
Reconstructing the Genomic Content of Microbiome
Taxa through Shotgun Metagenomic Deconvolution
Rogan Carr1, Shai S. Shen-Orr2, Elhanan Borenstein1,3,4*

1 Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America, 2 Department of Immunology, Rappaport Institute of

Medical Research, Faculty of Medicine and Faculty of Biology, Technion, Haifa, Israel, 3 Department of Computer Science and Engineering, University of Washington,

Seattle, Washington, United States of America, 4 Santa Fe Institute, Santa Fe, New Mexico, United States of America

Abstract

Metagenomics has transformed our understanding of the microbial world, allowing researchers to bypass the need to isolate
and culture individual taxa and to directly characterize both the taxonomic and gene compositions of environmental samples.
However, associating the genes found in a metagenomic sample with the specific taxa of origin remains a critical challenge.
Existing binning methods, based on nucleotide composition or alignment to reference genomes allow only a coarse-grained
classification and rely heavily on the availability of sequenced genomes from closely related taxa. Here, we introduce a novel
computational framework, integrating variation in gene abundances across multiple samples with taxonomic abundance data
to deconvolve metagenomic samples into taxa-specific gene profiles and to reconstruct the genomic content of community
members. This assembly-free method is not bounded by various factors limiting previously described methods of
metagenomic binning or metagenomic assembly and represents a fundamentally different approach to metagenomic-based
genome reconstruction. An implementation of this framework is available at http://elbo.gs.washington.edu/software.html.
We first describe the mathematical foundations of our framework and discuss considerations for implementing its
various components. We demonstrate the ability of this framework to accurately deconvolve a set of metagenomic
samples and to recover the gene content of individual taxa using synthetic metagenomic samples. We specifically
characterize determinants of prediction accuracy and examine the impact of annotation errors on the reconstructed
genomes. We finally apply metagenomic deconvolution to samples from the Human Microbiome Project, successfully
reconstructing genus-level genomic content of various microbial genera, based solely on variation in gene count. These
reconstructed genera are shown to correctly capture genus-specific properties. With the accumulation of metagenomic
data, this deconvolution framework provides an essential tool for characterizing microbial taxa never before seen,
laying the foundation for addressing fundamental questions concerning the taxa comprising diverse microbial
communities.
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Introduction

Microbes are the most abundant and diverse life form on the

planet. Recent advances in high-throughput sequencing and

metagenomics have made it possible to study microbes in their

natural environments and to characterize microbial communi-

ties in unprecedented detail. Such metagenomic techniques

have been used to study communities inhabiting numerous

environments, ranging from the bottom of the ocean [1,2] and

the roots of plants [3,4] to the guts of mammals [5]. In

particular, human-associated microbial communities have

attracted tremendous attention, with several large-scale initia-

tives aiming to characterize the composition and variation of

the human microbiome in health and disease [6–8]. Such

studies have demonstrated a strong link between the micro-

biome and the health of the host, identifying marked

compositional shifts in the microbiome that are associated

with a variety of diseases [9–12].

Using a variety of experimental techniques and bioinformatic

protocols [13,14], metagenomics-based surveys can now charac-

terize both the taxonomic and gene composition of the micro-

biome. Specifically, amplicon sequencing of conserved genes, such

as the 16S ribosomal RNA gene, can be used to determine the

relative abundance of each taxon [13,15]. Obtained 16S

sequences are clustered into Operational Taxonomic Units

(OTUs), providing a proxy for the set of taxa found in the

community [14,16]. Alternatively, shotgun metagenomic sequenc-

ing can be used to derive short sequences (reads) directly from the

community without amplification [17,18]. These reads can then

be mapped to a set of reference genes or orthologous groups (e.g.,

those defined by KEGG [19] or COG [20]) to translate read count

data into relative abundances of functional elements, representing

the collective set of genes found in the microbiome.

One of the key challenges in metagenomic research is the

identification of the taxonomic origin for each shotgun metage-

nomic read or gene and, ultimately, the reconstruction of the
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genomes of member taxa directly from these reads. A diverse set of

methods have been developed to parse shotgun metagenomic data

and to obtain insights into the underlying taxa. These methods can

be largely partitioned into several distinct categories, including:

alignment to reference genomes, taxonomic classification, assembly, and

binning (Figure S1). For ecosystems that are well-covered by

reference genomes, such as the human microbiome [6,21],

alignment to reference genomes provides a way to determine the

abundance of the various strains, species, or clades in the

community [6,8,22] and can be used to assess strain variation

within and between samples [23] (Figure S1A). Taxonomic

classification methods, also referred to as taxonomic or phyloge-

netic binning, provide a less-specific phylogenetic label to each

read, usually through a more permissive alignment to known

sequences in nucleotide or peptide space [24,25] (Figure S1B).

These methods can be useful for determining the abundance of

specific clades and for assisting with assembly efforts. These

techniques, however, are limited by the set of reference genomes

available and are only useful when relatively many community

members have been previously sequenced. Considering the vast

diversity of microbial communities and the challenges involved in

isolation and culturing efforts [17], this approach can be applied

on a large scale to only very few microbial communities.

When reference genomes are not available, assembly methods

can be used to link reads into contigs and scaffolds that are easier

to annotate [26] (Figure S1C). Such methods have been used to

reconstruct full species [27], coexisting strains [28,29], and more

generally to construct catalogues of genes specific to particular or

general ecosystems [6,8,12,30]. Assembly is generally limited by

the fraction of reads that can be mapped due to the complexity of

most communities and the low coverage of each individual

genome. Consequently, de-novo assembly of complete genomes

from shotgun metagenomic samples is feasible only in extreme

cases of low-complexity communities, very deep sequencing, or in

combination with sample filtration techniques [27,29,31,32].

Binning methods similarly aim to cluster reads into distinct

groups, but do not necessarily require sequences to overlap (Figure

S1D). Binning methods typically partition reads based on

frequencies of nucleotide patterns (k-mers) [33–42], but can also

use abundance and similarity metrics [12,30,41–43]. While these

methods utilize every read in a metagenomic sample, they have

several significant shortcomings. K-mer methods, for example, are

constrained by the short length of each read, the low resolution of

nucleotide usage profiling, assume homogeneity of coding bias

both across genomes and locally, and may not accurately

discriminate highly-related organisms. Furthermore, methods

based on clustering do not usually allow reads, genes, or assemblies

to be assigned to more than one group, which is problematic for

highly conserved regions of a genome and for mapping reads from

gene catalogs that use a low threshold on sequence identity [8].

Finally, in addition to the above well-established categories, yet

another category of methods for parsing metagenomic data can be

defined, which we refer to here as deconvolution. Deconvolution-

based methods aim to determine the genomic element contribu-

tions of a set of taxa or groups to a metagenomic sample (Figure

S1E). These methods profoundly differ from the binning methods

described above as a single genomic element, such as a read, a

contig, or a gene, can be assigned to multiple groups. An example

of such a method is the non-negative matrix factorization (NMF)

approach [44–46], a data discovery technique that determines the

abundance and genomic element content of a sparse set of groups

that can explain the genomic element abundances found in a set of

metagenomic samples.

In this manuscript, we present a novel deconvolution framework

for associating genomic elements found in shotgun metagenomic

samples with their taxa of origin and for reconstructing the

genomic content of the various taxa comprising the community.

This metagenomic deconvolution framework (MetaDecon) is based on

the simple observation that the abundance of each gene (or any

other genomic element) in the community is a product of the

abundances of the various member taxa in this community and

their genomic contents. Given a large set of samples that vary in

composition, it is therefore possible to formulate the expected

relationships between gene and taxonomic compositions as a set of

linear equations and to estimate the most likely genomic content of

each taxa under these constraints. The metagenomic deconvolu-

tion framework is fundamentally different from existing binning

and deconvolution methods since the number and identity of the

groupings are determined based on taxonomic profile data, and

the quantities calculated have a direct, physical interpretation. A

comparison of the metagenomic deconvolution framework with

existing binning and deconvolution methods can be found in

Supporting Text S1.

We begin by introducing the mathematical basis for our

framework and the context in which we demonstrate its use. We

then use two simulated metagenomic datasets to explore the

strengths and limitations of this framework on various synthetic

data. The first dataset is generated with a simple error-free

model of metagenomic sequencing that allows us to characterize

the performances of our framework without the complications of

sequencing and annotation error. The second dataset is

generated using simulated metagenomic sequencing of model

microbial communities composed of bacterial reference ge-

nomes and allows us to study specifically the effects of

sequencing and annotation error on the accuracy of the

framework’s genome reconstructions. We finally apply the

metagenomic deconvolution framework to analyze metage-

nomic samples from the Human Microbiome Project (HMP)

[6] and demonstrate its practical application to environmental

and host-associated microbial communities.

Author Summary

Most microorganisms inhabit complex, diverse, and largely
uncharacterized communities. Metagenomic technologies
allow us to determine the taxonomic and gene composi-
tions of these communities and to obtain insights into
their function as a whole but usually do not enable the
characterization of individual member taxa. Here, we
introduce a novel computational framework for decom-
posing metagenomic community-level gene content data
into taxa-specific gene profiles. Specifically, by analyzing
the way taxonomic and gene abundances co-vary across a
set of metagenomic samples, we are able to associate
genes with their taxa of origin. We first demonstrate the
ability of this approach to decompose metagenomes and
to reconstruct the genomes of member taxa using
simulated datasets. We further identify the factors that
contribute to the accuracy of our method. We then apply
our framework to samples from the human microbiome –
the set of microorganisms that inhabit the human body –
and show that it can be used to successfully reconstruct
the typical genomes of various microbiome genera.
Notably, our framework is based solely on variation in
gene composition and does not rely on sequence
composition signatures, assembly, or available reference
genomes. It is therefore especially suited to studying the
many microbial habitats yet to be extensively character-
ized.

Metagenomic Deconvolution of Microbiome Taxa
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Results

The metagenomic deconvolution framework
Consider a microbial community composed of some set of

microbial taxa. From a functional perspective, the genome of

each taxon can be viewed as a simple collection of genomic

elements, such as k-mers, genes, or operons. The metagenome

of the community can accordingly be viewed as the union of

these genomic elements, wherein the abundance of each

element in the metagenome reflects the prevalence of this

element in the various genomes and the relative abundance of

each genome in the community. Specifically, if some genomic

element is prevalent (or at least present) in a certain taxon, we

may expect that the abundance of this element across multiple

metagenomic samples will be correlated with the abundance of

the taxon across the samples. If the abundances of both

genomic elements and taxa are known, such correlations can

be used to associate genomic elements with the various taxa

composing the microbial community [47,48]. In Supporting

Text S1, we evaluate the use of a simple correlation-based

heuristic for predicting the genomic content of microbiome

taxa and find that such simple correlation-based associations

are limited in accuracy and are extremely sensitive to

parameter selection. This limited utility is mostly due to the

fact that associations between genomic elements and taxa are

made for each taxon independently of other taxa, even though

multiple taxa can encode each genomic element and may

contribute to the overall abundance of each element in the

various samples. We therefore present here a statistical

deconvolution framework, improving upon the simple correla-

tion metric and developing a mathematical model of shotgun

metagenomic sequencing. This model quantifies the associa-

tions between a genomic element found in a set of samples and

all the taxa in the community simultaneously, providing an

estimate for the prevalence of this element in the genome of

each taxon. Such statistical approaches have proven successful

in analyzing gene expression data, allowing, for example, to

deconvolve microarray data from mixed tissue samples into cell

type-specific expression profiles [49].

Formally, if ak denotes the abundance of genome k in the

community and ekj denotes the prevalence of an element j in

genome k (e.g., in terms of copy number or length in nucleotides),

the total abundance of this element in the community can be

represented as:

Ej~a1e1jza2e2jza3e3jz . . . zaN eNj : ð1Þ

Note that similar models have been used as the basis for simulating

shotgun metagenomic sequencing [50–53], and the total abun-

dance of the element in the community is independent of the

individual genome sizes. Now, assume that the total abundances of

genomic elements, Ej , can be determined through shotgun

metagenomic sequencing, and that the abundances of the various

genomes, ai, can be obtained using 16S sequencing or from

marker genes in the shotgun metagenomic data [54,55]. Accord-

ingly, in Eq. (1) above, the only terms that are unknown are the

prevalence of each genomic element in each genome, ekj , and

these are the specific quantities required to functionally charac-

terize each taxon in the community.

Clearly, if only one metagenomic sample is available, Eq. (1)

cannot be used to calculate the prevalence of the genomic

elements ekj . However, assume M different metagenomic samples

have been obtained, each representing a microbial community

with a somewhat different taxonomic composition. For each

genomic element, we can now write a system of linear equations of

the form:

E1j~
1

G1
a11e1jza12e2jza13e3jz . . . za1NeNj

� �

E2j~
1

G2
a21e1jza22e2jza23e3jz . . . za2NeNj

� �
ð2Þ

…

EMj~
1

GM

aM1e1jzaM2e2jzaM3e3jz . . . zaMNeNj

� �
,

or more compactly as

Eij~
1

Gi

X
k

aikekj, ð3Þ

where the subscript i denotes the sample and Gi is a normalization

coefficient (see below). Given enough samples, ekj , the prevalence

of a given genomic element j in each taxon, can be analytically

solved by linear regression. Repeating this process for all genomic

elements found in the community, we can therefore obtain an

estimate of the prevalence of each element (e.g. each gene) in each

taxon, effectively reconstructing the genomic content of all

community members.

The normalization constant Gi represents, technically, the total

amount of genomic material in the community. Clearly, Gi is not

known a priori and in most cases cannot be measured directly.

Assume, however, that some genomic element is known to be

present with relatively consistent prevalence across all taxa in the

community. Such an element can represent, for example, certain

ribosomal genes that have nearly identical abundances in every

sequenced bacterial and archaeal genome (see Methods). We can

then rewrite Eq. (3) in terms of this constant genomic element,

êeconstant with a total abundance in sample i, Ei,constant:

Gi~
êeconstant

Ei,constant

X
k

aik: ð4Þ

Assuming that the taxonomic abundances have been normalized

to sum to 1, this simplifies to

Gi~
êeconstant

Ei,constant

: ð5Þ

We can accordingly substitute Gi in Eq. (3) with this term,

obtaining a simple set of linear equations where the only unknown

terms are the prevalence of each genomic element in each taxon,

ekj.

Implementation of the metagenomic deconvolution
framework

Metagenomic deconvolution is a general framework for

calculating taxa-specific information from metagenomic data.

Notably, this framework is modular, comprising four distinct

components: (i) determination of taxonomic composition in each

sample, aik; (ii) determination of the abundances of genomic

elements in each sample, Eij ; (iii) selection of a constant genomic

element, êeconstant; and (iv) calculation of the taxa-specific genomic

Metagenomic Deconvolution of Microbiome Taxa
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element abundances, ekj, by solving Eq. (3). Each of these

components can be implemented in various ways. For example,

different metagenomic techniques, sequence mapping methods,

and annotation pipelines can be used to determine the abundance

of various genomic elements in each sample. Genomic elements

can represent k-mers, motifs, genes, or other elements that can be

measured in the samples and whose taxonomic origin are

unknown. Similarly, there are multiple regression methods that

can be applied to solve the set of equations obtained and to

estimate ekj, including least squares regression, non-negative least

squares regression, and least squares regression with L1-regular-

ization (e.g., lasso [56]). Finally, the taxonomic abundances need

not be derived necessarily from 16S sequencing but can rather be

determined directly from metagenomic samples [54,55].

In this study, we used gene orthology groups (which we will

mostly refer to simply as genes), specifically KEGG orthology

groups (KOs) [19], as the genomic elements of interest in Eq. (3)

above. In this context, we defined the abundance of a KO in a

metagenomic sample, Eij , as the number of reads mapped to this

KO, and the prevalence of a KO in a genome, ekj , as the number

of nucleotides encoding it in the genome. We accordingly applied

our deconvolution framework to predict the length of each KO in

each genome, ultimately obtaining ‘reconstructed’ genomes in the

form of a list of all the KOs present in a genome and their

predicted lengths.

We used the 16S rRNA gene as the constant genomic element,

êeconstant, to calculate the normalization coefficient Gi. The length

of the 16S gene is largely consistent across all sequenced archaeal

and bacterial strains. When the abundances of the 16S gene across

shotgun metagenomic samples, Ei,16S, are not available, other

genes or groups of genes with a consistent length across the various

taxa can also be used. Specifically, in applying our framework to

metagenomic samples from the HMP below, we used a set of

bacterial and archaeal ribosomal genes to estimate Gi (Methods).

Finally, we used least squares and non-negative least squares

regression to solve Eq. (3) and to estimate ekj (Methods). Notably,

such regression techniques require that there are at least as many

samples as taxa in order for there to be a solution. However, if

there are fewer samples than taxa, regularized regression

techniques, such as the lasso [56], can be used. For each dataset

presented in this manuscript, we have evaluated the solutions

presented by these regression methods and compared their

accuracies across the different datasets in Supporting Text S1.

Notably, in many cases, our key goal is to determine which

genes are present in (or absent from) a given genome, rather than

their exact length (e.g., in nucleotides) in this genome. To predict

the presence or absence of a gene in a genome, we used a simple

threshold-based method. Specifically, we compared the predicted

length of each gene to the average length of this gene across

sequenced genomes. Genes for which the ratio between these two

values exceeded a certain threshold were predicted to be present.

For example, we could predict that a gene is present in a genome if

it is predicted to have a length greater than 0.5 the average length

of all sequenced orthologs of this gene. This method will also allow

us to correct for inaccuracies in length predictions. In the results

reported below, we further demonstrate the robustness of

reconstructed genomes to threshold value selection.

Deconvolving simple synthetic metagenomic samples
We first use a simple model of metagenomic sampling to

characterize metagenomic deconvolution in the absence of

sequencing and annotation errors. To this end, we simulated

microbial communities composed of 60 ‘‘species’’ of varying

abundances (see Methods). In this model, each species was defined

as a collection of ‘‘genes’’ assigned randomly from a total set of 100

gene orthology groups. These genes had no sequence, were

assumed to vary in length, and could be present in multiple copies

in each genome. 100 model microbial communities were

generated with different, but correlated, abundances for each

member species (Figure S2). The relative abundances of each

species in the communities were assumed to be known (e.g. from

targeted 16S sequencing). Metagenomic samples consisting of 5M

reads were generated, simulating shotgun sequencing through a

random sampling process weighted by the relative abundance of

each gene in the community. Reads were assumed to map without

error to the appropriate orthology group, counting towards the

observed relative abundance of each gene orthology group in the

sample. Full details of the model are given in the Methods.

We applied the deconvolution framework described above to

predict the length of each gene in each species. Examining the

predicted length of a typical gene across all species, we found that

we successfully predicted the actual genomic length of this gene

among the different species (Figure 1A). Similarly, comparing the

predicted lengths of all genes in a typical species to the species’

actual genome, we find that our framework accurately recon-

structed the genomic content of the species, successfully identifying

absent genes and correctly estimating a wide range of gene lengths

(Figure 1B). Furthermore, analysis of the predictions obtained for

all genes and for all species in the community clearly demonstrates

that the metagenomic deconvolution framework can effectively

reconstruct gene lengths across all genomes, orthology groups, and

copy numbers (Figure 1C).

Clearly, the predicted gene lengths described above, while

accurate, are not perfect, and may be affected by various sources

of noise in the data. Moreover, as noted above, in many cases, we

are primarily interested in predicting whether a gene is present in a

certain genome rather than in determining its exact length.

Converting the predicted gene lengths to gene presence/absence

predictions using a threshold of 0.5 of the gene length, we find that

we are able to correctly predict the presence and absence of all

genes in all species with 100% accuracy. We further confirmed

that this result is robust to the specific threshold used, with all

thresholds values between 0.2 and 0.8 yielding perfect predictions

(Figure S3).

Determinants of prediction accuracy
Predictions of a given gene’s length across the species vary in

accuracy from gene to gene, with some genes having a noticeably

higher overall error than others (Figure 1C). By examining the

distribution of genes among samples and species, we find that

prediction accuracy for a gene is significantly correlated with its

level of variation across samples (Figure 2A) and across species

(Figure 2B), with more variable genes having lower prediction

error on average. These patterns in prediction accuracy are not

surprising. Since our framework is based on detecting species and

gene abundances that co-vary, highly variable genes or species

carry a stronger signal and lead to more accurate predictions.

Interestingly, however, this seemingly limiting link between

prediction accuracy and variation is one of the strengths of our

framework, as it provides better accuracy for predicting exactly the

genes that are of most interest. Specifically, genes that vary from

species to species are those that confer species-specific functional

capacity and are those that are most crucial for characterizing

novel genomes. Similarly, genes that vary most from sample to

sample are those endowing each community with specific

metabolic potential and are therefore often of clinical interest. In

contrast, genes with little variation from species to species and

from sample to sample are likely to include many housekeeping

Metagenomic Deconvolution of Microbiome Taxa
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genes, whose presence in each genome is not surprising and can

mostly be assumed a priori.

Clearly, many microbial communities exhibit high species

diversity and are inhabited by an extremely large number of

species, challenging deconvolution efforts. Moreover, the abun-

dances of species across samples are not independent: In a given

environment, some species may dominate all samples, while other

species may tend to be rare across all samples. Interactions

between species may also introduce correlations between the

abundances of various species. These inter-sample and inter-

species correlations might also affect our ability to correctly

deconvolve each member species, as they in effect reduce the level

of variation in the data. For example, species with highly

correlated abundances (e.g., the set of dominant species across

all samples) will contribute similarly to the abundances of genes in

the various samples and will be hard to discriminate. To explore

the impact of the number of species in the community and of

correlations between species abundances on metagenomic decon-

volution, we used an additional set of simulated communities.

Specifically, metagenomic samples were generated with a varying

number of species and a varying level of inter-sample correlation

in species abundances (Methods; Figure S4). We find, as expected,

that the accuracy (Figure S5A) and recall (Figure S5B) of

deconvolution decreases as the number of species increases

(assuming a constant sampling depth). Furthermore, increasing

the level of correlation between species abundances across samples

similarly results in reduced accuracy and recall (Figure S5).

Deconvolving synthetic microbial communities with
sequencing and annotation errors

The simple model presented above allowed us to explore the

metagenomic deconvolution framework in ideal settings where

reads are assumed to be error free and to unambiguously map to

genes. We next set out to examine the application of our

framework to synthetic metagenomic samples that incorporate

both next-generation sequencing error and a typical metagenomic

functional annotation pipeline. To this end, we simulated

metagenomic sampling of microbial communities composed of

three reference genomes (Methods). We specifically focused on

strains that represent the most abundant phyla in the human gut,

as determined by the MetaHIT project [8], and for which full

Figure 1. Metagenomic deconvolution successfully predicted the length of each gene in the various species found in simple
synthetic metagenomic samples (see text). Actual (black squares) and predicted (blue circles) gene lengths for a given gene in each species (A)
and for all the genes in one species (B). The specific gene and the specific species shown here were those with the median variation in abundance
across samples. (C) The predicted gene length as a function of the actual length for all genes in all species. Different colors are used to indicate the
number of copies in a species. The dashed line represents a perfect prediction. Note that predicted gene lengths can be negative, as predictions were
made in this case using least-squares regression. Gene lengths can be restricted to positive values using alternative regression methods (see
Supporting Text S1).
doi:10.1371/journal.pcbi.1003292.g001

Figure 2. Prediction accuracy is correlated with variation.
Average error in prediction accuracy for each gene orthology group
(red squares) as a function of the variation (standard deviation divided
by the mean) across samples, R = 20.48, p,4.361027 (A), and across
species, R = 20.53, p,2.061028 (B). Best fit lines are illustrated. Error is
calculated as the relative error in the length prediction for each gene
orthology group.
doi:10.1371/journal.pcbi.1003292.g002

Metagenomic Deconvolution of Microbiome Taxa
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genome sequences were available. Furthermore, these strains

represented different levels of coverage by the KEGG database

(which we used for annotation), ranging from a strain for which

another strain of the same species exists in the database, to a strain

with no member of the same genus in the database (Methods).

Ten communities with random relative strain abundances were

simulated. The relative abundances in each community were

assumed be to known through targeted 16S sequencing. For the

analysis below, relative abundances ranged over a thousand-fold,

but using markedly different relative abundance ratios had little

effect on the results (see Supporting Text S1). Shotgun

metagenomic sequencing was simulated using Metasim [50], with

1M 80-base reads for each sample and an Illumina sequencing

error model (Methods). The abundances of genes in each

metagenomic sample were then determined using an annotation

pipeline modeled after the HMP protocol [47], with reads

annotated through a translated BLAST search against the KEGG

database [19]. To assess the accuracy of this annotation process

and its potential impact on downstream deconvolution analysis, we

first compared the obtained annotations to the actual genes from

which reads were derived. Overall, obtained annotation counts

were strongly correlated with expected counts (0.83, P,102324;

Pearson correlation test; Figure S6). Of the reads that were

annotated with a KO, 82% were annotated correctly. Notably,

however, only 62% of the reads originating from genes associated

with KOs were correctly identified and consequently the read

count for most KOs was attenuated. Highly conserved genes, such

as the 16S rRNA gene, were easily recognized and had relatively

accurate read count (Figure S6). Full details of this synthetic

community model and of the sequencing simulations are provided

in Methods.

We deconvolved each KO using the obtained abundances to

predict the length of each KO in each genome. We found that the

predicted lengths were strongly correlated with the actual lengths

(rho 0.84, P,102324; Pearson correlation test), although for most

KOs predicted lengths were shorter than expected (Figure 3). This

under-prediction of KO lengths can be attributed to the

normalization process. Specifically, as noted above, the detected

abundances of conserved genes used for normalization tended to

be less attenuated by the annotation pipeline than the abundances

of other genes, which were therefore computed to be shorter than

they actually were. Notably, some KOs that are in fact entirely

absent from the genomes under study were erroneously detected

by the annotation pipeline and consequently predicted to have

non-negligible lengths in the reconstructed genomes (Figure 3). To

discriminate the error stemming from the annotation pipeline

from error stemming directly from the deconvolution process, we

reanalyzed the data assuming that each read was correctly

annotated. We found that with the correct annotations, predicted

KO lengths accurately reflected the actual length of each KO in

each genome (rho 0.997, P,102324; Pearson correlation test;

Figure S7).

Importantly, while the error introduced by the annotation

pipeline significantly affects the accuracy of predicted KO lengths,

the presence (or absence) of each KO in each genome can still be

successfully predicted by the threshold approach described above

(Figure 4A). Specifically, using a threshold of 0.1 of the average

length of each KO, metagenomic deconvolution reached an

accuracy of 89% (correctly predicting both KO presence and

absence) and a recall of 98% across the various genomes. Figure 4B

further illustrates the actual and predicted genomic content of

each strain, demonstrating that the method can accurately predict

the presence of the same KO in multiple strains, highlighting the

difference between the metagenomic deconvolution framework

and existing binning methods (see also Discussion). We compared

these predictions to a naı̈ve ‘convoluted’ prediction (see Methods),

confirming that deconvolution-based predictions were significantly

more accurate than such a convoluted null model regardless of the

threshold used (P,102324, bootstrap; Figure 4A). For example,

using a threshold of 0.1 as above, convoluted genomes were only

54% accurate. Considering the determinants of prediction

accuracy described above, we further confirmed that prediction

accuracy markedly increased for highly variable and taxa-specific

genes (Supporting Text S1).

Given the noisy annotation process, we again set out to quantify

the contribution of annotation inaccuracies to erroneous pres-

ence/absence predictions in the reconstructed genomes. As

demonstrated in Figure 4B, most KO prediction errors were false

positives – KOs wrongly predicted to be present in a strain from

which they were in fact absent. Examining such KOs and the

annotation of reads in each genome, we found that 99% of the

false positive KOs were associated with mis-annotated reads,

suggesting that deconvolution inaccuracies in these settings could

be attributed almost entirely to erroneous annotation rather than

to the deconvolution process itself. We again confirmed that when

correct annotations are assumed, both accuracy and recall increase

to more than 99%.

The analysis above was used to evaluate the impact of

sequencing and annotation error on the metagenomic deconvolu-

tion framework using simulated metagenomic datasets generated

from simple 3-strain communities. In Supporting Text S1, we

further present a similar analysis, using simulated metagenomic

samples generated from 20-strain communities and based on the

HMP Mock Communities. We show that our framework obtains

similar reconstruction accuracies for these more complex com-

munities (Figure S8).

Application of the deconvolution framework to
metagenomic samples from the Human Microbiome
Project

Finally, we considered human-associated metagenomic samples

to demonstrate the application of the metagenomic deconvolution

Figure 3. Predicting the length of each KO in each species
using deconvolution and the effect of annotation errors.
Predicted KO lengths vs. actual KO lengths, using BLAST-based
annotation.
doi:10.1371/journal.pcbi.1003292.g003
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framework to real metagenomic data from highly complex

microbial communities. These datasets further represent an

opportunity to evaluate genome reconstructions obtained by our

framework owing to the high-coverage of the human microbiome

by reference genomes [6,21] that can be used for evaluation. The

Human Microbiome Project [6,14] has recently released a

collection of targeted 16S and shotgun metagenomic samples

from 242 individuals taken from 18 different body sites in an effort

to comprehensively characterize the healthy human microbiome.

These human-associated microbial communities are diverse, with

several hundred to several thousand 16S-based OTUs (operational

taxonomical units clustered at 97% similarity) per sample and a

total of more than 45,000 unique OTUs across all HMP samples.

These OTUs represent bacteria and archaea from across the tree

of life, including many novel taxa [57], and their diversity is in

agreement with shotgun metagenomics-based measures [6].

Clearly, the high number of unique OTUs in each sample does

not permit deconvolution and genome reconstruction at the OTU

level. Moreover, these OTUs do not represent individual species,

but rather distinct sequences accurate to only a genus-level

phylogenetic classification [6]. Examining the phylogenetic distri-

bution of the taxa comprising the microbiome suggests that certain

body sites, such as the tongue dorsum, are dominated by relatively

few genera. This allows us to use metagenomic deconvolution at

the genus level, predicting the most likely genomic content of the

various genera found in the microbiome. Reconstructed genus-

level genomes can be viewed as the average genomic content

across all present strains in the genus, providing insight into the

capacities of the various genera. Moreover, while many species

inhabiting the human microbiome have not yet been character-

ized or sequenced, most human-associated genera include at least

a few fully sequenced genomes, allowing us to assess the success of

our framework and the accuracy at which reconstructed genera

capture known genus-level properties. Notably, however, micro-

bial communities from other environments or from other

mammalian hosts often harbor many uncharacterized taxa, even

at levels higher than genera [58,59], making a genus-level

deconvolution a still biologically relevant goal.

We accordingly applied our deconvolution framework to HMP

tongue dorsum metagenomic samples (Methods). OTU abun-

dances and taxonomic classification were obtained from the HMP

QIIME 16S pipeline [14]. KO abundances were obtained from

the HMP HUMAnN shotgun pipeline [19]. In total, 97 tongue

dorsum samples had both OTU and KO data available. OTUs

were pooled to calculate the relative abundance of each genus in

each sample. After pooling, we identified 14 genera that

dominated the tongue dorsum. We deconvolved these samples to

obtain reconstructed genera and computed KO presence/absence

in each reconstructed genus using a threshold of 0.25 copies.

To evaluate our predictions, we calculated the similarity

between the 14 reconstructed genera and every sequenced genome

from these genera (Methods). We find that 12 of the 14

reconstructed genera are most similar to genomes from the

correct genus (Figure 5A). Interestingly, Capnocytophaga, one of

the two reconstructed genera that did not most closely resemble

genomes from its own genus, was the least abundant genus and

appeared to be most similar to genomes from the Fusobacterium

genus, with which it significantly co-occurs in the tongue dorsum

[60]. This potentially reflects the sensitivity of deconvolution to

highly correlated taxonomic abundances (see Discussion). Fur-

thermore, overall, the observed similarities between each recon-

structed genus and sequenced genomes from other genera

(Figure 5A) largely reflect inter-genus similarities between the

genomes from the various genera (Figure 5B). For example,

although the reconstructed Prevotella is most similar to sequenced

genomes from the Prevotella genus, it also exhibits high similarity

to genomes from Porphyromonas and Capnocytophaga, two other

genera from the Bacteroidetes phylum with relatively similar

Figure 4. Reconstructing the genomic content of reference
genomes from simulated mixed metagenomic samples using
metagenomic deconvolution. (A) ROC curves (AUC = 0.93) for
predicting KO presence and absence across all species as a function
of the threshold used to predict the presence of a KO. ROC curve for a
naı̈ve convolved prediction (AUC = 0.76) is illustrated for comparison.
(B) Predicted genomic content of each species. KOs are partitioned into
bins based on the set of genomes in which they are present (e.g., genes
present only in the first species, genes present only in the second
species, genes present in the first and second species but not in the
third, etc.; see Venn diagram). The height of each bar represents the
proportion of KOs in each bin and the color represents the presence of
these KO in each species. The black strip inside each bar represents the
fraction of KOs from this bin predicted to be present in each species.
doi:10.1371/journal.pcbi.1003292.g004
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genomic content. These findings suggest that our deconvolution

framework was able to accurately capture the similarities and the

differences between the various genera based solely on variation in

KO and OTU abundances across samples.

To further study the capacity of genus-level deconvolution to

reconstruct and characterize the various genera in the micro-

biome, we next focused on the set of genes that best distinguish

one genus from the other. Clearly, even within a genus, the set of

genes present in a genome varies greatly from species to species

and from strain to strain. Yet, for each genus, a small number of

genes that are present in almost every genome from that genus and

that are absent from most other genomes can be found. These

genus-specific genes best typify the genus, potentially encoding

unique genus-specific capacities. Moreover, since such genes are

consistently present or consistently absent within each genus,

genus-level deconvolution is not complicated by the genus-level

pooling of genomes. We defined genus-specific KOs as those

present in 80% of the genomes from a given genus and in less than

20% of all others HMP reference genomes. We found in total 99

such KOs across 4 genera. Examining the reconstructed genera,

we found that our framework successfully predicted the presence

or absence of these genus-specific KOs (90% accuracy and 82%

recall; Figure 6). Increasing the stringency for our definition and

focusing on the 63 KOs that appeared in 90% of the genomes

from a certain genus and in less than 10% of all others genomes

further increased the accuracy (92%) and recall (94%) of our

reconstructed genera. Predictions obtained using alternative

regression methods were similarly accurate (see Supporting Text

S1; Figures 6, S9).

Comparison with binning and deconvolution methods
The metagenomic deconvolution framework introduced in this

manuscript is a technique for associating genomic elements found

in shotgun metagenomic samples with their taxa of origin and for

reconstructing the genomic content of the various taxa comprising

the community. Many different approaches have been developed

to create such groupings of metagenomic features. Broadly, these

methods fall into one of two categories, ‘‘binning’’ or ‘‘deconvolu-

tion’’, depending on whether the genomic elements can be

assigned to more than one group or not. As demonstrated in

Supporting Text S1 (and see also Table S2), the differences

between the metagenomic deconvolution framework and these

existing methods originate primarily from the different mathe-

matical frameworks employed by the various methods.

Binning methods, such as metagenomic linkage analysis [12],

metagenomic clustering analysis [30], and MetaBin [43], are

designed to cluster genomic elements that can only exist in one

taxon (or group). Specifically, metagenomic linkage analysis

clusters genes into groups based on their abundances and

phylogeny across sets of metagenomic samples using the

CHAMELEON algorithm [61]. Similarly, metagenomic clus-

tering analysis clusters genes into groups based on their

abundances across sets of metagenomic samples using the

Markov clustering algorithm [62]. MetaBin, on the other hand,

clusters individual reads based on their sequence similarities and

abundances across sets of metagenomic samples using k-

medoids clustering. As these methods all cluster genomic

elements into distinct groups, they cannot correctly distribute

elements that exist in multiple taxa (or groups), making them

less appropriate for addressing questions of core vs. shared

genome content (and see, for example, refs [54,63,64]). As we

demonstrate in Supporting Text S1, these methods accordingly

could not be used to reconstruct the genomic content of the

three strains present in the simulated metagenomic samples

incorporating sequencing and annotation error in terms of the

gene orthology groups identified in the samples.

Figure 5. Reconstructing the genomic content of genera from HMP tongue dorsum samples. (A) The average similarity in KO content
between each reconstructed genus and sequenced genomes from the various genera. Similarity is measured by the Jaccard similarity coefficient,
over the set of the 500 KO with the highest variation across samples. Genera are ordered by their mean abundance in the set of samples under study.
Entries highlighted with a black border represent the highest similarity in each row. (B) The average similarity between sequenced genomes from the
various genera. Similarity was measured as in panel A.
doi:10.1371/journal.pcbi.1003292.g005

Metagenomic Deconvolution of Microbiome Taxa

PLOS Computational Biology | www.ploscompbiol.org 8 October 2013 | Volume 9 | Issue 10 | e1003292



In contrast, deconvolution methods, such as non-negative

matrix factorization (NMF) [44–46] and the proposed metage-

nomic deconvolution framework, are designed to assign genomic

elements to multiple taxa. Specifically, NMF is a data discovery

and compressed sensing tool that is designed to create a set

number of groupings of elements that best fits the observed

samples by factoring the feature matrix (here, the genomic

elements found across a set of metagenomic samples) into two

matrices. One matrix represents the abundance of the set of

groups in each sample, and the other represents the distribution of

genomic elements among these groups. The optimal number of

groups can be determined from the fit of the matrix factorization

to the original matrix [45,46] or the stability of the solutions for a

given number of groups [44]. Importantly, while NMF utilizes a

mathematically similar approach to the metagenomic deconvolu-

tion framework, and can thus theoretically obtain comparable

accuracies (see also Supporting Text S1), the two represent

fundamentally different techniques. First, the groups identified by

NMF are unlabeled, while those used by the metagenomic

deconvolution framework by definition have a distinct taxonomic

identity. Furthermore, the optimal number of groups detected in a

set of samples by NMF does not necessarily correspond to any

phylogenetic groupings present in the set of samples. Indeed, NMF

does not group the gene orthology groups present in the simulated

metagenomic samples incorporating sequencing and annotation

error into strain-specific groupings (Supporting Text S1). Second,

in the metagenomic deconvolution framework, the calculated

quantities of genomic elements in each group have a direct

physical interpretation (i.e. gene length or copy number), while

NMF calculates coefficients without assigning a clearly interpret-

Figure 6. Predicting genus-specific KOs in genera from the HMP tongue dorsum samples. To restrict our analysis to well-sampled genera,
only genera for which at least 10 reference genomes are available and for which at least 5 genus-specific KOs were obtained are considered. The
presence (or absence) of genus-specific KOs across the set of sequenced species from each genus is illustrated by the presence (or absence) of a black
dot. Gray dots indicate that the KO was present in only a subset of the sequenced strains of that species. KOs predicted to be present by
metagenomic deconvolution are shown using colored dots. Results are shown for several regression methods, including least squares (LS, 89%
accuracy, 82% recall), non-negative least squares (NNLS, 90% accuracy, 82% recall), and lasso (90% accuracy, 92% recall). See also Supporting Text S1.
doi:10.1371/journal.pcbi.1003292.g006
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able meaning. Lastly, NMF functions on the entire set of genomic

elements present in a set of samples (the feature matrix) as a whole,

whereas the metagenomic deconvolution framework solves for the

distribution of each genomic element among the various groups

independently. This separability allows for custom regression

techniques to be used for each genomic element (for example,

regularized regression like lasso can be used for those genomic

elements that are sparsely distributed) and the option to target only

those genomic elements of interest.

Discussion

In this study, we presented a novel framework for deconvolving

shotgun metagenomic samples and for reconstructing the genomic

content of the member microbial taxa. This metagenomic

deconvolution framework utilizes the magnitude by which

abundances of taxa and of genomic elements co-vary across a

set of metagenomic samples to identify the most likely genomic

content of each taxon. Above, we have described the mathemat-

ical formulation of this framework, detailed computational

considerations for implementing it, characterized its performance

and properties on synthetic metagenomic datasets, and demon-

strated its practical use on metagenomic samples from the Human

Microbiome Project.

The metagenomic deconvolution framework represents a

fundamentally different approach to associating genomic elements

found in shotgun metagenomic samples with the taxa present than

the approaches employed by previously introduced methods. For

example, methods relying on alignment to reference genomes

[6,8,22,24,25] are heavily dependent on the availability of

sequenced genomes from community members or from closely

related species. As metagenomics research expands and research-

ers set out to characterize new environments inhabited by many

novel, diverse, and never before seen species, such methods may

be challenged by the scarcity of reference genomes and by the low

phylogenetic coverage of many genera across genomic databases.

In contrast, our method does not require reference genomes (see

also below). Moreover, metagenomic deconvolution uses a

mathematical model of shotgun sequencing to directly calculate

the desired quantities of genomic elements (such as gene lengths or

copy numbers) in specific taxa (such as a strain or genus), rather

than to create groupings of elements that best fit the measured

distribution.

Metagenomic deconvolution associates genomic elements with

genomes of present taxa by identifying genomic elements that co-

vary in abundance with organisms. As demonstrated above, this

approach brings about an important advantage: The more

variation of a given genomic element across samples and

organisms, the more accurately it will be assigned to the various

taxa. The deconvolution framework can accordingly be thought to

be tuned to best identify those elements that make a taxon or a set

of samples unique and that are therefore of most biological

interest. Moreover, to a large extent, in analyzing the way gene

and taxonomic abundances co-vary across the set of samples under

study, it utilizes orthogonal, self-constrained information. Notably,

the specific implementation presented in this study utilizes

functional read annotation and therefore required a set of

annotated reference genes. However, functional annotation is

markedly less sensitive to the specific set of reference genomes

available than the methods discussed above, since any gene with

detectable homology will suffice. Moreover, one can easily imagine

a different implementation that clusters the reads contained in the

samples themselves without identifying specific orthology groups,

making this approach entirely independent from any exogenous

genomic data (see also below). These properties of metagenomic

deconvolution make it an ideal framework for analyzing

metagenomic samples from the many microbial habitats yet to

be extensively characterized.

A deconvolution-based framework also has some obvious

limitations. First, it requires multiple metagenomic samples and

information on both taxonomic and gene abundances. While this

may have been a significantly limiting factor in the past, with the

ever decreasing cost of sequencing technologies and the recently

introduced advances in molecular and computational profiling of

taxonomic and gene compositions, current studies in metage-

nomics often generate such data regardless of planned downstream

analyses (e.g., [6,7]). Furthermore, if a genomic element is known

to be sparsely distributed among the taxa in a collection of

samples, then regularized regression techniques, such as the lasso

[56], can be used to predict the presence and absence of the

genomic element among the taxa, even if the number of samples is

much smaller than the number of taxa. Additionally, as

demonstrated above, strong correlations between taxa abundances

reduce the amount of variation, decreasing the signal and

potentially hindering the accuracy of the deconvolution process.

Improved understanding of the assembly rules that give rise to

such correlations may help alleviate this problem. Finally, our

framework relies on accurate estimations of gene and taxonomic

abundances. These estimations may be skewed by annotation

errors or by the specific method used to evaluate relative

taxonomic abundances. Specifically, 16S copy number variation

between taxa in a sample (even between strains of the same species

[65]) may markedly bias abundance estimates, although this can

largely be resolved by estimating the 16S copy number in each

taxon using measured copy numbers in sequenced strains [66]. No

such correction was performed in this study, as we sought to

present a generic implementation of the metagenomic deconvolu-

tion framework applicable to analyzing sets of metagenomic

samples without the need for coverage by reference genomes.

The deconvolution framework presented in this study can serve

as a basis for many exciting extensions and can be integrated with

other analysis methods. It is easy, for example, to redefine the scale

at which both genomic elements and taxa are defined. In

analyzing the HMP samples, we partition genes among genera,

rather than into individual OTUs. A similar approach can be used

to deconvolve higher or lower (e.g., strain) phylogenetic levels or

even to deconvolve different taxa at different phylogenetic levels.

One can, for example, target particular species for genome

reconstruction while resolving others only on the genus level.

Similarly, deconvolution can be performed for other genomic

elements such as k-mers or other discrete sequence motifs.

Deconvolution can also be carried out incrementally, first

deconvolving highly abundant taxa or taxa for which partial

genomic information is available. The expected contribution of

each deconvolved taxon to the overall gene count in the

metagenome can then be calculated and subtracted computation-

ally from each sample, effectively generating lower complexity

samples and facilitating the deconvolution of additional taxa. A

similar approach can also be used to subtract the contribution of

fully sequenced strains whose genomic content is known. Notably,

in implementing and characterizing the deconvolution framework

here, we did not utilize any information about known strains’

genomes. Such information can be used in principal to calibrate

various parameters and to normalize the obtained results. Most

importantly, this metagenomic deconvolution framework can be

naturally combined with other binning methods or metagenomic

assembly efforts [67]. For example, by treating contigs, or groups

of contigs (such as those generated by metagenomic linkage groups

Metagenomic Deconvolution of Microbiome Taxa

PLOS Computational Biology | www.ploscompbiol.org 10 October 2013 | Volume 9 | Issue 10 | e1003292



[12] or metagenomic clusters [30]) as individual genomic elements

(Eij and ekj , Eq. 3), deconvolution can be used to assign these

larger-scale genomic fragments to individual taxa and aid in

assembly. Such a process would be especially useful in the case of

time-series data where the abundances of strains change with time.

Finally, the metagenomic deconvolution framework facilitates

novel analysis approaches for studying microbial communities.

Samples taken from a community can be post-processed in

multiple ways to preferentially select for certain taxa (e.g. filter

microbes by size or nutrient requirements), essentially creating

different views of the same community. Deconvolution can then be

used to recombine these views and to reconstruct the genomic

content of each taxon.

To truly take advantage of the data being produced by

metagenomic studies and by forthcoming studies of the metatran-

scriptome and metametabolome of many microbial communities,

tools that can reliably determine the taxonomic origins of each

‘‘meta’omic’’ element are crucial. Metagenomic deconvolution

represents both a novel strategy for the analysis of such meta’omic

data and a framework for future developments in genome

reconstruction and annotation.

Methods

Simple synthetic metagenomic samples
Simple models of metagenomic samples were created from

collections of model ‘‘microbial species’’ by simulating genomes

and shotgun sequencing without the complexities of actual

genome sequences or sequencing error. Microbial species were

modeled as a set of ‘‘genes’’, taken from a global set of 100 gene

orthology groups (simply referred to as genes). These genes had no

sequence; their only property was length, which was chosen at

random between 400 and 500 bases, and was fixed across all

homologs. Simulations with species-specific variations in gene

length showed qualitatively similar results (see Supporting Text

S1). Each of the 100 genes was randomly assigned to between 20

to 80% of the species, with each species containing a minimum of

10 genes. Within a given species, each gene had a 5% chance of

duplication, with the rates for higher copy number decreasing

exponentially. Each species included a single copy of a ‘‘constant

gene’’ with a length of 1500 bases (see Results).

Sets of model ‘‘microbial communities’’ were created as a linear

combination of model microbial species. Each microbial commu-

nity in a set had a different, but correlated, species abundance

profile, with the abundance of a species j in sample i, determined

by the function, Aij~A�j 103 v�rijð Þ, where A�j represents the typical

abundance of species j, v is a parameter that governs the amount of

inter-sample correlation in the abundance profiles and rij is a

Gaussian-distributed random number with mean of 0 and

standard deviation of 1. To examine the robustness of deconvolu-

tion to the number of species and the level of inter-sample

correlation, 30 different sets of related communities were created,

with the number of species ranging from 20 to 100 in steps of 20,

and the correlation parameter v logarithmically distributed,

vE 0,0:05,0:07,0:1,0:14,0:2f g (Figure S4). The set of communities

analyzed in the main text was modeled with 60 species and a

correlation parameter of v = 0.10.

Model metagenomic samples were generated from each

microbial community by simulating a shotgun sequencing

sampling: Sequencing reads were created by randomly selecting

a gene in the community, weighted by the relative abundance of

each gene in the community (Eq. 3). 5M sequencing reads were

generated for each community. Due to the finite sequencing depth

and the exponentially distributed species abundances, species

whose abundances were below 0.5% of the most abundant species

in the sample were considered absent from the set of shotgun

metagenomic reads and excluded from our analysis. These

samples and the related data can be found in Supporting Dataset

S1 and on our website (http://elbo.gs.washington.edu/download.

html).

Deconvolution was performed for species that were present in at

least half the samples using least squares, non-negative least

squares, and lasso regression using the solvers implemented in

MATLAB. The computation times for these deconvolution runs

on a four-core 3.10 GHz Intel Xeon CPU were 26161024 s/

gene, 4.660.861023 s/gene, and 1.6360.05 s/gene for least

squares, non-negative least squares, and lasso regression respec-

tively. Adding additional samples required 861027, 761027, and

0.9 s/gene/sample for least squares, non-negative least squares,

and lasso (for underdetermined systems) regression, respectively;

for overdetermined systems, lasso had a performance increase of

1.761022 s/gene/sample. Adding additional species required

261026, 761025, and 461022 s/gene/species for least squares,

non-negative least squares, and lasso regression, respectively.

Synthetic metagenomic samples with sequencing and
annotation error

Simple models of metagenomic samples were created from the

fully sequenced genomes of microbial reference organisms to

introduce the complexities associated with actual genome

sequences and annotation error. 10 model communities were

composed as linear combinations of the reference organisms

Alistipes shahii WAL 8301, Ruminococcus champanellensis sp. nov., and

Bifidobacterium longum longum F8. These strains were chosen because

they each had a different level of coverage by the KEGG database

used in this study (see below): B. Longum had a different strain of

the same species present in the database; R. Champanellensis had

only a member of the same genus present; and A. Shahii had no

relatives within the same genus present. Complete species genomes

were obtained from the Integrated Microbial Genomes database

[68]. These communities had species relative abundances assigned

randomly, ranging over a thousand-fold; however, the magnitude

of the range of relative abundances was shown to have little impact

on our results (Supporting Text S1). Model metagenomic samples

were created from each community by simulating 1M shotgun

metagenomic sequencing reads with Metasim [50], using 80-base

reads with an Illumina sequencing error model.

The abundances of gene orthology groups present in each

model metagenomic sample were determined from the set of reads

by annotating each read with KEGG orthology groups (KOs)

through a translated BLAST search against the KEGG Orthology

v60 [19]. Reads were annotated with the KO of the best hit with

an E-value,1, similar to the method employed by the HMP [6].

Reads with a best-hit match to a KEGG gene without a KO

annotation were not assigned a KO. In cases of e-value ties, the

read was assigned the annotations of all the tied matches, with

each annotation receiving a fractional count. Reads containing an

ambiguous base were not annotated. The abundance of the 16S

rRNA KO was determined through a nucleotide BLAST search

against a custom database containing the sequences of all 16S

rRNA genes in the KEGG database. These samples (as well as the

20 strain community samples) and the related data can be found in

Supporting Dataset S2, Supporting Dataset S3, and on our

website (http://elbo.gs.washington.edu/download.html).

Deconvolution was performed using least squares, non-negative

least squares, and lasso regression for KOs whose average count

was greater than 0.1% of the most abundant KO using the solvers

implemented in MATLAB. The computation times for these
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deconvolution runs on a four-core 3.10 GHz Intel Xeon CPU

were 1:4+0:7|10{4 s/KO, 2:7+0:3|10{4 s/KO, and

0:383+0:004|10{4 s/KO for least squares, non-negative least

squares, and lasso regression respectively.

To evaluate the presence/absence prediction made by our

framework, we used a null model in which community members

are all assumed to have an identical (‘convoluted’) genome, directly

derived from the set of metagenomic samples. Specifically, the KO

lengths in this model corresponded to the average relative

abundance of each KO across all samples, normalized by the

length and abundance of the 16S KO. Formally, the length of KO

j, ej, was calculated as ej~ÊEĵll16S

.
ÊE

16S
, where ÊEj is the average

relative abundance of KO j across all metagenomic samples, l̂l16S is

the average length of the 16S KO, and ÊE16S is the average relative

abundance of the 16S KO.

Human Microbiome Project datasets
HMP data was downloaded from the HMP Data Analysis and

Coordination Center (DACC) (http://www.hmpdacc.org/).

OTU abundances and taxonomy were based on the QIIME

16S pipeline [14]. The abundance of each genus was calculated

by adding the abundances of all OTUs in that genus. Only

genera with relative abundance .5% in at least one sample

were considered. KO abundances were based on the HUMAnN

pipeline [19]. For samples with technical replicates, the replicate

with the greater sequencing depth was used. To reduce

annotation error, only KOs present in at least 80% of the

tongue dorsum samples were used in the analysis. Since HMP

KO abundance data included only proteins, we used a set of 15

ribosomal proteins ubiquitous across Bacteria and Archaea

instead of the 16S RNA gene as the constant genomic element

in Eq. 5 (see below). Deconvolution was performed for KOs that

were present in at least half the samples using least squares, non-

negative least squares, and lasso regression using the solvers

implemented in MATLAB. The computation times for these

deconvolution runs on a four-core 3.10 GHz Intel Xeon CPU

were 1:59+0:01|10{4 s/KO, 5:60+0:05|10{4 s/KO, and

0:474+0:002 s/KO for least squares, non-negative least

squares, and lasso regression respectively.

Human Microbiome Project reference genomes
Genomes for the HMP Reference Organisms were obtained

from the Integrated Microbial Genomes – Human Microbiome

Project (IMG/HMP) database on 5/7/2012 (http://www.

hmpdacc-resources.org/cgi-bin/imgm_hmp/main.cgi). In order

for the annotations to be compatible with the version of the

database used in this study, each organism was annotated

through a BLAST search of each ORF against the KEGG genes

database with a protocol similar to that used by the IMG [68].

Each ORF was annotated with the KO of the best match gene

with an e-value ,161025. In cases of ties, the ORF was

annotated with all corresponding KOs, with a proportionally

fractional count. ORFs that best matched a KEGG gene with

no KO annotation were not annotated. KOs were considered to

be present in a genome if this annotation procedure resulted in a

copy number $0.1. For species with more than one sequenced

strain, the average annotation across strains was used. KOs

present in at least 75% of HMP reference organisms were

considered core KOs and were removed from the analysis.

Similarly, KOs present in fewer than 1% of HMP reference

genomes were assumed to be spurious annotations and were

excluded.

Selection of ribosomal genes as constant genomic
elements

One of the components required to deconvolve metagenomic

samples is a constant genomic element or gene that can be used as

a normalization coefficient for inferring the length (or copy

number) of all other genomic elements. Ideally, genes used for

normalization should be present in all the species in the

community, have the same copy number in each genome, and

have a consistent length across all species. The 16S rRNA gene is a

natural candidate, but other gene orthology groups can be used as

well. Specifically, in the main text, we deconvolved tongue dorsum

samples from the Human Microbiome Project using a combina-

tion of ribosomal protein-coding genes. Ribosomal genes are

generally good candidates for normalization since the ribosome is

a highly-conserved construct. Using the combined abundances of

multiple genes can reduce the potentially deleterious effect of read

annotation errors in any one gene. Starting with 31 ribosomal

protein-coding KOs present in both bacteria and archaea, we first

considered those that were present in at least 1445 (98%) of the

1475 bacteria and archaea in KEGG v60 [19]. Of these KOs, we

selected a subset of 15 KOs that had a lower variation in length

across all genomes than the 16S gene (Table S1). These 15 KOs

were used jointly as our constant genomic element for normali-

zation, using the sum of the abundances as the constant genomic

element abundance Ei,constant and sum of the lengths as the

constant genomic element length êeconstant in Eq. 5.

Supporting Information

Dataset S1 Species gene lengths and species and gene

abundances for each sample and for each simulated dataset

modeled without sequencing and annotation error. The number of

species and parameter n are given for each dataset. Gene 100

corresponds to the constant copy number gene used to normalize

samples.

(XLS)

Dataset S2 Strain KO lengths, strain and KO abundances for

each sample, and the observed annotation error for the dataset

simulated with sequencing and annotation error.

(XLS)

Dataset S3 Strain KO lengths, and strain and KO abundances

for each sample for the simulated dataset based on HMP Mock

Community B. Note that strain abundances are given as the

apparent abundances generated from the relative abundances of

16S genes, equivalent to the actual abundances multiplied by the

copy numbers.

(XLS)

Figure S1 Schematic of methods for grouping sequencing reads

or genomic elements found in shotgun metagenomic sequencing

data. Sequencing reads are shown in gray. (A) Alignment-based

methods map reads to a set of reference genomes (red and blue).

(B) Taxonomic classification methods assign higher-level phyloge-

netic labels (light red and blue) to each read through sequence

homology searches. (C) Assembly-based methods physically link

reads into contigs and scaffolds (light red and blue) using sequence

overlap and paired-end information. (D) Binning methods

exclusively cluster reads or genomic elements into a discrete

number of groups (blue and red dashed circles). (E) Deconvolu-

tion-based approaches create groupings (red and blue) of genomic

elements (green and orange) that best explain the observed

samples.

(TIF)
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Figure S2 The abundance profiles of 60 species in 100 samples

generated by a simple model of microbial communities. Each color

represents the abundance of one species.

(TIF)

Figure S3 Accuracy and recall for predicting the presence of

genes in species from synthetic metagenomic samples as a function

of the threshold used. Threshold values are represented as the

ratio between the predicted length and the average length across

sequenced genomes.

(TIF)

Figure S4 Species abundance profiles for 30 sets of synthetic

communities, with varying levels of inter-sample correlation (x-

axis) and varying number of species (y-axis). Each color represents

the abundance of one species. The inter-sample correlation

(parameterized as n) represents the level at which the species

abundance profile varies between samples, with n= 0 correspond-

ing to zero variation and perfect correlation, and the level of

variation increasing exponentially with n (see Methods).

(TIF)

Figure S5 The impact of the number of species in the

community and of correlations between species abundances on

metagenomic deconvolution. (A) Accuracy and (B) recall in

predicting the presence of genes as a function of the level of

inter-sample correlation (see Figure S4 and Methods) and for

different numbers of species in the community. Note that the effect

of the number of species is dwarfed by the effect of abundance

correlations between species. As in the main text, a threshold of

0.5 of the gene length was used.

(TIF)

Figure S6 KO read relative abundance as obtained by a

translated BLAST search vs. actual KO relative abundances

averaged across all samples. The 16S genes are highlighted for

comparison.

(TIF)

Figure S7 Predicted KO lengths vs. actual KO lengths,

assuming perfect annotation. Compare to Figure 3.

(TIF)

Figure S8 Reconstructing the genomic content of reference

genomes from simulated mixed metagenomic samples based on

the HMP Mock Community using metagenomic deconvolution.

ROC curves (solid line; AUC = 0.87) for predicting KO presence

and absence across all species as a function of the threshold used to

predict the presence of a KO. ROC curve for a naı̈ve convolved

prediction (dashed line; AUC = 0.77) is illustrated for comparison.

(TIF)

Figure S9 Comparison of alternative regression methods for

deconvolving the HMP tongue dorsum samples. The average

similarity in KO content between each reconstructed genus and

sequenced genomes from the various genera using least squares

regression (A) and lasso (B). Similarity metric and parameters are

as in Figure 5.

(TIF)

Figure S10 Performance of a simple correlation-based heuristic

for predicting the genomic content of species from synthetic

metagenomic samples. (A) Accuracy and recall for predicting the

presence of genes in species from synthetic metagenomic samples

using the naı̈ve correlation-based method as a function of the

correlation coefficient threshold used. (B) Accuracy and recall for

predicting the presence of genes in species from synthetic

metagenomic samples using the naı̈ve correlation-based method

as a function of the level of inter-sample correlation (see Figure S4

and Methods). Results using the Pearson correlation are shown

(using a Spearman correlation had little effect on the results;

Supporting Text S1).

(TIF)

Figure S11 Comparison of alternative regression methods for

metagenomic deconvolution. Accuracy of least squares, non-

negative least squares, and lasso regression are illustrated for the

simple synthetic model (A) and for the synthetic model with

sequencing and annotation errors (B) as a function of the threshold

used. Threshold values are represented as the ratio between the

predicted length and the average length across sequenced

genomes.

(TIF)

Figure S12 Accuracy and recall for predicting the presence of

genes in species from synthetic metagenomic samples where

species were given unique lengths for each gene as a function of

the threshold used. Threshold values are represented as the ratio

between the predicted length and the average length across

sequenced genomes. Compare to Figure S3.

(TIF)

Table S1 Ribosomal genes used as constant genomic elements in

the deconvolution of the Human Microbiome Project datasets.

(XLS)

Table S2 The optimal number of clusters detected for each

technique.

(XLS)

Text S1 Supporting information, including an analysis of a

simple correlation-based heuristic for predicting the genomic

content of microbiome taxa, a comparison of the metagenomic

deconvolution framework to existing binning and deconvolution

methods, the use of alternative regression methods in metage-

nomic deconvolution, a reanalysis of the deconvolution of

synthetic microbial communities with sequencing and annotation

errors for more uniform abundance profiles, the prediction of

variable and taxa-specific genes in the synthetic microbial

communities with sequencing and annotation errors, the decon-

volution of a 20-strain model microbial community based on the

HMP mock communities, and a reanalysis of the deconvolution of

the simple synthetic metagenomic samples for the case of species-

specific gene lengths.

(DOC)
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