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Abstract

Intrinsically disordered proteins (IDPs) were found to be widely associated with human diseases and may serve as potential
drug design targets. However, drug design targeting IDPs is still in the very early stages. Progress in drug design is usually
achieved using experimental screening; however, the structural disorder of IDPs makes it difficult to characterize their
interaction with ligands using experiments alone. To better understand the structure of IDPs and their interactions with
small molecule ligands, we performed extensive simulations on the c-Myc370–409 peptide and its binding to a reported small
molecule inhibitor, ligand 10074-A4. We found that the conformational space of the apo c-Myc370–409 peptide was rather
dispersed and that the conformations of the peptide were stabilized mainly by charge interactions and hydrogen bonds.
Under the binding of the ligand, c-Myc370–409 remained disordered. The ligand was found to bind to c-Myc370–409 at
different sites along the chain and behaved like a ‘ligand cloud’. In contrast to ligand binding to more rigid target proteins
that usually results in a dominant bound structure, ligand binding to IDPs may better be described as ligand clouds around
protein clouds. Nevertheless, the binding of the ligand and a non-ligand to the c-Myc370–409 target could be clearly
distinguished. The present study provides insights that will help improve rational drug design that targets IDPs.

Citation: Jin F, Yu C, Lai L, Liu Z (2013) Ligand Clouds around Protein Clouds: A Scenario of Ligand Binding with Intrinsically Disordered Proteins. PLoS Comput
Biol 9(10): e1003249. doi:10.1371/journal.pcbi.1003249

Editor: David van der Spoel, University of Uppsala, Sweden

Received April 3, 2013; Accepted August 15, 2013; Published October 3, 2013

Copyright: � 2013 Jin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Ministry of Science and Technology of China (Grant Nos. 2009CB918500 and 2012AA020308)and the National Natural
Science Foundation of China (Grant Nos. 20973016, 90913021 and 11021463). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lhlai@pku.edu.cn (LL); LiuZhiRong@pku.edu.cn (ZL)

Introduction

Intrinsically disordered proteins (IDPs), discovered in the 1990s,

are proteins that lack a stable three-dimensional native structure

under physiological conditions [1–5]. IDPs are sometimes

described as ‘‘protein clouds’’ because of their structural flexibility

and dynamic conformation ensemble [6]. Various bioinformatics

methods have been developed to predict IDPs based on their

sequences [7,8]. It was revealed that IDPs are abundant in all

kingdoms of life; for example, more than 40% of the proteins in

eukaryotic cells possess disordered regions longer than 50 residues

[9,10]. Because of the flexibility of the chain and the resulting

advantages in protein-protein interactions [1,11,12], IDPs play

important roles in various critical physiological processes such as

the regulation of transcription and translation [2], cellular signal

transmission, protein phosphorylation and molecular assemblies

[3,13,14]. On the other hand, IDPs also have some adverse effects.

It was revealed that many IDPs are associated with human

diseases such as cancer, cardiovascular disease, amyloidosis,

neurodegenerative diseases, and diabetes [15]. It was also reported

that the Swiss-Prot keywords for eleven severe diseases are strongly

correlated with IDPs [16]. Given their abundance and their

biological importance, IDPs are regarded as promising and

potential drug targets [15,17–19].

Compared with rational drug design targeting ordered proteins

[20–22], drug design targeting IDPs is still in its infancy. Though

some general strategies have been proposed [23], most of the

studies [24–30] have been limited to only a few systems, namely,

p53-MDM2, EWS-FLI1 and c-Myc-Max. Among them, the

oncoprotein c-Myc is an encouraging example. C-Myc is a

transcription factor with a basic helix-loop-helix leucine zipper

(bHLHZip) domain which becomes active by forming a dimer

with its partner protein Max [31]. In their unbound forms, both c-

Myc and Max are disordered. However, in the dimerized forms,

they undergo coupled folding and binding. In most cancers cells, c-

Myc protein is expressed persistently by a mutated Myc gene,

causing its unregulated expression in cell proliferation and signal

transmission. Therefore, inhibiting either the overexpression of c-

Myc and/or its dimerization with Max may provide a therapy for

cancer. Yin et al. [30] have used high-throughput experimental

screening to successfully identify seven compounds that inhibit

dimerization between c-Myc and Max. Further biophysical studies

using nuclear magnetic resonance (NMR), circular dichroism (CD)

and fluorescence assays have verified three different binding sites

(residues 366–375, 374–385, and 402–409) in the bHLHZip

domain of c-Myc [28]. These binding sites contain several

successive residues that can independently bind different small

molecules [28–30]. It should be noted that, after binding with the

small molecule inhibitors, the c-Myc sequence remains disordered,

making the detailed experimental characterization of the molec-

ular interactions almost impossible. Therefore, the inhibition

mechanism is still unclear. For example, a recent study using drift-

time ion mobility mass spectrometry suggested that the binding

between c-Myc and these inhibitors is not as specific as previously
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thought [32]. The lack of conformation data also hampers the

application of the well-developed structure-based drug design

approach to optimize the inhibition.

Molecular simulations are useful in understanding the charac-

teristics of IDPs because they can provide an atomic description of

molecular interactions. Coarse-grained models [11,33–35] and all-

atom simulation [36–42] have both been used to investigate IDPs.

Recently, Knott and Best [40] used large-scale replica exchange

molecular dynamics (REMD) simulations with a well-parameter-

ized force field to obtain a conformational ensemble of the nuclear

coactivator binding domain of the transcriptional coactivator

CBP. Their simulation results were in good agreement with NMR

and small-angle X-ray scattering measurements, validating the

efficacy of all-atom simulations in exploring the highly dynamic

conformations of IDPs. For the c-Myc/inhibitor complex

described above, Michel and Cuchillo [43] built a structural

ensemble using all-atom simulations for c-Myc402–412 with and

without an inhibitor (10058-F4) and found that 10058-F4 bound

to multiple distinct binding sites and interacted with c-Myc402–412.

However, because the c-Myc segment used in their simulation

contained only the 11 residues that covered the binding sites of

10058-F4 (residues 402–409), it is unclear how the inhibitors

would interact with longer segments of c-Myc and how specific the

interaction would be.

In the present study, we conducted extensive all-atom molecular

dynamic (MD) simulations to investigate the c-Myc370–409

conformational ensemble and its interactions with a small-

molecule inhibitor (10074-A4). First, we performed implicit-

solvent REMD simulations to clarify the conformational features

of the unbound c-Myc370–409. Next, we performed MD simula-

tions with an explicit water model to explore in detail the

interactions between c-Myc370–409 and 10074-A4. Finally, a

negative control using a different peptide segment (c-Myc410–437)

was simulated to address the issue of interaction specificity. The

conformational ensemble that we obtained will be useful not only

in clarifying the structural features of c-Myc and the binding

mechanism with inhibitors, but also in providing reference

structures for drug design targeting c-Myc via structure-based

approaches.

Results

Conformational analysis of c-Myc370–409

Conformational sampling of IDPs for molecular modeling is

challenging because the energy landscapes of IDPs are relatively

flat [44,45]. In the present study, extensive REMD simulations

using an implicit solvent model were performed to explore the

conformational characteristics of c-Myc370–409. The accumulative

total of simulation time reached 34.5 ms (see Methods). C-Myc370–

409 is a 40-residue truncated construct of a full-length c-Myc. The

conformational properties of c-Myc370–409 in its bound state (with

10074-A4) and more dynamic unbound state, have been studied

experimentally using CD and NMR spectroscopy, and a likely

average conformation was built based on chemical shift data

which is not meant to (and cannot) define detailed structural

features [28]. We compared our simulation results with the

available experimental results.

To assess the sampling quality of the REMD simulations, we

computed 1H and 13C chemical shifts from the simulated

conformational ensemble using SHIFTS [46] and compared the

computed values with the experiment values (Figure 1). The

agreement is reasonable, though not excellent. Deviations between

the average chemical shift values for a simulated ensemble and

experimental values have been observed previously in several

studies on IDPs [40,47,48]. The chemical shift calculation

performed using several other software (SHIFTX [49], CamShift

[50], SPARTA+ [51]) also showed deviations between the

computed and experimental values (Figure S1). A possible reason

is that chemical shifts are difficult to calculate accurately and the

underlying parameterizations applied in current software for the

calculation of chemical shifts have been optimized for ordered

proteins but not for IDPs [47]. Interestingly, when we back-

calculated chemical shifts from the NMR-refined structure using

either the SHIFTS [46] or SHIFTX [49] software, the resulting

values also deviated from the experimental ones (Figure S2). In

addition, the ensemble nature of IDP conformations suggests that

the chemical shifts of IDPs should be described as a distribution,

and not merely as average values. The calculated distributions of

the Ha chemical shifts obtained from our simulations are

summarized in Figure 2. All the Ha chemical shifts are distributed

over a broad range. The experimental values, indicated by arrows

in Figure 2, are located close to the centers of the distributions,

indicating the validity of the conformational sampling. Data for

the HN, Ca and Cb chemical shifts are given in Figure S3, showing

similar behaviors as the Ha chemical shifts. We also computed the

distribution of the backbone dihedral angles (Ramachandran (w,y)

plot) for the simulations and the dihedral angles of the NMR-

refined apo structure lie well within the simulation distributions

(Figure S4).

The secondary structure content of the simulated structures was

also calculated [43,52–54] and compared with that estimated from

the experimental chemical shifts (Figure 3). The helix and

polyproline II content of the simulated structure were consistent

with the experimental structures (Figure 3A). However, the sheet

content of the simulated structures was much lower than the sheet

content of the experimental structures. In a previous study [43] on

a shorter c-Myc segment, c-Myc402–412, a similar underestimation

of sheet content was observed in the simulated structures. The

deficiency of sheet content in the simulated structures might be

caused by a bias in the force fields. Although c-Myc370–409 is

intrinsically disordered, it possesses a high content of residual

helical structure (.25%). The simulated helix propensity

(Figure 3B) showed three helical regions separated by proline

residues, Pro382 and Pro391.

Author Summary

Intrinsically disordered proteins (IDPs) exist as conforma-
tional ensembles that change rapidly. They are an
important and common class of proteins in all kingdoms
of life. IDPs are widely associated with human diseases and
may serve as potential drug design targets. However, drug
design targeting IDPs is difficult and only limited examples
have been reported. One example is the oncoprotein, c-
Myc, for which seven inhibitors were discovered by
experimental screening. Understanding how small inhibi-
tor molecules bind to c-Myc may help in understanding
the binding mechanism of IDPs with ligands. In the
present study, we conducted extensive molecular dynam-
ics simulations to explore the binding mechanism for the
c-Myc peptide with an inhibitor 10074-A4. We found that
10074-A4 could bind to c-Myc370–409 at different sites
along the peptide chain and its binding behavior could be
described as a ‘ligand cloud’. Even in the bound state, the
structure of the c-Myc370–409 peptide remained a dynamic
ensemble. Compared to c-Myc peptides that do not bind
to 10074-A4, c-Myc370–409 binds selectively with 10074-A4,
but the specificity of binding was not high. The interac-
tions of IDPs with ligands can perhaps be described as a
scenario in which ligand clouds around protein clouds.

IDPs and Ligand: Clouds Interactions
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To clarify the conformational features of c-Myc370–409, back-

bone-RMSD clustering with a cutoff of 2.0 Å of the conformations

was performed. Representative structures (the central structure of

each group) of the first eight groups were depicted in Figure 4.

They are all somewhat collapsed compared to the fully extended

structure and possess a rich residual helical structure. These states

with considerable population will be useful references for rational

drug design targeting c-Myc. The existence of residual structure

may be related to the functional misfolding that prevents IDPs

from unwanted interactions with non-native partners [55]. A

quantitative analysis on the distributions of dimension and helix

content was provided in Figure S5. The mean radius of gyration is

around 10.360.6 Å, which is much smaller than the expected

value of random coils (18.5 Å) under the same chain length. The

mean helix content of the conformational ensemble is

27.7611.1%, showing a broad distribution. These results indicat-

ed that c-Myc370–409 is disordered in nature and interconversions

between dispersed structures occur.

Stabilizing interactions in c-Myc370–409

To reveal how the conformations of apo c-Myc370–409 were

stabilized, we analyzed the Lennard-Jones and electrostatic

residue-residue interactions among all the residues (Figure S6).

The Lennard-Jones interaction matrix was rather weak (Figure

S6A), indicating that the conformations were disordered and that

the packing in the collapsed structures was poor. This finding is

consistent with the contact map, which showed that residue-

residue contacts were dispersed and low in magnitude (Figure

S6B). The electrostatic interactions, on the other hand, were

comparatively strong (Figure S6C), probably because nearly one-

third of the residues in c-Myc370–409 (12 out of the 40) are charged

residues. The favorable electrostatic interactions of the Arg372,

Arg378, Lys389, Lys392 and Lys398 residues with the Asp379,

Glu383, Glu385 and Glu409 residues (Figure S6C) are the result

of the electrostatic attraction between residues with opposite

charges. Residues like Ser373 and Gln380 also contributed to the

electrostatic interactions by forming hydrogen bonds (Figure S6D).

Therefore, charge-pair interactions and hydrogen bonds were the

main stabilized factors for the c-Myc370–409 conformations.

Binding of 10074-A4 to c-Myc370–409

We conducted MD simulations with an explicit solvent model to

investigate the interactions between c-Myc370–409 and the inhibitor

10074-A4. 10074-A4 is the only inhibitor (among seven inhibitors

of c-Myc) that binds to the 375–385 sites in loop region of the

bHLHZip domain of c-Myc and we wanted to see whether or not

stable local structures were induced when 10074-A4 interacted

with the flexible loop region. In the experimental study, 10074-A4

is a mixture of two chiral forms, the S and R forms (Figure 5). In

the simulations, both chiral forms were tested. For comparison, the

apo c-Myc370–409 was simulated with the same explicit solvent

model. The accumulative simulation time for each group was 7 ms

Figure 1. Comparisons of the computed and experimental chemical shifts for apo c-Myc370–409. The computed values are from the REMD
simulations (red circles) and the experimental values are from Hammoudeh et al. [28] (blue squares). Note that the experimental values for some
residues were not available. Chemical shifts are for the atoms: A Ha, B HN, C Ca, D Cb.
doi:10.1371/journal.pcbi.1003249.g001

IDPs and Ligand: Clouds Interactions
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(see Methods). We calculated and compared the simulated

chemical shifts with experimental chemical shifts for both implicit

solvent REMD and explicit solvent simulations (Figures S7, S8,

S9, S10). Reasonable agreements were found. For example, the

average discrepancy between the simulated and experimental

chemical shifts for Ha atoms of apo c-Myc370–409 is 0.14 and

0.16 in the MD simulations with explicit solvent model and

REMD simulations, respectively (see Table S1).

The relative binding free energy of c-Myc370–409 with the two

chiral 10074-A4 forms was analyzed from the MD trajectories

Figure 2. Distribution of the Ha chemical shifts for apo c-Myc370–409 determined from REMD simulations. For comparison, the
experimental values are indicated by red arrows.
doi:10.1371/journal.pcbi.1003249.g002

Figure 3. Secondary structure content and helix propensity of apo c-Myc370–409. A Secondary structure content. For the REMD simulations
(red), the helix and sheet content was computed using the DSSP [52] method; the polyproline II content was computed with the PROSS software [53].
For the experimental data (black), the secondary structure content was estimated from the chemical shifts using d2D [54]. B Helix propensity from the
REMD simulations using the DSSP method.
doi:10.1371/journal.pcbi.1003249.g003

IDPs and Ligand: Clouds Interactions
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using the Molecular Mechanic/Poisson-Boltzmann Surface Area

(MM/PBSA) method [56]. The results of this analysis, together

with the average non-bonded interactions Unon-bonded (Lennard-

Jones and electrostatic potentials) between c-Myc370–409 and

10074-A4, are given in Table 1. We found that the interaction

between c-Myc370–409 and the S form of 10074-A4 was much

stronger than the interaction with the R form. The difference of

Unon-bonded between the S and R forms (23.7 kcal/mol) was close

to the difference of DH from MM/PBSA (23.2 kcal/mol). The

difference of binding free energy between the S and R forms was

22.2 kcal/mol, resulting in a binding-affinity ratio of

K (S)
a

�
K (R)

a ~exp {DDG=RTð Þ&41 for the S and R forms.

Therefore, compared with the binding of the S form to c-

Myc370–409, the binding of the R form can be ignored. Thus, only

the holo system with the S form of 10074-A4 is discussed further.

Hammoudeh et al. [28] reported an induced circular dichroism

(ICD) effect on c-Myc370–409 by the binding of a racemate (1:1

mixture of the S and R forms) of 10074-A4. There were two

possible reasons for the observed ICD effect [28]; either the chiral

surroundings affected the absorption transition of the compound,

or the enantiomer-specific effect (the different binding affinity of

the S and R forms) led to the ICD effect. We have shown above

that the S form of 10074-A4 bound much stronger with c-Myc370–

409 than the R form. Therefore, we suggest that it was the

enantiomer-specific effect that was responsible for the observed

ICD effect. Further experiments using single chiral forms of

10074-A4 would be helpful in clarifying this observation.

We clustered the conformations from MD simulations with the

explicit solvent model for both the apo and holo c-Myc370–409

peptide based on RMSD of the backbone atoms. Figure 6 and 7

showed the representative conformations for the top eight clusters

of the apo and holo peptides. It is clear that both the apo and the

holo peptides have a rather broad conformation distribution,

which is typical of disordered proteins. Upon binding to the ligand

10074-A4, the conformational distribution became more con-

densed. The top eight conformation clusters of the holo peptide

were more highly populated compared to that of the apo peptide,

with a total of about 77% occupancy compared to 50%. Similar to

the apo c-Myc370–409 structure, the holo c-Myc370–409 structure is

rich in helical structures. A quantitative analysis indicated that the

helix and polyproline II content was almost unaffected by the

binding of 10074-A4 (Figure S11), while the sheet content was

enhanced (see also in Figure 7). The electrostatic interactions (from

both charged residues and hydrogen bonding) dominated the

intramolecular stabilizing force for holo c-Myc370–409 (Figure S12).

Figure 4. Representative conformations of apo c-Myc370–409 computed from REMD simulations. Backbone-RMSD clustering with a cutoff
of 2.0 Å of all the conformations was performed. Representative c-Myc370–409 structures (from blue at the N-terminal to red at the C-terminal) for the
first eight clustering groups were displayed in cartoon. The fractional cluster populations are: A 9.5%, B 8.4%, C 7.3%, D 7.1%, E 5.8%, F 5.1%, G 4.8%,
H 4.1%.
doi:10.1371/journal.pcbi.1003249.g004

Figure 5. Chiral forms of the 10074-A4 ligand. A The S form. B
The R form.
doi:10.1371/journal.pcbi.1003249.g005

Table 1. Relative binding free energy and averaged non-
bonded potential for 10074-A4 binding with c-Myc370–409 and
c-Myc410–437.

Peptide
Ligand
chirality DH TDS DG Unon-bonded*

c_Myc370–409 S 219.966.5 215.466.7 24.5613.2 238.663.8

R 216.766.9 214.367.8 22.3614.7 234.964.6

c_Myc410–437 S 216.666.9 215.567.4 21.1614.3 235.863.8

R 211.267.2 212.8610 1.6617.2 225.763.3

The binding free energy was calculated using the MM/PBSA method [56]. All
quantities are in kcal/mol.
*Unon-bonded is averaged non-bonded potential, which is composed of Lennard-
Jones and electrostatic potential.
doi:10.1371/journal.pcbi.1003249.t001

IDPs and Ligand: Clouds Interactions
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Interaction specificity between c-Myc370–409 and 10074-
A4

The residue-specific binding of c-Myc370–409 with 10074-A4 was

tracked by calculating differences in the solvent accessible surface

area (DSASA) between 10074-A4 and each residue of c-Myc370–

409. The binding sites were determined as a function of time and

representative conformations are shown in Figure 8. Binding of the

10074-A4 ligand was not restricted to a single site in c-Myc370–409,

instead, it spread across almost the whole chain of c-Myc370–409.

10074-A4 usually binds simultaneously to two or more regions that

are flanked by several residues. The binding was highly dynamic

and could switch between different modes within a trajectory.

The time percentage of binding for each residue was calculated

and is shown in Figure 9. Three binding sites were detected, which

included site I (residues 372 to 384), site II (387 to 395), and site III

(398 to 408). Site I was near the N-terminal and showed stronger

potency than that of the other two sites. This result was supported

by the intermolecular interaction analysis (Figure 10), which

showed that both the electrostatic and Lennard-Jones interactions

for site I were much stronger than those of the other two sites. In

fact, in the latter cases, hydrogen bonds hardly formed and the

electrostatic interactions were weak. Site I was similar to the

experimentally determined binding site of 10074-A4 on c-Myc at

residues 374–385 [28]. Binding at all the other sites generated in

our simulations was much weaker, which would make them

difficult to be observed experimentally. The low residue interac-

tion specificity that we observed in the simulations is consistent

with a recent simulation on an 11 residue peptide of c-Myc402–412

that suggested that ligand binding was driven by weak and

nonspecific interactions [43]. The mass spectrometry experiment

on c-Myc reported by Harvey et al. [32] also supported this

conclusion.

Figure 6. Representative conformations of apo c-Myc370–409 computed from explicit solvent simulations. Backbone-RMSD clustering
with a cutoff of 2.0 Å of all the conformations was performed. Representative c-Myc370–409 structures (from blue at the N-terminal to red at the C-
terminal) for the first eight clustering groups were displayed in cartoon. The fractional cluster populations are: A 10.5%, B 8.6%, C 7.8%, D 6.4%, E
6.1%, F 4.5%, G 3.5%, H 3%.
doi:10.1371/journal.pcbi.1003249.g006

Figure 7. Representative conformations of holo c-Myc370–409/10074-A4 complex computed from explicit solvent simulations.
Backbone-RMSD clustering with a cutoff of 2.0 Å of all the conformations was performed. Representative c-Myc370–409 structures (from blue at the N-
terminal to red at the C-terminal) for the first eight clustering groups were displayed in cartoon and 10074-A4 structures were depicted as black
sticks. The fractional cluster populations are: A 14.3%, B 13.9%, C 13.7%, D 10.4%, E 7.5%, F 6.9%, G 5.4%, H 5.2%.
doi:10.1371/journal.pcbi.1003249.g007

IDPs and Ligand: Clouds Interactions
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Negative control study with c-Myc410–437

To further investigate the inherent specificity features of IDPs,

we conducted a negative control study in which we chose another

segment of c-Myc (residues 410–437) that does not bind with

10074-A4 [28]. The simulated binding between c-Myc410–437 and

10074-A4 is shown in Figure 11. Unexpectedly, c-Myc410–437

‘‘bound’’ with 10074-A4 in most simulation durations. Comparing

with the binding of 10074-A4 with c-Myc370–409, its binding with

c-Myc410–437 was less lasting and switched more frequently among

different modes. The longest continuous binding time at one

binding region within a trajectory is about 800 ns for c-Myc370–409

(see lower part of Figure 8), while it is about 200 ns for c-Myc410–

437 (Figure 11).

The observed ‘‘binding’’ in the c-Myc410–437 negative control

was different from what is found in negative controls for

conventional ordered proteins where binding is usually not

observed. To clarify the nature of this unexpected finding, we

calculated the relative binding free energy using the MM/PBSA

method and the results are provided in Table 1. We found that the

binding of 10074-A4 with c-Myc410–437 was much weaker than

with c-Myc370–409; the difference in binding free energy was about

3.4 kcal/mol. Therefore, the binding in c-Myc410–437 could not

compete with that in c-Myc370–409. Although 10074-A4 scattered

around the c-Myc370–409 and c-Myc410–437 peptides (Figures 8 and

11), its interaction with c-Myc370–409 was stronger and more

selective than with c-Myc410–437. The sites at which 10074-A4

‘‘bound’’ with the c-Myc410–437 peptide were much more disperse

than the sites at which it bound with c-Myc370–409. Therefore,

though the binding of 10074-A4 and c-Myc370–409 was not strong

(the experimentally determined dissociate constant was

2162 mM), it showed selectivity and thus specificity.

Figure 8. Binding sites determined as a function of time for two
MD trajectories of holo c-Myc370–409. MD simulations with explicit
solvent simulations were performed and binding sites were determined
by DSASA. Binding residues at any time were defined by DSASA values
larger than 10 Å2 and are shown in squares. Continuous binding of less
than 10 ns was ignored. The results for more MD trajectories are
available in Figure S13.
doi:10.1371/journal.pcbi.1003249.g008

Figure 9. Binding specificity of 10074-A4 with c-Myc370–409. The
binding-time percentage was computed for each residue by counting
the frames with DSASA larger than 10 Å2. Continuous binding of less
than 10 ns was ignored.
doi:10.1371/journal.pcbi.1003249.g009

Figure 10. Interactions between 10074-A4 and the c-Myc370–409

peptide. A Lennard-Jones potential. B Electrostatic potential. C Time
percentage of hydrogen bonds.
doi:10.1371/journal.pcbi.1003249.g010

Figure 11. Binding of c-Myc410–437 with the S (upper) and R
(lower) forms of 10074-A4.
doi:10.1371/journal.pcbi.1003249.g011

IDPs and Ligand: Clouds Interactions
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Discussion

The specificities of IDPs in molecular recognition are compli-

cated [57]. Our simulation results showed that the specificity of c-

Myc in binding the small-molecule ligand 10074-A4 was not high.

C-Myc is a typical example of IDPs. It is sticky and binds the

ligands at different regions with different interaction strengths.

Because of the lack of coupled folding and binding, after binding,

c-Myc is still in an ensemble with diverse conformations and the

distinct conformations are all capable of binding the ligand.

Furthermore, for a given c-Myc structure, the binding of ligand

occurred at disperse sites (Figure 12). We named this phenomenon

ligand clouds. Ligand clouds are remarkably different from the

type of binding that is found in ordered proteins where a dominant

binding structure is formed. We expect that ligand clouds may be a

general feature for IDPs binding with small-molecule ligands. For

IDPs binding with macromolecule partners, it was reported that

some IDPs remain disordered in the holo state [57]; for example,

b-catenin/Tcf4, b-catenin/APC peptide, b-catenin/APC phos-

phorylated, Vif/EloB/EloC, and ERRcLBD/PGC-1a. These

IDP complexes assume dynamic structures upon binding,

suggesting that IDPs may interact with their partners in a similar

manner to the ligand clouds. The ligand clouds concept supports

the idea that there is no definite binding mode in the interactions

between IDPs and small-molecule inhibitor [43]. It suggests that

the interactions could be described as protein clouds interacting

with ligand clouds.

The ligand cloud concept describes a scenario for the

interactions between IDPs and small-molecule ligands and may

provide a basis for drug design targeting IDPs. A straightforward

strategy for rational drug design on IDPs is to extract metastable

structures from simulations and then to conduct a virtual screen on

them to identify potential inhibitors. A similar strategy was applied

successfully in designing an inhibitor for Ab fibrillation [58].

However, the ligand clouds concept for small molecules binding

with IDPs implies that different strategies from those used for

ordered proteins should be developed for better rational drug

design on IDPs. For example, because ligand binding on IDPs

occurs in disperse locations and in different orientations,

multimode interactions should be considered in the scoring

functions instead of the single-mode interaction that is commonly

used for other proteins. Therefore, schemes that can consider

binding energy landscapes [59] might be expected to perform

better when designing small molecule ligands for IDPs. On the

other hand, in contrast to the conventional ordered proteins that

are in either ‘‘binding’’ or ‘‘non-binding’’ states with small

molecules, IDPs are ‘‘sticky’’ and would be either in ‘‘strong

binding’’ or ‘‘weak binding’’ with small molecules. So more cares

should be paid to the problem of specificity in drug design

targeting IDPs.

For conventional ordered proteins, the binding conformation is

unique which could be selected from pre-existing conformations

(the conformational selection mechanism) or be induced (the

induced fit mechanism) by particular ligands. The scenario of

ligand clouds around protein clouds for IDPs indicates that

multiple protein conformations are selected and/or induced by

the binding of a ligand on IDPs. This may extend the

conformational selection-induced fit continuum in a new

dimension.

Conclusion
In conclusion, we conducted extensive simulations to explore

the conformational ensemble of c-Myc370–409 and its complex with

a small-molecule inhibitor 10074-A4. The conformational space

was found to be rather dispersed. In contrast to conventional

structured proteins, the conformations of c-Myc370–409 were

mainly stabilized by charge interactions and hydrogen bonds.

Upon binding to 10074-A4, c-Myc370–409 remained disordered.

The 10074-A4 ligand bound at different sites throughout the c-

Myc370–409 chain with different strength. Accordingly, a ligand

cloud concept was proposed, that is, the interactions between small

molecule ligands and IDPs were like ligand clouds around protein

clouds. The different binding probabilities between the protein

clouds and ligand clouds indicated that the ligand could be

selective and thus specific. Though the specificity of the binding

was not high, the binding of ligand and non-ligand to the target

IDP could be clearly distinguished.

Figure 12. Illustration of the ligand clouds concept. Holo conformations from the simulations were clustered and representative c-Myc370–409

structures of each clustering group were displayed in the same way as Figure 7. Ligand 10074-A4 structures from each group were depicted as green
dots at the centers of mass.
doi:10.1371/journal.pcbi.1003249.g012

IDPs and Ligand: Clouds Interactions

PLOS Computational Biology | www.ploscompbiol.org 8 October 2013 | Volume 9 | Issue 10 | e1003249



Methods

NMR structures of c-Myc370–409 and its complex with
10074-A4

Hammoudeh et al. [28] measured chemical shifts and several

NOE signals of c-Myc370–409 and predicted dihedral angle

distributions and atomic contacts. To build the c-Myc370–409

peptide, we first built a completely extended conformation with

the following sequence: 370LKRSFFALRDQIPELENNE-

KAPKVVILKKATAYILSVQAE409 (Accession number:

P01106). We then built the initial structures from the reported

dihedral angles [28] using PyMOL [60]. The apo and holo

structures for c-Myc370–409 were refined further using the

GROMACS 4.5.4 software package [61] and the AMBER99SB

force field, with the NMR data [28] as the dihedral angle and

distance restraints in the simulation. Each initial structure was

minimized in vacuum. Then, it was solvated, minimized, and

equilibrated as described below. The time step was set to 0.5 fs.

Finally, a 5 ns production simulation was performed and the final

structure was adopted as the refined structure.

REMD simulations with implicit solvent model
The conformations of the c-Myc370–409 peptide were sampled

by REMD simulations with a Generalized Born/Surface Area

(GB/SA) implicit solvent model. The AMBER molecular simula-

tions package was used with AMBER99SB force fields [62]. A

total of 30 replicas were adopted with temperatures ranging

between 284.6 K and 608.8 K. All adjacent replicas attempted to

exchange temperature every 10 ps with the average exchange rate

between 35% and 40%. To produce the 30 starting conformations

for an REMD simulation, an initial structure (described below)

was minimized using steepest descent for 500 steps and then

switched to conjugate gradient for another 500 steps. The

minimized conformation was then heated to the defined temper-

ature over a time of 200 ps for each replica. The obtained

conformations were adopted as starting conformations in the

REMD simulations, which were run with a time step of 2 fs.

Replica temperature was controlled with a coupling time constant

of 2 ps. Bonds involving hydrogen atoms were constrained with

SHAKE. Chirality restraints on the backbone were employed to

prevent non-physical chiralities. Ionic strength was set to 0.2 M.

The cutoff for non-bonded interactions and for the GB pairwise

summations involved in calculating Born radii was 999 Å to

consider all probable interactions entirely. Snapshots from each

trajectory were stored every 10 ps.

We conducted four groups of REMD simulations with different

initial structures: (a) the extended structure of the peptide; (b) apo

NMR refined structure; (c) the structure after a 80-ns MD

simulation at 300 K starting from the extended conformation; and

(d) the most occupied representative conformation generated

previously from the REMD simulations of the extended structure

in (a). The simulation time for the four groups of REMDs was

150 ns, 270 ns, 210 ns and 520 ns, respectively. The total

simulation time was 34.5 ms (1.15 ms per replica).

The trajectories of 292.2 K, 300 K and 308 K were used in the

further analyses except that only the trajectory of 300 K was used

in the chemical shifts calculations.

MD simulations with explicit solvent model
To investigate the interactions between c-Myc370–409 and

10074-A4, MD simulations for the complex structure were carried

out with an explicit solvent model [63]. The apo c-Myc370–409 was

also simulated with the same explicit solvent model for compar-

ison. Three groups of simulations were performed, one for the apo

and two for the holo (with the two chiral 10074-A4 forms (see

Figure 5)). Each group contained seven trajectories of 1 ms,

therefore, the total simulation time was 21 ms. One of the seven

initial structures was the NMR refined structures (apo and holo);

the other six initial structures were adopted from representative

conformations generated previously in the 150-ns REMD

simulations (for the holo structures, the 10074-A4 isomers were

docked using the AutoDock 4.2 program [64]).

MD simulations with the explicit solvent model were performed

with the GROMACS 4.5.4 software package [61] and AM-

BER99SB force field under particle mesh Ewald periodic

boundary conditions. The TIP4P-EW water model [63] was used

with AMBER99SB force field because of its previously reported

good performance in other simulations of IDPs [36,47,65]. In the

holo simulations, the small molecule 10074-A4 ligand involved

was parameterized using a general amber force field (gaff) with

ACPYPE software [66]. An AM1-BCC charge model [67] was

used to assign charges to the ligand.

Each initial structure was immersed in an explicit TIP4P-EW

truncated octahedral water box. The dimensions of the box,

defined as the distance between the farthest atoms of the peptide

and the edge of the box, was set to 10 Å. The system was

neutralized by adding ions, and extra NaCl was added to represent

a solution with an ionic strength of 0.15 M. The system was

minimized using the steepest descent minimization approach.

After the minimization, the system was equilibrated in the NVT

ensemble with all-heavy atom restrained with a force constant of

239 kcal/mol. The temperature was maintained at 300 K using a

V-rescale thermostat with a coupling constant of 0.1 ps. Further

equilibration was carried on in the NPT ensemble without strains,

and where the pressure was maintained at 1 atmosphere using a

Parrinello-Rahamn barostat with the coupling constant set to

2.0 ps. Both equilibrations were performed for 200 ps with a time

step of 1 fs. For the production run, the thermostat and barostat

settings were the same as for the NPT run. To enable 2 fs time

steps, bonds involving hydrogen atoms were constrained to

equilibration length using the LINCS algorithm [68]. A real-

space cutoff of 10 Å was used for the electrostatic and Lennard-

Jones forces. Snapshots from each trajectory were stored every

20 ps.

To further investigate the inherent specificity features of IDPs,

we conducted a negative control study using the c-Myc410–437

truncated peptide (410EQKLISEEDLLRKRREQLKHK-

LEQLRNS437), which did not bind to 10074-A4. The extended

structure of the peptide was used as the initial structure in an 80 ns

implicit solvent MD simulation and the final structure that was

generated was applied in all-atom explicit simulations. Two groups

of simulations were performed for each of the two chiral 10074-A4

isomers. Each group contained one trajectory of 1 ms; the other

parameters were the same as the parameters used for the holo c-

Myc370–409 simulations described above.

Analysis of the simulations
All the simulations were analyzed using the GROMACS

utilities [61] with either PyMol [60] or in-house scripts. DSASA

was used in determinations of the binding sites. Upon small

molecule binding, for each residue in the peptide there would be a

clear decrease of SASA related to the difference between the

SASA of the bound and unbound states. Backbone RMSD

clustering of peptide conformations was performed to identify

distinct structural clusters and to estimate their populations. The

relative binding free energy was calculated every 200 ps using

MM/PBSA [56] methods.
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Supporting Information

Figure S1 Comparisons of the computed and experi-
mental chemical shifts for apo c-Myc370–409. The computed

values using SHIFTX (red circles), CamShift (blue square) and

SPARTA+ (green squares) are from the REMD simulations and the

experimental values are from Hammoudeh et al. [28] (black triangle).

Note that the experimental values for some residues were not available.

Chemical shifts are for the atoms: A Ha, B HN, C Ca, D Cb.

(TIF)

Figure S2 Comparisons of the back-calculated chemical
shifts for NMR-refined apo c-Myc370–409 structure and
experimental values. The computed values for apo c-Myc370–

409 were obtained using SHIFTS (red circles) and SHIFTX (blue

triangles). The experimental values for apo c-Myc370–409 are from

Hammoudeh et al. [28] (green squares). Note that the experi-

mental values for some residues were not available.

(TIF)

Figure S3 Distribution of chemical shifts for apo c-
Myc370–409 determined from REMD simulations. A
Chemical shifts for the HN atoms. B Chemical shifts for the Ca

atoms. C Chemical shifts for the Cb atoms. Experimental values

are indicated by red arrows for comparison.

(TIF)

Figure S4 Ramachadran plots for the apo c-Myc370–409

dihedral angles computed from implicit solvent REMD
simulations. The backbone dihedral angle values estimated from the

experimental structure are indicated by blue crosses for comparison.

(TIF)

Figure S5 Dimension and helix content distributions of
apo c-Myc370–409. A Distribution of radius of gyration for

conformations obtained from REMD simulations. The radius of

gyration of native state and denatured state (random coils) were

computed using empirical formulas Rg glob Nð Þ~2:2N0:38 and

Rg denat Nð Þ~2:02N0:60 [38], where N is the number of residues,

and are indicated by arrows in the figure. B Distribution of helix

content of conformations from REMD simulations.

(TIF)

Figure S6 Residue-residue interactions in apo c-Myc370–

409 computed from REMD simulations. A Lennard-Jones

potential (in kcal/mol). B Contact map (in contact probability). C
Electrostatic potential (in kcal/mol). D Time percentage of

hydrogen bonds. An i-j residue pair was defined as in contact

when an atom in the ith residue and an atom in the jth residue

were closer than 4.0 Å and j.i+2.

(TIF)

Figure S7 Comparisons of chemical shifts for apo c-
Myc370–409 computed from explicit solvent simulations
(red circles) and the experimental values of Hammou-
deh et al. [28] (blue squares). Note that the experimental

values for some residues were not available.

(TIF)

Figure S8 Distribution of Ha chemical shifts for apo c-
Myc370–409 determined from explicit solvent simulations.
Experimental values are indicated by red arrows for comparison.

(TIF)

Figure S9 Comparisons of chemical shifts for holo c-
Myc370–409 computed from holo explicit solvent simula-
tions (red circles) and the experimental values of
Hammoudeh et al. [28] (blue squares). Note that the

experimental values for some residues were not available.

(TIF)

Figure S10 Distribution of Ha chemical shifts for holo c-
Myc370–409 determined from explicit solvent simulations.
Experimental values are indicated by red arrows for comparison.

(TIF)

Figure S11 Secondary structure content of apo (black)
and holo (red) c-Myc370–409 computed from explicit
solvent simulations. The helix and sheet content was

computed using the DSSP method [52]; the polyproline II content

was computed with the PROSS software [53].

(TIF)

Figure S12 Residue-residue interactions in apo (upper)
and holo (lower) c-Myc370–409 computed from explicit
solvent simulations. A and E Lennard-Jones potential (in

Kcal/mol). B and F Contact map (in contact probability). C and

G Electrostatic potential (in Kcal/mol). D and H Time percentage

of hydrogen bonds. An i-j residue pair was defined as in contact

when an atom in the ith residue and an atom in the jth residue

were closer than 4 Å and j.i+2.

(TIF)

Figure S13 Binding sites of holo c-Myc370–409 deter-
mined by DSASA as a function of time for five MD
trajectories with explicit solvent simulations. Binding

residues were defined by DSASA larger than 10 Å2 and are shown

in squares. Continuous binding of less than 10 ns was ignored.

(TIF)

Table S1 Average discrepancy between simulated and
experimental chemical shifts for Ha atoms of apo c-
Myc370–409 calculated using SHIFTS.

(TIF)
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