region/

condition, and the regions of interest were isolated via orthogonal

contrasts, this analysis was protected against circular inference

[41]. A repeated measures ANOVA with independent variables of

brain region (VMPFC/motor cortex) and trial type (comparison/

sequential) revealed a significant interaction between these two

variables on the peak effect of value (F1,17 = 7.29, p,0.02). Post-hoc

T-tests revealed that there was a significantly greater effect of

chosen-unchosen value in VMPFC on comparison trials than on

sequential trials (paired T(17) = 2.42, p,0.05), and a slightly

greater effect of ipsilateral-contralateral value in motor cortex on

sequential trials than on comparison trials (paired T(17) = 1.83,

p,0.05 one-tailed).

Discussion

Conflicting accounts of value-guided choice have proposed

that decision formation is either supported principally by

comparing the value of alternative goods, or by the comparing

the value of alternative actions. In the present study, we isolated

evidence in support of both accounts, but in two distinct types of

trial – one (comparison trials) in which goods-space value

comparison signals were more readily apparent, and another

(sequential trials) in which action value-space signals were

found. These findings therefore present a possible reconciliation

Figure 4. Motor cortex beta band desynchronisation reflects choice, but not value, on ‘comparison’ trials. (A) Statistical parametric
map for contrast of beta band (13–30 Hz) activity for right buttonpresses.left buttonpresses, 500 ms–1000 ms after decision presentation
(thresholded at T(17).2.91, p,0.005 uncorrected, for display purposes). Warm colors reflect decreased beta desynchronisation in right hemisphere
(ipsilateral to movement). (B) Correlates of value difference between the options contralateral and ipsilateral to the hemisphere, timelocked to the
response. Color represents T-statistic; the absence of any bordered region reflects the absence of any significant clusters surviving multiple
comparisons correction. (C) Contrast of trials on which chosen option was contralateral vs. ipsilateral to the hemisphere. Bordered areas reflect
significant clusters (cluster-corrected P,0.05; permutation test).
doi:10.1371/journal.pcbi.1003225.g004

Value-Based Choice: Goods or Action Space?
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Figure 5. Lateral premotor cortex, similar to primary motor cortex, shows ‘action-space’ value followed by choice signals during
sequential trials (A–E), and choice signal but no value signal during comparison trials (F–G). Parts A–E are equivalent to parts B–F of figure 2.
(A) Correlates of the value of option 1 at time of option 1 presentation, in hemisphere contralateral to option presentation. Color represents T-
statistic; bordered areas reflect significant clusters (cluster-corrected P,0.05; permutation test). (B) Correlates of the value difference between the
options contralateral and ipsilateral to the hemisphere, at the time of option 2 presentation. (C) Contrast of trials on which the chosen option is
contralateral vs. ipsilateral to the hemisphere, at the time of option 2 presentation. (D) Timecourse of beta band correlates of value of contralateral
option (blue and choice (red) at time of option 1 presentation. Lines represent mean +/2 95% confidence intervals across subjects. (Note that as 95%
confidence intervals are plotted, rather than standard error of the mean (s.e.m.), error bars are ,1.96 times wider than when plotting s.e.m.). (E)
Timecourse of beta band correlates of value difference (blue) and choice (red) between options contralateral vs. ipsilateral to the hemisphere at time of
option 2 presentation. Parts F–G are equivalent to parts B–C of figure 4. (F) Correlates of value difference between the options contralateral and ipsilateral
to the hemisphere, timelocked to the response. (G) Contrast of trials on which chosen option was contralateral vs. ipsilateral to the hemisphere.
doi:10.1371/journal.pcbi.1003225.g005
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of the two accounts – that the brain adaptively adopts the

strategy most appropriate to the current context.

The hypothesis that different tasks may be solved in different

frames of reference may help to resolve apparently discrepant

findings from previous studies in the literature. In one set of studies

examining single unit activity during an economic choice task,

Padoa-Schioppa and colleagues have identified dissociations

between activity in orbitofrontal cortex (OFC) and anterior

cingulate cortex (ACC). In this task, OFC neurons encode both

pre- and post-decision variables, but not in the frame of reference

of actions [28]. By contrast, ACC neurons encode solely post-

decision variables, and are modulated by movement direction [4].

This has led to the hypothesis that in this task, items (here

quantities of fruit juice) are compared in an abstract ‘goods space’

in OFC/VMPFC, before undergoing a goods-to-action transfor-

mation in ACC in order to implement the required action to

obtain that item [27]. This hypothesis gains support from the

presence of post-decision (chosen value) signals in VMPFC in a

task in which a stimulus value-based comparison is made, but the

action needed to implement the decision is not yet known [18]. On

the other hand, it appears that when subjects are presented with

tasks that can only depend upon learnt action values rather than

stimulus values, then the structure critical for value-guided choice

may change, with lesions to ACC and not OFC affecting

behaviour [31,42]. In even simpler forced-choice trials, on a task

that does not require integration of information across multiple

dimensions, there appears to be a temporal evolution from

the initial coding of option values to the subsequent coding of

action-related signals within relatively late, motoric structures,

such as the supplementary eye fields [43]. In experiments where

multiple possible actions are presented and held in working

memory prior to a decision cue, enhanced representations of

these actions can be seen prior to the decision in premotor

cortex [8]. Similarly, when a free choice is made between

alternative arm movements, evidence for a competitive decision

mechanism (in the frame of reference of actions) is found in the

parietal reach region [44]. Thus, in tasks where decisions in

stimulus space or goods space are favoured, then neural

correlates of the decision process is found in a stimulus- or

goods-related frame of reference, whereas in tasks more closely

tied to the comparison of different actions, correlates of the

decision process appear in an action frame of reference. This

observation unifies apparently discrepant findings as to the

precise locus of decision-making processes in the brain.

On the other hand, the differing signals across the two trial types

may not be a reflection of different neural mechanisms of choice

being used in each context, but instead differential sensitivity to one

or other mechanism in our analysis. For instance, it is possible that

action value signals are present in motor cortices in all trials, but

without a delay period they become too transient to be detected.

Similarly, it is possible that the relatively weak sensitivity of MEG

to deep anterior structures such as VMPFC [45] means that on

sequential trials, any value comparison process that takes place

over a space of several seconds is too weak to be detected. Future

studies may address these questions by direct invasive recording

from these structures, across different conditions.

Figure 6. Ventromedial prefrontal cortex (VMPFC) beta band synchronisation reflects value difference on harder ‘comparison’
trials, but not on ‘sequential’ trials. (A) Correlates of the value difference between chosen and unchosen options, timelocked to the response, on
harder comparison trials. Color represents T-statistic; bordered areas reflect significant clusters (cluster-corrected P,0.05; permutation test). (B) As (A),
but for ‘nobrainer’ trials in which probability and magnitude advocated the same response. (C) Correlates of the value difference between chosen and
unchosen options, timelocked to option 2 presentation, on harder sequential trials. (D) Separating the VMPFC beta band response on harder
comparison trials reveals a positive correlate of the value of the chosen option (blue) and a negative correlate of the value of the unchosen option
(red) prior to the response. Bars represent mean +/2 95% confidence intervals across subjects. (E) As (D), but for ‘nobrainer’ trials. (F) Separating the
beta band response on harder sequential trials reveals no correlate of either chosen or unchosen value in VMPFC at the time of option 2 presentation.
doi:10.1371/journal.pcbi.1003225.g006
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Our findings from the sequential trials suggested one of two

possibilities. One interpretation is that these trials were solved

using a comparison of action values, as demonstrated by the

transformation from a lateralised action value signal into a

categorical choice signal in motor cortex beta band oscillations. An

alternative account is that this signal is better interpreted as a

(graded) motor planning signal, but there was a continual updating

of this plan as a consequence of value comparison taking place

elsewhere. Here, it is perhaps telling that many signals that have

been interpreted as the intention to move by one set of researchers

[46] have been related to decision-related signals by others [22].

In either case, these results have additional implications for our

understanding of the role of motor cortex beta band oscillations in

action selection. Whereas early accounts of these oscillations

suggested that they might reflect an ‘idling rhythm’ [47], more

recent suggestions have proposed that beta desynchronisations

may reflect a change in the current sensorimotor set or status quo

[38], or an increased likelihood of generating a novel voluntary

action [39,40]. Such proposals align with a role for decreases in

beta band activity during response preparation, an idea corrob-

orated by recent findings that lateralised beta reflects the

accumulation of evidence for a leftward or rightward response

during perceptual discrimination [9]. By contrast, a recent study

has highlighted that lateralised beta band desynchronisation

reflects the evidence for a particular response, rather than

response preparation per se, whilst integrating evidence to make a

decision [26]. The current findings on ‘sequential’ trials suggest a

similar role for beta desynchronisation, as evidenced by the

correlation with action value above and beyond any correlation

with the categorical response that is going to be effected on a given

trial (figure 2).

On comparison trials, we found that in the beta band, value

comparison signals emerged in VMPFC (figure 6) that preceded

categorical choice signals in primary motor cortex. Critically, we

found that such signals were present on trials in which magnitude

and probability advocated opposing choices (‘harder’ trials), but

not on trials in which they both advocated the same choice

(‘nobrainer’ trials). Such trials are those on which conflict between

the two attributes comes into play, and attention must be guided to

the attribute that is most salient for determining the current

decision. Notably, this was not the case in the posterior superior

parietal lobule (figure 8), in which goods value difference signals

were present on both ‘harder’ and ‘nobrainer’ trials. This replicates

findings in lower frequency ranges (2–10 Hz) from the same

dataset [5], and may reflect an important difference between

VMPFC and parietal cortex when considering value-guided

choices with multiple attributes.

One further noteworthy difference between the signals observed

in comparison and sequential trials is the relative timing of value

difference and categorical choice signals in the two trial types. In

sequential trials (figure 3), there was a median latency difference of

approximately 200 ms between the peak of (action) value

difference signal in motor cortex, and the peak of the categorical

choice signal in the same region. By contrast, in comparison trials

(figure 7), there was a median latency difference of around 500 ms

between the peak of the (goods) value difference signal in VMPFC,

and the peak of the categorical choice signal in motor cortex. Such

differences would be expected if it were assumed that there is a

temporal cost for translating signals in goods space into action

space, and for conveying the results of computations from one

brain region to another.

It is important to note that there are two differences between the

comparison and sequential trials – both the imposition of a delay

prior to the response, and the sequential vs. simultaneous

presentation of options. These differences were selected as they

captured some of the key differences between previous paradigms

in which goods and action value signals had been observed in

previous tasks. It is, of course, completely reasonable that

investigators have designed paradigms more like our ‘comparison’

trial type [4,14,16–18,28,31,32] or like our ‘sequential’ trial type

[4,27,28] – importantly, however, the signals they observe may

lead them to different conclusions about the neural mechanisms of

value-guided choice. Future work will be needed to refine precisely

which of these two manipulations is most critical for pushing

signals towards being found in one space or another. It is

noteworthy, for instance, that in some experiments where options

have been presented simultaneously but a delay is still imposed,

goods-space value signals can still be isolated (albeit using different

measures of neural activity) [16,48].

Figure 7. Relative latency of ‘goods value difference’ effect (in
VMPFC beta synchronisation) and ‘choice’ effect (in motor
cortex beta desynchronisation), timelocked to response on
‘comparison’ trials. (A) Comparison of the latency of the peak
correlate of ‘value difference’ regressor in VMPFC beta synchronisation
(blue) against the latency of the peak correlate of the ‘categorical
choice’ regressor in motor cortex beta desynchronisation (red). *
denotes p,0.05, paired T-test across 18 subjects. (B) Histogram of
individual subjects’ latency differences between ‘value difference’ peak
latency and ‘categorical choice’ peak latency; red line denotes median
latency across subjects.
doi:10.1371/journal.pcbi.1003225.g007
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In previous fMRI studies of sequential choice [10], VMPFC

has been found to encode a goods value signal at the time of

option presentation. At first sight, this appears discrepant with

the absence of a goods value signal in VMPFC on our

‘sequential’ trials. Whilst a beta-gamma desynchronisation in

VMPFC appeared to carry some information about the value of

option 1, this did not reach statistical significance (figure S2). It

is important, however, to consider the differences between what

computational processes are likely to be visible to fMRI and

MEG recordings. We have previously demonstrated that the

MEG signal during goods value comparison can be modelled by

the dynamics of competition in an excitation-inhibition network

(EIN) [5]. This suggests valuation signals visible to MEG reflect

trial-to-trial variability in this dynamic, competitive process. By

contrast, the relationship between EIN activity and the BOLD

fMRI signal is more complex, but it is related not only to local

processing, but also to afferent input to a brain region [49]. One

potential reconciliation of these findings is therefore that a goods

value ‘afferent input’ signal is always present in VMPFC, and so

can be seen in VMPFC fMRI signal, even when comparison can

be found to take place in later, motoric structures [10]. By

contrast, in situations when VMPFC supports comparison of

options in goods space, this local processing is witnessed in both

MEG dynamics [5] and also in fMRI value difference signals

[16,32,50].

In summary, we have here presented evidence that when

performing two formally identical decision tasks, the temporal

evolution of value-related and choice signals differs depending

upon how the information is revealed to subjects. If the value of

each action is revealed separately, decision signals appear in an

action-based frame of reference, reflected by beta desynchronisa-

tions in motor cortex. If both options are presented simultaneous-

ly, and subjects have to integrate across dimensions to form their

decision, decision signals appear in an abstract frame of reference

(chosen value minus unchosen value), reflected in beta synchro-

nisations in VMPFC.

Materials and Methods

Experimental task
18 subjects (age range 21–33, 10 male, 8 female, recruited from

the University of Oxford) repeatedly chose between two risky

prospects, comprising differing reward magnitudes (represented by

bar width) and probabilities (represented numerically), in order to

obtain monetary reward (figure 1A). The probabilities of winning

on each option were independent; thus, on any given trial, both,

neither or either option(s) might yield reward. Stimuli were drawn

such that reward magnitude and probability were never identical

across the two options; subjects therefore needed to integrate

across stimulus dimensions to make optimal choices. On some

Figure 8. Right posterior superior parietal lobule, identified in our previous study of reward-guided decision making [5], shows
beta correlates of chosen-unchosen value on both ‘harder’ and ‘nobrainer’ comparison trials, but not on harder sequential trials.
Parts A–F are equivalent to parts A–F of figure 6. (A) Correlates of the value difference between chosen and unchosen options, timelocked to the
response, on harder comparison trials. Color represents T-statistic; bordered areas reflect significant clusters (cluster-corrected P,0.05; permutation
test). (B) As (A), but for ‘nobrainer’ trials in which probability and magnitude advocated the same response. (C) Correlates of the value difference
between chosen and unchosen options, timelocked to option 2 presentation, on harder sequential trials. (D) Separating the pSPL beta band response
on harder comparison trials reveals a positive correlate of the value of the chosen option (blue) and a negative correlate of the value of the unchosen
option (red) prior to the response. Bars represent mean +/2 95% confidence intervals across subjects. (E) As (D), but for ‘nobrainer’ trials. (F)
Separating the beta band response on harder sequential trials reveals no correlate of either chosen or unchosen value in pSPL at the time of option 2
presentation.
doi:10.1371/journal.pcbi.1003225.g008
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trials, however, both probability and magnitude were larger on

one side than the other, a decision we classify as a ‘no brainer’.

On comparison trials, decisions were presented onscreen until a

response was made. On sequential trials, one option was presented

for 800–1200 ms jittered, followed by a 200–400 ms jittered delay,

then the second option for 800–1200 ms jittered; subjects could

respond only after removal of the second option. Stimuli were

presented on either side of a fixation point; subjects selected the

left option with a left-thumb button press, and the right option

with a right-thumb buttonpress.

The difference between the two conditions was explained to the

subjects in the instruction sheet thus: ‘For half of the decisions you

have to make, you will see the screen as shown above (in figure 1A).

In these trials, simply respond as soon as you feel that you have

made your decision. For the other half of the decisions you have to

make, you will see the two gambles one after the other, and then

be presented with a screen displaying only a question mark. In

these trials, you must wait for the question mark to appear before

responding.’

On choosing a rewarded option, a ‘winnings bar’ displayed at

the bottom of the screen increased in magnitude in proportion to

the width of the chosen option. When this winnings bar reached a

gold target on the far right of the screen, £2 was added to subjects’

earnings, and the winnings bar reset itself to its original size. Total

typical earnings for the task ranged from £26 to £34.

All subjects provided informed consent in accordance with local

ethical guidelines.

Behaviour: Fitting of subjective value functions
Subjective utility functions were derived from Prospect Theory

[35], and were of the following form:

v(ro)~ro
a

w(po)~
po

c

(po
cz(1{po)c)

1
c

where ro and po are the reward magnitude and probability of

gaining reward, respectively, on outcome o. The subjective

expected value of outcome o was calculated as:

sEVo~v(ro)|w(po)

The probability of choosing each option was then calculated using

a softmax choice rule:

P(C~o)~
e

sEVo
t

Pn

i~1

e
sEVi

t

where n is the number of options (2 for this study) and t is a

temperature parameter that determines the stochasticity of

action selection. Values of a, c, and 1/t (inverse temperature,

denoted by b in results section) were fit by maximizing the

likelihood of each subject’s choices in the experiment, using

non-linear fitting routines in MATLAB (The Mathworks,

Natick, MA), separately for sequential and comparison trials.

As in [5], we found that Bayesian Information Criteria (BIC)

favoured Prospect theory over a simpler model that used

objective probability and magnitude to compute expected value.

A comparison between fitted parameter values in sequential and

comparison trials is shown in figure 1C–E. The fitted values

were used to calculate subjective expected values, which have

been found to provide a better fit to neural data in value-guided

decision tasks [51,52], to use as trialwise regressors in analysis of

MEG data.

Behaviour: Logistic regression analysis
We used logistic regression to investigate the influence of p1-p2

(probability difference between option 1 and 2), r1-r2 (reward

magnitude difference) and EV1-EV2 (objective expected value

difference) on the probability of choosing option 1 (see figure 1B).

This was performed separately for each trial type. We normalised

each explanatory variable before entry into the logistic regression

(to ensure that parameter estimates were comparable across the

different variables), and included a constant term to model any

bias towards choosing one option over the other. For each

explanatory variable and each trial type, we then performed a one-

sample T-test across subjects’ parameter estimates, to infer which

variables had a significant effect on choice behaviour. We also

performed a paired T-test between parameter estimates for

sequential and comparison trials for each explanatory variable,

to infer whether any variables had a greater or lesser influence on

behavior between the two trial types.

MEG/MRI data acquisition
MEG data were sampled at 1000 Hz on a 306-channel

VectorView system (Elekta Neuromag, Helsinki, Finland),

with one magnetometer and two orthogonal planar gradiom-

eters at each of 102 locations distributed in a hemispherical

helmet across the scalp, in a magnetically shielded room. A

band-pass filter of 0.03–330 Hz was applied during acquisi-

tion. Head position was monitored at the beginning of each

run, and at twenty-minute intervals during each run, using

four head position indicator (HPI) coils attached to the scalp.

Data were acquired in two or three runs, with pauses between

blocks to save data acquired. HPI coil locations, headpoints

from across the scalp, and 3 anatomical fiducial locations

(nasion, left and right pre-auricular points) were digitized

using a Polhemus Isotrak II prior to data acquisition.

Simultaneous 60-channel electroencephalography data was

acquired using a MEG-compatible EEG cap (ANT Neuro,

Enschede, Netherlands), but is not discussed here. Vertical

electrooculogram (EOG) and electrocardiogram were also

measured to detect eye blinks and heartbeat, respectively.

Stimuli were presented on a screen situated 1.5 meters away

from the subject, inside the magnetically shielded room;

stimuli were displayed via projector (refresh rate 60 Hz)

situated outside the room. Stimulus presentation and timing

was controlled using Presentation software (Neurobehavioral

Systems, Albany, CA).

Magnetic resonance imaging (MRI) data for forward model

generation were acquired using an magnetization-prepared rapid

gradient echo (MP-RAGE) sequence on a Siemens 3T TRIO

scanner, with voxel resolution 16161 mm3 on a 17661926192

grid, echo time = 4.53 ms, inversion time = 900 ms, recovery

time = 2200 ms.

MEG data pre-processing
External noise was removed from MEG data using the signal

space separation method [53], and adjustments in head position

across runs (detected using HPI) were compensated for using

MaxMove software, both implemented in MaxFilter version 2.1

(Elekta Neuromag, Helsinki, Finland). Continuous data were

down-sampled to 200 Hz and low-pass filtered at 40 Hz, before
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conversion to SPM8 format (http://www.fil.ion.ucl.ac.uk/spm).

Eye blinks were detected from the EOG channel (EOG data was

bandpass filtered at 1–15 Hz; local maxima lying more than 3

standard deviations from the mean were considered blinks).

Detected eye blinks were used to generate an average eye blink

timecourse, on which principle components analysis was run to

obtain spatial topographies describing the average eye blink; these

were regressed out of the continuous data (as per [54], without

inclusion of brain source vectors as co-regressors; see http://www.

fil.ion.ucl.ac.uk/,lhunt (‘Resources’ tab) for an SPM-based

tutorial). Data were epoched with respect to stimulus onset

(21000 to 2000 ms around stimulus, with 2200 to 0 ms pre-

stimulus baseline), and button press (22000 to 1000 ms around

response, again with 2200 to 0 ms pre-stimulus baseline).

Artifactual epochs and bad channels were detected and rejected

via visual inspection, using FieldTrip visual artifact rejection

routines [55].

MRI processing and forward modelling
All MRI processing and forward modelling was performed

using SPM8. MRI images were segmented and spatially normal-

ized to an MNI template brain in Talairach space; the inverse of

this normalization was used to warp a cortical mesh derived from

the MNI template to each subject’s MRI space [56]. Digitized

scalp locations were registered to head model meshes using an

iterative closest point algorithm, to affine register sensor locations

to model meshes [56]. Forward models were generated based on a

single shell using superposition of basis functions which will

approximately correspond to the plane tangential to the MEG

sensor array [57]. The forward models are implemented in

FieldTrip’s forwinv toolbox [55].

Beamformer source reconstruction
Source reconstruction was carried out using linearly constrained

minimum variance (LCMV) beamforming [58] adapted for use on

Elekta Neuromag data by using variance normalization between

(magnetometer and planar gradiometer) sensor types, and

dimensionality reduction to 64 spatial principal components

[59]. This was used to reconstruct data to a grid across MNI

space, sampled with a grid step of 7 mm. Full details of the

beamforming approach used are given in [5]. The sensor

covariance matrix was estimated separately for stimulus-locked

and response-locked data using data pass band-filtered between 1

and 40 Hz, and 0% regularization.

Whole-brain analysis of left minus right responses
In a preliminary whole-brain analysis, we looked for areas with

greater beta power (13–30 Hz) on trials where the right button was

pressed than on those where the left button was pressed, 500 ms–

1000 ms after the last stimulus was presented (i.e. after option 2

was presented in sequential trials; after both options were

presented in comparison trials). We performed this contrast at

each of the beamformed voxels to produce a whole brain image,

sampling the brain with a 7 mm gridstep. We then performed a

one-sample T-test across subjects to produce the T-statistic images

shown in figure 2A/3A (upsampled to 2 mm isotropic for display

purposes). Inference was performed using a threshold of p,0.05

corrected voxelwise under assumptions of Gaussian Random Field

theory.

We then beamformed data to the peaks from this analysis, and

to a VMPFC peak identified in a previous paper [5], to perform

time-frequency regression in order to test for correlates of value in

these areas.

Time-frequency regression of source-reconstructed data
We used multiple regression to estimate the contribution of the

value of each option and the response made to power in each

frequency band at each timepoint through the decision. In the

sequential trials, at the time of option 1 presentation (figure 2B/E),

we included the value of this option as the regressor (and searched

in contralateral M1 for responses). The full regression model at

each timepoint and frequency band therefore consisted of three

terms – a constant (b0 in regression model below), the effect of the

value of option 1 (b1 below), and a categorical term reflecting

which option was chosen (b2). At the time of option 2 presentation

(figure 2C/F), we included the (action-space) value difference

between contralateral and ipsilateral options (and calculated the

differential response in contralateral minus ipsilateral M1). The

full regression model consisted of four terms – a constant (b0), the

value of contralateral (b1) and ipsilateral (b2) options, and a

categorical term reflecting which option was chosen (b3). The

effect of action value difference was estimated by performing a

contrast of parameter estimates for b1 and b2. In the comparison

trials, we performed the same action-space analysis in M1

(figure 4B); and a goods-space analysis in VMPFC, in which we

included the value difference between chosen and unchosen trials

(figure 6A/B/D/E), separately for harder and nobrainer trials.

Again the full regression model consisted of four terms – a constant

(b0), the value of chosen (b1) and unchosen (b2) options, and a

categorical term reflecting which option was chosen (b3). The

effect of goods-space value difference was estimated by performing

a contrast of parameter estimates for b1 and b2. We also performed

the same analysis for harder sequential trials (figure 6C/F).

Importantly, in all regressions, the inclusion of the final decision

regressor as a covariate allowed us to isolate the variance that

could be explained by value independent of choice. Value

regressors were normalized prior to regression, so they occupied

a similar range of values across subjects.

At each trial, the source-reconstructed data d(ri) was decom-

posed into 40 time-frequency bins linearly spaced between 1 and

40 Hz, by convolving the data with Morlet wavelets (Morlet factor

5) [60]. This yielded, at each trial tr, frequency f, and timepoint t,

an instantaneous estimate of the power at that frequency. Linear

regression was then used to estimate the contribution of the n

explanatory variables (EV) to this estimated power:

d(ri)
tr,f ,t~b0

f ,tzb1
f ,t � EV1

trz:::zbn
f ,t � EVn

trzetr,f ,t

where e is the residual from the regression. The parameter

estimates b1…n, normalized by their variances, were submitted to a

group-level one-sample T-test to test for significant effects of each

explanatory variable.

For statistical inference on the effects of overall value and value

difference on region of interest data, we performed a cluster-based

permutation test at the group level. The logic of this permuation

test is identical to that used in non-parametric statistical inference

of cluster sizes in functional MRI and other MRI based analyses

[61]. We generated 5000 randomly permuted T-statistics for each

timepoint and frequency bin, by randomly sign-flipping the group

design matrix 5000 times. We then thresholded each permuta-

tion’s time-frequency decomposed T-statistic map at a threshold of

T(17).2.0, and measured the maximum size of any cluster passing

this threshold in the map, to build a null distribution of cluster

sizes. We then compared the size of clusters from the true T-

statistic map to those from the null distribution. We report clusters

at a significance level of p,0.05, corrected for multiple compar-

isons across time and frequency.
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Supporting Information

Figure S1 In ‘sequential’ trials, the value of option 1 is encoded

earlier than the value of option 2 in motor cortex beta

desynchronisation, at the time of option 2 presentation. The

regression coefficient of VOpt1 is shown in blue (arbitrary units,

mean +/2 95% confidence intervals across subjects); the effect of

VOpt2 is shown in green.

(EPS)

Figure S2 VMPFC shows no significant value coding in action

space, or coding of action. Layout is equivalent to main figure 5. (A)

Correlates of the value of option 1 at time of option 1 presentation.

Color represents T-statistic. The beta-gamma desychronisation at

approximately 700 ms–1100 ms does not quite survive cluster

correction. (B) Correlates of the action value difference at the time

of option 2 presentation. (C) Contrast of trials on which the chosen

option is contralateral vs. ipsilateral, at the time of option 2

presentation. (D) Timecourse of beta band correlates of value of

contralateral option (blue and choice (red) at time of option 1

presentation. Lines represent mean +/2 95% confidence intervals

across subjects. (E) Timecourse of beta band correlates of action

value difference (blue) and choice (red) at time of option 2

presentation. (F) Correlates of action value difference in compar-

ison trials, timelocked to the response. (G) Contrast of trials on

which chosen option was contralateral vs. ipsilateral in comparison

trials, timelocked to thre response.

(EPS)

Figure S3 pSPL shows no significant value coding in action

space, or coding of action. Layout is equivalent to main figure 5. (A)

Correlates of the value of option 1 at time of option 1 presentation.

Color represents T-statistic. (B) Correlates of the action value

difference at the time of option 2 presentation. (C) Contrast of

trials on which the chosen option is contralateral vs. ipsilateral, at

the time of option 2 presentation. (D) Timecourse of beta band

correlates of value of contralateral option (blue and choice (red) at

time of option 1 presentation. Lines represent mean +/2 95%

confidence intervals across subjects. (E) Timecourse of beta band

correlates of action value difference (blue) and choice (red) at time

of option 2 presentation. (F) Correlates of action value difference

in comparison trials, timelocked to the response. (G) Contrast of

trials on which chosen option was contralateral vs. ipsilateral in

comparison trials, timelocked to the response.

(EPS)
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