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Abstract

The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains
open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-
and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for
either current or conductance synapses, with and without synaptic depression. We show that its solutions match
simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on
the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight
distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called
tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude
distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong
synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small
number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.
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Introduction

Experiments analyzing the distribution of synaptic weights

impinging onto neurons typically observe low-amplitude peaks with

only few, large-amplitude excitatory (EPSPs) or inhibitory post-

synaptic potentials (IPSPs) [1–14]. These have been fitted by

lognormal [1], truncated Gaussian [10,11] or highly skewed non-

Gaussian distributions [4,6,9,13]. This raises the question of the

functional role of such relatively rare but powerful synaptic inputs.

The functional implications of such strong synapses can be very

significant [15]. Circuits of the Mind [16] proposes a powerful

computational brain architecture (the neuroidal model) to explain

the brain’s remarkable flexibility to quickly memorize new events

and associate them with previous stored ones. It is based on a very

small fraction of powerful excitatory synapses. Furthermore, a

recent study [17] of strong but sparse synapses, combined with weak

and probabilistic synaptic amplitude distributions provided both

computational justification as well as empirical support for the role

of these rare yet powerful synaptic events in supporting low-

frequency, spontaneous firing in neuronal networks at rest. This

question has become more acute following several reports that

individual cortical pyramidal neurons from human tissue recovered

during surgery are sufficiently powerful to drive other neurons by

themselves [18,19], unlike equivalent cells in rodent cortex.

The relation between probabilistic synaptic weight distribution

and population dynamics can be studied using simulations [17].

However, the large parameter space to be explored and the need

to repeat simulations many times makes this an impractical first

method to apply, in particular when modeling the activity in large
regions or even the entire mammalian brain. An alternative is the
analytical Fokker-Planck method, based on a continuous stochastic
process (a brief review of stochastic processes following [20] and
[21–23] has been provided in Text (S1)) that models the dynamics
of homogeneous neuronal populations with a single partial
differential equation (PDE). It is able to quickly explore parameter
space and provide analytical insights [24] and characterizes any
distribution of synaptic weights by just two quantities-the drift and

diffusion terms in the equation, corresponding to what the mean

and variance of the membrane potential would be if the neuron

did not have a threshold. But this method cannot reproduce

dynamics in the presence of large synapses. Models based on jump

stochastic processes [25,26] treat synaptic input as being composed

of pulses with finite amplitudes. The population dynamics in the

presence of such synapses have been investigated using analytical

and numerical techniques [27–38]. Richardson and Swarbrick

[39] characterized analytically an integral formulation in the case

of exponentially distributed stochastic jump processes. We here

present a fast, semi-analytical approach to study the integral

formulation of stochastic jump processes with arbitrary distribu-

tions. We apply this method to study the role of synaptic

distributions on neuronal population dynamics.

Results

Mathematical formulation
The equation for the membrane potential v(t) relative to rest for

a generalized leaky integrate and fire (gLIF) neuron with
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normalized capacitance is,

dv~L(v)dtzds ð1Þ

s is a random variable characterizing the shot-noise synaptic

current. It takes the value s~0 with probability 1{f (t)dt and

s~w with probability q(w)f (t)dt. f (t) is the input synaptic event

rate so that f (t)dt is the mean number of inputs in a time dt. q(w)

represents the distribution of synaptic weights, with
Ð w2

w1
q(w)dw~1

and w1 and w2 being the minimum and maximum synaptic

weights respectively. When the synaptic input is sufficient to cause

the membrane potential to exceed a threshold value h, it is reset so

that

v?v{h ð2Þ

This reset implementation is used to account for the shot-noise

nature of the synaptic input. For nearly instantaneous synapses, w

represents the peak of the post-synaptic potential (either EPSPs or

IPSPs) (for non-instantaneous synapses, see Methods: Non-

instantaneous synapses). L(v) represents the sum of all non-

synaptic currents, which can be voltage-dependent but not

explicitly time-dependent. For the standard LIF neuron,

L(v)~{v=tm, where tm is the membrane time constant. For an

exponential integrate-and-fire neuron, L(v)~{v=tmz

(DT=tm)exp (v{VT )=tmð Þ. VT is the spike detection threshold

and DT is the slope factor. The resulting equation for the

probability p(v,t) of a neuron to have a voltage v in ({?,h) at

time t-the master equation-is an integro-partial differential

equation with displacement (DiPDE),

Ltp(v,t)~Lv L(v)p(v,t)ð Þ{f (t)p(v,t)

zf (t)

ðw2

w1

p(v{w,t)q(w)H(h{vzw)dwzj(v,t),
ð3Þ

with

j(v,t)~f (t)

ðw2

w1

H(v)H(w{v)p(vzh{w,t)q(w)dw:

H(:) is the unit step function and h the threshold membrane

potential.

The first term on the RHS in equation (3) incorporates the drift due

to non-synaptic currents. The second term removes the probability for

neurons which previously were at potential v and received a synaptic

input. The third term adds the probability that a neuron w away in

potential receives a synaptic input such that its potential is changed to

v. The last term j(v,t) represents a probability current injection of the

neuron which previously spiked. j(v,t) includes the effect of any excess

synaptic input above the threshold at which spiking occurs, due to

large super-threshold synaptic events. To account for the effect of the

excess input with instantaneous synapses, the probability current is

injected between the resting potential and vz, where vz represents

the membrane potential that would be reached due to the excess

input. This serves the purpose of ‘remembering’ the excess input,

whose effect would have been held by the synaptic variables in the case

of slow synapses, without losing it on resetting the membrane potential

after spiking. The output firing rate is given by

fout(t)~

ðh

{?
j(v,t)dv ð4Þ

In the Fokker-Planck formalism, j(v,t) is part of a boundary condition.

If (LL=Lv)Dhv0, then there is no probability current through

threshold due to continuous processes for this system. The alternative

case is discussed in (Methods: Boundary conditions). Since we include

non-infinitesimal synaptic inputs in an infinitesimal time interval, it is

possible for a neuron to cross the threshold by a large amount. In

equation (3) , this additional depolarization is accounted for in the

term j(v,t) as outlined above. The case in which this additional

depolarization is ignored is treated in (Methods: Boundary conditions).

Simpifications obtained with d-function distribution of synaptic

weights (q(w’)~d(w{w’)) are described in (Methods: Simplifica-

tions). It is also possible to include the effect of synaptic delays and

distributions of synaptic delays within the DiPDE formalism, as

discussed in (Methods: Non-instantaneous synapses).

The stationary solution for equation (3) can be obtained as the

solution to the following equation,

1

f

d(L(v)ps(v))

dv
~ps(v)

{

ðw2

w1

ps(v{w)q(w)H(h{vzw)dw

{

ðw2

w1

H(v)H(w{v)ps(vzh{w)q(w)dw

ð5Þ

where ps(v) is the stationary probability distribution for the

membrane potential.

Although the model can include both excitatory and inhibitory

connections, all the results presented below, except for those in

Figure S6 c) and d), are for feed-forward networks with excitatory

connections.

Comparison to Fokker-Planck formalism and simulations
Intuitively, this model quickly diverges from the Fokker-Planck

formalism when the synaptic strength is large. Consider the

Author Summary

Neurons communicate via action potentials. Typically,
depolarizations caused by presynaptic firing are small,
such that many synaptic inputs are necessary to exceed
the firing threshold. This is the assumption made by
standard mathematical approaches such as the Fokker-
Planck formalism. However, in some cases the synaptic
weight can be large. On occasion, a single input is capable
of exceeding threshold. Although this phenomenon can
be studied with computational simulations, these can be
impractical for large scale brain simulations or suffer from
the problem of insufficient knowledge of the relevant
parameters. Improving upon the standard Fokker-Planck
approach, we develop a hybrid approach combining semi-
analytical with computational methods into an efficient
technique for analyzing the effect that rare and large
synaptic weights can have on neural network activity. Our
method has both neurobiological as well as methodolog-
ical implications. Sparse but powerful synapses provide
networks with response celerity, enhanced bandwidth and
stability, even when the networks are matched for average
input. We introduce a measure characterizing this re-
sponse. Furthermore, our method can characterize the
sub-threshold membrane potential distribution and spik-
ing statistics of very large networks of distinct but
homogeneous populations of 10s to 100s of distinct
neuronal cell types throughout the brain.

Synaptic Distribution Influences Neuronal Dynamics
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hypothetical case of a neuron starting at rest which has all the

synapses equal and large. After a short time step, the Fokker-

Planck formalism produces a narrow Gaussian distribution in

membrane potential near rest, while the DiPDE formalism yields a

membrane potential distribution which is a sum of two scaled delta

functions: a large one at rest, and a small one at the synaptic

weight. Over time, the Fokker-Planck equation converges to a

single broader Gaussian, while the DiPDE formalism leads to a

larger coefficient for the delta function at the synaptic weight

value. A generalization to conductance-based synapses is present-

ed in (Methods: Conductance-based synapses), while a general-

ization to the case of exponential integrate-and-fire neurons [40] is

presented in (Methods: Exponential integrate-and-fire neurons).

We solve equation (3) without the displacement terms using the

method of characteristics. The characteristic equations can be

solved to obtain a non-uniform discretization of the membrane

potential. For the standard LIF neuron, the characteristic

equations are solved analytically. We then numerically add the

effects of the displacement terms at every time step (see Methods:

Numerical Solutions). This semi-analytic technique has the

advantage of reducing errors due to numerical diffusion at each

time-step. The solution of the DiPDE equation (3) is in good

agreement with simulations of 10,000 leaky integrate-and-fire

neurons for both low frequency, large amplitude (Figure (1)) and

for high frequency, small amplitude distributions (Figure (S1)).

Differences between continuous and discontinuous stochastic

processes can be seen in the transient behavior of the probability

distribution of membrane potential in the top panel (Figure 1a,b,c)

and are statistically significant. p-values for differences between the

sub-threshold steady-state membrane potential distributions have

been provided in Text (S4), Table (S2) and Table (S3).

The steady state firing rate obtained from DiPDE is fo~4:7 Hz

and from simulations is fo~4:9 Hz. The small discrepancy is

caused in part by simulating synapses which are not instantaneous

but rather have a time constant of ts~0:1 ms (for more details see

(Methods: Non-instantaneous synapses)). Since the stochastic input

is Poisson-distributed, expected 95% intervals for spike counts can

be directly computed from DiPDE (see Methods: Expected 95%

intervals for spike counts and Figure (1f)). The transient time to

firing, defined as the time taken to reach 10% of the equilibrium

firing rate fo, is ts~7:0 ms and provides a good estimate of how

quickly the neuronal population responds to a given input.

By comparison, the Fokker-Planck formalism results in a lower

steady state firing rate of fo~3:6 Hz and a slower transient time

ts~15:3 ms. The higher number of neurons closer to resting

potential at equilibrium in Figure (1e) reflects the nature of the

‘jump’ stochastic process. For higher-frequency, low-amplitude

inputs, all three methods converge to the same results (Text (S2)

and Figure (S1)). Thus, the formalism presented in equation (3) is

in good agreement with simulations for instantaneous synaptic

input and does not depend on the choice of time-step for the

numerical solution (Figure (S2)). For non-instantaneous synapses,

upper and lower bounds on the steady state output firing rates can

be obtained (Methods: Non-instantaneous synapses, Figure (S4)

and Figure (S5)). The DiPDE implementation also matches

equivalent simulations for conductance-based synapses

(Figure (1g), Figure (S3)) and exponential integrate and fire

neurons (Figure (1h)).

Effect of synaptic weight distribution on population
dynamics

We used the DiPDE formalism to investigate the effect of

generic synaptic weight distribution on the steady-state, subthresh-

old membrane potential distribution and output firing rates in

feed-forward networks. Gaussian synaptic weight distributions

with different mean weights whose input firing rates are adjusted

to produce the same average synaptic current, result in different

transient and steady-state firing rates as well as different

equilibrium voltage distributions (top row in Figure (2), balanced

excitation/inhibition Figure (S6)).

We then examined six different distributions tuned to have both

the same mean (1 mV) synaptic weight and input rate (1,000 Hz), so

that the average synaptic current was the same (see Methods:

Matched synaptic distributions for the exact forms of the

distributions and their respective variances). We find that the

average synaptic current is not sufficient to accurately determine

either the output firing rate or membrane voltage distributions

(bottom row in Figure (2)). We also tested distributions that were

matched to have input synaptic current with the same mean and

variance (Figure (S7)). The undulating voltage distribution for d-

function input (Figure (2e)), reflects the nature of the ‘jump’

stochastic process. Heavier-tailed distributions generate faster

transient responses to inputs and monotonically reach steady-state

output firing rates. For example, the power-law distribution leads to

an equilibrium firing rate fo~28:3 Hz and a transient time of

ts~0:9 ms, while the Gaussian distribution results in fo~20:5 Hz

and ts~13:4 ms. Numerical results for all simulations are provided

in Table (1). Even changing a small fraction of the synaptic weights

can have a significant effect. For example, the d-function

distribution converges to the lowest steady state firing rate of

fo~19:6 Hz (for computation of 95% confidence-intervals, see

Table (1)). In contrast, the bimodal distribution which differs from

the d-function by only 3.4% of synapses having a much higher

weight, results in the highest steady state firing rate of fo~28:7 Hz.

The tail of the synaptic weight distribution has an even larger effect

on the transient times starting from rest - it is 16.2 ms for the d-

function, but only 2.6 ms for the bimodal distribution.

Since the network we study is a feed-forward network, the mean

synaptic delay results in a simple time translation of the responses.

However, the overshoot of steady state seen in Figure (2f) decreases

as the variance in the distribution of synaptic delays increases (see

Methods: Synaptic delays and Figure (S8)) relative to the

membrane time constant tm.

To analyze what characteristic of the synaptic distribution is

most important for the fast response observed for our heavy-tailed

distributions, we generated more than 1000 random distributions

matched to have the same mean synaptic weight and input rate

(Methods: Tail weight numbers) and analyzed the responsiveness

of a neuronal population (time to a fraction of the equilibrium

firing rate) as a function of the moments of the synaptic

distribution (Table (2) and top row of Figure (S10)). Higher order

moments explain part of the variance observed in the responsive-

ness. However, a larger fraction of the variance can be explained

by introducing a set of measures specifically designed to quantify

the number of strong synapses (Table (2) and bottom row of Figure

(S10); see also Figure (S9) for our six chosen distributions). These

are the tail weight numbers Qg, the density above threshold h of g

convolutions of the effective synaptic weight distribution:

Qg~

ð?
h

qg
p(w)dw ð6Þ

where qg
p(w) is related to the synaptic weight distribution q(w) by,

qg
p(w)~

X?
k~0

Pois(k; g)q(w)(�k) ð7Þ

Synaptic Distribution Influences Neuronal Dynamics
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and � represents a convolution. Pois(k; g)~
gk

k!
e{g represents a

Poisson process with mean g and k events occurring in a time-step. By

definition, q(w)(�0)~d(w), q(w)(�1)~q(w), q(w)(�2)~q(w) � q(w)
and so on. qg

p(w) thus represents the average distribution of

depolarization of a single neuron, when each neuron in the population

receives g excitatory inputs on average. Qg then represents the

fraction of neurons that spike in a neuronal population starting at rest

when each neuron in the population receives g excitatory inputs on

average.

Input-output characteristics for different synaptic weight
distributions

Having established a measure of population activity when all

neurons start at rest, we examined the dynamics resulting from an

equilibrium different from rest (see Methods: Input-output curves).

Mathematically, this amounts to analyzing the effect of synaptic

weight distribution on the transient dynamics from one stationary

solution p1
s (v) to another stationary solution p2

s (v), when the input

synaptic event rate in equation (3) is instantaneously changed by a

constant n from f (t)?f (t)zn. The different synaptic distributions

result in an overshoot of the population’s eventual equilibrium firing

rate. The overshoot becomes smaller for heavier-tailed distributions.

For the power-law, there is no overshoot present. The amount of

overshoot is a measure of the stability of the neuronal population to

sudden changes in input firing, given a distribution of synaptic

weights. The weight of the tail in the synaptic distribution correlates

with the stability of the system (Figure (3) and Figure (S12)).

The DiPDE formalism also enables insights into the influence of

short-term synaptic depression (STSD), which is known to play a

Figure 1. Comparisons between simulations and DiPDE. Panels (a)–(e) show results for excitatory, low-frequency, large amplitude current-
based synapses of constant weight. Topmost panels show time evolution of the probability distribution of membrane potentials in the neuronal
population obtained with Poisson input for q(w’)~d(w’{w) with synaptic weight (maximum EPSP) w~4:867 mV and input rate f ~100 Hz from, a)
simulations of 10,000 leaky integrate-and-fire (LIF) neurons (see Methods: Population Simulations for parameters used in simulations) , b) the
numerical solution to the DiPDE equation (3), and c) the Fokker-Planck (FP) equation. Middle panels: d) Output firing rates as a function of time. e) The
distribution of the sub-threshold steady-state membrane potential after 200 ms. These discrete synaptic jumps are evident in the voltage
distributions just after synaptic input is switched on. Bottom panels: f) Expected 95% intervals for spike counts obtained from DiPDE for simulation
data shown in panels (a)–(e). g) Output firing rates obtained from equation (21) for leaky integrate-and-fire (LIF) neurons and equivalent numerical
simulations (see Methods: Population Simulations for parameters used in simulations), for excitatory conductance-based synapses. Poisson input for
q(w’)~d(w’{w) with maximum depolarization achieved by a neuron starting from rest w~4:749 mV and input rate f ~100 Hz. h) Output firing rates
obtained from equation (21) for exponential integrate-and-fire (EIF) neurons and equivalent numerical simulations (see Methods: Population
Simulations for parameters used in simulations), for excitatory conductance-based synapses without adaptation. Poisson input for q(w’)~d(w’{w)
with maximum depolarization achieved by a neuron starting from rest w~4:805 mV and input rate f ~100 Hz.
doi:10.1371/journal.pcbi.1003248.g001

Synaptic Distribution Influences Neuronal Dynamics
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key role in neural network homeostasis and in the generation of

multiple network states [41] via a Tsodyks-Markram mechanism

[42]. With the inclusion of synaptic depression (see Methods:

Implementation of short-term synaptic depression), the output

firing rates for all six chosen synaptic weight distributions begin to

saturate when the effective input synaptic events per second

(integrated over all the synapses impinging onto a neuron) are

around f ~20,000 Hz (Figure (3f)). Heavier-tailed synaptic weight

distributions lead to a higher dynamic range (Table (S4)).

Effect of synaptic weight distribution on instantaneous
response to external fluctuations

In the preceding analysis, we saw how perturbations of the input

event rate in a population with different synaptic weight

distributions affect the entire time-course of the population’s

evolution from an initial to a final equlibrium. In contrast, we also

analyzed how fluctuations in inputs (see Methods: Fluctuation

Analysis) affect the instantaneous change in equilibrium firing rate

of neuronal populations with different synaptic weight distribu-

tions (Figure (4), Figure (S13) and Figure (S14)).

To quantify the instantaneous change in the equilibrium firing rate,

we make use of a closely-related variant of the tail weight numbers

defined in equation (6). Instead of starting with an initial probability

distribution for the membrane potential corresponding to all neurons

at rest, we use the stationary probability distribution ps(v) obtained

from the solution to equation (5) with input rate f (t) to define,

Rl~

ðh

0

dv

ð?
h

ps(v{w)ql
p(w)dw ð8Þ

where ql
p(w) is as defined in equation (7). Rl thus represents the

fraction of neurons that spike in a neuronal population starting from

the stationary distribution ps(v), when each neuron in the population

receives l additional inputs on average. This means that, effectively in

a time dt, the total number of inputs becomes (f (t)dtzl).

Figure 2. Distributions of instantaneous excitatory synaptic weights with same mean input current. Top panels: a) Two self-similar
Gaussian synaptic weight distributions. b) The distribution of the sub-threshold, steady-state membrane potential when the two Gaussian synaptic
inputs are activated with either a low (solid curves) or a high input firing rate (dashed curves) adjusted such that the mean input currents are equal.
The low-amplitude distribution always has twice the input rate of the high amplitude one. In the absence of a threshold, these synaptic input would
depolarize v by 12 mV and 30 mV respectively. As we use a threshold of 20 mV, these inputs lead to distinct results, with the first being driven
primarily by variations in input and the second by the mean input. c) Output firing rates as a function of time. In b) and c), green curves correspond to
the Gaussian distribution with mean (3 mV) and standard deviation (SD) of (1 mV) and blue curves correspond to the Gaussian distribution with
mean (6 mV) and SD (2 mV). For equal currents, stronger synapses produce a quicker response and a higher equilibrium firing rate. Bottom panels: d)
Semi-log plot of d-function (Delta), Gaussian (Gauss), exponential (Exp), lognormal (LogN), bi-modal (BiMod) and power-law (PL) synaptic weight
distributions, matched for mean weight (1 mV) (see Methods: Matched distributions for the exact forms used for these distributions). e) Steady-state,
sub-threshold voltage distributions and f) output firing rates for an input rate of 1,000 Hz. Heavier-tailed distributions produce quicker transients.
doi:10.1371/journal.pcbi.1003248.g002
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Using Rl, we can define the relative excitability E(l) of a

neuronal population with a given synaptic weight distribution as

E(l)~
dRl

dl

� �
=

dRl

dl

� �
Dl~0 ð9Þ

This is a measure of susceptibility of the neuronal population. If Dl
is the increase in input fluctuations for a population with l

additional inputs per neuron on average,
dRl

dl

� �
Dl is the

corresponding increase in the output firing rate of this population.

A relative excitability E(l)~1 implies that the additional instanta-

neous response to an external input is independent of other inputs

received at the same time. Starting from the equilibrium of

Figure (2), for all synaptic weight distributions, the relative

excitability initially rises (Figure (4a)). In this case, it can be partially

compensated by synaptic depression (Figure (4b)). Table (S5) lists

the maximum relative excitabilites for all the distributions, without

and with synaptic depression. Results for an equilibrium obtained

with a higher input firing rate have been presented in Figure (S14).

Heavier-tailed distributions of synaptic weights cause smaller

changes in relative excitability of the neuronal population.

Strong-sparse and weak-dense synapses: An example
A few strong synapses can exert an undue large influence on

the mean response of the population. Consider the unimodal

d-function synaptic distribution, whose weight is set at 1 mV and

the bimodal distribution, where 96.6% of the synapses have

0.5 mV weight, while 3.4% of its synapses are much larger at

15 mV (an even more extreme case with the two distributions

differing in only 0.1% of their synapses is presented in Figure

(S11)). Even though both the average synaptic input and the total

current are the same for both distributions, their steady-state firing

rates are 19.6 and 28.7 Hz, their transient times are 16.2 and

2.6 ms and their dynamic ranges (see Table (S4)) are 10.22 and

31.83 respectively. More dramatic is the manner in which these

two distributions react to synaptic fluctuations. When each neuron

in the population receives l~1 additional inputs on average the

relative excitability for the d-function distribution is E~1:94, while

that for the bimodal distribution is E~1:12 (see Figure (4a)).

Discussion

Our study provides an advance on two fronts, computationally

and neurobiologically. First, we developed and validated a semi-

analytic method to model the sub-threshold membrane potential

probability distribution and the firing rate of homogeneous

neuronal populations with finite synaptic inputs. Second, we apply

this method to explore the effect of varying synaptic weight

distributions on equilibrium and transient population character-

istics. From a methodological standpoint, the DiPDE formalism

reproduces population behavior from aggregate simulations of

Table 1. Equilibrium rates and transient times.

Mean input current matched (1 mV,1000 Hz) Drift (1 mV
ms

) and diffusion (1.8 mV2

ms
) matched

Distribution fo (Hz) ts (ms) 95% CI Output rates fo (Hz) ts (ms) 95% CI Output rates

delta 19.6 16.2 (18.5,20.6) 22.0 11.0 (20.5,23.5)

Gaussian 20.5 13.4 (19.5,21.6) 21.8 10.6 (20.5,23.1)

exponential 21.3 10.6 (20.3,22.4) 21.5 10.2 (20.4,22.7)

lognormal 21.5 8.2 (20.4,22.6) 21.1 9.6 (20.1,22.1)

bimodal 28.7 2.6 (27.5,29.9) 15.9 4.2 (15.3,16.6)

power law 28.3 0.9 (27.0,29.6) 13.6 2.7 (13.3,13.9)

Table shows the equilibrium output firing rates fo , transient times ts to 10% of fo and 95% confidence intervals for fo for matched synaptic weight distributions. 95%
confidence intervals are calculated for N~10,000 neurons with bin-size Dt = 2 ms.
doi:10.1371/journal.pcbi.1003248.t001

Table 2. Explaining transient times with moments and tail weight numbers.

Moment e(T5) e(T10) e(T20) e(T30)

mom2 0.1739 0.1030 0.0391 0.0165

mom3 0.0479 0.0177 0.0233 0.0582

mom4 0.0270 0.0622 0.1580 0.2550

mom5 0.1179 0.2226 0.3874 0.5136

Tail wt. no. e(T5) e(T10) e(T20) e(T30)

Q2 0.0238 0.0397 0.1082 0.1862

Q3 0.0427 0.0140 0.0222 0.0594

Q4 0.0967 0.0418 0.0095 0.0157

Q5 0.1631 0.0910 0.0290 0.0107

Table shows the sum of squared residuals (e) for best fit exponentials to Tn (the times taken to reach n% of the equilibrium firing rate), for the first few moments of 1222
randomly generated synaptic weight distributions between 0 and h. For both moments and tail weight numbers, the entries in bold in each column correspond to the
lowest value of e(Tn). Tail weight numbers provide a better fit to transient times Tn than moments.
doi:10.1371/journal.pcbi.1003248.t002
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identical point neurons, without the need to run the large-scale

simulations themselves with the attendant computational costs (see

Text (S3) and Table (S1)). The Fokker-Planck equation works best

in the regime where the synaptic distribution and input firing rates

approach a continuous process. It does not accurately model the

response to even rare high-amplitude (‘jump’) synaptic inputs. By

contrast, the ability of the DiPDE formalism to model both jump

and continuous processes makes it a powerful framework for

modeling single as well as multiple interacting neuronal popula-

tions.

This population statistics method makes possible the modeling and

characterization of the membrane potential distribution and the

spiking statistics of very large networks of distinct but homoge-

neous populations of hundreds of neuronal cell types in numerous

brain regions. This would be relevant, for instance, when modeling

the resting state activity at the cellular level throughout the awake

or the sleeping brain. Second, in order to understand the

biological significance of powerful but rare EPSPs [7,18,19], we

used the DiPDE formalism to compare distributions which contain

some very strong synapses against distributions with a preponder-

ance of small EPSPs (but that are matched in their mean and

variances). We will refer to the distributions as heavy-tailed, but a

more quantitative description is presented in Methods: Tail weight

numbers. We showed that power law and related heavy-tail

distributions lead to faster transient behavior than non-heavy-

tailed distributions (Figure (2f) and Figure (3f)). Second, heavy-

tailed synaptic distributions lead to a higher dynamical range

(Figure (3f)) than non-heavy-tailed distributions. Third, heavy-

tailed distributions are much less sensitive to random fluctuations

in synaptic activity (Figure (4)). All three properties associated with

such heavy-tailed distributions can be functionally advantageous

compared to matched synaptic input with no such large synapses.

For example, faster transient responses would be desirable when a

potential prey needs to detect the presence of a predator and

escape. Higher dynamical ranges would be useful when sensory

systems need to respond external stimuli over a large range, without

Figure 3. Input-output characteristics. Top row: Protocol used to investigate the response of the neuronal population with a given excitatory
synaptic weight distribution to a sudden perturbation in its synaptic input. a) Input rate as a function of time. For the first 500 ms, the cumulative
synaptic input rate is varied between 500 and 1,000 Hz, expressed as a fraction of the 1,000 Hz base input rate (see Methods: Input-Output curves). The
population evolves according to equation (3) for a d-function distribution of synaptic weights. At 500 ms, the input firing rate instantaneously returns to
the base rate of 1000 Hz. b) Output firing rate as a function of time for q(w’)~d(w{w’). The peak output rate attained provides a measure of how
strongly the system responds to sudden changes in its input rate. c) Zooming in onto the transient response in (b). The smaller the difference in input
rate, the quicker the response of the network, with less overshoot. Bottom row: Quantifying response to sudden changes in input rate. d) Peak output
firing rate for different fractions of the base input rate as a function of base input rate for q(w’)~d(w{w’). e) Difference in the peak output firing rate
normalized by the difference between input rates, when the input is instantaneously changed from 1/2 the base rate to the full base rate. Normalized
differences in output rates for different synaptic weight distributions are plotted as a function of the full input base rate. Heavier-tailed distributions
result in lesser overshoot. f) Semi-log plot of the steady state output firing rate as a function of the input firing rate, for different synaptic distributions
with the inclusion of short-term synaptic depression. Onset of saturation for very high effective synaptic input rates is evident. Note the greater response
of the heavier-tailed power-law and bimodal distributions for lower input firing rates, leading to higher dynamical range.
doi:10.1371/journal.pcbi.1003248.g003
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the need to have multiple networks designed to respond over smaller

ranges. The lesser sensitivity of heavy-tailed distributions to random

fluctuations in synaptic activity can be useful when the response to a

stimulus needs to be independent of its context.

Teramae and colleagues [17] recently published a joint compu-

tational and physiological investigation into the role of strong but

sparse excitatory EPSPs, superimposed onto a very large pool of

weak EPSPs and discovered the critical role that the former play in

generating and sustaining long-term, low-frequency spontaneous

firing activity in mixed excitatory-inhibitory neuronal networks in

the absence of sustained external input or NMDA synapses. Such

states allow the neurons to often reside one synaptic input away from

the threshold h, thereby leading to high correlation between the pre-

synaptic and post-synaptic neurons of the strong synapses.

Such investigations highlight the need to focus the attention of

electrophysiologists studying synaptic transmission in vivo onto the

critical role that such rare, ‘‘Black Swan’’-like, events can play in

the day-to-day life of the brain.

Given the large biological and instrumental noise present in

synaptic measurements, in particular under in vivo conditions,

distinguishing between these distributions in practice would not be

easy as it would require recordings of long duration to collect the

relevant statistics. For experimental purposes, the numbers of

independent recordings of sub-threshold steady state membrane

potential required to differentiate between different synaptic

weight distributions have been provided in Table (S2) and Table

(S3). Yet as shown here, large but rare excitatory synaptic inputs

can exert undue influence on population dynamics and robustness.

These conclusions are very important for the emerging field of

connectomics: a weighted graph description for neuronal networks

in which each node represents a homogeneous population and

each connection is characterized by the mean postsynaptic current

is not sufficient. The network has to be either refined to individual

neurons or expanded to include knowledge of the entire

distribution of postsynaptic currents. The method further devel-

oped here facilitates the modeling and characterization of the

membrane potential distribution and the spiking statistics of very

large networks of distinct but homogeneous populations of

hundreds of neuronal cell types in numerous brain regions.

Methods

Simplifications
A simplified case can be obtained if all EPSPs are assumed to

have the same value w; that is, if q(w’)~d(w’{w). Equation (3)

becomes:

Ltp(v,t)~Lv L(v)p(v,t)ð Þ{f (t)p(v,t)zf (t)p(v{w,t),

zf (t)H(v)H(w{v)p(vzh{w,t)
ð10Þ

This is a first order partial differential equation with displacement

(DiPDE). For numerical solutions of equation (10), the matrix

obtained by discretizing v is as sparse as the matrix needed to solve

the Fokker-Planck equation.

If q(w)~d(w), then equation (5) reduces to a delay differential

equation (DDE)

1

f

d(L(v)ps(v))

dv
~ps(v){ps(v{w)H(h{vzw)

{H(v)H(w{v)ps(vzh{w)

ð11Þ

Boundary conditions
In equation (3), if the additional depolarization after the neuron

crossed threshold is neglected, the equation becomes

Ltp(v,t)~Lv L(v)p(v,t)ð Þ{f (t)p(v,t)z

f (t)

ðw2

w1

p(v{w,t)q(w,t)H(h{vzw)dwz

f (t)d(2)(v~0,t)

ðh

{?

ðw2

w1

H(v0)H(w{v0)

p(vzh{w,t)q(w,t)dwdv0

ð12Þ

where d(2)(v,t) is the two-dimensional Dirac d-function and v~0
corresponds to the resting potential.

If
LL(v)

Lv

����
v~h

w0, then there is an additional contribution

jc~{L(v)p(v,t) from the continuous processes to the probability

flux through threshold. The output firing rate is now given by,

fout(t)~

ðh

{?
j(v,t)dvzjc(v,t)Dv~h ð13Þ

Population simulations
Numerical simulations, against which the Fokker-Planck (for

current-based synapses) and DiPDE formalisms were compared,

were performed by invoking the NEST simulator after writing the

code in PyNN.

For current-based synapses, simulations were performed for a

population of 10,000 independent and identical leaky integrate-

and-fire (LIF) neurons with decaying exponential post-synaptic

current. With the resting and reset potential being equal and

denoted by vr, the neuron parameters were chosen to be

vr~0 mV, h~20 mV, membrane time constant tm~20 ms,

membrane capacity Cm~1:0 nF, refractory period tr~0:1 ms,

input resistance Rm~20 MV and decay time ts~0:1 ms for

Figure 4. Effects of external fluctuations in synaptic input due
to different excitatory synaptic weight distributions starting
from the equilibrium of Figure (2) obtained with an input rate
f (t)~1000 Hz. The graphs show the relative excitability E as a function
of the additional synaptic input l per neuron in the population on
average (so that (f (t)dtzl) is the mean number of inputs per neuron
on average in a time dt), a) without and b) with synaptic depression.
The black square indicates the relative excitability E~1:94 for a
population with a d-function distribution of synaptic weights with
l~1 additional synaptic inputs per neuron on average. The corre-
sponding relative excitability with a bimodal distribution is ~1:12.
Heavy-tailed distributions lead to smaller changes in excitability due to
fluctuations in synaptic input.
doi:10.1371/journal.pcbi.1003248.g004
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excitatory synapses. All neurons in the population were supplied

with a lE~100 Hz Poisson excitatory input of amplitude

Jsyn~50 nA (although this is a huge current, with our choice

of parameters, the effective charge deposited on the neuron is

given by Q~Jsynts~5 pC) and the membrane potential was

recorded over a simulation time of tf ~200 ms with a time-step

of dt~0:1 ms. The recorded voltages were then analyzed to

obtain the probability distributions shown in Figure (1). The

recorded spike-times were binned with an interval of Dt~2 ms

and the resultant output firing rate was obtained as shown in

Figure (1d). For simulation results presented in Figure (S1), we

used lE~1000 Hz Poisson excitatory input of amplitude

Jsyn~10 nA.

For conductance-based synapses, simulations were performed for a

population of 10,000 independent and identical leaky integrate-and-

fire (LIF) neurons with decaying exponential post-synaptic conduc-

tance. The neuron parameters were chosen to be vr~0 mV,

h~20 mV, excitatory reversal potential Esyn~100 mV, membrane

time constant tm~20 ms, membrane capacity Cm~1:0 nF, refrac-

tory period tr~0:0 ms and decay time tsyn~0:1 ms for excitatory

synapses. All neurons in the population were excited by external

Poisson input with input firing rate lE~100 Hz and peak synaptic

conductance gs~0:5 mS and their membrane potential was recorded

over a simulation time of tf ~200 ms with a time-step of dt~0:1 ms.

The recorded voltages were then analyzed to obtain the probability

distributions shown in Figure (S3). The recorded spike-times were

binned with an interval of Dt~2 ms and the resultant output firing

rate was obtained as shown in Figure (1g) and Figure (S3c).

Simulations were also performed for a population of 10,000
independent and identical exponential integrate-and-fire (EIF)

neurons with conductance-based synapses without adaptation.

The neuron parameters were chosen to be vr~0 mV, h~19 mV,

Vspike~VT~20 mV, slope-factor DT~2:0 mV, excitatory rever-

sal potential Esyn~100 mV, membrane time constant tm~20 ms,

membrane capacity Cm~1:0 nF, refractory period tr~0:0 ms

and decay time tsyn~0:05 ms for excitatory synapses. The

adaptation parameters were chosen to be tw~0:05 ms, and

a~b~0, such that adaptation was absent. All neurons in the

population were excited by external Poisson input with input firing

rate lE~100 Hz and peak synaptic conductance gs~1:0 mS and

their membrane potential was recorded over a simulation time of

tf ~200 ms with a time-step of dt~0:05 ms. The recorded spike-

times were binned with an interval of Dt~2 ms and the resultant

output firing rate was obtained as shown in Figure (1h).

Numerical solutions
To solve the evolution equation (3) for the probability density,

we first solve the advection (leak) portion of the equation

Ltp(v,t)~Lv L(v)p(v,t)ð Þ, and then include the synaptic terms to

calculate the overall time derivative. We then march the solution

for p(v,t) forward in time using an explicit first-order-in-time

scheme with constant time step. Based on the general explicit

scheme criterion Dt!1=f (t), we use a sufficiently small time step

to ensure stability. This scheme is conservative; the integral of the

probability distribution is not affected by numerical errors.

For the standard LIF neuron with membrane time-constant tm,

the leak term is linear with L(v)~{v=tm. The ODE v’~L(v) has

an analytical solution and the method of characteristics provides

the full solution for the advection term. In order to ensure an exact

implementation of the leak term, we use a geometric binning

scheme for the membrane potential, with the bin ratio determined

by the product of leak 1=tm and time-step dt. The bin-edges are

determined, starting from threshold membrane potential h, using

vn~h:e{ndt=tm ð14Þ

A total of Nv bin-edges are generated until the first bin between

the resting potential vr and vNv is at least as small or smaller than

the first bin generated from h. Mathematically, the lower bound

on the number of bin-edges Nv is given by the condition

(vNv{vr)~(h{v1)?Nv~{
tm

dt
ln 1{e{dt=tm
� �

ð15Þ

since we have chosen vr~0 and the second equality follows from

equation (14). Increasing the numbers of bins beyond this lower

bound increases the accuracy, but also increases the computational

cost involved (see Text (S3)).

For more general forms of the leak term (for e.g, the exponential

integrate-and-fire (EIF) neuron; see Methods: Exponential inte-

grate-and-fire neurons) the ODE v’~L(v) can be solved numer-

ically starting from the threshold membrane potential in order to

generate the bins.

At each time-step tk, the probability distribution for membrane

potential p(v,tk) (which is a (Nv|1) vector) is first evolved with the

leak term and then the synaptic input. With our non-uniform

binning scheme, the evolution of the probability distribution for the

membrane potential due to the leak reduces to a single-index shift

towards the resting potential and reduces the error due to numerical

diffusion at each time step. To implement the effect of instantaneous

synaptic input, including the effect of any excess input above the

threshold h the input distribution of synaptic weights is first used to

construct a (Nv|2Nv) transition matrix Ts. The Nv additional

columns per row in Ts are used to keep track of the effect of excess

synaptic input above h. If this additional depolarization due to

super-threshold inputs is ignored and the membrane potential is

reset to zero upon exceeding h, then Ts is just a Nv|Nv matrix.

This is then used to construct an effective transition matrix

T~
XM
i~0

piT
i
s ð16Þ

where

pi~Pois(i; l~fdt) ð17Þ

represents the probability for the neuronal population to receive i
inputs in a time dt from an external homogeneous Poisson process

with mean input rate f . The Poisson process is truncated at a

sufficiently high value of M such that pM&0. For inhomogeneous

Poisson inputs, an effective transition matrix would have to

computed at each time step tk, depending on the input rate f (tk).
Each off-diagonal element in the effective transition matrix T

represents the proportion of neurons in the population receiving a

specific synaptic input. The probability distribution p(v,tk) for the

membrane potential at each time-step tk is then multiplied by this

transition matrix T to generate the new probability distribution

after synaptic input. The case for non-instantaneous synapses has

been discussed below in Methods: Non-instantaneous synapses.

Current-based synapses
In order to compare results with simulations, we need to match

the total synaptic input to the neuronal population with that from

simulations. The DiPDE formulation is exact when implementing

instantaneous synapses J(t)~Jsynd(t).
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The synaptic weight w is equated with the maximum depolariza-

tion of membrane potential (peak EPSP) achieved after input from an

exponentially decaying current-based synapse J(t)~Jsyne{t=ts ,

w~
Jsyntstm

Cm tm{tsð Þ
ts

tm

� � ts
(tm{ts)

{
ts

tm

� � tm
(tm{ts)

 !
ð18Þ

This value is reached after a time

tmax~
tmts

tm{ts

� �
ln

tm

ts

� �
ð19Þ

For our choice of simulation parameters outlined above

w~4:867 mV provides good agreement with simulations as

shown in Figure (1). The time-step was chosen to be dt~0:1 ms

to match with simulations. Another constraint imposed by the

nature of the numerical solution is that the discretization of the

membrane potential means that it is impossible to have the initial

probability distribution to be a sharp d-function at 0 mV. The

initial probability distribution is therefore spread uniformly over

the width of the first voltage bin in both DiPDE and simulations.

Expected 95% intervals for spike counts
The underlying stochastic process in equation (3) assumes

Poisson-distributed inputs. If an equivalent numerical simulation

with input firing rate f involves a finite population of N neurons

and the resultant spikes are binned in Dt time intervals, then there

are n+s inputs per bin, with n~f |N|Dt and s~
ffiffiffi
n
p

. The

relative variance in the number of inputs per bin is s~s=n.

Expected 95% intervals for output spike counts can then be

obtained as follows. At each time step, the solution obtained from

equation (3) for a given distribution of synaptic weights q(w) with a

given input rate f is additionally subjected to input rates

f +~f (1+2s) and the corresponding output rates f +
o are

calculated. These give the expected 95% intervals to the mean

output firing rate fo. The 95% intervals for the expected spike

counts per Dt time-bin for a population N neurons are in the

interval between n+~f +
o |N|Dt.

Figure (1f) shows the output firing rates corresponding to the

expected 95% intervals for results presented in Figure (1d). For a

population of N~10,000 neurons and a bin size of Dt~2 ms, the

95% interval for expected output spike counts per bin obtained

from DiPDE is (90.3, 99.6) with corresponding output firing rates

of f {
o ~4:5 Hz and f z

o ~5:0 Hz respectively. For simulations, the

95% interval for spike counts corresponds to (90.5, 104.5).

Non-instantaneous synapses
For non-instantaneous synapses, upper and lower bounds on the

output firing rate can be obtained. The exponentially decaying

current-based synapses used here in simulations (see (Materials

and Methods: Current-based synapses)) result in an exact EPSP

given by Vex(t)~H(t)
V0tm

(tm{ts)
e{(t=tm){e{(t=ts)
� �

for synaptic

input at time t~0. H(:) is the unit step function. If V0 is the total

charge deposited by an instantaneous, excitatory current-based

synapse on a neuron with normalized capacitance at time t~0,

then the corresponding EPSP is given by V (t)~H(t)we{t=tm ,

w~V0e{td=tm is the synaptic weight used in equation (3).

Setting td~0 corresponds to equating the total charge, while

setting td~tmax~
tmts

(tm{ts)
ln(

tm

ts

) corresponds to equating the

maximum depolarization. Figure (S4) shows the output firing rates

obtained from DiPDE after equating the total charge, the maximum

depolarization, an intermediate estimate obtained by setting td~ts

and that obtained by setting td~tmin~{tm ln(
tm

tm{ts

), along

with the corresponding numerical simulation.

A lower bound on the output firing rate can obtained by

equating the maximum depolarization, Vl(t)~H(t)wle
{t=tm with

wl~V0
ts

tm

� �ts=(tm{ts)

corresponding to td~tmax. Equating the

total charge Vq(t)~H(t)wqe{t=tm with wq~V0 corresponding to

td~0 provides an estimate of the output firing rate. An upper

bound can be obtained by taking Vu(t)~H(t)wue{t=tm with

wu~(V0tm)=(tm{ts) corresponding to td~tmin. Figure (S5)

shows a plot of the different EPSPs obtained with V0~5 mV,

tm~20 ms and ts~1 ms for synaptic input at time t~0.

For tmwts, a formal proof for the upper and lower bounds can

be provided as follows. Let Vu(t,mi), Vex(t,mi) and Vl(t,mi) represent

the EPSPs due to synaptic input at time t~mi. The maximum

depolarization attained due to n inputs can be represented as:

F (n)
u (m1,m2,:::,mn)~ max

t

Xn

i~1

Vu(mi,t)

F (n)
ex (m1,m2,:::,mn)~ max

t

Xn

i~1

Vex(mi,t)

F
(n)
l (m1,m2,:::,mn)~ max

t

Xn

i~1

Vl(mi,t)

ð20Þ

For any mi, Vu(mi,t){Vex(mi,t)~H(t{mi)
V0tm

(tm{ts)
e{(t{mi )=ts .

Therefore, Vu(mi,t)§Vex(mi,t) for all times after the synaptic input,

so that F (n)
u §F (n)

ex . Hence, using wu in equation (3) an upper bound

for the output firing rate is obtained.

For the lower bound, consider the difference between Vex(t) and

Vl(t,tmax). For all tƒtmax, since Vl(t,tmax)~0, Vex(t)§Vl(t,tmax).

For twtmax, Vex{Vl~V0
ts

tm{ts

e{t=tm{
tm

tm{ts

e{t=ts

� �
. Us-

ing this, it is straightforward to show that Vex§Vl when twtmax.

Thus Vex(t)§Vl(t,tmax) for all times t and hence F (n)
ex §F

(n)
l . The

time translation by tmax does not affect the result since F (n)’s have

been defined to be the maximum depolarization over all times t.

Conductance-based synapses
For current-based synapses, the change in membrane potential

resulting from synaptic input is independent of the initial

membrane potential. For a conductance-based synapse however,

this change is proportional to the difference between the initial

membrane potential and the reversal potential vrk for the k

channels present in a particular synapse. Equation (3) becomes,

Ltp(v,t)~Lv L(v)p(v,t)ð Þ{
X

k

fk(t)p(v,t)

z
X

k

fk(t)

ðwk2

wk1

p
v{w:vrkð Þ
(1{w)

,t

� �
qk(w,t)H

h{
v{w:vrkð Þ
(1{w)

� �
dwz

ðh

{?

X
k

fk(t)

ðwk2

wk1

H(v’)H

 

w:vrk{v’ð Þ
(1{w)

� �
p hz

v’{w:vrkð Þ
(1{w)

,t

� �
qk(w,t)dw

�
dv’

ð21Þ
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Because of the additional dependence on the membrane voltage

and synaptic reversal potential Esyn, modeling an instantaneous

change in voltage through a conductance-based synapse is not as

straightforward as with a current-based synapse. To model this

type of synapse efficiently, we introduce the non-dimensional

quantity w as in equation (21) above, which represents the

instantaneous voltage change due to synaptic activation as a

fraction of the charge needed to reach the reversal potential from a

given membrane potential. For example, w~0:5 indicates that a

single synaptic event would shift the neuron from its current

membrane potential to halfway between the current voltage and

the synaptic reversal potential. Mathematically, if j synaptic events

have already occurred, then the change in membrane potential

induced by the (jz1)-th synaptic input can be represented by,

Dv j?jz1ð Þ~vjz1{vj~w Esyn{vj

� 	
ð22Þ

For n such synaptic events, it can be verified that this reduces to:

Dv j?jznð Þ~vjzn{vj~ 1{ 1{wð Þnð Þ Esyn{vj

� 	
ð23Þ

This non-dimensionalization of synaptic weight for conductance-

based synapses thus automatically rescales all weights to lie

between zero and 1, and provides a simple way to model these

synapses as generating instantaneous changes in membrane

voltage.

For our choice of simulation parameters, the maximum

depolarization achieved by a neuron starting from rest due to

synaptic input with w~0:04749 and (Esyn{vr)~100 mV is

w:(Esyn{vr)~4:749 mV. This is obtained from the numerical

solution of the equation for a LIF neuron with exponentially

decaying conductance-based synapses (with time-step chosen to be

0.1 ms to match with simulations).

Figure (S3) shows that numerical simulations (see Methods:

Simulations for parameters used in simulations) are in good

agreement with numerical solutions of DiPDE for conductance-

based synapses. The equilibrium output firing rate is fo~2:3 Hz

and the transient time to firing is ts~22:0 ms. For N~10,000
neurons and a bin size of Dt~2 ms, the 95% confidence interval

for the spike counts per bin is (43.0,47.6) corresponding to output

firing rates of f {
o ~2:1 Hz and f z

o ~2:4 Hz.

For multiple neuronal populations connected to each other, one

can generalize equation (21) to a system of equations,

Ltpi(v,t)~Lv L(v)pi(v,t)ð Þ{
X
k,j

fk,i,j(t)pi(v,t)z

X
k,j

fk,i,j(t)

ðwk2

wk1

p
v{w:vrkð Þ
(1{w)

,t

� �
qk,i,j(w,t)H

h{
v{w:vrkð Þ
(1{w)

� �
dwzfi(t)

fi(t)~

ðh

{?

X
k,j

fk,i,j(t)

ðwk2

wk1

H(v0)H
w:vrk{v0ð Þ
(1{w)

� �
p

 

hz
v0{w:vrkð Þ
(1{w)

,t

� �
qk,i,j(w,t)dw

�
dv0

fk,i,j(t)~nk,i,j
:fj(t),

ð24Þ

while defining two synaptic weight matrices,

i) qk,i,j , which represents the probability density of the strength

of synapses of type k, from population j to population i,

ii) nk,i,j , which represents the probability density of number of

release sites at synapses of type k, from population j to

population i.

Exponential integrate-and-fire neurons
The DiPDE formalism (equation 3) can be generalized to other

types of neurons such as for e.g - the exponential integrate-and-fire

(EIF) neuron. The membrane potential dynamics for the EIF

neuron with excitatory conductance-based synapses is governed by

dV

dt
~{

1

tm

(V{VL)z
DT

tm

e

V{VT
DT

� �
{

g(t)

Cm

V{Esyn

� 	
ð25Þ

where the first two terms on the RHS contribute to the leak and

the third term corresponds to the synaptic input. VL represents the

leak reversal potential, VT is the spike detection threshold, DT is

the slope-factor, Cm is the membrane capacitance, tm is the

membrane time-constant and Esyn is the excitatory reversal

potential. In the absence of synaptic input, the leak portion can

be solved numerically to obtain the discretized non-uniform bins

for the membrane potential.

For the exponential integrate-and-fire (EIF) neuron, the

numerical solution of the equation with exponentially decaying

conductance-based synapses gives w~0:04805. With

(Esyn{vr)~100 mV, this means that the maximum depolariza-

tion achieved by a neuron starting from rest is

w:(Esyn{vr)~4:805 mV (with time-step chosen to be 0.05 ms

to match with simulations).

Figure (1h) shows that the output firing rate obtained from

numerical simulations (see Methods: Simulations for parameters

used in simulations) is in good agreement with that obtained from

the numerical solution of DiPDE. The equilibrium output firing

rate is fo~2:5 Hz and the transient time to firing is ts~9:5 ms.

For N~10,000 neurons and a bin size of Dt~2 ms, the 95%

confidence interval for the spike counts per bin is (48.5,53.1)

corresponding to output firing rates of f {
o ~2:4 Hz and

f z
o ~2:7 Hz.

Numerical solution of Fokker-Planck equation
The Fokker-Planck equation for current-based synapses was

solved using an explicit Forward-Time Centered-Space (FTCS)

scheme. As in the DiPDE, the leak term was solved analytically,

although the voltage discretization was kept uniform in order to be

compatible with the standard Centered-Space discretization used

for the diffusion term. To ensure that the discretization was

sufficiently fine (especially since FTCS is only first-order accurate),

we compared the equilibrium firing rate generated by this scheme

against the analytical solution [43] given by

lout~trz
tm

s

ffiffiffi
p

2

r ðVth

Vreset

exp
(u{m)2

2s2

 !
|

1zerf
u{m

s
ffiffiffi
2
p

� �� �
du

ð26Þ

where lout is the analytical firing rate, tr is the refractory period

and tm is the membrane time constant. m and s are parameters

related to the drift and diffusion coefficients in the Fokker-Planck

equation, and are given by
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m~tm aElE{aI lIð Þ

s2~
tm

2
a2

ElEza2
I lI

� 	 ð27Þ

where aE and aI are excitatory and inhibitory synaptic weights

respectively, while lE and lI are the corresponding input firing

rates.

Matched synaptic distributions
The effect of various matched synaptic weight distributions on

the population dynamics in feed-forward networks was investigat-

ed using the DiPDE formalism. The top panel of Figure (2) showed

that two self-similar Gaussian distributions matched to produce

the same average synaptic current resulted in different steady-state

output firing rates and sub-threshold membrane potential distri-

butions. In the regime when the firing is primarily driven by drift,

the difference in output firing rates is small as shown in the top

panel of Figure (S6). The higher-mean Gaussians result in an

steady state output firing rate of fo~52:4 Hz and fo~52:2 Hz,

while the lower mean Gaussians lead to fo~49:7 Hz and

fo~49:5 Hz.

If the firing is driven exclusively by variations in input (Gaussian

distributions with balanced excitation and inhibition), the differ-

ences in output firing rates are large as shown in the bottom panel

of Figure (S6). For the Gaussians with 6 mV mean and either

1 mV or 2 mV standard deviations, the steady state output firing

rates are fo~9:5 Hz and fo~10:3 Hz respectively. The steady

state output firing rates for the Gaussians with 3 mV mean and

either 0.5 mV or 1 mV standard deviations are fo~0:6 Hz and

fo~0:8 Hz respectively.

These results imply that population response is determined not

only by the total current, but also by the mean synaptic weights.

For the bottom row of Figure (2), six different synaptic weight

distributions were tuned to have the same mean (1 mV). Using the

same input rate (1,000 Hz) for the all the distributions, the average

synaptic current was the same. The corresponding expressions for

these distributions normalized between w~0 and w~h are:

N Delta : q(w)~d(w{w0) with w0~1 mV.

N Gaussian : q(w)~Nge{ (w{w0)2=2s2½ � with w0~0:6579 mV and

s~0:8155 mV.

N Exponential : q(w)~Nee({w=w0) with w0~0:8963 mV.

N Lognormal : q(w)~(
Nl

w
)e{ (ln w{w0)2=(2s2)½ � with w0~{7:3265

and s~0:9075.

N Bimodal : q(w)~a1d(w{w1)za2d(w{w2) with w1~0:5 mV,

w2~15 mV, a1~0:966 and a2~0:034.

N Power-law : q(w)~Np=(1z((w{w0)=w1)) with w0~min(w)
and w1~0:0102 mV.

The N’s represent the normalization constants. The corre-

sponding zero-centered second moments are: Delta(1.0 mV2),

Gaussian (1.3 mV2), Exponential (1.8 mV2), Lognormal

(2.2 mV2), Bimodal (8.0 mV2) and Power-law (8.7 mV2). The

firing rates and transient times corresponding to distributions for

which the mean input current was matched (Figure (2) is provided

in Table (1).

An alternate way to match synaptic weight distributions is to

match the drift and diffusion, corresponding to what the mean and

variance of the membrane potential would be if the neuron did not

have a threshold, while allowing the input rates to vary. In the

Fokker-Planck formalism, such distributions matched for drift and

diffusion would have led to the same results.

Figure (S7) shows the differences in output firing rates and

equilibrium membrane potential distributions obtained from eq.

(3) for synaptic weight distributions matched for drift and diffusion.

The input rates are: Delta (555.5 Hz), Gaussian (745.98 Hz),

Exponential (952.38 Hz), Lognormal (1,062.15 Hz), inverse pow-

er-law (4,166.72 Hz) and Bimodal (1,825.33 Hz). The corre-

sponding expressions for these distributions normalized between

w~0 and w~h are:

N Delta : q(w)~d(w{w0) with w0~1:8 mV.

N Gaussian : q(w)~Nge{ (w{w0)2=2s2½ � with w0~0:6579 mV and

s~1:264 mV.

N Exponential : q(w)~Nee({w=w0) with w0~0:9465 mV.

N Lognormal : q(w)~(
Nl

w
)e{ (ln w{w0)2=(2s2)½ � with w0~{7:3265

and s~0:8447.

N Bimodal : q(w)~a1d(w{w1)za2d(w{w2) with w1~0:5 mV,

w2~15 mV, a1~0:9967 and a2~0:0033.

N Power-law : q(w)~Np=(1z((w{w0)=w1)) with w0~min(w)
and w1~0:00041 mV.

The N’s represent the normalization constants.

The heavier-tailed distributions still lead to faster transients,

however the steady-state firing rates now decrease with increasing

heaviness of the tail in the distributions. This is in contrast to the

case when the input currents were matched (Figure (2).

In order of increasing heaviness of the tail distributions, the

equilibrium output firing rates and the transient firing times for the

different distributions are provided in Table (1).

Synaptic delays
We also implement synaptic delays within the DiPDE formal-

ism. This is done by a using a queue to store the output firing rate,

which is then accessed and updated depending on the distribution

of synaptic delays. Figure (S8) shows the effect of synaptic delays

on the output firing rate of a feed-forward network with different

synaptic weight distributions in the presence of d-function and

Gaussian distributions of synaptic delays with the same mean

delay. Since the network is feed-forward, the mean delay simply

translates the responses in time. Higher variance in the distribution

of delays relative to the membrane time constant tm leads to lesser

overshoot of the steady state.

Tail weight numbers
The tail-heaviness of the synaptic weight distribution can be

characterized by either constructing the moments of the distribu-

tion or a set of tail weight numbers. These numbers Qg were defined

in equations (6) and (7) and represent the fraction of neurons that

spike in a neuronal population starting at rest when each neuron in

the population receives g excitatory inputs on average. While

higher order moments of the synaptic weight distributions explain

part of the variance observed in the responsiveness, a larger

fraction of the variance can be explained by the tail weight

numbers.

Figure (S9) shows the values of the tail weight numbers Qg as a

function of g|�ww (the average synaptic weight) for distributions

matched for mean input current (top left) and for drift and

diffusion (top right). These numbers start increasing much quicker

for heavier-tailed distributions as is evident from the lower panel of

Figure (S9).

To test which key characteristic of synaptic weight distributions

better describes the transient times, we generated 1222 random

distributions between 0 and h, each with a mean of 2 mV. With an

input firing rate of 500 Hz, we computed the output firing rates
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obtained from DiPDE and the corresponding transient times taken

to reach different fractions of the steady state firing rate (time taken

to reach n% of equilibrium firing rate denoted as Tn here) for all

these matched distributions. Figure (S10) shows a scatter plot of

T20 as a function of the first few moments and response numbers

respectively for all these distributions along with the best-fit

exponential curves (shown in red). Scatter plots as a function of tail

weight numbers provide a better fit to the transient times than the

moments. This can be seen from Table (2), which lists the sum of

squared errors of the residuals (e) for each of the best fit

exponentials for different Tn’s as a function of the first few

moments and tail weight numbers respectively. Plots for the other

Tn look similar to the plots for T20 shown in Figure (S10).

Input-output curves
Input-output curves in Figure (3) and Figure (S12) were

generated using the following protocol: for a given fraction s
and base input rate fbase, the DiPDE was solved first with an input

firing rate fi~s:fbase. After 500 ms (at which time all runs had

reached an equilibrium voltage distribution), the input rate was

instantaneously changed to fbase. The resulting output firing rate fo

was calculated as the maximum output firing rate achieved after

the instantaneous input rate change.

We quantified the spread in the input-output relationship due to

different values of the fraction s for a given base input rate fbase by

measuring the slope, defined as follows:

Slope~
fo,s~1{fo,s~0:5

fbase{sfbase

ð28Þ

Implementation of short-term synaptic depression
The most comprehensive treatment of synaptic utility would

involve a single 3-D integro-differential equation where the

probability distribution p~f (v,t,u) depends additionally on the

synaptic utility. However, since this formalism is computationally

more expensive and given that the two separate 2-D integro-

partial differential equations provide adequate results in cases

where the full joint probability can be expressed as a product of

the marginals over the voltage and synaptic utility, we opted to

model synaptic utility as a separate differential equation via a

Tsodyks-Markram mechanism [42]. This additional equation

describes the probability of a synapse to have a particular utility.

The synaptic utility ranges from 0 to 1, with 1 indicating

maximum availability of synaptic vesicles. Its recovery is governed

by

du

dt
~

1{u

trec

ð29Þ

In the pre-synaptic population, for all probability at the membrane

potential threshold p(v,t)Dv~h, the synaptic utility is decremented

using,

unew~uold
:pr ð30Þ

where pr thus represents the fraction of synaptic vesicles available

after a spike. For our analysis, we use pr~0:25 and trec~100 ms

respectively.

Given the exponential form of equation (29), the synaptic utility

axis (ranging from 0 to 1) is also discretized geometrically, similar

to the voltage discretization for linear leak (equation (14)). Thus, at

each time step, the pre-synaptic probability matrix undergoes a

single-index shift towards full synaptic utility (u~1).

When a non-zero proportion of the probability for a given pre-

synaptic neuronal population is at threshold (i.e. there is spiking in

the population), the output synaptic weight distribution from that

population to the target population is convolved with the synaptic

utility distribution,

weightsout~weightsmax
:u ð31Þ

and the utilities are subsequently modified according to equation

(30).

Fluctuation analysis
To analyze the effect of fluctuations generated by different

synaptic distributions, the DiPDE numerical solution was evolved

with a given synaptic distribution for 300 ms, long enough for the

voltage distribution to reach equilibrium. At this point, to simulate

fluctuations which occur on timescales tfluc%tm, l extra synaptic

inputs are added per neuron on average to the population in a

single time step. This is done by convolving the stationary

probability distribution ps(v) obtained from a given external input

rate f with the corresponding synaptic weight distribution q(w)
and the instantaneous change from the equilibrium firing rate is

quantified using equation (9).

This same analysis was then conducted with synaptic depression

during the fluctuation stage, starting with the stationary distribu-

tion obtained without synaptic depression. Unlike in the no-

depression case, the synaptic distribution was scaled by the

synaptic utility (using the method outlined in (Methods: Imple-

mentation of short-term synaptic depression)) after each additional

synaptic event. The utility did not recover (tfluc%trec). The utility

fraction pr, which represents the decrement in pre-synaptic utility

after an input (equation (30)), was calculated for each synaptic

distribution separately. Denoting the peak of the relative

excitability curve generated from the no-depression case by E�

after l� additional inputs per neuron on average, we chose the

decrement pr to be:

pr~
1

E�

� �1=l�

ð32Þ

Intuitively, with this choice, after l� additional inputs per neuron

on average, the relative excitability in the presence of synaptic

depression gets closer to unity.

All the results for DiPDE simulations were obtained using

MATLAB. The entire code base is available for download at http://

download.alleninstitute.org/publications/the_influence_of_synaptic

_weight_distribution_on_neuronal_population_dynamics/.

Supporting Information

Figure S1 Comparisons for excitatory, high-frequency and low-

amplitude current-based synapses. Top panels show time evolu-

tion of the probability distribution of membrane potentials in the

neuronal population obtained from a) simulations of 10,000 leaky

integrate-and-fire neurons, b) the numerical solution to equation

(3), and c) Fokker-Planck equation respectively. Bottom panels: d)

Output firing rates as a function of time. e) The distribution of sub-

threshold steady-state membrane potential after 200 ms. Poisson

input for q(w’)~d(w’{w) with synaptic weight (maximum EPSP)

w~0:974 mV and input firing rate f ~1000 Hz.

(EPS)

Synaptic Distribution Influences Neuronal Dynamics

PLOS Computational Biology | www.ploscompbiol.org 13 October 2013 | Volume 9 | Issue 10 | e1003248

http://download.alleninstitute.org/publications/the_influence_of_synaptic_weight_distribution_on_neuronal_population_dynamics/
http://download.alleninstitute.org/publications/the_influence_of_synaptic_weight_distribution_on_neuronal_population_dynamics/
http://download.alleninstitute.org/publications/the_influence_of_synaptic_weight_distribution_on_neuronal_population_dynamics/


Figure S2 Solutions to eq. (3) do not depend on the choice of

time-step used in the numerical solution. Figure shows output

firing rates for excitatory, current-based synapses as in Figure (1),

obtained from numerical solutions of eq. (3) for different

discretization time-steps with Poisson input for q(w’)~d(w’{w)
with synaptic weight (maximum EPSP) w~4:867 mV and input

rate f ~100 Hz. Choice of time-step does not affect numerical

results with dtv1:0 ms. Both the transient and steady-state firing

rates presented in Figure (1) remain unchanged for different

choices of time-steps in the numerical solution.

(EPS)

Figure S3 Comparisons for excitatory conductance-based syn-

apses. Top panels show time evolution of the probability

distribution of membrane potentials in the neuronal population

obtained from a) simulations, and b) numerical solution to

equation (21) respectively. Bottom panels: c) Output firing rates

as a function of time. d) The distribution of sub-threshold steady

state membrane potential. Poisson input for q(w’)~d(w’{w) with

maximum depolarization achieved by a neuron starting from rest

w~4:749 mV and input rate f ~100 Hz.

(EPS)

Figure S4 For non-instantaneous synapses, estimates of the

output firing rate can be obtained by using instantaneous synapses

equated for the total charge (with normalized capacitance) or the

maximum depolarization respectively. These are controlled by an

additional parameter td (see Methods: Non-instantaneous synap-

ses). td~0 corresponds to equating total charge (green curve) and

td~tmax~
tmts

(tm{ts)
ln(

tm

ts

) corresponds to equating maximum

depolarization (red curve). An intermediate estimate for the output

firing rate can be obtained if td~ts (light-blue curve). An upper

bound can be obtained if td~tmin~{tm ln(
tm

tm{ts

) (purple

curve). Simulations are for 10,000 LIF neurons with synaptic time-

constant ts~1:0 ms (dark-blue curve). Poisson input with

q(w’)~d(w’{w), input rate f ~100 Hz, V0~5 mV and

ts~1:0 ms.

(EPS)

Figure S5 EPSPs from instantaneous current-based, excitatory

synapses used for obtaining estimates of the output firing rate for

non-instantaneous synapses (see Methods: Non-instantaneous

synapses). Vl (red) is the EPSP obtained by equating the maximum

depolarization, Vq (dark blue) is the EPSP obtained by equating

the total charge and Vu(light blue) is the EPSP used to obtain an

upper bound on the output firing rate. Vex represents the exact

EPSP for the non-instantaneous synapse.

(EPS)

Figure S6 Gaussian distributions of instantaneous synaptic

weights with the same mean input current. Top Panels: a) Four

Gaussian synaptic weight distributions. b) The output firing rates

as a function of time when the four Gaussian synaptic inputs are

activated with an input firing rate adjusted such that the mean

input currents are equal. Both low-amplitude distributions (red

and light-blue curves) have twice the input rate of the high-

amplitude ones (dark-blue and green curves). In the absence of a

threshold, the synaptic input would depolarize v by 30 mV for the

all the distributions. As we use a threshold of 20 mV, all the results

are primarily driven by the mean input. In b), colors of curves

correspond to the weight distributions shown in a). Output firing

rates do not differ much when primarily driven by the mean input.

Bottom Panels: c) Four synaptic weight distributions with Gaussian

excitatory and inhibitory weights resulting in balanced excitation

and inhibition. The population response is driven exclusively by

variations in synaptic input. Input rate for all the distributions is

500 Hz. d) Output firing rates as a function of time. Results imply

that population response is determined not only by the total

current, but also by the variance of synaptic weights.

(EPS)

Figure S7 Distributions of synaptic weights with same mean

input current and variance of membrane potential. a) Semi-log

plot of different synaptic distributions, matched for drift~1 mV/

ms and diffusion~1:8 mV2/ms. b) Steady state sub-threshold

membrane potential distributions. c) Output firing rates. Heavier-

tailed distributions still produce quicker transients, but result in

lower steady state output firing rates in contrast to (Figure (2)).

(EPS)

Figure S8 Effect of d-function and Gaussian distributions of

synaptic delays on the overshoot of output firing rates of the

population. All distributions have the same mean tl~100 ms.

Even in the presence of different distributions of synaptic delays,

heavier-tailed distributions still lead to quicker transient responses

as seen earlier in Figure (2). Variance in the distribution of delays

affects the overshoot of equilibrium firing rate, with higher

variances leading to lower overshoot.The top panels all correspond

to distributions with the same mean synaptic weight (1 mV) and

input rate (1000 Hz), while the bottom panels all correspond to

distributions with mean synaptic weight (1 mV) and input rate

(3000 Hz). For both rows from left to right, the first column shows

the output firing rates with standard deviation sl~0 ms (d-

function distribution of delays), the second a Gaussian distribution

with sl~2 ms, the third a Gaussian distribution with sl~10 ms

and, the last a Gaussian again with sl~50 ms. The d-function

delays just translate the responses for all distributions by a constant

tl . Higher variance in the distribution of delays leads to lower

overshoot as can be seen going from left to right along each row.

To obtain an appreciable decrease in the overshoot of the output

firing rate, the delays have to be distributed with substantial

standard deviation slwtm, where tm is the membrane time

constant.

(EPS)

Figure S9 Top Panels: Tail weight numbers Qg for synaptic

weight distributions matched for a) mean input current and b) drift

and diffusion (see Methods: Matched synaptic distributions). These

are plotted as a function of g|�ww where �ww~
Ð w2

w1
wq(w)dw

represents the average synaptic weight. Lower Panels: c) and d)

Zooming in on top panel figures for low values of g|�ww. Heavier-

tailed distributions have higher tail weight numbers for smaller

values of g|�ww.

(EPS)

Figure S10 Time taken to reach 20% of steady-state firing rate

(T20) as a function of the first few moments (Top row: Panels (a),

(b), (c), (d)) and tail weight numbers (Bottom row: Panels (e), (f), (g),

(h)) for 1222 randomly generated synaptic weight distributions

between 0 and h with mean~2 mV and input rate~500 Hz.

Exponential best fit curve shown in red.

(EPS)

Figure S11 Even 0:1% of all synapses being strong makes a

difference in the speed of the response, leading to a quicker

transient time. Figure shows output firing rates for mean and drift-

matched d-function of synaptic weights with q(w)~d(w{w1) and

bimodal distribution of synaptic weights with q(w)~
a1d(w{w1)za2d(w{w2). The d-function has w1~1 mV while

the bimodal distribution has a1~0:999 with w1~0:986 mV and
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a2~0:001 with w2~15 mV. The red arrow shows that already

after a short time t~5 ms, the output rate for the d-function

distribution is f ~0:000016 Hz while the output rate for the

bimodal distribution is f ~0:7 Hz.

(EPS)

Figure S12 Quantifying response to sudden changes in input

rate for different synaptic weight distributions matched for mean

input current. Peak output firing rates for different fractions of

base input rate as a function of base input rate for a) d-function, b)

Gaussian, c) Exponential, d) Lognormal, e) Bimodal, and f) Power-

law distribution of synaptic weights. Heavier-tailed distributions

result in lesser overshoot.

(EPS)

Figure S13 Effect of external fluctuations on sub-threshold

membrane potential distribution and excitability for different

synaptic weight distributions, without and with synaptic depres-

sion. Simulations start from the equilibrium of Figure (2) and up to

l~10 additional inputs per neuron on average are activated.

From top to bottom, the rows represent results for the d-function,

Gaussian, exponential, lognormal, power-law and bimodal

distributions (Methods: Matched distributions) respectively. For

each row, panels a) and b) represent the membrane potential

distribution without and with synaptic depression, respectively.

The membrane potential distribution at the initial equilibrium is

represented in blue, following increment of l in steps of Dl~1 in

green, and the final distribution is in red. For each row, panel c)

shows the relative excitabilities, without and with synaptic

depression.

(EPS)

Figure S14 Effects of fluctuations in synaptic input, starting

from the equilibrium obtained for different synaptic weight

distributions with mean = 1 mV and input rate f (t)~8000 Hz.

The figures show how the relative excitability E varies as a function

of the additional synaptic inputs l per neuron on average in the

population (so that (f (t)dtzl) is the mean number of inputs per

neuron on average in a time dt), a) without and b) with synaptic

depression. Starting from this higher input rate, relative excitabil-

ity decreases for all synaptic weight distributions.

(EPS)

Table S1 Computational times. Table shows the simulation

times in (s) with NEST and DiPDE for different choices of time

step dt. The middle four columns correspond to simulation times

with different numbers of neurons N used in the NEST

simulations. The last column shows simulation times for DiPDE

with numbers in parantheses representing the number of non-zero

elements nnz for a given time step dt.
(PDF)

Table S2 Differentiating synaptic weight distributions matched

for mean input current. Table shows the number of independent

recordings of sub-threshold steady state membrane potential

required to differentiate between synaptic distributions matched

for mean input current. The values above the diagonal are the

sample sizes needed for p = 0.01, and below the diagonal are the

sizes for p = 0.05.

(PDF)

Table S3 Differentiating synaptic weight distributions matched

for drift and diffusion. Table shows the number of independent

recordings of sub-threshold steady state membrane potential

required to differentiate between synaptic distributions matched

for drift and diffusion. The values above the diagonal are the

sample sizes needed for p = 0.01, and below the diagonal are the

sizes for p = 0.05.

(PDF)

Table S4 Dynamical ranges. Table shows the upper (90%) and

lower (10%) limits of steady state output firing rates and dynamical

ranges (ratio of upper and lower steady state output firing rates) for

synaptic weight distributions (as in Figure (2)) matched for mean

input synaptic current. Dynamical range increases as the

distributions get heavier-tailed.

(PDF)

Table S5 Relative excitabilities. Table shows the maximum

relative excitability for synaptic weight distributions matched for

mean input current, without and with synaptic depression.

Heavier-tailed distributions lead to smaller changes in relative

excitability.

(PDF)

Text S1 A brief review of stochastic processes focusing on

elements needed for this study.

(PDF)

Text S2 Comparison of DiPDE and Fokker-Planck formalisms.

(PDF)

Text S3 Computational complexity with DiPDE.

(PDF)

Text S4 p-values for differences between sub-threshold steady-

state membrane potential distributions obtained from different

synaptic weight distributions.

(PDF)
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